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Deep learning based automatic
detection and dipole estimation
of epileptic discharges in MEG: a
multi-center study
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Magnetoencephalography (MEG) provides crucial information in diagnosing focal epilepsy. However,
dipole estimation, a commonly used analysis method for MEG, can be time-consuming since it
necessitates neurophysiologists to manually identify epileptic spikes. To reduce this burden, we
developed the automatic detection of spikes using deep learning in single center. In this study, we
performed a multi-center study using six MEG centers to improve the performance of the automated
detection of neuromagnetically recorded epileptic spikes, which we previously developed using

deep learning. Data from four centers were used for training and evaluation (internal data), and the
remaining two centers were used for evaluation only (external data). We used a five-fold subject-wise
cross-validation technique to train and evaluate the models. A comparison showed that the multi-
center model outperformed the single-center model in terms of performance. The multi-center model
achieved an average ROC-AUC of 0.9929 and 0.9426 for the internal and external data, respectively.
The median distance between the neurophysiologist-analyzed and automatically analyzed dipoles was
4.36 and 7.23 mm for the multi-center model for internal and external data, respectively, indicating
accurate detection of epileptic spikes. By training data from multiple centers, automated analysis can
improve spike detection and reduce the analysis workload for neurophysiologists. This study suggests
that the multi-center model has the potential to detect spikes within 1 cm of a neurophysiologist’s
analysis. This multi-center model can significantly reduce the number of hours required by
neurophysiologists to detect spikes.

Keywords Magnetoencephalography, Deep learning, Multicenter study, Classification, Segmentation, Time
series analysis

Magnetoencephalography (MEG) is an effective tool for the clinical analysis of epilepsy>. Neurophysiologists
analyze abnormal signals (spikes, sharp waves, or polyspikes) obtained by MEG and consider the location of the
epileptic lesion. The equivalent current dipole (ECD) estimation method is the primary method used for the
clinical analysis of abnormal signals. This method estimates the abnormal signal source (i.e. ECD) by solving
an inverse problem®. The ECD estimation method requires time and effort because the abnormal signals in the
MEG sensor time series must be identified by visual inspection, and the sensor area related to those signals must
be selected*. Multiple ECDs and the sizes and shapes of the clusters they compute should be obtained to make
more accurate decisions’.

Recently, a deep learning (DL) approach has been proposed to decrease the time and effort required
and increase detection accuracy. DL is an effective approach for analyzing images, text, and signals for
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classification, regression, or generation®!!. Studies have reported the use of DL not only in MEG but also in
electroencephalography (EEG) for abnormal signal analysis. The epileptic MEG spikes detection algorithm
based on a deep learning network (EMS-Net) was proposed to classify MEG signals as spike or non-spike!?.
SpikeNet has also been proposed to classify EEG signals as spike or non-spike!>.This model demonstrated
performance comparable to that of experts by applying a residual network that achieved success in an image
classification task®. In addition to these two studies, various DL approaches have been proposed!*-'¢. However,
they are insufficient for reducing the time-consuming cost of the clinical work required to complete MEG
testing, as most of these studies were limited to simply classifying whether there is a spike in a certain time
window. Fully automated testing requires not only the classification of spikes but also the identification of the
time and spatial distribution of spikes, which are indispensable for ECD estimation. Hence, we developed a
DL-based algorithm to simultaneously estimate the time and sensor region of an anomalous wave using a single-
center MEG dataset!”. Furthermore, we developed post-processing ECD analyses sequentially performed after
spike detection, allowing for the automation of a series of clinical epilepsy analysis procedures. These methods
include ECD estimation, clustering, and quantification. These operations are fully automated.

When training the DL model, the quality and amount of data influence its performance. Data collection from
the multicenter itself is not technically difficult. However, we must pay attention to the characteristic differences
between the centers. This is because data variability increases when treating data obtained from different centers
or with different measurement protocols'®. Additionally, evaluation using an external dataset is important.
In a systematic review, most DL algorithms demonstrated decreased performance on an external dataset in
radiological diagnosis'®. An EEG study on sleep stage scoring using DL also showed decreased performance on
an external dataset”. MEG data are influenced by environmental noise or large moving magnetic objects such as
cars, elevators, and even hospital beds?!. These environmental properties differ between institutions. Therefore,
to evaluate the performance of the DL model, validation using an external dataset is crucial for improving
generalization performance using a multi-center dataset.

This study aimed to enhance the efficacy of the model by incorporating diverse spike shapes learned from
MEG data gathered across various facilities. Additionally, we suggest augmentation techniques to normalize
the variations in data characteristics across facilities. The model is evaluated in two ways: first, at the segment
level, utilizing fixed-length segments utilized during the training phase; and second, via comparison with the
outcomes of the neurophysiologist’s analysis of continuous data. To verify the generalizability of the model, its
performance was assessed using data from facilities not utilized during the training phase.

Methods

Participants

In this study, we used clinical MEG data for epilepsy at six domestic centers equipped with MEG equipment
manufactured by either Ricoh or Yokogawa Electric Corporation. No new MEG measurements of patients were
performed for this study. Data procured from four centers (Osaka University Hospital, Osaka Metropolitan
University Hospital, Tohoku University Hospital, and NHO Shizuoka Institute of Epilepsy and Neurological
Disorders) served as internal data for training, whereas data obtained from two additional centers (Kumagaya
General Hospital and Hokuto Hospital) were used solely for external evaluation. Table 1. presents a summary
of the participant information. The protocol of this study was approved by the Ethical Review Board of Osaka
University Hospital (No. 19484-5), Ethical Committee of Osaka Metropolitan University Graduate School of
Medicine (No. 2020-033), Ethics Committee Tohoku University Graduate School of Medicine (No. 2020-1-
1065), Ethics Committee of National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological
Disorders (N0.2020-01), Ethics Committee of Kumagaya General Hospital (No. 2020-41), and Ethics Committee
of Hokuto Hospital (No.1077). The study complied with applicable ethical guidelines, including ethical approval,
Declaration of Helsinki compliance, and institutional ethical guidelines; moreover, data from each institution
were collected after anonymization. Additionally, informed consent was acquired from all participants in this
study through an opt-out procedure. Specifically, the website of each facility divulged the subjects, purpose,
significance, methodologies, materials, and information entailed in the study, along with the provision of said
materials and information to external parties, conflict of interest considerations, research affiliation, and contact
details. Patients were afforded the option to withdraw from the study to preempt any potential disadvantages.
Internal and external datasets were used to evaluate the performance of the DL model in scenarios where data
were already available and in a newly installed MEG environment. The total number of participants from the six

# Subjects Age

Center ID | Male | Female | N/A | Male Female

187 | 158 0 209+15.4 (226 +17.3
48 28 18 |27.5+14.1 275+ 11.2
202|185 448 | 25.0 £ 15.6 [23.5 £ 15.1
137 | 104 14 12834+14.2 |28.1+£12.7
26 17 0 30.9£18.2 |32.1 £26.1
114 |94 2 58.8+£19.3159.1 £23.9
Total 714 | 586 482 129.0 4+ 18.0 |27.3 £ 16.6
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Table 1. Population of participants.
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centers was 1782 (714 males, 586 females, and 482 unknown individuals), with a median age of 25 years and a
range of 0-95. The participants included those with various types of epilepsy, including focal, generalized, and
complicated. Detailed information on the disease type of patients was only available for Center A, so it is included
in Supplementary Table S1. For the other centers, we had to refer to the electronic medical records, but due to
cost considerations, we were unable to obtain this information. Instead, we have listed the hospital functions
for each center certified as of January 2024 below. Centers A, C, and D are designated as epilepsy support base
hospitals by their prefectures. Institutions A, B, and D are comprehensive epilepsy specialist medical facilities
accredited by the Japan Epilepsy Society. Institutions E and F are designated as regional medical care support
hospitals by the prefectural government.

MEG measurement and preprocessing

Each participant was evaluated according to the epilepsy clinical examination protocol at each center. The focus
of this study was on resting-state measurements. The resting-state MEG data included two types of scans: eyes
open and eyes closed. In both cases, some centers instructed the patient to rest, while others did not. In some
cases, sedation was applied based on the participant’s condition. Sampling frequencies varied between 500 and
10,000 Hz; low-pass filters between 100 and 500 Hz and high-pass filters between 0.1 and 3.0 Hz were employed,
although some data were obtained unfiltered. Notch filters were occasionally used to exclude AC noise. The
MEGs used at each center were of the all-head type equipped with either 160- or 200-channel axial gradiometers
(MEGVision; Yokogawa Electric Corporation, Kanazawa, Japan and RICOH160-1; RICOH, Tokyo, Japan).

The MEG data recorded at each center were used to create the training dataset, which fundamentally
adhered to the method described in a previous study!”. The only difference from the previous method was the
downsampling frequency rate. This was previously 1000 Hz, but 250 Hz was used in this study. This revision
was made because the lower limit of the sampling frequency in the previous study was 1000 Hz, whereas in the
present data, it was 500 Hz, and to decrease the complexity of the machine learning model by having fewer model
parameters. In addition to this revision, the processing method employed was consistent with a previous study,
which included the application of a 3-35 Hz bandpass filter characterized by a 2000-order finite impulse response
employing a hamming window, coupled with a dual-pass filtering procedure. Among all the centers, only Center
E employed dual signal subspace projection (DSSP)?? for noise reduction. Consequently, this study applied
DSSP to Center E’s data only to ensure consistency in the spike detection conditions used by neurophysiologists.
Regarding data in which spikes were detected by neurophysiologists, 512 time points centered on the spike time
were extracted and registered as spike-positive segments, whereas for data without spikes, 512 time points were
extracted every 3 s and registered as spike-negative segments. To learn the segmentation model, the correct
answer masks were simultaneously recorded. The correct mask was of the same size as the extracted segment
data and was created by setting the neurophysiologist-registered dipole time £15 timepoints to 1 for the selected
sensor and 0 for all other timepoints. A correct mask was created by setting all values to 0 for spike-negative
data. In the Yokogawa-Ricoh MEG system, a set of preliminary sensors has been implemented to maintain a
consistent number of measurable sensors. Specifically, in the event of sensor malfunction, the constancy of the
sensor count is ensured through the activation of a redundant sensor. Notably, the arrangement of sensors at
each center exhibits fundamental dissimilarities. Therefore, to compensate for variations in sensor placement
and the quantity of sensors, the sensor order was normalized, and the magnetic field values at positions where
no sensor was placed were supplemented from the surrounding sensors. Experienced neurophysiologists
(M.H.) selected spike-positive data to include only data with large typical amplitudes. The number of training
datasets per institution is presented in Table 2. The number of spike-negative data points at Centers A and C
was disproportionately large compared to the number of spike-positive data points; thus, they were randomly
sampled. All segment data were visually observed by a neurophysiologist skilled in MEG analysis (M.H.), and
data unsuitable for the study were excluded.

Data augmentation

Data augmentation was utilized to prevent overfitting when training the deep learning models®. In this
study, four augmentation techniques were employed: cropping window, shifting sensor order, reverse phase,
and mixing frequency. In the training iteration of the model, each augmentation is independently applied

# Subjects # Training data
Center ID | Spike positives | Spike negatives | Spike positives | Spike negatives
A 265 80 5366 17776
B 64 30 656 3871
C 164 671 2496 13637
D 236 19 5527 7554
E 38 5 737 635
F 25 185 314 1570
Total 792 990 15096 45043

Table 2. Number of participants and training data regarding spike positives and negatives. The number
of patients refers to individual patients, not the number of MEG records. The study data reflect counts of
independent spikes and background activity, with no augmentation applied.
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subsequent to the loading of data. In order to augment data diversity, each parameter is stochastically assigned
for every data readout. The cropping window involves randomly selecting 256 timepoints from a 512-timepoint
segment to ensure that the spike detection performance is not dependent on the relative time in the segment
data. The shifting sensor order randomly rearranges the order of sensors. Given that temporal lobe epilepsy is
relatively common in partial-onset epilepsy?*, spikes are expected to be more prevalent in sensors close to the
temporal lobe. Therefore, similar to the cropping window, shifting sensor order was applied to mitigate the
sensor-order dependence of the spikes. The reverse phase flips the phase. The ECD model assumes that the
dipole direction is inverted, thereby enhancing the data corresponding to cases in which the head is measured
in a different direction during MEG testing. The mixing frequency was based on previous studies?>?%, in which
reference segment data were randomly selected from spike-negative data and combined with source segment
data in the frequency domain. MEG data are susceptible to environmental magnetic fields?*?’, and each center
is expected to have unique frequency components. Biological data are also susceptible to individual differences,
with frequency components at rest differing between young and elderly individuals®®. Mixing frequency was
introduced to reduce the impact of the environmental magnetic field and age group disparities.

Model training and evaluation

Figure 1 shows the pipeline used for model training and evaluation. The preprocessing and segmentation of
continuous data are described in the preceding section. Five models were trained for each of the classification
and segmentation networks, following a previous study!”: a single-center model utilizing data from each of
the four internal centers and a multi-center model employing data from all four centers. For the classification
network, scSE-Module?’, DropConnect Module*, and Dilated Convolution?! were applied to improve accuracy
and generalization performance based on a 26-layer ResNet®2. For the segmentation network, we also used
DeepU-Net??, an extension of U-Net*. As in the previous study'’, it has the same structure as the classification
network, allowing the sharing of learned weights. When training the segmentation network, the weights of
its encoder part were initialized using the weights of the trained classification network. A five-fold subject-
wise cross validation was performed to assess the performance of the participants not used for training.
Table 3. presents the parameters used during training. The participants included in each fold were the same
for the multicenter and single-center models. The evaluation indices for the classification model comprised
the area under the receiver operating characteristic curve (ROC-AUC), recall, precision, and specificity. The
segmentation model was evaluated using the Dice index. The Dice index is a standard measure used in the
evaluation of segmentation networks. It is calculated using the formula Dice Index =2 x |A( B|/(|A| + |B|)
for a target region A and a estimated region B output by the segmentation network. Here, || denotes the number
of elements contained in the regions, and () denotes common regions. The Dice Index is 1 when region A and
region B are perfectly matched, and it is 0 when they have no common region. Those evaluation metrics were
calculated with a calculation threshold of 0.5.
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Fig. 1. Training and evaluation pipeline. The MEG data acquired from each center was preprocessed and
segmented. The internal segments were utilized to train classification and segmentation models. A single-
center model was trained on data from a single center, whereas a multi-center model was trained on data
obtained from multiple centers. The trained models were evaluated using both internal and external segment
data. Subsequently, preprocessing was applied to the continuous data, and the trained single-center and mutli-
center models were utilized to automatically detect spikes. Additionally, dipole analysis, sorting, and clustering
were performed and compared with the results previously analyzed by neurophysiologists. For external data, a
multi-center model was utilized to evaluate both segment and continuous data.
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Task Parameter Value
Architecture 26 Layer scSE-ResNet?32
Input shape 234 X 256
Loss function Binary Cross Entropy
AdamWw?*
Optimizer /31: 09
32:0.999
Weight decay: 0.0004
Classification ReduceLROnPlateau

Initial learning rate: 0.0001
Scheduler Minimum LR: 0.000001

Reduce Factor decay: 0.2

Patience Number of Epochs: 3

Batch size 64
Maximum epoch 40
Early stopping patience 5
Architecture DeepU-Net?*® with 26 Layer scSE-ResNet?*3
Input shape 234 X 256
Loss function Dice Loss®
AdamWw?3
Optimizer 61: e
32:0.999
Weight decay: 0.00005
ReduceLROnPlateau

Segmentation
Initial learning rate: 0.00003

Scheduler Minimum LR: 0.000001

Reduce Factor decay: 0.2

Patience Number of Epochs: 3
Batch sze 32

Encoder weight freezing epoch | 5

Maximum epoch 50

Early stopping patience 5

Table 3. Training parameters.

Subsequently, the segmentation model trained using the segmented data was employed for continuous data
(typically 20-40 min) evaluation. The evaluation process was as described in a previous study!’. First, the same
preprocessing steps (3-35 Hz bandpass filter and 250 Hz downsampling) were applied during model training.
Input data of the same size as that used during training were then cropped while overlapping the continuous
data by 75% of the segment data length. The trained segmentation model was applied to each cropped input, and
the resulting outputs were averaged. The output of the detection model is represented as a spike confidence map,
with higher values for the sensors and times with greater spike confidence. A Gaussian filter (o = 15 timepoints)
was then applied to this two-dimensional certainty map, and the peak with a spike confidence greater than 0.5
was designated as the spike detection time. For the ECD, the spike duration was assumed to be 30 ms, and all the
dipoles for -7 ms before and after the detection time, which corresponds to half of the 30 ms spike duration®’,
were calculated. Dipoles that were excessively mobile or local solutions in the ECD method were excluded from
the analysis. Given that the equivalent current dipole method posits a singular current entity, the outcomes of
the analysis prove to be unreliable in scenarios involving the concurrent presence of multiple signals or instances
where the signal-to-noise ratio of spikes is suboptimal. In accordance with a previous study®® and standard
clinical analytical practices, the following criteria were employed for exclusion: goodness-of-fit (GoF) equal to or
exceeding 0.8, dipole intensity falling within the range of 50-1000 nAm, and the mean distance from the dipole’s
center of gravity, as calculated continuously over time, being 2 cm or less. Ultimately, the dipole characterized
by the highest intensity was duly recorded as the autonomously scrutinized dipole. Finally, the dipole time was
selected as the time of the highest intensity when the signal-to-noise ratio of the spike and background brain
activity was optimal. The dipole clusters were calculated using the density-based spatial clustering of applications
with noise (DBSCAN) method* with parameters eps = 0.015 and minPts = 4 to evaluate the coherence of
the dipole, which is also evaluated as the focus of epilepsy in real clinical practice. The evaluation index was
calculated by comparing the time differences between the neurophysiologist's manual analysis, spike detection,
and dipole times. In the continuous data analysis of spike-negative cases, the number of false positives (FPs) per
minute was evaluated. Additionally, the distance between the neurophysiologist’s dipole and the automatically
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detected dipole and the overlap of the dipole clusters that each constituted were obtained. Furthermore, dipole
indices (GoF, intensity, and confidence volume*°) were compared.

All implementations were performed in Python using an Ubuntu 18.04.3 LTS machine with an Intel Core i9-
9900K CPU clocked at 3.60 GHz with 64 GB of RAM and an NVIDIA GeForce RTX 2080 Ti GPU. We measured
the time required for the automatic analysis of continuous data when using this environment.

Results

Segment level evaluation

Spike classification and segmentation networks were trained using resting-state MEG segmentation data. The
classification network was trained to determine the presence of spikes in the segmented data, whereas the
segmentation network was trained to identify the exact time and sensors at which the spikes occurred. Table 4 lists
the classification and segmentation results. The data from Centers E and F were used as external data and were
not used to train the deep learning models. Data from other centers were used as internal data to train the deep
learning models. A five-fold subject-wise cross-validation was utilized, with each evaluation metric indicating a
five-fold mean value. The classification performance achieved by incorporating individual augmentations from
the unaugmented training data is shown in Supplementary Table S2. The best classification performance was
observed when all four augmentations were employed simultaneously. The evaluation metrics for segmentation,
Dice+ and Dice-, represent the Dice index for spike-positive and spike-negative data, respectively. Note that
there is a large discrepancy between the Dice+ and Dice— indices because the size of the correct response area
relative to the input size is significantly different. Regarding the internal data in Table 4, the ROC-AUC for the
single-center and multicenter models averaged 0.9728 and 0.9929, respectively. Similarly, for the external data,
the ROC-AUC averaged 0.9426. The classification and segmentation performance improved when data from
multiple centers were mixed and trained for all centers and indicators except recall in Center D. However, the
performance of the external data was inferior to that of the internal data in the tables.

Continuous data evaluation

Automated spike detection was executed on each participant’s resting-state measurement data, and dipole
estimation was conducted based on the detection time and sensor. Subsequently, the estimated dipoles were
clustered. Theaccuracy of the automatic analysis was assessed by comparing its results with those obtained through
a manual analysis conducted by a neurophysiologist. Table 5 presents the breakdown of the neurophysiologist’s
analysis results and the automatic analysis results in the continuous data analysis for the spike-positive data
set. The purpose is to demonstrate that the automatic analysis can reproduce the neurophysiologist’s results. To
determine a match, we used a previous study*!, as a reference and considered clusters with a distance of 15 mm
or less between their center coordinates. The table shows the percentage of all clusters and the percentage of
clusters that either did not form or did not match, even if they did form. When training with data from all
centers, the rate of cluster matches was higher for internal data. However, like the external data, there were
instances where spikes were not detected enough to form clusters in some of the data, rendering comparisons
impossible for both the neurophysiologist and automated analyses. Additionally, there were cases where clusters
did not match. The assessment outcomes are presented in Table 6. In addition, a comparison of the number of

Center ID Classification Segmentation
Evaluation | Training | ROC-AUC | Recall | Precision | Specificity | Dice+ | Dice—
A,B,C,D |0.9962 0.9212 | 0.9827 0.9953 0.5703 | 0.9999
A A 0.9822 0.8874 | 0.8840 0.9616 0.5114 | 0.9992
A,B,C,D | 0.9906 0.9231 | 0.8604 0.9777 0.4873 | 0.9997
B B 0.9696 0.8673 | 0.7333 0.9489 0.4434 | 0.9990
A,B,C,D |0.9931 0.8053 | 0.9438 0.9920 0.4341 | 0.9999
¢ C 0.9691 0.7575 | 0.8289 0.9725 0.4307 | 0.9993
A,B,C,D | 0.9915 0.8816 | 0.9909 0.9942 0.5277 | 0.9998
b D 0.9702 0.9233 | 0.8434 0.8603 0.5171 | 0.9972
E A,B,C,D | 0.9434 0.9019 | 0.9516 0.9545 0.3973 | 0.9963
F A,B,C,D | 0.9418 0.7809 | 0.7294 0.9516 0.2942 | 0.9994

Table 4. Classification and segmentation performance regarding internal and external data. The Evaluation
column represents the ID of the facility being evaluated and the Training column represents the ID of the
center used to train the model. Four metrics were calculated to evaluate the binary classification model for

the presence or absence of abnormal signals (spikes, sharp waves, or polyspikes) in the segmented MEG
waveforms. For the segmentation model evaluation, we calculated two metrics: Dice+ and Dice. Dice+
compares the output of the model with the regions where abnormal signals are present in the segmented MEG
waveform and calculates the percentage of common regions. Dice- compares the output of the model with the
input MEG data where no spikes are present. It was calculated as the percentage of common areas between the
output of the model when the MEG data with no spikes were input (actually, the output is subtracted from 1)
and the correct region of the same size where all of the indicators are 1. All indices ranged from 0 to 1, with a
value closer to 1 indicating better performance.
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Center ID # Participants
No dipoles No clusters
by automated by automated Clusters not | Cluster
Evaluation | Training | analysis No clusters by neuro-physiologist | analysis No Clusters Both | matched matched
N ABCD |5(1.9%) 44 (16.5%) 9(3.4%) 34 (12.8%) 66 (24.8%) 2236%)
A 6 (2.3%) 43 (16.2%) 7 (2.6%) 35 (13.2%) 79 (29.7%) 96 (36.1%)
A,B,C,D |3(4.7%) 19 (29.7%) 1(1.6%) 19 (29.7%) 5(7.8%) 17 (26.6%)
B B 4(6.3%) 17 (26.6%) 2(3.1%) 20 (31.3%) 7 (10.9%) 14 (21.9%)
A,B,C,D | 3(1.8%) 11 (6.7%) 18 (10.9%) 15 (9.1%) 27 (16.4%) 91 (55.2%)
¢ C 2 (1.2%) 18 (10.9%) 23 (13.9%) 9 (5.5%) 39 (23.6%) | 74 (44.8%)
5 AB,CD | 1(0.4%) 21 (8.9%) 10 ( 4.2%) 15 ( 6.4%) 84 (35.6%) gﬁ.s%)
D 0 (0.0%) 30 (12.7%) 6 (2.5%) 6 (2.5%) 123 (52.1%) | 71 (30.1%)
E A,B,C,D | 0(0.0%) 2(5.3%) 2(5.3%) 6 (15.8%) 13 (34.2%) 15 (39.5%)
F A,B,C,D | 1(4.0%) 5 (20.0%) 4(16.0%) 2 (8.0%) 9 (36.0%) 4(16.0%)

Table 5. Breakdown of the continuous data analysis regarding spike-positive participants. The conditions for
the breakdown are as follows: (1) Number of participants in each site’s spike-positive data set for whom no
dipole was registered as a result of the automated analysis. (2) Number of participants for whom no dipole
clusters were formed in the neurophysiologist’s analysis, automated analysis, or either analysis. (3) Number of
participants for whom the neurophysiologist’s results and the automated analysis results did not agree on the
dipole cluster. (4) Number of participants whose dipole clusters matched.

Center ID Evaluation metrics
Evaluation | Training | Recall spike Recall dipole FPs/min Dipole sistance (mm) | Dipole cluster dice index
ABCD 0.9162 0.6132 0.8128 4.042 0.493
T [0.7212,1.0000] | [0.4830,0.7726] | [0.2670,3.3750] | [2.285,6.992] [0.322,0.641]
A
A 0.8075 0.5000 2.2802 4.680 0.399
[0.5686, 0.9346] | [0.3094,0.6394] | [0.3912, 7.4360] [2.710,7.770) [0.267, 0.560)
ABCD 0.9756 0.6667 0.5000 6.792 0.466
T [0.7273,1.0000] | [0.3529,0.8333] | [0.0000,3.3000] | [3.956,11.567) | [0.273,0.560]
B
B 0.8333 0.3604 2.9375 8.270 0.461
[0.6667,1.0000] | [0.0000,0.6558] | [0.7375,9.3702] [4.540, 16.310] [0.381,0.519)
ABCD 0.8000 0.5417 0.5804 5.389 0.467
T 0.5333,0.9403] | [0.3229,0.7407) | [0.2000,1.7865] | [2.917,9.077) [0.353,0.555)
C
c 0.7600 0.4000 2.0800 6.300 0.425
0.5333,0.9333] | [0.2105,0.6000] | [0.6019,5.9849] | [3.590,10.980] | [0.329,0.539)]
ABCD 0.8545 0.5742 1.1250 4.162 0.479
T [0.6543,0.9668] | 0.3621,0.7143] | [0.0994,9.7828] | [2.405,6.977) [0.336,0.610]
D
D 0.8462 0.4500 8.3500 4.540 0.447
[0.6923,0.9459] | [0.3061,0.5714] | [1.2816,18.0595] | [2.780,7.550] [0.314,0.602]
0.6065 0.4317 1.0000 7.314 0.467
E A,B,C,D
0.4196,0.8594] | [0.2833,0.5764] | [0.1105,3.0667] | [3.976,14.086] | [0.312,0.641]
0.7321 0.5453 0.9231 6.955 0.651
F A,B,C,D
[0.3833,0.9052] | [0.3250,0.6645] | [0.2000, 4.1000] [4.024, 12.860] [0.516,0.767)

Table 6. Evaluation of continuous data. Recall spike represents the percentage of spikes that were detected
within £100 ms before and after the neurophysiologist’s visually identified spike. Recall dipole represents

a calculation similar to the recall spike using only the dipole with the highest confidence level; FPs/min
represents the number of automatically detected spikes per minute regarding the data that were identified

as no spikes by the neurophysiologist. Dipole Distance represents the distance between the location of the
ECD that was automatically estimated and that of the nearest ECD that was manually estimated by the
neurophysiologists. Dipole cluster Dice index determines the overlap of the 95% confidence ellipsoids,
computed using the dipoles that form the cluster. Each value in the table indicates the median and quartiles of
the abovementioned indices calculated for each participant..
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spike detections, dipole intensity, GoF, confidence volume (CV), and cluster size is presented in Supplementary
Table S3. Similar to the results of the segment data evaluation, the model trained on the multi-center data
reproduced the neurophysiologist’s analysis better than the results of the model trained on the single-center
data. As for the external data, although the reproducibility was lower than that of the internal data, the results
of the dipole analysis were reasonable in light of the criteria from previous literature® as a measure of dipole.
Regarding the internal data in Table 6, the median distance between the neurophysiologist-analyzed dipole
and the dipole automatically detected by the single-center and multicenter models was 4.93 and 4.36 mm,
respectively. Similar to the segmented data, the model trained on multicenter data reproduced the outcomes
of the neurophysiologist better. Regarding the external data shown in Table 6, the median distance between
the neurophysiologist-analyzed dipole and the dipole automatically detected by the multicenter models was
7.23 mm. In the external data, although the model did not replicate the neurophysiologist’s results as accurately
as with the internal data for the automatically detected spikes, it performed equally well when focusing only
on cases in which dipoles clustered. Figure 2 shows three examples comparing the dipole clusters constructed
for each of the single-center and multicenter models with those of the neurophysiologist. Although this is an
example, it reflects the characteristics of each model.

The processing duration is contingent on the number of spikes detected. To approximate the processing
time for each center, a regression equation was used and subsequently averaged. The equation in question
possessed an R? = 0.86, wherein the processing time processing time = 0.3 x (#detected spikes) + 56.0 (in
seconds). The intercept of the regression equation was subject to variation based on several factors, including the
measurement time, sampling frequency, and sensor quantity.

Discussion
As presented in Table 4, amalgamating data from multiple centers ameliorates the model’s performance, unlike

training it solely on data from a single center. In deep learning, it is widely acknowledged that performance
increases with an increase in data; nonetheless, this presupposes that the labels and data are devoid of noise*2.
In our study, to further enhance performance, we addressed the issue of limited data available at a single center
using data from multiple centers. Considering that the number and arrangement of sensors differed depending
on the MEGs in each institution, we standardized and supplemented them to minimize the impact of equipment
differences. Additionally, we believe that the environmental magnetic field and participant characteristics of each
center also influenced the accuracy, and we contend that the new augmentation technique is a more effective
method for training the model. As shown in Table S2 in the Supplementary Content, we achieved further
improvement in performance by aggregating data from multiple centers and applying our augmentations. In
both classification and segmentation, our approach had a more potent effect on recall and precision than on
specificity, signifying that the model responded more accurately to spikes and less accurately to background
brain magnetic fields. This has augmented the ability of neurophysiologists to reproduce the results of their
analyses. Thus, a single center alone could not sufficiently learn the characteristics of spikes, and learning the
various forms of spikes observed at multiple centers amplified the generalization performance for various
unknown differences depending on the institution, including environmental noise and the classification criteria
of spikes. For the external data, we achieved a performance equivalent to that of the single-center model of the
internal data, implying that the model acquired the generic features of the spikes.

Similar to the assessment of the segmented data, the examination of continuous data verified the enhanced
performance of the multi-center model. Table 6 suggests that the model trained with multi-center data

Neurophysiologist(N=10) Neurophysiologist(N=78)
Single Center Model(N=92) Single Center Model(N=102)
Multi Center Model(N=285)

Neurophysiologist(N=25)
Single Center Model(N=54)
Multi Center Model(N=55) Multi Center Model(N=50)
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Fig. 2. Examples of dipole clusters from three patients. The dipole clusters, which were analyzed
automatically using both the single-center and multi-center models, were compared with those created by the
neurophysiologist’s analysis, utilizing the same parameters. Each point represents an estimated dipole, with

a 95% confidence ellipsoid constructed around it. The dipole clusters obtained from the neurophysiologists
analysis are depicted in red; those from the single-center model are illustrated in green; and those from the
multi-center model are depicted in blue. The origin in the figure represents the origin of the MEG coordinate
system. Also, N represents the number of estimated dipoles in each analysis..
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augmented the reproducibility of the detected spikes, corroborating its ability to detect various types of spikes
that could not be acquired with the single-center model. Not only did the model trained on multi-center data
increase sensitivity, but it also facilitated the suppression of FPs. Specifically, in the case of Center D, where the
number of spike-negative cases was low, the single-center model resulted in numerous false positives; however,
learning with multi-center data significantly reduced the number of false positives. Learning with data from
multiple centers resulted in superior dipole location accuracy and cluster overlap. In dipole estimation, accurate
estimation of the spike onset and peak times is vital, but sensor selection is also crucial. Our findings, as presented
in Table 4, suggest that learning with data from multiple centers enabled us to reproduce the neurophysiologist’s
sensor selection with higher accuracy, which improved the final dipole estimation outcomes and resulted in
better cluster reproducibility. As illustrated in Fig. 2, even when the neurophysiologists dipole clusters were
small and agglomerated, the single-center model estimated a broad range of dipoles, whereas the multicenter
model demonstrated high cohesion of dipoles and high reproducibility of clusters. Although there were some
cases in which clusters were not constructed, as shown in Table 5, more cases matched the clusters analyzed in
the multicenter model than in the single-center model compared with the neurophysiologist’s clusters. This can
be attributed to the detection of spikes that could not be detected in the single-center model and an increase
in the number of cases in close proximity to the neurophysiologist’s cluster caused by the improved accuracy
of sensor selection. In the external data, the reproducibility of the detected spikes was not as high as that of the
internal data. However, the overlap with the clusters analyzed by neurophysiologists was comparable to that of
the internal data.

Based on the concept that the automated model should have high specificity rather than high sensitivity,
the current model was designed from the perspective of the basic diagnostic principle of epilepsy based on
EEG or MEG. Based on this concept, the model was designed to detect only typical spikes with relatively large
amplitudes. This contributes to a reduction in false-positive diagnoses of epilepsy, which is vital in clinical
practice. However, this method may fail to detect abnormal epileptic waves. Hence, if we use an automated
model for screening tests of epilepsy, it would be better to identify not only typical spikes with high specificity
but also various epileptogenic waves in addition to typical spikes. Moreover, because the data utilized in this
study were evaluated in a clinical context, the number of participants, their ages, and spike criteria varied among
the centers. Consequently, there were differences in performance at each site. This suggests that the parameters
may require adjustments at each center for practical implementation. Additionally, we posit that collecting a
specific amount of data and performing transfer learning*® or domain adaptation* of the model can lead to
a higher level of detection accuracy when working at centers other than the training data collection center. In
addition, previous studies have compared manually analyzed dipoles with the resected area of epileptic lesions
and reported that the prognosis of resection is better when dipole clusters are constructed within or close to the
resected area?!">46, On the contrary, it has been reported that the percentage of patients who maintained Engel
class I at 10 years is approximately 60% for complete resection and approximately 20% for partial resection®’.
Although our method was able to better reproduce the results of the neurophysiologist’s analysis by learning
from multi-center data, a comparison with resection is necessary for a final evaluation.

Conclusion

In this study, we used data obtained from multiple facilities to train a model for the precise identification of
epileptic spikes using MEG. Our results confirm the model’s ability to achieve superior accuracy not only for
the facilities employed in the training but also for those not included. These findings can significantly reduce the
labor-intensive spike detection tasks performed by neurophysiologists.

Data availability
The data that support the findings of this study are available on request from the corresponding author(M.H.).
The data are not publicly available due to privacy or ethical restrictions.

Code availability

Demonstrations of the model and augmentation are available from CodeOcean (https://codeocean.com/cap-
sule/8268914/tree/v1). Other training and evaluation codes can be obtained by contacting the corresponding
author (M.H.).
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