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Magnetoencephalography (MEG) provides crucial information in diagnosing focal epilepsy. However, 
dipole estimation, a commonly used analysis method for MEG, can be time-consuming since it 
necessitates neurophysiologists to manually identify epileptic spikes. To reduce this burden, we 
developed the automatic detection of spikes using deep learning in single center. In this study, we 
performed a multi-center study using six MEG centers to improve the performance of the automated 
detection of neuromagnetically recorded epileptic spikes, which we previously developed using 
deep learning. Data from four centers were used for training and evaluation (internal data), and the 
remaining two centers were used for evaluation only (external data). We used a five-fold subject-wise 
cross-validation technique to train and evaluate the models. A comparison showed that the multi-
center model outperformed the single-center model in terms of performance. The multi-center model 
achieved an average ROC-AUC of 0.9929 and 0.9426 for the internal and external data, respectively. 
The median distance between the neurophysiologist-analyzed and automatically analyzed dipoles was 
4.36 and 7.23 mm for the multi-center model for internal and external data, respectively, indicating 
accurate detection of epileptic spikes. By training data from multiple centers, automated analysis can 
improve spike detection and reduce the analysis workload for neurophysiologists. This study suggests 
that the multi-center model has the potential to detect spikes within 1 cm of a neurophysiologist’s 
analysis. This multi-center model can significantly reduce the number of hours required by 
neurophysiologists to detect spikes.
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Magnetoencephalography (MEG) is an effective tool for the clinical analysis of epilepsy1,2. Neurophysiologists 
analyze abnormal signals (spikes, sharp waves, or polyspikes) obtained by MEG and consider the location of the 
epileptic lesion. The equivalent current dipole (ECD) estimation method is the primary method used for the 
clinical analysis of abnormal signals. This method estimates the abnormal signal source (i.e. ECD) by solving 
an inverse problem3. The ECD estimation method requires time and effort because the abnormal signals in the 
MEG sensor time series must be identified by visual inspection, and the sensor area related to those signals must 
be selected4. Multiple ECDs and the sizes and shapes of the clusters they compute should be obtained to make 
more accurate decisions5.

Recently, a deep learning (DL) approach has been proposed to decrease the time and effort required 
and increase detection accuracy. DL is an effective approach for analyzing images, text, and signals for 
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classification, regression, or generation6–11. Studies have reported the use of DL not only in MEG but also in 
electroencephalography (EEG) for abnormal signal analysis. The epileptic MEG spikes detection algorithm 
based on a deep learning network (EMS-Net) was proposed to classify MEG signals as spike or non-spike12. 
SpikeNet has also been proposed to classify EEG signals as spike or non-spike13.This model demonstrated 
performance comparable to that of experts by applying a residual network that achieved success in an image 
classification task6. In addition to these two studies, various DL approaches have been proposed14–16. However, 
they are insufficient for reducing the time-consuming cost of the clinical work required to complete MEG 
testing, as most of these studies were limited to simply classifying whether there is a spike in a certain time 
window. Fully automated testing requires not only the classification of spikes but also the identification of the 
time and spatial distribution of spikes, which are indispensable for ECD estimation. Hence, we developed a 
DL-based algorithm to simultaneously estimate the time and sensor region of an anomalous wave using a single-
center MEG dataset17. Furthermore, we developed post-processing ECD analyses sequentially performed after 
spike detection, allowing for the automation of a series of clinical epilepsy analysis procedures. These methods 
include ECD estimation, clustering, and quantification. These operations are fully automated.

When training the DL model, the quality and amount of data influence its performance. Data collection from 
the multicenter itself is not technically difficult. However, we must pay attention to the characteristic differences 
between the centers. This is because data variability increases when treating data obtained from different centers 
or with different measurement protocols18. Additionally, evaluation using an external dataset is important. 
In a systematic review, most DL algorithms demonstrated decreased performance on an external dataset in 
radiological diagnosis19. An EEG study on sleep stage scoring using DL also showed decreased performance on 
an external dataset20. MEG data are influenced by environmental noise or large moving magnetic objects such as 
cars, elevators, and even hospital beds21. These environmental properties differ between institutions. Therefore, 
to evaluate the performance of the DL model, validation using an external dataset is crucial for improving 
generalization performance using a multi-center dataset.

This study aimed to enhance the efficacy of the model by incorporating diverse spike shapes learned from 
MEG data gathered across various facilities. Additionally, we suggest augmentation techniques to normalize 
the variations in data characteristics across facilities. The model is evaluated in two ways: first, at the segment 
level, utilizing fixed-length segments utilized during the training phase; and second, via comparison with the 
outcomes of the neurophysiologist’s analysis of continuous data. To verify the generalizability of the model, its 
performance was assessed using data from facilities not utilized during the training phase.

Methods
Participants
In this study, we used clinical MEG data for epilepsy at six domestic centers equipped with MEG equipment 
manufactured by either Ricoh or Yokogawa Electric Corporation. No new MEG measurements of patients were 
performed for this study. Data procured from four centers (Osaka University Hospital, Osaka Metropolitan 
University Hospital, Tohoku University Hospital, and NHO Shizuoka Institute of Epilepsy and Neurological 
Disorders) served as internal data for training, whereas data obtained from two additional centers (Kumagaya 
General Hospital and Hokuto Hospital) were used solely for external evaluation. Table 1. presents a summary 
of the participant information. The protocol of this study was approved by the Ethical Review Board of Osaka 
University Hospital (No. 19484-5), Ethical Committee of Osaka Metropolitan University Graduate School of 
Medicine (No. 2020-033), Ethics Committee Tohoku University Graduate School of Medicine (No. 2020-1-
1065), Ethics Committee of National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological 
Disorders (No.2020-01), Ethics Committee of Kumagaya General Hospital (No. 2020-41), and Ethics Committee 
of Hokuto Hospital (No.1077). The study complied with applicable ethical guidelines, including ethical approval, 
Declaration of Helsinki compliance, and institutional ethical guidelines; moreover, data from each institution 
were collected after anonymization. Additionally, informed consent was acquired from all participants in this 
study through an opt-out procedure. Specifically, the website of each facility divulged the subjects, purpose, 
significance, methodologies, materials, and information entailed in the study, along with the provision of said 
materials and information to external parties, conflict of interest considerations, research affiliation, and contact 
details. Patients were afforded the option to withdraw from the study to preempt any potential disadvantages. 
Internal and external datasets were used to evaluate the performance of the DL model in scenarios where data 
were already available and in a newly installed MEG environment. The total number of participants from the six 

Center ID

# Subjects Age

Male Female N/A Male Female

A 187 158 0 20.9± 15.4 22.6± 17.3
B 48 28 18 27.5± 14.1 27.5± 11.2
C 202 185 448 25.0± 15.6 23.5± 15.1
D 137 104 14 28.3± 14.2 28.1± 12.7
E 26 17 0 30.9± 18.2 32.1± 26.1
F 114 94 2 58.8± 19.3 59.1± 23.9
Total 714 586 482 29.0± 18.0 27.3± 16.6

Table 1.  Population of participants.
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centers was 1782 (714 males, 586 females, and 482 unknown individuals), with a median age of 25 years and a 
range of 0–95. The participants included those with various types of epilepsy, including focal, generalized, and 
complicated. Detailed information on the disease type of patients was only available for Center A, so it is included 
in Supplementary Table S1. For the other centers, we had to refer to the electronic medical records, but due to 
cost considerations, we were unable to obtain this information. Instead, we have listed the hospital functions 
for each center certified as of January 2024 below. Centers A, C, and D are designated as epilepsy support base 
hospitals by their prefectures. Institutions A, B, and D are comprehensive epilepsy specialist medical facilities 
accredited by the Japan Epilepsy Society. Institutions E and F are designated as regional medical care support 
hospitals by the prefectural government.

MEG measurement and preprocessing
Each participant was evaluated according to the epilepsy clinical examination protocol at each center. The focus 
of this study was on resting-state measurements. The resting-state MEG data included two types of scans: eyes 
open and eyes closed. In both cases, some centers instructed the patient to rest, while others did not. In some 
cases, sedation was applied based on the participant’s condition. Sampling frequencies varied between 500 and 
10,000 Hz; low-pass filters between 100 and 500 Hz and high-pass filters between 0.1 and 3.0 Hz were employed, 
although some data were obtained unfiltered. Notch filters were occasionally used to exclude AC noise. The 
MEGs used at each center were of the all-head type equipped with either 160- or 200-channel axial gradiometers 
(MEGVision; Yokogawa Electric Corporation, Kanazawa, Japan and RICOH160-1; RICOH, Tokyo, Japan).

The MEG data recorded at each center were used to create the training dataset, which fundamentally 
adhered to the method described in a previous study17. The only difference from the previous method was the 
downsampling frequency rate. This was previously 1000 Hz, but 250 Hz was used in this study. This revision 
was made because the lower limit of the sampling frequency in the previous study was 1000 Hz, whereas in the 
present data, it was 500 Hz, and to decrease the complexity of the machine learning model by having fewer model 
parameters. In addition to this revision, the processing method employed was consistent with a previous study, 
which included the application of a 3–35 Hz bandpass filter characterized by a 2000-order finite impulse response 
employing a hamming window, coupled with a dual-pass filtering procedure. Among all the centers, only Center 
E employed dual signal subspace projection (DSSP)22 for noise reduction. Consequently, this study applied 
DSSP to Center E’s data only to ensure consistency in the spike detection conditions used by neurophysiologists. 
Regarding data in which spikes were detected by neurophysiologists, 512 time points centered on the spike time 
were extracted and registered as spike-positive segments, whereas for data without spikes, 512 time points were 
extracted every 3 s and registered as spike-negative segments. To learn the segmentation model, the correct 
answer masks were simultaneously recorded. The correct mask was of the same size as the extracted segment 
data and was created by setting the neurophysiologist-registered dipole time ±15 timepoints to 1 for the selected 
sensor and 0 for all other timepoints. A correct mask was created by setting all values to 0 for spike-negative 
data. In the Yokogawa-Ricoh MEG system, a set of preliminary sensors has been implemented to maintain a 
consistent number of measurable sensors. Specifically, in the event of sensor malfunction, the constancy of the 
sensor count is ensured through the activation of a redundant sensor. Notably, the arrangement of sensors at 
each center exhibits fundamental dissimilarities. Therefore, to compensate for variations in sensor placement 
and the quantity of sensors, the sensor order was normalized, and the magnetic field values at positions where 
no sensor was placed were supplemented from the surrounding sensors. Experienced neurophysiologists 
(M.H.) selected spike-positive data to include only data with large typical amplitudes. The number of training 
datasets per institution is presented in Table 2. The number of spike-negative data points at Centers A and C 
was disproportionately large compared to the number of spike-positive data points; thus, they were randomly 
sampled. All segment data were visually observed by a neurophysiologist skilled in MEG analysis (M.H.), and 
data unsuitable for the study were excluded.

Data augmentation
Data augmentation was utilized to prevent overfitting when training the deep learning models23. In this 
study, four augmentation techniques were employed: cropping window, shifting sensor order, reverse phase, 
and mixing frequency. In the training iteration of the model, each augmentation is independently applied 

Center ID

# Subjects # Training data

Spike positives Spike negatives Spike positives Spike negatives

A 265 80 5366 17776

B 64 30 656 3871

C 164 671 2496 13637

D 236 19 5527 7554

E 38 5 737 635

F 25 185 314 1570

Total 792 990 15096 45043

Table 2.  Number of participants and training data regarding spike positives and negatives. The number 
of patients refers to individual patients, not the number of MEG records. The study data reflect counts of 
independent spikes and background activity, with no augmentation applied.
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subsequent to the loading of data. In order to augment data diversity, each parameter is stochastically assigned 
for every data readout. The cropping window involves randomly selecting 256 timepoints from a 512-timepoint 
segment to ensure that the spike detection performance is not dependent on the relative time in the segment 
data. The shifting sensor order randomly rearranges the order of sensors. Given that temporal lobe epilepsy is 
relatively common in partial-onset epilepsy24, spikes are expected to be more prevalent in sensors close to the 
temporal lobe. Therefore, similar to the cropping window, shifting sensor order was applied to mitigate the 
sensor-order dependence of the spikes. The reverse phase flips the phase. The ECD model assumes that the 
dipole direction is inverted, thereby enhancing the data corresponding to cases in which the head is measured 
in a different direction during MEG testing. The mixing frequency was based on previous studies25,26, in which 
reference segment data were randomly selected from spike-negative data and combined with source segment 
data in the frequency domain. MEG data are susceptible to environmental magnetic fields22,27, and each center 
is expected to have unique frequency components. Biological data are also susceptible to individual differences, 
with frequency components at rest differing between young and elderly individuals28. Mixing frequency was 
introduced to reduce the impact of the environmental magnetic field and age group disparities.

Model training and evaluation
Figure 1 shows the pipeline used for model training and evaluation. The preprocessing and segmentation of 
continuous data are described in the preceding section. Five models were trained for each of the classification 
and segmentation networks, following a previous study17: a single-center model utilizing data from each of 
the four internal centers and a multi-center model employing data from all four centers. For the classification 
network, scSE-Module29, DropConnect Module30, and Dilated Convolution31 were applied to improve accuracy 
and generalization performance based on a 26-layer ResNet32. For the segmentation network, we also used 
DeepU-Net33, an extension of U-Net34. As in the previous study17, it has the same structure as the classification 
network, allowing the sharing of learned weights. When training the segmentation network, the weights of 
its encoder part were initialized using the weights of the trained classification network. A five-fold subject-
wise cross validation was performed to assess the performance of the participants not used for training. 
Table 3. presents the parameters used during training. The participants included in each fold were the same 
for the multicenter and single-center models. The evaluation indices for the classification model comprised 
the area under the receiver operating characteristic curve (ROC-AUC), recall, precision, and specificity. The 
segmentation model was evaluated using the Dice index. The Dice index is a standard measure used in the 
evaluation of segmentation networks. It is calculated using the formula Dice Index = 2× |A

⋂
B|/(|A| + |B|) 

for a target region A and a estimated region B output by the segmentation network. Here, || denotes the number 
of elements contained in the regions, and 

⋂
 denotes common regions. The Dice Index is 1 when region A and 

region B are perfectly matched, and it is 0 when they have no common region. Those evaluation metrics were 
calculated with a calculation threshold of 0.5.

Fig. 1.  Training and evaluation pipeline. The MEG data acquired from each center was preprocessed and 
segmented. The internal segments were utilized to train classification and segmentation models. A single-
center model was trained on data from a single center, whereas a multi-center model was trained on data 
obtained from multiple centers. The trained models were evaluated using both internal and external segment 
data. Subsequently, preprocessing was applied to the continuous data, and the trained single-center and mutli-
center models were utilized to automatically detect spikes. Additionally, dipole analysis, sorting, and clustering 
were performed and compared with the results previously analyzed by neurophysiologists. For external data, a 
multi-center model was utilized to evaluate both segment and continuous data.
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Subsequently, the segmentation model trained using the segmented data was employed for continuous data 
(typically 20–40 min) evaluation. The evaluation process was as described in a previous study17. First, the same 
preprocessing steps (3–35 Hz bandpass filter and 250 Hz downsampling) were applied during model training. 
Input data of the same size as that used during training were then cropped while overlapping the continuous 
data by 75% of the segment data length. The trained segmentation model was applied to each cropped input, and 
the resulting outputs were averaged. The output of the detection model is represented as a spike confidence map, 
with higher values for the sensors and times with greater spike confidence. A Gaussian filter (σ = 15 timepoints) 
was then applied to this two-dimensional certainty map, and the peak with a spike confidence greater than 0.5 
was designated as the spike detection time. For the ECD, the spike duration was assumed to be 30 ms, and all the 
dipoles for ±7 ms before and after the detection time, which corresponds to half of the 30 ms spike duration37, 
were calculated. Dipoles that were excessively mobile or local solutions in the ECD method were excluded from 
the analysis. Given that the equivalent current dipole method posits a singular current entity, the outcomes of 
the analysis prove to be unreliable in scenarios involving the concurrent presence of multiple signals or instances 
where the signal-to-noise ratio of spikes is suboptimal. In accordance with a previous study38 and standard 
clinical analytical practices, the following criteria were employed for exclusion: goodness-of-fit (GoF) equal to or 
exceeding 0.8, dipole intensity falling within the range of 50–1000 nAm, and the mean distance from the dipole’s 
center of gravity, as calculated continuously over time, being 2 cm or less. Ultimately, the dipole characterized 
by the highest intensity was duly recorded as the autonomously scrutinized dipole. Finally, the dipole time was 
selected as the time of the highest intensity when the signal-to-noise ratio of the spike and background brain 
activity was optimal. The dipole clusters were calculated using the density-based spatial clustering of applications 
with noise (DBSCAN) method39 with parameters eps =  0.015 and minPts =  4 to evaluate the coherence of 
the dipole, which is also evaluated as the focus of epilepsy in real clinical practice. The evaluation index was 
calculated by comparing the time differences between the neurophysiologist’s manual analysis, spike detection, 
and dipole times. In the continuous data analysis of spike-negative cases, the number of false positives (FPs) per 
minute was evaluated. Additionally, the distance between the neurophysiologist’s dipole and the automatically 

Task Parameter Value

Classification

Architecture 26 Layer scSE-ResNet29,32

Input shape 234 × 256

Loss function Binary Cross Entropy

Optimizer

AdamW35

   β1: 0.9

   β2: 0.999

   Weight decay: 0.0004

Scheduler

ReduceLROnPlateau

   Initial learning rate: 0.0001

   Minimum LR: 0.000001

   Reduce Factor decay: 0.2

   Patience Number of Epochs: 3

Batch size 64

Maximum epoch 40

Early stopping patience 5

Segmentation

Architecture DeepU-Net33 with 26 Layer scSE-ResNet29,32

Input shape 234 × 256

Loss function Dice Loss36

Optimizer

AdamW35

   β1: 0.9

   β2: 0.999

   Weight decay: 0.00005

Scheduler

ReduceLROnPlateau

   Initial learning rate: 0.00003

   Minimum LR: 0.000001

   Reduce Factor decay: 0.2

   Patience Number of Epochs: 3

Batch sze 32

Encoder weight freezing epoch 5

Maximum epoch 50

Early stopping patience 5

Table 3.  Training parameters.
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detected dipole and the overlap of the dipole clusters that each constituted were obtained. Furthermore, dipole 
indices (GoF, intensity, and confidence volume40) were compared.

All implementations were performed in Python using an Ubuntu 18.04.3 LTS machine with an Intel Core i9-
9900K CPU clocked at 3.60 GHz with 64 GB of RAM and an NVIDIA GeForce RTX 2080 Ti GPU. We measured 
the time required for the automatic analysis of continuous data when using this environment.

Results
Segment level evaluation
Spike classification and segmentation networks were trained using resting-state MEG segmentation data. The 
classification network was trained to determine the presence of spikes in the segmented data, whereas the 
segmentation network was trained to identify the exact time and sensors at which the spikes occurred. Table 4 lists 
the classification and segmentation results. The data from Centers E and F were used as external data and were 
not used to train the deep learning models. Data from other centers were used as internal data to train the deep 
learning models. A five-fold subject-wise cross-validation was utilized, with each evaluation metric indicating a 
five-fold mean value. The classification performance achieved by incorporating individual augmentations from 
the unaugmented training data is shown in Supplementary Table S2. The best classification performance was 
observed when all four augmentations were employed simultaneously. The evaluation metrics for segmentation, 
Dice+ and Dice-, represent the Dice index for spike-positive and spike-negative data, respectively. Note that 
there is a large discrepancy between the Dice+ and Dice− indices because the size of the correct response area 
relative to the input size is significantly different. Regarding the internal data in Table 4, the ROC-AUC for the 
single-center and multicenter models averaged 0.9728 and 0.9929, respectively. Similarly, for the external data, 
the ROC-AUC averaged 0.9426. The classification and segmentation performance improved when data from 
multiple centers were mixed and trained for all centers and indicators except recall in Center D. However, the 
performance of the external data was inferior to that of the internal data in the tables.

Continuous data evaluation
Automated spike detection was executed on each participant’s resting-state measurement data, and dipole 
estimation was conducted based on the detection time and sensor. Subsequently, the estimated dipoles were 
clustered. The accuracy of the automatic analysis was assessed by comparing its results with those obtained through 
a manual analysis conducted by a neurophysiologist. Table 5 presents the breakdown of the neurophysiologist’s 
analysis results and the automatic analysis results in the continuous data analysis for the spike-positive data 
set. The purpose is to demonstrate that the automatic analysis can reproduce the neurophysiologist’s results. To 
determine a match, we used a previous study41, as a reference and considered clusters with a distance of 15 mm 
or less between their center coordinates. The table shows the percentage of all clusters and the percentage of 
clusters that either did not form or did not match, even if they did form. When training with data from all 
centers, the rate of cluster matches was higher for internal data. However, like the external data, there were 
instances where spikes were not detected enough to form clusters in some of the data, rendering comparisons 
impossible for both the neurophysiologist and automated analyses. Additionally, there were cases where clusters 
did not match. The assessment outcomes are presented in Table 6. In addition, a comparison of the number of 

Center ID Classification Segmentation

Evaluation Training ROC-AUC Recall Precision Specificity Dice+ Dice−

A
A, B, C, D 0.9962 0.9212 0.9827 0.9953 0.5703 0.9999

A 0.9822 0.8874 0.8840 0.9616 0.5114 0.9992

B
A, B, C, D 0.9906 0.9231 0.8604 0.9777 0.4873 0.9997

B 0.9696 0.8673 0.7333 0.9489 0.4434 0.9990

C
A, B, C, D 0.9931 0.8053 0.9438 0.9920 0.4341 0.9999

C 0.9691 0.7575 0.8289 0.9725 0.4307 0.9993

D
A, B, C, D 0.9915 0.8816 0.9909 0.9942 0.5277 0.9998

D 0.9702 0.9233 0.8434 0.8603 0.5171 0.9972

E A, B, C, D 0.9434 0.9019 0.9516 0.9545 0.3973 0.9963

F A, B, C, D 0.9418 0.7809 0.7294 0.9516 0.2942 0.9994

Table 4.  Classification and segmentation performance regarding internal and external data.  The Evaluation 
column represents the ID of the facility being evaluated and the Training column represents the ID of the 
center used to train the model. Four metrics were calculated to evaluate the binary classification model for 
the presence or absence of abnormal signals (spikes, sharp waves, or polyspikes) in the segmented MEG 
waveforms. For the segmentation model evaluation, we calculated two metrics: Dice+ and Dice. Dice+ 
compares the output of the model with the regions where abnormal signals are present in the segmented MEG 
waveform and calculates the percentage of common regions. Dice- compares the output of the model with the 
input MEG data where no spikes are present. It was calculated as the percentage of common areas between the 
output of the model when the MEG data with no spikes were input (actually, the output is subtracted from 1) 
and the correct region of the same size where all of the indicators are 1. All indices ranged from 0 to 1, with a 
value closer to 1 indicating better performance.
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Center ID Evaluation metrics

Evaluation Training Recall spike Recall dipole FPs/min Dipole sistance (mm) Dipole cluster dice index

A

A, B, C, D
0.9162

[0.7212, 1.0000]

0.6132

[0.4830, 0.7726]

0.8128

[0.2670, 3.3750]

4.042

[2.285, 6.992]

0.493

[0.322, 0.641]

A
0.8075

[0.5686, 0.9346]

0.5000

[0.3094, 0.6394]

2.2802

[0.3912, 7.4360]

4.680

[2.710, 7.770]

0.399

[0.267, 0.560]

B

A, B, C, D
0.9756

[0.7273, 1.0000]

0.6667

[0.3529, 0.8333]

0.5000

[0.0000, 3.3000]

6.792

[3.956, 11.567]

0.466

[0.273, 0.560]

B
0.8333

[0.6667, 1.0000]

0.3604

[0.0000, 0.6558]

2.9375

[0.7375, 9.3702]

8.270

[4.540, 16.310]

0.461

[0.381, 0.519]

C

A, B, C, D
0.8000

[0.5333, 0.9403]

0.5417

[0.3229, 0.7407]

0.5804

[0.2000, 1.7865]

5.389

[2.917, 9.077]

0.467

[0.353, 0.555]

C
0.7600

[0.5333, 0.9333]

0.4000

[0.2105, 0.6000]

2.0800

[0.6019, 5.9849]

6.300

[3.590, 10.980]

0.425

[0.329, 0.539]

D

A, B, C, D
0.8545

[0.6543, 0.9668]

0.5742

[0.3621, 0.7143]

1.1250

[0.0994, 9.7828]

4.162

[2.405, 6.977]

0.479

[0.336, 0.610]

D
0.8462

[0.6923, 0.9459]

0.4500

[0.3061, 0.5714]

8.3500

[1.2816, 18.0595]

4.540

[2.780, 7.550]

0.447

[0.314, 0.602]

E A, B, C, D
0.6065

[0.4196, 0.8594]

0.4317

[0.2833, 0.5764]

1.0000

[0.1105, 3.0667]

7.314

[3.976, 14.086]

0.467

[0.312, 0.641]

F A, B, C, D
0.7321

[0.3833, 0.9052]

0.5453

[0.3250, 0.6645]

0.9231

[0.2000, 4.1000]

6.955

[4.024, 12.860]

0.651

[0.516, 0.767]

Table 6.  Evaluation of continuous data. Recall spike represents the percentage of spikes that were detected 
within ±100 ms before and after the neurophysiologist’s visually identified spike. Recall dipole represents 
a calculation similar to the recall spike using only the dipole with the highest confidence level; FPs/min 
represents the number of automatically detected spikes per minute regarding the data that were identified 
as no spikes by the neurophysiologist. Dipole Distance represents the distance between the location of the 
ECD that was automatically estimated and that of the nearest ECD that was manually estimated by the 
neurophysiologists. Dipole cluster Dice index determines the overlap of the 95% confidence ellipsoids, 
computed using the dipoles that form the cluster. Each value in the table indicates the median and quartiles of 
the abovementioned indices calculated for each participant..

 

Center ID # Participants

Evaluation Training

No dipoles 
by automated 
analysis No clusters by neuro-physiologist

No clusters 
by automated 
analysis No Clusters Both

Clusters not 
matched

Cluster 
matched

A
A, B, C, D 5 (1.9%) 44 (16.5%) 9 ( 3.4%) 34 (12.8%) 66 (24.8%) 108 

(40.6%)

A 6 (2.3%) 43 (16.2%) 7 ( 2.6%) 35 (13.2%) 79 (29.7%) 96 (36.1%)

B
A, B, C, D 3 (4.7%) 19 (29.7%) 1 ( 1.6%) 19 (29.7%) 5 ( 7.8%) 17 (26.6%)

B 4 (6.3%) 17 (26.6%) 2 ( 3.1%) 20 (31.3%) 7 (10.9%) 14 (21.9%)

C
A, B, C, D 3 (1.8%) 11 ( 6.7%) 18 (10.9%) 15 ( 9.1%) 27 (16.4%) 91 (55.2%)

C 2 (1.2%) 18 (10.9%) 23 (13.9%) 9 ( 5.5%) 39 (23.6%) 74 (44.8%)

D
A, B, C, D 1 (0.4%) 21 ( 8.9%) 10 ( 4.2%) 15 ( 6.4%) 84 (35.6%) 105 

(44.5%)

D 0 (0.0%) 30 (12.7%) 6 ( 2.5%) 6 ( 2.5%) 123 (52.1%) 71 (30.1%)

E A, B, C, D 0 (0.0%) 2 ( 5.3%) 2 ( 5.3%) 6 (15.8%) 13 (34.2%) 15 (39.5%)

F A, B, C, D 1 (4.0%) 5 (20.0%) 4 (16.0%) 2 (8.0%) 9 (36.0%) 4 (16.0%)

Table 5.  Breakdown of the continuous data analysis regarding spike-positive participants. The conditions for 
the breakdown are as follows: (1) Number of participants in each site’s spike-positive data set for whom no 
dipole was registered as a result of the automated analysis. (2) Number of participants for whom no dipole 
clusters were formed in the neurophysiologist’s analysis, automated analysis, or either analysis. (3) Number of 
participants for whom the neurophysiologist’s results and the automated analysis results did not agree on the 
dipole cluster. (4) Number of participants whose dipole clusters matched.
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spike detections, dipole intensity, GoF, confidence volume (CV), and cluster size is presented in Supplementary 
Table S3. Similar to the results of the segment data evaluation, the model trained on the multi-center data 
reproduced the neurophysiologist’s analysis better than the results of the model trained on the single-center 
data. As for the external data, although the reproducibility was lower than that of the internal data, the results 
of the dipole analysis were reasonable in light of the criteria from previous literature38 as a measure of dipole. 
Regarding the internal data in Table 6, the median distance between the neurophysiologist-analyzed dipole 
and the dipole automatically detected by the single-center and multicenter models was 4.93 and 4.36  mm, 
respectively. Similar to the segmented data, the model trained on multicenter data reproduced the outcomes 
of the neurophysiologist better. Regarding the external data shown in Table 6, the median distance between 
the neurophysiologist-analyzed dipole and the dipole automatically detected by the multicenter models was 
7.23 mm. In the external data, although the model did not replicate the neurophysiologist’s results as accurately 
as with the internal data for the automatically detected spikes, it performed equally well when focusing only 
on cases in which dipoles clustered. Figure 2 shows three examples comparing the dipole clusters constructed 
for each of the single-center and multicenter models with those of the neurophysiologist. Although this is an 
example, it reflects the characteristics of each model.

The processing duration is contingent on the number of spikes detected. To approximate the processing 
time for each center, a regression equation was used and subsequently averaged. The equation in question 
possessed an R2 = 0.86, wherein the processing time processing time ≈ 0.3× (#detected spikes) + 56.0 (in 
seconds). The intercept of the regression equation was subject to variation based on several factors, including the 
measurement time, sampling frequency, and sensor quantity.

Discussion
As presented in Table 4, amalgamating data from multiple centers ameliorates the model’s performance, unlike 
training it solely on data from a single center. In deep learning, it is widely acknowledged that performance 
increases with an increase in data; nonetheless, this presupposes that the labels and data are devoid of noise42. 
In our study, to further enhance performance, we addressed the issue of limited data available at a single center 
using data from multiple centers. Considering that the number and arrangement of sensors differed depending 
on the MEGs in each institution, we standardized and supplemented them to minimize the impact of equipment 
differences. Additionally, we believe that the environmental magnetic field and participant characteristics of each 
center also influenced the accuracy, and we contend that the new augmentation technique is a more effective 
method for training the model. As shown in Table S2 in the Supplementary Content, we achieved further 
improvement in performance by aggregating data from multiple centers and applying our augmentations. In 
both classification and segmentation, our approach had a more potent effect on recall and precision than on 
specificity, signifying that the model responded more accurately to spikes and less accurately to background 
brain magnetic fields. This has augmented the ability of neurophysiologists to reproduce the results of their 
analyses. Thus, a single center alone could not sufficiently learn the characteristics of spikes, and learning the 
various forms of spikes observed at multiple centers amplified the generalization performance for various 
unknown differences depending on the institution, including environmental noise and the classification criteria 
of spikes. For the external data, we achieved a performance equivalent to that of the single-center model of the 
internal data, implying that the model acquired the generic features of the spikes.

Similar to the assessment of the segmented data, the examination of continuous data verified the enhanced 
performance of the multi-center model. Table 6 suggests that the model trained with multi-center data 

Fig. 2.  Examples of dipole clusters from three patients. The dipole clusters, which were analyzed 
automatically using both the single-center and multi-center models, were compared with those created by the 
neurophysiologist’s analysis, utilizing the same parameters. Each point represents an estimated dipole, with 
a 95% confidence ellipsoid constructed around it. The dipole clusters obtained from the neurophysiologist’s 
analysis are depicted in red; those from the single-center model are illustrated in green; and those from the 
multi-center model are depicted in blue. The origin in the figure represents the origin of the MEG coordinate 
system. Also, N represents the number of estimated dipoles in each analysis..
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augmented the reproducibility of the detected spikes, corroborating its ability to detect various types of spikes 
that could not be acquired with the single-center model. Not only did the model trained on multi-center data 
increase sensitivity, but it also facilitated the suppression of FPs. Specifically, in the case of Center D, where the 
number of spike-negative cases was low, the single-center model resulted in numerous false positives; however, 
learning with multi-center data significantly reduced the number of false positives. Learning with data from 
multiple centers resulted in superior dipole location accuracy and cluster overlap. In dipole estimation, accurate 
estimation of the spike onset and peak times is vital, but sensor selection is also crucial. Our findings, as presented 
in Table 4, suggest that learning with data from multiple centers enabled us to reproduce the neurophysiologist’s 
sensor selection with higher accuracy, which improved the final dipole estimation outcomes and resulted in 
better cluster reproducibility. As illustrated in Fig. 2, even when the neurophysiologist’s dipole clusters were 
small and agglomerated, the single-center model estimated a broad range of dipoles, whereas the multicenter 
model demonstrated high cohesion of dipoles and high reproducibility of clusters. Although there were some 
cases in which clusters were not constructed, as shown in Table 5, more cases matched the clusters analyzed in 
the multicenter model than in the single-center model compared with the neurophysiologist’s clusters. This can 
be attributed to the detection of spikes that could not be detected in the single-center model and an increase 
in the number of cases in close proximity to the neurophysiologist’s cluster caused by the improved accuracy 
of sensor selection. In the external data, the reproducibility of the detected spikes was not as high as that of the 
internal data. However, the overlap with the clusters analyzed by neurophysiologists was comparable to that of 
the internal data.

Based on the concept that the automated model should have high specificity rather than high sensitivity, 
the current model was designed from the perspective of the basic diagnostic principle of epilepsy based on 
EEG or MEG. Based on this concept, the model was designed to detect only typical spikes with relatively large 
amplitudes. This contributes to a reduction in false-positive diagnoses of epilepsy, which is vital in clinical 
practice. However, this method may fail to detect abnormal epileptic waves. Hence, if we use an automated 
model for screening tests of epilepsy, it would be better to identify not only typical spikes with high specificity 
but also various epileptogenic waves in addition to typical spikes. Moreover, because the data utilized in this 
study were evaluated in a clinical context, the number of participants, their ages, and spike criteria varied among 
the centers. Consequently, there were differences in performance at each site. This suggests that the parameters 
may require adjustments at each center for practical implementation. Additionally, we posit that collecting a 
specific amount of data and performing transfer learning43 or domain adaptation44 of the model can lead to 
a higher level of detection accuracy when working at centers other than the training data collection center. In 
addition, previous studies have compared manually analyzed dipoles with the resected area of epileptic lesions 
and reported that the prognosis of resection is better when dipole clusters are constructed within or close to the 
resected area41,45,46. On the contrary, it has been reported that the percentage of patients who maintained Engel 
class I at 10 years is approximately 60% for complete resection and approximately 20% for partial resection47. 
Although our method was able to better reproduce the results of the neurophysiologist’s analysis by learning 
from multi-center data, a comparison with resection is necessary for a final evaluation.

Conclusion
In this study, we used data obtained from multiple facilities to train a model for the precise identification of 
epileptic spikes using MEG. Our results confirm the model’s ability to achieve superior accuracy not only for 
the facilities employed in the training but also for those not included. These findings can significantly reduce the 
labor-intensive spike detection tasks performed by neurophysiologists.

Data availability
The data that support the findings of this study are available on request from the corresponding author(M.H.). 
The data are not publicly available due to privacy or ethical restrictions.

Code availability
Demonstrations of the model and augmentation are available from CodeOcean (https://codeocean.com/cap-
sule/8268914/tree/v1). Other training and evaluation codes can be obtained by contacting the corresponding 
author (M.H.).
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