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Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development 
(TOD) and sustainable urban growth. This paper introduces a novel classification model integrating 
traditional methodologies with advanced machine learning algorithms. By employing mathematical 
models, clustering methods, and neural network techniques, the model enhances the precision 
of station classification, allowing for a refined evaluation of station attributes. A comprehensive 
case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its 
value in optimizing TOD strategies and guiding decision-making processes for urban planners and 
policymakers. The study employs several regression models trained on existing data to generate 
accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct 
categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. 
Additionally, a neural network achieving high accuracy on labeled data enhances the model’s 
predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the 
Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning 
Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural 
networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% 
accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in 
rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities 
but also ensures more reliable data-driven decisions for transit planning and development, allowing for 
more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification 
model provides stakeholders with valuable insights into the dynamics and features of rail transit 
stations, supporting sustainable urban development planning.
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DMLR	� MLR after deleting outliers
DNN 	� Deep-Learning Neural Network
GMM 	� Gaussian Mixture Model
IEW 	� Information entropy weighting
JC 	� Jaccard Coefficient
K − Means	� K-means clustering
KNN 	� K-nearest Neighbor
ML	� Machine Learning
MLR	� Multiple Linear Regression
MSE	� Mean of Squared Errors
N 	� Node value
P 	� Place value
R	� Ridership value
RI 	� Rand Index
SC 	� Silhouette Coefficient
SSE	� Sum of Squared Errors
T 	� Time span
T OD	� Transit Oriented Development

Transit-Oriented Development (TOD) is a strategic urban planning and design framework that establishes 
mixed-use, high-density developments close to public transportation infrastructure. The core tenets of TOD 
entail optimizing land utilization, fostering pedestrian-friendly environments, and facilitating seamless access 
to efficient public transit systems1,2. By concentrating development activities around transit nodes, TOD aims 
to minimize reliance on private automobiles, curb traffic congestion, and mitigate environmental impacts3. In 
addition to these primary objectives, TOD enhances urban livability by creating vibrant, walkable communities 
that foster social interaction and a strong sense of place. By reducing the need for long commutes, TOD 
contributes to better work-life balance and improved public health. Furthermore, the emphasis on mixed-use 
development supports local economies by attracting diverse businesses and services, providing job opportunities, 
and stimulating local investment.

TOD’s multifaceted significance lies in its capacity to enhance transportation efficiency, bolster sustainability, 
stimulate economic growth, elevate the quality of life, and promote social equity. By strategically integrating 
residential, commercial, and recreational spaces within walking distance of transit hubs, TOD optimizes travel 
distances, cultivates vibrant neighborhoods, reduces energy consumption, mitigates greenhouse gas emissions, 
attracts business investment, generates fiscal revenues, and fosters inclusive communities that cater to diverse 
income groups. As a genuine urbanistic concept and hence multiscale by design, TOD conveys a transit line and 
network dimension that connects to urban and urban region planning perspectives.

Classifying rail transit stations using mathematical methods involves algorithms and models, including 
machine learning and clustering techniques, to examine and categorize stations based on passenger flow, 
connectivity, and infrastructure features. K-Means is a renowned method for grouping data into K-distinct 
sections by reducing the total variance within the clusters4. K-Means is suitable for the first attempt at analyzing 
rail transit station data because its iterative and straightforward nature makes it an easy option. For instance, 
in a TOD scenario, K-Means can quickly and effectively identify similar stations regarding ridership volume, 
connectivity, and accessibility. This kind of clustering is of great help for urban planners in listing and counting 
transport hubs and identifying unfulfilled stations and urban zones that might need some infrastructural 
improvements5–7. It is one of the most effective ways to concentrate resources and pave the path for urban 
development through smart infrastructural design.

AGNES clustering, a type of hierarchical clustering, creates interior clusters by combining or dividing them 
based on particular conditions. Unlike K-Means, K-Means does not require knowing the number of clusters 
earlier; instead, it makes the procedure more flexible and adjustable8. In terms of rail transit stations, AGNES is 
a significant way to identify the network hierarchical structure, finding both macro and micro-clusters. This tool 
is very efficient in recognizing the direct and indirect connections between stations and in the station’s hierarchy, 
whether it is a main, a branch, or a leaf, and it also gives an overall impact of the network topology on strategic 
planning for TOD, among other things9.

DBSCAN, a density-based clustering algorithm, determines the clusters of various shapes and sizes other 
than the density of data points. The method of dealing with noise and outliers is one of its most prominent 
advantages10. DBSCAN can reveal sets of spherical stations in transportation stations, which is not the case for 
natural K-Means. This is the primary TOD application because it can find city blocks that are lastly joined or 
other problematic places that may result from stations being isolated or performing at lower levels. DBSCAN is 
an all-around tool that improves transit networking for better passenger service through decisions on the density 
of station usage and connectivity11.

GMM is one of the basic paradigmatic methods of cluster analysis, which is grounded on the a priori 
assumption of the mixture of several pairs of Gaussian distributions. This action provides an all-around 
perspective necessary for the group’s different shapes, sizes, and orientations, making it highly versatile 
and robust12. By applying GMM technology to rail transit stations, we can also analyze the complex station 
characteristics and usage patterns and thus gain a deep insight into the transit network. The stochastic feature of 
the process is also an economic assignment that allows the stations to be put into clusters, with weights exerted 
by the GMM but part of the weight belonging to the so-called ``soft’’ group that sometimes assigns the stations 
if they are used for public services or are dwelling in or nearby communities. This ability is vitally important in 
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the field of TOD, as it is critical for developing multifunctional strategies that consider each platform’s different 
roles and necessities.

Applying innovative clustering methods to rail transit station classification is a new approach in TOD 
studies. Each contributes differently to the analysis, providing fresh insights and suggestions for city planners 
and politicians4–15. By utilizing the four approaches, namely K-Means, AGNES, DBSCAN, and GMM, the 
TOD projects will get a much clearer picture of transit networks, better resource allocation, eco-friendly urban 
development, and data utilization in decision-making. These modes of operations can fully delineate the transit 
system, whereby the mind can be steered to the primary nodes, connections, and areas that need to be developed. 
Technical approaches such as modeling the travel time of linear vibrating PETs (public electric transportation) 
and the angle of environmental noise sources at the same place coordinates can be utilized for safety and shared 
streets. The concept of “equal access” can be best understood by inspectors of social safety in real-time in mixed 
and shared traffic and pedestrians through digital twins of ADA/VDAs. Nevertheless, the ultimate goal is to 
ensure that users and dependents experience transportation benefits without safety incidents. In particular, 
these ways of examination not only enrich the information necessary for the formation of the most optimum 
distribution of available transit system facilities but also provide very relevant and effective instruments for 
urban development that are both sustainable and efficient.

In this context, classifying railway stations is critical to the design of urban and regional planning strategies. 
Accurate classification enables planners to tailor development projects to each station’s specific characteristics 
and needs, ensuring efficient resource allocation and optimal land use. This precision in planning facilitates 
the integration of transportation networks, promotes seamless connectivity, and supports the creation of 
cohesive and sustainable urban environments. Furthermore, such classifications provide valuable insights 
for policymakers, helping them implement policies that align with the goals of TOD and address the unique 
challenges different regions face.

Literature review
The classification of rail transit systems plays a crucial role in Transit-Oriented Development (TOD) as it 
profoundly impacts the scale, design, and planning considerations of development projects centered around 
transit stations. This classification informs decisions on development intensity, station design, infrastructure 
requirements, and transportation network integration16–18. Urban planners and developers leverage this 
classification to optimize land use, design efficient stations, plan for TOD projects, and create comprehensive 
transportation networks that seamlessly connect different modes of travel19,20.

Using clustering methods from mathematics enhances rail transit classification by extracting meaningful 
patterns and objectively categorizing transit systems. Clustering algorithms enable the recognition of similarities 
and shared characteristics among systems, employing unsupervised learning to identify inherent structures 
and relationships within large datasets21. By leveraging clustering algorithms, transportation professionals can 
make data-driven decisions, improving the reliability and scalability of the classification process. Clustering 
results provide valuable insights for future planning, benchmarking, and resource allocation, facilitating the 
development of efficient and optimized rail transit systems22,23.

The application of Artificial Neural Network (ANN), including some aspects of mathematics such as 
Multiple Linear Regression (MLR), is a hybrid tool to study the relationship between different parameters in 
a model15,24,25. The utilization of Machine Learning (ML) in rail transit classification is paramount due to its 
ability to enable data-driven decision-making, handle complex and multidimensional data, uncover hidden 
patterns, adapt to changing conditions, and support continuous improvement. Machine learning algorithms 
excel at processing vast volumes of data and extracting meaningful insights that may not be apparent through 
traditional analysis methods26–29. By leveraging machine learning techniques, transportation professionals can 
make informed decisions based on the intricate relationships and dependencies identified within rail transit 
data. These algorithms facilitate the identification of clusters or groups of similar transit systems, leading to more 
accurate and granular classification outcomes.

Jingru Huang et al.30 investigated the relationship between the physical environment and subway ridership in 
Beijing. The results indicated that greater employment density and enhanced accessibility to public transportation 
contribute to higher ridership during morning peak hours. The research also highlighted variations in the built 
environment’s impact on ridership across different areas and confirmed the reliability of the model used in the 
analysis. Liu Yang et al.31 investigated different methods for categorizing TOD in cities, with Ningbo as the 
focus. Their research introduced a novel approach to improve TOD based on metro stations, expanding the 
traditional node-place model with additional attributes and utilizing machine learning for station selection. The 
study’s findings provided insights for other cities with urban rail transit systems and suggested avenues for future 
research on analyzing traffic behavior and adjusting land-use strategies in TOD. Enrica Papa et al.32 classified 
station areas and promoted public transport use as a solution to mitigate the negative impacts of private car usage 
in cities. Through cluster analysis, factors influencing these areas were examined, and a method for identifying 
different station area typologies was proposed. The approach was demonstrated in Naples, showcasing the 
integration of land-use and transport planning strategies to improve rail stations. Shiliang Su et al.33 analyzed 
the specific impact of TOD on metro ridership in Shanghai. The study identified spatial and temporal variations 
in the influence of TOD factors and neighborhood demographics by combining the node-functionality-place 
model with interpretable machine learning. The findings underscored the importance of functionality, revealed 
key interactions, and offered insights for urban planning in high-density cities. Dan Qiang et al.9 analyzed the 
metro stations in Shanghai using new urban datasets and identified five clusters based on 15 indicators for 
TOD. The study found strong correlations between transportation, pedestrian-oriented accessibility, and urban 
development indicators with ridership, emphasizing the importance of population density in metro passenger 
traffic.
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Xin Yang et al.34 focused on applying neural networks in TOD and specifically addressed the complex 
task of short-term prediction of passenger volume in urban rail systems. The study proposed an improved 
spatiotemporal long short-term memory model (Sp-LSTM) that utilized deep learning techniques and big 
data, outperforming other prediction methods such as LSTM, ARIMA, and NAR, as demonstrated through a 
case study on the Beijing Metro Airport Line. In another research35, they introduced the Wave-LSTM model, 
a combination of LSTM and wavelet techniques, which demonstrated superior prediction accuracy compared 
to other algorithms in an empirical study using practical data from Dongzhimen Station in the Beijing Subway 
system. The study concluded that the newly proposed model holds great potential as a reliable approach for 
predicting precise short-term inbound passenger flow in urban rail systems. Jinlei Zhang et al.36 highlighted 
the importance of short-term origin-destination (OD) flow prediction in urban rail transit (URT) for real-
time operation and management. They introduced a channel-wise attentive split-convolutional neural network 
(CAS-CNN) that addressed the challenges of data availability, dimensionality, and sparsity. Through testing 
on real-world datasets from the Beijing Subway, the CAS-CNN model, incorporating innovative components 
such as channel-wise attention and inflow/outflow-gated mechanisms, outperformed existing benchmarking 
methods. Chunyan Shuai et al.37 proposed a pattern match algorithm, TSNE-KNN, for accurate short-term 
origin-destination (OD) demand prediction in urban rail transit. The TSNE-KNN model outperformed other 
approaches, including deep neural network models, and identified similarity indicators as universal indicators 
reflecting the time-space properties of OD flow and the shifting patterns of rail transit stations.

Regarding the limitations in model accuracy, predictive capability, and scalability in the literature, we first 
acknowledge that previous studies have made significant contributions by proposing methods to enhance 
accuracy, provide objective evaluations, enable predictive capabilities, and facilitate scalability. However, these 
limitations and challenges have often been inadequately addressed or only superficially mentioned. Therefore, 
this study seeks to clarify these aspects and provide concrete details regarding the limitations faced in existing 
models and methodologies.

Although several studies9,30,34,36 have demonstrated that machine learning models such as ANN, LSTM, 
and Sp-LSTM improve predictive accuracy for rail transit systems, the accuracy of these models still faces 
challenges due to the inherent complexity of urban transit systems. Existing methods, particularly those relying 
on traditional clustering algorithms (K-Means, DBSCAN), are limited in accurately classifying stations with 
mixed or transitional characteristics where different clusters overlap. These models may exhibit high accuracy 
under specific conditions but struggle with highly dynamic and non-linear ridership patterns, especially when 
faced with new, unseen data. Our approach addresses this limitation by integrating more advanced techniques 
like deep neural networks (DNNs), which handle complex patterns better, but we also note that model accuracy 
may still be affected by factors such as data quality and the availability of real-time datasets.

While predictive capabilities in previous research have been advanced by introducing models like Wave-
LSTM34 and CAS-CNN36, limitations remain in their ability to predict ridership fluctuations under varying 
temporal conditions and in stations with irregular passenger volumes. The short-term prediction models, 
although effective for certain types of data, often fail to generalize across different station types (e.g., those 
with fluctuating passenger volumes during peak and off-peak hours). Moreover, the scalability of predictive 
models for short-term origin-destination flow prediction is constrained when moving from small datasets to 
larger, city-wide applications. Our work seeks to improve this by incorporating predictive models considering a 
more nuanced range of variables, including socio-economic factors and real-time ridership data, which enhance 
predictive capabilities over broader datasets. However, predictive accuracy is still limited by the availability of 
comprehensive data across all stations.

The scalability of rail transit classification methods has been significantly challenged by the complexity of 
urban transit systems, particularly when expanding from city-level studies to regional or national networks. 
Studies such as Su et al.33 and Shuai et al.37 have focused on specific cities (e.g., Shanghai and Beijing), and 
the proposed models excel at handling localized datasets but struggle to scale effectively across diverse transit 
networks with different ridership behaviors and infrastructure designs. Furthermore, the computational 
demands of machine learning algorithms, such as deep learning models, can become a bottleneck when applied 
to larger datasets. While our research incorporates scalable algorithms such as GMM and hierarchical clustering 
methods, we acknowledge that further optimization is necessary to ensure computational efficiency and 
practicality when applying these models to large-scale TOD planning.

This study builds upon these previous findings by introducing a more systematic and data-driven method 
to evaluate and classify rail transit stations into clusters based on their characteristics. The research applies 
clustering algorithms such as K-Means, AGNES, DBSCAN, GMM, and other applicable mathematics and 
machine learning tools26–29 to provide a precise classification method for rail transit stations. By enhancing 
accuracy, providing objective evaluations, enabling predictive capabilities, and facilitating scalability for large-
scale analyses, this innovation empowers urban planners and policymakers with valuable insights for sustainable 
and efficient urban development, optimizing TOD outcomes. This approach leverages existing methodologies 
and addresses their limitations by incorporating advanced machine-learning techniques to achieve more 
accurate and practical results for TOD planning.

Case study and methodology
Case study
Chengdu, the capital city of Sichuan province in China, has a well-developed rail transit network that provides 
efficient and convenient transportation for its residents and visitors. The Chengdu rail transit system consists 
of metro lines and high-speed rail connections. The Chengdu Metro is the backbone of the city’s urban 
transportation system. The city center of Chengdu is located around Tianfu Square, which is considered the 
heart of the urban area. Key commercial districts, cultural landmarks, and government offices are concentrated 
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in this central area. The urban region of Chengdu is densely developed with a mix of high-rise buildings, 
shopping centers, and residential complexes. Beyond the Third Ring Road, the city transitions into suburban 
areas with lower-density development and a mix of residential and industrial zones. The Fourth Ring Road 
generally marks the boundary between the suburban and rural areas, where farmland and small villages become 
more common. The rail transit system in Chengdu has dramatically improved the city’s transportation efficiency, 
reducing congestion and providing a convenient way for people to travel within and outside the city. It has played 
a significant role in enhancing Chengdu’s urban development and supporting its economic growth.

For several compelling reasons, Chengdu’s metro network serves as an excellent case study for Transit-
Oriented Development (TOD) and the classification of rail transit stations. Firstly, the metro network in Chengdu 
boasts extensive coverage, encompassing a vast area that includes urban and suburban regions. The network 
connects vital city areas, including the city center, central commercial districts, educational institutions, and 
suburban communities. This extensive reach ensures that many people can access efficient public transportation. 
This expansive reach provides diverse station locations with unique characteristics and development potential. 
Secondly, many of Chengdu’s metro stations are strategically located in areas characterized by mixed land 
use. These areas combine residential, commercial, and recreational facilities, setting the stage for integrated 
development around the stations. A diverse range of land uses facilitates the creation of walkable neighborhoods 
and vibrant urban environments. Moreover, Chengdu’s rapid urban growth has presented numerous development 
opportunities around metro stations. Underutilized or vacant land near stations can be transformed through 
redevelopment and revitalization initiatives, fostering economic growth and community enhancement.

Chengdu’s commitment to TOD is evident in its urban planning and policy framework. The local government 
has implemented various measures to encourage the integration of transportation, land use, and urban design. 
Policies promoting high-density development around metro stations, mixed-use zoning, and pedestrian-friendly 
infrastructure have been critical to the city’s TOD success. The government has also invested in public amenities, 
green spaces, and cultural facilities around transit hubs to enhance the quality of life for residents.

The significant passenger volume of Chengdu’s metro system is another compelling aspect. With many 
daily commuters, the stations attract high levels of foot traffic. This demand creates a favorable market for 
various businesses and services to thrive around the stations, further stimulating TOD. Additionally, the local 
government in Chengdu has proactively promoted TOD and urban development around metro stations. 
Through the implementation of policies and strategies, they encourage the integration of transportation, land 
use, and urban design. These initiatives aim to create sustainable, livable communities that benefit from well-
planned transit-oriented environments.

The success of Chengdu’s metro network and TOD initiatives can be attributed to several factors, including 
strategic planning, strong government support, and community engagement. The city’s approach to TOD 
addresses transportation and land use and focuses on creating vibrant, inclusive, and sustainable urban 
environments. Lessons from Chengdu’s experience can inform TOD projects in other cities, highlighting the 
importance of comprehensive planning, stakeholder collaboration, and adaptive strategies to local contexts.

Researchers and planners can gain valuable insights into effective station classification and development 
practices by examining the success of Chengdu’s metro network and its associated TOD efforts. The lessons 
learned from Chengdu can serve as a valuable guide for future TOD projects in other cities, aiding in creating 
sustainable and vibrant urban areas. Figure 1 presents the Chengdu rail transit network, the CBDs of Chunxi 
Road, the Third Tianfu Street, and the boundaries of the rural and urban areas.

Problem statement
By examining the Chengdu Metro system, the study provides a comprehensive understanding of how various 
factors influence ridership patterns. This paper’s primary focus is divided into ridership fitting and station 
classification. The first part of the analysis involves fitting ridership data to assess the relationships between 
ridership levels and variables such as node value, place value, and time factors. This approach helps to elucidate 
how these variables interact and contribute to the overall ridership figures. In the second part of the study, 
stations are classified based on a combination of node value, place value, ridership, and time. This classification 
process reveals patterns and distinctions among stations, offering insights into their operational and functional 
characteristics. Identifying these commonalities and differences is crucial for tailoring specific strategies to 
optimize station performance and enhance the overall efficiency of the transit network.

The challenges in solving the problem of predicting subway ridership and categorizing stations stem from 
the complex, dynamic nature of urban transit systems. Accurately predicting passenger flow at subway stations 
requires a comprehensive understanding of how factors such as station characteristics, location, and time affect 
ridership. This study employs different fitting methods to model ridership for Chengdu subway stations, aiming 
to select the most suitable prediction model. Additionally, subway stations, particularly those intersected by 
multiple lines, display unique characteristics while sharing common traits. Categorizing these stations through 
clustering techniques in machine learning helps identify patterns that can inform the design and planning of 
new stations. However, the unlabeled nature of stations and the varying outcomes from different clustering 
methods pose challenges, which are addressed by integrating results and using a neural network to classify 
stations and predict the characteristics of new ones. Figure 2 illustrates the research framework of this study.

Node, place, ridership, and time indicators
Node indicators
We evaluate the value of a station’s node based on four aspects: the station’s facilities, the availability of nearby 
transportation options, the accessibility to various destinations, and its importance within the network. Table 1 
presents eight indicators that fall under these four aspects.
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The station’s facilities are assessed by considering the number of entrances and exits (N1) in each metro 
station. To determine the accessibility of transits, we consider the number of metro stations (N2) that can 
be reached within a 20-minute travel time, the number of stations connecting to the central business district 
(CBD) at Chunxi Road (N3), and the number of stations connecting to the CBD at 3rd Tianfu Street (N4). 
Since Chengdu has two CBDs, Chunxi Road and 3rd Tianfu Street, we calculated the number of stations and the 
distance to each CBD. The distance indicates the accessibility of destinations to the CBDs, with Chunxi Road 
represented by (N5) and 3rd Tianfu Street by (N6). Lastly, the network centrality comprises degree centrality 
(N7) and closeness centrality (N8).

Using graph modeling, we have employed network centrality to capture the significance of a station within 
the transit network. To represent the Chengdu rail transit network as a graph G = (V, E), we assign vertices in 
V  to represent the stations, while the set E consists of edges denoting the connections between stations. The 
weight of each edge in E is determined by the transit traveling distance.

To measure the degree centrality (N7) of a transit station v ∈ V  in the Chengdu network, we consider 
the number of links connected to station v in Eq. (1). Here, Lvt represents the linkage between station v and 
another station t ∈ V , while K  represents the total number of stations in set V :

	
N7 (v) =

∑
K
t=1Lvt (v ̸= t) , Lvt =

{ 1
0

station v is linked to station t
station v is not linked to station t � (1)

Fig. 1.  Chengdu: key insights and structure.
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Closeness centrality indicates how close and accessible a node is within the network component. The closeness 
centrality (N8) measurement for station is determined by the inverse sum of the shortest transit distances from 
station v to all other stations in set V , as shown in Eq. (2). Here, dvt represents the shortest transit distance 
between station v and another station t ∈ V :

	
N8 (v) = 1∑

K
t=1dvt

(v ̸= t)� (2)

Place indicators
To account for the low-density nature of certain areas in Chengdu, we establish a transit catchment area using a 
radius of 500 m and 1000 m. The evaluation of a station’s place value involves three factors: design, density, and 
diversity. Table 1 presents nine place indicators categorized under these three factors.

The design aspect is measured using various metrics. These include the average price of office land within 
the 1000  m-radius catchment area (P1), the average price of commercial land within the 1000  m-radius 
catchment area (P3), the average price of residential land within the 1000 m-radius catchment area (P5), the 
number of parking lots within the 500 m-radius catchment area (P8), and the number of bus stops within the 
500 m-radius catchment area (P9). Furthermore, design is also assessed by considering the number of offices 
within 1000 m (P2), the number of shops within 1000 m (P4), and the number of residences within 1000 m (P6). 
The diversity factor encompasses public facilities such as parks, cultural facilities, schools, and hospitals within 
the 1000 m-radius catchment area (P7).

Fig. 2.  Structured research framework and methodological workflow.
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Ridership and time indicators
To address the limitations of the NPR model, which fails to consider the impact of time and overlooks variations 
in ridership between departures and arrivals, we have introduced the recording of tapped-in and tapped-out 
trips to construct an NPRT model that accounts for different conditions.

As previously mentioned, ridership is closely tied to time. Hence, we have classified passenger traffic into 
inbound traffic (I) and outbound traffic (O). We have further divided the time into peak, off-peak, regular, and 
weekends, denoted as T1 to T4. This results in eight distinct conditions. For example, IT1 represents inbound 
traffic during working hours, IT2 represents inbound traffic during off-peak hours, IT3 represents inbound 
traffic during the remaining hours of the workday, and IT4 represents inbound traffic on two weekend days. 
Similarly, OT1 denotes the ridership of passengers leaving the station during working hours, OT2 represents 
ridership during off-peak hours, OT3 represents ridership during the remaining hours of the workday, and OT4 
represents ridership on two weekend days.

Table 2 provides a detailed breakdown of each class and the corresponding time intervals from IT1 to OT4.

Methodology
Information entropy weighting (IEW)
To facilitate the analysis of the data and compose the indicators, Information Entropy Weighting ( IEW )17 was 
used to integrate N1 − N8 into node value ( N ) and P1 − P9 into place value ( P ). When the information 
entropy is lower, the significance of the index in providing information decreases, resulting in a minor role in 
the comprehensive evaluation, and thus, a lower weight should be assigned to it. Therefore, information entropy 
can be used to calculate the weight of each index, taking N  as an example. And similarly, we can get P . If there 
are n stations and m node value indicators, then we get X , where xij  represents the value of the indicator j 
at station i.

	 X = {xij}n× m � (3)

Time Definition Days Hours Max Mean Min

IT1 Inbound traffic during working hours Monday to Friday 6:00–9:00 27654.3478 4451.6051 53.2609

IT2 Inbound traffic during off-hours Monday to Friday 17:00–20:00 46668.6087 4281.0174 113.6957

IT3 Inbound traffic during the rest of the day Monday to Friday 9:00–17:00 / 20:00–23:00 54702.0870 5156.2546 140.3043

IT4 Inbound traffic on two days of the weekend Saturdays & Sunday 6:00–23:00 51955.6250 4607.0829 122.3750

OT1 Passengers leaving the station during working hours Monday to Friday 6:00–9:00 56982.3478 5456.5258 151.3913

OT2 Passengers leaving the station during off-hours Monday to Friday 17:00–20:00 26532.4783 4367.8530 69.4348

OT3 Passengers leaving the station during the rest of the day Monday to Friday 9:00–17:00 / 20:00–23:00 33976.5217 4064.4983 72.0000

OT4 Passengers leaving the station on both days of the weekend Saturdays & Sunday 6:00–23:00 55496.8750 4607.0829 126.6250

Table 2.  Time class definition.

 

Dimension Branch Indicator Max Mean Min

https://www.amap.com, https://map.qq.com, https://www.chengdurail.com/index_en.html, https://chengdu.anjuke.com, https://cd.newhouse.fang.com

Node Value

Station Facility N1. Number of entrances and exits in each metro station (unit) 10.0000 4.6535 2.0000

Accessible 
Transits

N2. Number of metro stations that one station can reach within 20 min (unit) 88.0000 41.9257 8.0000

N3. Number of stations to CBD (Chunxi Road) (unit) 23.0000 10.0792 0.0000

N4. Number of stations to CBD (3rd Tianfu Street) (unit) 33.0000 14.0446 0.0000

Accessible 
Destinations

N5. Distance to CBD (Chunxi Road) (km) 45.3230 13.6033 0.0000

N6. Distance to CBD (3rd Tianfu Street) (km) 43.7770 18.3596 0.0000

Network 
Centrality

N7. Degree centrality 6.0000 2.4653 2.0000

N8. Closeness centrality (1/1000 km) 0.0004 0.0003 0.0001

Place Value

Design P1. The average price of office land inside the 1000 m-radius catchment area (CNY/m2) 74000.0000 11118.2658 5550.0000

Density P2. Number of offices within 1000 m (unit) 197.0000 26.7673 0.0000

Design P3. The average price of commercial land inside the 1000 m-radius catchment area (CNY/m2) 50480.0000 21285.5855 8571.0000

Density P4. Number of shops within 1000 m (unit) 397.0000 117.4554 1.0000

Design P5. The average price of residential land inside the 1000 m-radius catchment area (CNY/m2) 42663.3077 18405.8081 8423.0000

Density P6. Number of residences within 1000 m (unit) 552.0000 110.7970 1.0000

Diversity P7. Number of public facilities (parks, cultural facilities, schools, hospitals) inside the 1000 m-radius 
catchment area (unit) 41.0000 10.9208 0.0000

Design
P8. Number of parking lots inside the 500 m-radius catchment area(unit) 132.0000 21.4851 0.0000

P9. Number of bus stops inside the 500 m-radius catchment area(unit) 26.0000 7.3515 1.0000

Table 1.  NP indicators.
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Algorithm 1 provides the IEW method applied in this study.

Algorithm 1  IEW.

Step 1. 0-1 normalized the matrix X .

	
zij =

xij − min
i

{xij}

max
i

{xij} − min
i

{xij} � (4)

Step 2. Calculate the proportion of each station for indicator j.

	
pij = zij∑ n

i=1zij
� (5)

Step 3. Calculate the information entropy of each indicator. If pij = 0, specify ln (0) = 0.

	
ej = − 1

lnn

∑ n

i=1
pij ln (pij) � (6)

Step 4. Calculate the imbalance coefficient.

	 dj = 1 − ej � (7)

Step 5. Calculate the weight of each indicator.

	
wj = dj∑ m

j=1dj
� (8)

Step 6. The weighted sum of the values for each station is normalized to get the node value.

	
si =

∑
m
j=1wjzij � (9)

	
Ni =

si − min
i

{si}

max
i

{si} − min
i

{si}
� (10)

Tables 3 and 4, and 5 present the normalized values of node, place, and integrated ridership-time indicators of 
some subway stations provided by the Min-Max Normalization method.

Station P1 P2 P3 P4 P5 P6 P7 P8 P9

Weijianian 0.056403 0.025381 0.366665 0.131313 0.211279 0.038113 0.146341 0.007576 0.28

Shengxian Lake 0.047561 0.015228 0.307309 0.244949 0.199965 0.116152 0.219512 0.037879 0

North Railway Station 0.073676 0.152284 0.331775 0.578283 0.201768 0.297641 0.219512 0.204545 0.28

Renmin Rd.North 0.074668 0.324873 0.349351 0.616162 0.198684 0.444646 0.585366 0.234848 0.24

Wenshu Monastery 0.079775 0.553299 0.501338 0.558081 0.244897 0.658802 0.365854 1 0.24

Luomashi 0.079775 0.664975 0.333729 0.691919 0.418737 0.885662 0.585366 0.424242 0.24

Tianfu Square 0.103221 0.84264 0.361517 0.69697 0.550529 0.664247 0.463415 0.575758 0.32

Table 4.  Place indicator values normalized by the Min-Max normalization method.

 

Station N1 N2 N3 N4 N5 N6 N7 N8

Weijianian 0.375 0.4375 0.304348 0.545455 0.197427 0.447861 0 0.628906

Shengxian Lake 0.25 0.5625 0.26087 0.515152 0.164023 0.413276 0 0.721591

North Railway Station 0.5 0.8875 0.217391 0.484848 0.128875 0.376887 0.5 0.859327

Renmin Rd.North 0.625 0.825 0.173913 0.454545 0.10284 0.349933 0.5 0.877811

Wenshu Monastery 0.5 0.7875 0.130435 0.424242 0.073031 0.319072 0 0.933192

Luomashi 0.375 1 0.086957 0.393939 0.053527 0.298878 0.5 0.976904

Tianfu Square 1 0.975 0.043478 0.363636 0.031066 0.275624 0.5 1

Table 3.  Node indicators values normalized by the Min-Max normalization method.
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Cluster methods
Unsupervised learning is necessary when dealing with training samples lacking labeling information. The 
goal is to assign labels to stations based on node value, place value, and ridership at various times, creating a 
tagged dataset. This labeled data can be further used to train the rail transit stations’ classification model with 
classification techniques to predict new stations.

Clustering methods are employed to partition existing stations and unveil the underlying structure of the 
data to accomplish this objective. The paper utilizes four clustering methods, which are described below.

The K-Means represents a prototyping-based clustering algorithm4,5. In this algorithm, we randomly 
select k data from the dataset as the initial centers of the clusters and assign each point in the dataset to the 
cluster to which the point belongs to the nearest center. A new cluster center can be computed from the most 
recently delineated cluster; thus, the cluster to which the data point belongs can be reassigned. Repetition of 
such operations until convergence allows the realization of K-Means. Therefore, when training the model for 
K-Means, we need to consider tuning the hyperparameters for the number of clusters k.

The AGNES is a hierarchical clustering algorithm that operates on a bottom-up aggregation approach8. It 
begins by treating each object as an individual cluster and subsequently merges clusters step by step based on 
specific criteria. The similarity matrix can be obtained by calculating the distance between any two clusters, and 
thus, the two closest clusters Ci and Cj  can be found. We merge them into the same cluster Ch and also update 
the distances related to both to get a new similarity matrix. The process is repeated until the algorithm stops 
when all data points belong to the same cluster. Since the distance metrics available for calculating the distance 
between clusters are ward connected, wholly connected, average connected, etc., the distance calculation method 
linkage needs to be considered in addition to the number of clusters k.

The DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise and is a density-based 
clustering algorithm10,11. Its fundamental concept revolves around assessing whether data points belong to the 
same cluster by identifying adjacent points around the data points and recursively exploring the adjacent points 
around those neighbors.

Two essential parameters are at the core of the DBSCAN algorithm: radius (ε) and minimum sample size 
(MinPts). The parameter ε defines the distance threshold for a sample’s neighborhood, while MinPts specifies 
the minimum number of samples within that neighborhood (defined by ε distance) to be considered part of a 
cluster.

The GMM (Gaussian Mixture Model) is a probabilistic model that characterizes the cluster prototype. The 
cluster partition is determined by the prototype corresponding to the posterior probability12. GMM uses

	
p (x|Θ ) =

∑ k

j=1
α jP

(
x|µ j , Σ j

)
� (11)

where P
(
x|µ j , Σ j

)
 is a Gaussian distribution with mean µ j  variance Σ j  and with a non-negative weight 

α j  constituting the overall distribution p (x|Θ ), and 
∑ k

j=1α j = 1, Θ = {α j , µ j , Σ j |j = 1,2, . . . , k}.
k represents a parameter to be tuned.
According to the rule, the samples xi are assigned to the cluster λ i corresponding to the Gaussian 

distribution with the highest probability of belonging to it. Based on the dataset D, the parameter Θ  of the 
GMM can be solved iteratively by the EM algorithm maximizing its log-likelihood function.

Performance measurements
Two main types of clustering performance measures exist. The first type involves comparing the clustering 
results with a reference model, which can be the division results provided by domain experts or inherent data 
categories. This category of measures is referred to as the external index. The second type of measure evaluates 
the clustering results directly without relying on any reference model, known as the internal index.

External index For data set D = {x1, x2, . . . , xm}:
It is assumed that the cluster given by clustering is divided into C , and the cluster given by the reference 

model is divided into C∗. Accordingly, λ  and λ ∗ represent the cluster label vectors corresponding to 
C  and C∗, respectively. When pairing the samples in pairs, the number of unique pairs, denoted by 
a + b + c + d = m(m−1)

2  .

Station IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

Weijianian 0.250627 0.023075 0.04088 0.050935 0.049918 0.155809 0.023308 0.040717

Shengxian Lake 0.113181 0.022086 0.037096 0.032339 0.04168 0.081328 0.034306 0.029183

North Railway Station 0.250685 0.129159 0.182756 0.168179 0.204013 0.233525 0.171207 0.167093

Renmin Rd.North 0.189969 0.17323 0.166083 0.148266 0.155033 0.222095 0.224951 0.13873

Wenshu Monastery 0.174754 0.138479 0.150118 0.116576 0.141487 0.179883 0.214244 0.112685

Luomashi 0.158382 0.313183 0.270683 0.153328 0.219143 0.202612 0.565992 0.155882

Tianfu Square 0.100609 0.438796 0.352778 0.26899 0.321523 0.220588 0.622054 0.263616

Table 5.  Integrated ridership-time values normalized by the Min-Max normalization method.
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	 a = |SS| , SS =
{

(xi, xj) |λ i = λ j , λ ∗
i = λ ∗

j , i < j
}

� (12)

	 b = |SD| , SD =
{

(xi, xj) |λ i = λ j , λ ∗
i ̸= λ ∗

j , i < j
}

� (13)

	 c = |DS| , DS =
{

(xi, xj) |λ i ̸= λ j , λ ∗
i = λ ∗

j , i < j
}

� (14)

	 d = |DD| , DD =
{

(xi, xj) |λ i ̸= λ j , λ ∗
i ̸= λ ∗

j , i < j
}

� (15)

Jaccard Coefficient ( JC):

	
JC = a

a + b + c
� (16)

Its result is in the interval [0,1], and the larger the value, the better.
Rand Index ( RI) and Adjusted Rand Index ( ARI):

	
RI = 2(a + d)

m(m − 1) � (17)

	
ARI = RI − E (RI)

max (RI) − E (RI) � (18)

RI  ranges from [0,1]. The larger the value, the better. To realize that the index should be close to 0 when the 
clustering results are generated randomly, ARI  is proposed. Its value range is [−1,1], and the larger the value, 
the more consistent the clustering result is with the actual situation.

Internal index:
The Sum of Squared Errors ( SSE):

	
SSE =

∑
i,k(xi,k − ck)2 � (19)

It represents the sum of the square loss of the distance from the data in the class to the center of the class, which 
is the optimization goal of K − Means, where xi,k  denotes the i-th sample point in the k-th class and ck  is 
the center point of the k-th class.

Silhouette Coefficient ( SC):

	
si = bi − ai

max(ai, bi)
� (20)

	
SC =

∑
m
i=1si

m
� (21)

In Eq. (20) ai represents the average distance of the sample xi from other samples in the cluster and bi represents 
the minimum average distance of xi from samples in other clusters. The range of SC  is [−1,1]. A clustering 
result with a higher SC  value, closer to 1, indicates a better clustering effect. This is achieved when the distances 
between samples of the same class are smaller, and the distances between samples of different classes are larger.

Calinski-Harabasz Index ( CH):

	
Bk =

∑
k
q=1 |Cq| (cq − c∗) (cq − c∗)T � (22)

	
Wk =

∑
k
q=1

∑
x∈ Cq (x − cq) (x − cq)T � (23)

	
CH = tr (Bk) (m − k)

tr (Wk) (k − 1) � (24)

In Eqs. (22) and (23) Bk  and Wk  are covariance matrices for inter-cluster and intra-cluster data. cq  and c∗ 
represent the center points of cluster q and the data set D, respectively, and Cq  denotes the set of data belonging 
to cluster q. The CH  score represents the ratio between the distance between clusters and the distance within 
clusters. A higher value indicates a better clustering result because the score has no upper bound. In other words, 
the larger the CH  score, the more distinct and well-separated the clusters are, which is considered a better 
outcome.

Fitting and classification methods
MLR is a simple linear regression generalization that studies the quantitative dependence between dependent 
and multiple independent variables24,25. The multiple linear regression equation estimated by the sample is:

	 ŷ = b0 + b1x1 + . . . + bpxp � (25)
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In multiple linear regression analysis, the regression coefficient is estimated by the least square method, that is, 
finding the appropriate coefficients {b0, b1, . . . , bp} to minimize the sum of squares of the dependent variable 
residuals.

DNN (Deep Neural Network) is a neural network comprising multiple hidden layers, categorized as input, 
hidden, and output layers based on their positions13. Typically, the first layer serves as the input layer, the last 
layer as the output layer, and the intervening layers as hidden layers. Each layer is fully connected, meaning every 
neuron in a layer is connected to every neuron in the subsequent layer (i.e., layer i is fully connected to layer 
i + 1). The input layer solely receives external signals without processing, while the hidden and output layers can 
perform function processing, and the output layer produces the final result. For a fully connected single hidden 
layer neural network, with the output layer having only one neuron, the output result can be expressed as:

	
y = g(

∑
m
k=1vkfk(

∑
n
i=1wixi − θ k) − δ ) � (26)

where g represents the activation function of the output layer, vk  denotes the output weight of the i-th hidden 
neuron, δ  stands for the bias of the output neuron, fk  is the activation function of the k-th hidden neuron, wi 
shows the output weight of the k-th input neuron and θ k  is the bias of the k-th hidden neuron.

When utilizing Deep Neural Networks (DNN), careful consideration must be given to the choice of activation 
function and the configuration of weights and biases. With the advancements in artificial neural networks, a 
diverse range of activation functions can now be employed in these networks. Activation functions typically 
produce values from 0 to 1 or -1 to 1, allowing us to select appropriate ones based on specific requirements. For 
instance, the Tanh function can be suitable for the hidden layer in a binary classification problem, while the 
Softmax function proves effective for multi-classification tasks. The ReLU function has gained popularity in deep 
learning due to its ability to avoid the vanishing gradient problem, and the Softplus function, being smoother 
than ReLU, also finds utility in specific scenarios.

After deciding on the activation function and configuring the network architecture, the next step is 
determining the optimal weights and biases to achieve the best performance in problem-solving. A loss function 
is chosen to evaluate the neural network’s performance. Commonly used loss functions include mean square 
error and cross-entropy error. The neural network is then trained using this loss function, and various training 
methods can be employed27,28.

The primary objective during training is to find the proper parameters that minimize the loss function. 
This optimization process is essentially an optimization problem. A prevalent approach to address this is using 
gradient or Stochastic Gradient Descent (SGD) strategies. The weights and biases are updated in the negative 
gradient direction of the objective (loss function) to minimize the loss and improve the network’s performance 
iteratively. The ultimate goal is to reach a configuration where the neural network performs optimally for the 
specific task.

K-Nearest Neighbors (KNN) Regression operates based on finding the k nearest neighbors of a given 
sample and assigning the average value of a specific attribute from these neighbors to the sample14,38. In contrast 
to classification, which produces qualitative outputs, regression yields quantitative results. During the training 
phase of KNN Regression, three crucial factors are considered: the selection of the K value, the method for 
measuring distances, and the decision-making rules. Decision-making rules primarily come in two forms: the 
average method and the weighted average method. The step-by-step process of the KNN regression algorithm 
is presented in Algorithm 2.

Algorithm 2  KNN Regression.

Step 1. Compute the distance between the point to be predicted and the known points.
Step 2. Sort the known points in ascending order based on their distances from the point to be predicted.
Step 3. Choose the k points with the shortest distances to the predicted point.
Step 4. Return the average or weighted average of the attribute values from the selected k points as the corre-
sponding attribute value for the predicted point.

Results and discussion
Fitting
Actual data has been collected through investigations to track the inbound and outbound passenger flow in 
Chengdu subway stations at various time periods. The objective is to aid relevant departments in developing 
improved plans for constructing new subway stations. To achieve this, it becomes essential to forecast the 
passenger count entering and exiting the subway stations during different time periods. This prediction can be 
accomplished by utilizing MLR, DNN, and KNN Regression, which will be employed to fit the data based on the 
known node indicators and place indicators of the subway stations.

In the context of MLR, we assume the relationship between node indicators, place indicators, and ridership, 
which is as follows:

	
Ridership = α +

∑
8
i=1β iNi +

∑
9
j=1γ jPj � (27)

The relationship between node indicators, place indicators, and ridership varies due to the differing number 
of passengers at the same station during various time periods. As a result, the coefficients associated with this 
relationship differ accordingly.
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In the case of DNN utilization, a single hidden layer network is employed to fit the node and place indicators 
to the ridership data. The input layer comprises 17 neurons, each corresponding to one of the 17 node and place 
indicators. The hidden layer consists of 10 neurons, and the activation function used for the hidden layer is the 
ReLU function, as shown in Eq. (28).

	 f (x) = max (0, x) � (28)

The output layer of the DNN contains a single neuron, representing the ridership, and it uses the LeakyReLU 
activation function presented in Eq. (29).

	
f (x) =

{
x , x > 0

α x , x ≤ 0 � (29)

In DNN regression, the loss function employed is the mean square error, and the weights and biases of the DNN 
are determined through the random gradient descent strategy.

For KNN regression, the Five-Fold Cross-Validation method is utilized. The process involves dividing the 
training data into five parts, four used as model training sets and the remaining as verification sets. This process 
is repeated five times to ensure a comprehensive evaluation. The grid search method is then applied to determine 
the optimal K value, distance measurement method, and decision rules based on the model’s performance on 
the verification set.

The fitting relationship of different data corresponds to different K values, as depicted in the second column 
of Table 6. The distance measurement method is the Manhattan distance, and the decision rule is the average 
method.

By employing the three methods mentioned above, we have fitted eight sets of data for IT1-IT4 and OT1-
OT4. In each case, 10% of the data is reserved as the test set, while 90% is used for training the models. The 
effectiveness of the models is assessed by calculating the Mean Squared Error (MSE) on the test set. Figure 3 
displays the variation of MSE for different models across the eight test sets.

Fig. 3.  Line plots of MSE variation on the test set under MLR, DNN, and KNN models for each time period 
(IT1-OT4).

 

Model K Number of deleted stations KDeleted

IT1 6 17 6

IT2 10 0 10

IT3 10 1 6

IT4 10 0 10

OT1 10 0 10

OT2 7 14 7

OT3 3 4 9

OT4 10 0 10

Table 6.  The relevant parameter selection for fitting in each time span.
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The outcome is not entirely satisfactory, particularly concerning OT3. To gain insights, we observe the 
data distribution for this specific case. Subsequently, the distance between the independent variables and the 
dependent variable of the two stations is calculated using the following methods:

	 IndependentDistance(k,l) = maxi,j

(∣∣Nk
i − N l

i

∣∣ ,
∣∣P k

j − P l
j

∣∣) � (30)

	 Dependent(OT3)Distance(k,l) =
∣∣Rk

OT 3 − Rl
OT 3

∣∣ � (31)

After computing the distance mentioned above between each pair of stations, we can visualize the distribution 
histograms as shown in Fig. 4.

As shown in Fig. 5, distribution histograms were drawn to depict the distances between data corresponding 
to every pair of stations within each time span. The data for each time span were then analyzed using these 
distribution histograms. For OT3, the distance between the variables is predominantly distributed in the range 
of [0.50, 0.55]. Additionally, the ridership between stations is generally close, except for a few stations where 
significant differences in ridership exist. It appears that some stations have similar independent variables but 
substantially different ridership.

To achieve a more effective fitting outcome, we remove the stations where independent variables are very 
close, yet ridership differs significantly. This process is repeated for each group, resulting in the number of 
deleted stations for each group, which is indicated in the third column of Table 6.

After removing some stations, the data was fitted using MLR, DNN, and KNN. The different K values 
corresponding to the eight data groups are presented in the fourth column of Table 6. Figure 6 shows a comparison 
diagram of MSE on test sets for different models with distinct data. Specifically, DMLR represents the fitting 
results with MLR after eliminating contradictory stations, while DDNN and DKNN denote the corresponding 
results for DNN and KNN, respectively.

From the observations in Fig.  6, it can be inferred that the overall fitting effects of the MLR, DNN, and 
KNN models are relatively similar. Notably, the performances of all three models on the IT1, OT2, and OT3 
test set improved after removing a certain number of contradictory stations, especially for OT3. However, the 
MSE values for IT2, OT2, and OT3 are relatively higher when compared to the other five groups of data. Upon 
analyzing the ridership distribution in Fig. 7 for these three groups, it becomes evident that the ridership still 
deviates from the distribution range of most stations, indicating relatively poor fitting effects for the models.

Figure 8 displays the point plots of MLR, DNN, and KNN-fitted ridership alongside the actual ridership 
at selected stations for each time period (IT1-OT4). These plots allow for a comparison between the fitted 
results and the actual ridership. By observing Fig. 8, it is evident that the machine learning model is ineffective 
in predicting stations with many passengers. However, when the number of passengers at a station is small, 
the model can accurately predict the passenger count. Therefore, deleting the abnormal stations with similar 
independent variables but significantly higher passenger numbers can further improve the model’s fitting ability. 
Additionally, the distribution of actual ridership for IT2, OT2, and OT3 remains scattered compared to other 
time periods, even after removing the abnormal stations. This observation aligns with Fig. 8 and explains why 
the MSE for these three time periods in Fig. 7 is relatively large.

We obtained promising results on the test set after applying MLR, DNN, and KNN to fit the node indicators, 
place indicators, and ridership by excluding contradictory stations from the eight data groups. This success 
allows us to accurately predict station ridership when equipped with the station’s node and place indicators at 
different times.

Fig. 4.  Histogram of the frequency distribution of the distance between the independent variables (N1-N8 and 
P1-P9).
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However, two approaches can be adopted to enhance ridership predictions’ accuracy. Firstly, we can train 
the model with more extensive station data. Additional data will help the model capture broader patterns and 
behaviors, leading to improved predictions. Secondly, investigating other crucial factors that influence ridership 
is essential. Identifying and incorporating these additional factors into the model can significantly enhance its 
predictive capabilities and provide more comprehensive insights into the ridership patterns of subway stations.

Model training and selection
Since stations are unlabeled, the categorization process involves clustering in machine learning, an unsupervised 
learning technique. Different clustering methods operate on different principles, resulting in varied clustering 
outcomes. To minimize this effect, the results of multiple clustering methods are integrated. A neural network 
is trained using consistently labeled results, allowing the trained model to classify stations with inconsistent 
labeling (thus converting it to a supervised learning task) and predict the class of new stations.

To label the data, we separately employ four clustering methods (K-Means, AGNES, DBSCAN, GMM) and 
conduct a preliminary evaluation of the clustering effectiveness using internal indexes SC and CH. The ridership 
data is divided into eight groups based on the time span (T), namely IT1-OT4. The process remains the same for 
each group, and for illustration purposes, we will use the IT1 data as an example.

The methodology section provided a brief description of the clustering algorithm. The principles of 
the algorithm indicate that each one has hyperparameters that influence the clustering effect, with different 
parameter choices potentially impacting the results positively or negatively. Based on this, the most satisfactory 
clustering results and their corresponding parameter values are selected by adjusting the parameters during 
model training and observing changes in the internal index values.

Python is utilized to cluster the given data. The models can be enhanced by adjusting hyperparameters in 
the algorithms, adhering to the principles of clustering methods. For K-Means and GMM, we need to adjust the 

Fig. 5.  Histogram of the frequency distribution of the distance between the dependent variable (i.e., ridership) 
at any two stations for different time periods (IT1-OT4).
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Figure 5.  (continued)

Fig. 6.  Line plots of MSE changes in the test set for each time period (IT1-OT4) under MLR, DNN, and KNN, 
as well as the model with some contradictory stations removed (DMLR, DDNN, DKNN).
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Fig. 8.  Comparison and analysis of different fitting results.

 

Fig. 7.  Histogram of the frequency distribution of ridership under IT2, OT2, and OT3 time periods for 
outliers selection.
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number of clusters (k) as the critical parameter. In the case of AGNES, both an appropriate k-value and a suitable 
distance definition method (linkages) between clusters must be determined. Regarding DBSCAN, the maximum 
neighborhood radius (eps) and the minimum number of samples within the domain radius (min_samples) that 
form the core object must be adjusted for optimum results.

To achieve more satisfactory final classification results, better clustering outcomes for each clustering 
algorithm, which involves parameter selection, are needed. Larger values of the internal indexes SC and CH 
indicate better model results. The internal index values for models under different parameter settings are 
calculated separately to select the best model for each algorithm. Taking IT1 as an example, the results of the 
four basic clustering algorithms are displayed in Tables 7, 8 and 9, and 10. Based on these results, line graphs, 
presented in Fig. 9, are drawn to intuitively identify the optimal parameter for each algorithm. The diagrams 
in Fig.  9 show the internal index changes corresponding to the four clustering methods during parameter 
adjustment. The optimal parameters for each algorithm are then selected, and the model is trained using the 
clustering results under those parameter settings as the subsequent results for that algorithm. For example, 
with K-Means, the internal indicators SC and CH reach their maximum when k = 3, indicating that clustering 
subway stations into three categories is most appropriate. For AGNES, although SC is slightly higher at k = 2, 
CH is significantly higher at k = 3, suggesting that k = 3 should be chosen as the number of clustering categories 
for AGNES.

After carefully evaluating the results, we selected four models trained by K-Means (k = 3), AGNES (k = 3, 
linkages = complete), DBSCAN (eps = 0.32, min_samples = 3, resulting in two clusters), and GMM (k = 3). 
Using three-dimensional scatter plots, we visually represented the clustering effects of the models under their 
optimal parameters.

Figure 8.  (continued)
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As shown in Table 11; Fig. 10, based on the evaluation index, it is evident that the K-Means model with k = 3 
provides the ideal clustering result for the data in the IT1 period. Therefore, this clustering result can be chosen 
as the label for the data. Figure 10 shows that subway stations are divided into three categories by the K-Means, 
AGNES, and GMM clustering methods and into two categories by the DBSCAN method. The results from each 
method have similar N, P, and R values, which verify the rationality of the clustering model and the selection of 
specific clustering numbers.

Enhancements to data labeling
During the model selection process, it is evident that choosing the best-performing algorithm’s result as the 
data label is a viable approach. However, since different clustering methods divide the data based on distinct 

eps min_samples k outliers stats SC CH

0.32 3 2 1 [160 41] 0.5264 85.5240

0.32 4 2 1 [160 41] 0.5264 85.5240

Table 9.  Values of SC and CH under the optimal parameter combination in DBSCAN (IT1).

 

k Linkages SC CH

2

Ward 0.5279 150.5990

Average 0.5779 7.8188

Complete 0.4981 115.5534

3

Ward 0.4989 162.5765

Average 0.5264 85.5240

Complete 0.5304 163.0675

4

Ward 0.3749 145.4261

Average 0.4974 70.0773

Complete 0.5335 124.3480

5

Ward 0.3816 148.5483

Average 0.4827 59.7751

Complete 0.5305 107.8745

6

Ward 0.4057 145.2241

Average 0.5157 109.0551

Complete 0.5111 104.5335

7

Ward 0.4209 151.2981

Average 0.4987 98.2073

Complete 0.4934 93.9764

8

Ward 0.4268 164.0516

Average 0.4755 86.2363

Complete 0.4184 115.4791

9

Ward 0.3681 163.1856

Average 0.4769 83.4957

Complete 0.4245 114.1286

Table 8.  Values of CH and SC with k value under different linkages in AGNES (IT1).

 

k SC CH SSE

2 0.4853 143.7115 12.1938

3 0.5078 170.0935 7.7342

4 0.3951 156.2038 6.2244

5 0.4113 156.6092 5.0135

6 0.4095 153.4773 4.2634

7 0.4262 158.3712 3.5682

8 0.4325 168.1136 2.9657

9 0.4275 167.1136 2.6436

Table 7.  Values of CH, SC, and SSE with different k values under K-Means (IT1).
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principles, they yield varying clustering outcomes. As a result, we can explore methods to combine the results 
from multiple algorithms. To achieve this, we can first identify samples that consistently belong to the same 
cluster across all clustering algorithms. These samples can be directly labeled without any modifications. On the 
other hand, if a data point is assigned to different clusters by different methods, we can temporarily mark it with 
a distinct symbol and further process it using alternative approaches.

In the provided results, DBSCAN classifies the data into two clusters, while K-Means, AGNES, and GMM 
classify the data into three clusters. Considering the abovementioned approach, we focus on K-Means, AGNES, 
and GMM results. Based on this, we label the points that do not consistently fall into the same cluster across 
these three methods. The figure depicts 25 red points in IT1 with different labels due to the discrepancies in the 
clustering algorithms. These points are not included in the three clusters formed by the other points. Figure 11 
presents the scatter plot of cluster results after crossing. Appendices 1, 2, 3, 4, 5, 6, 7, and 8 illustrate the complete 
results from IT1 to OT4.

The remaining data points are categorized into three clusters, leaving 25 points without corresponding 
labels. These points may have suboptimal clustering performance, and their obtained labels may lack strong 
interpretability. We can employ supervised learning using the accurately labeled data to train a classification 
model to address this. Subsequently, this model can be used to predict the labels of the unlabeled points, 
providing them with more accurate labels.

Using the classification algorithm trained on data generated from the results of multiple clustering algorithms, 
we can group these poorly classified points into three clusters. As a result, all the data points in the dataset 
will have their respective classes. This approach leads to improved classification results compared to a single 
algorithm alone. Through this process, we effectively leverage limited data information to enhance the accuracy 
and interpretability of the labels assigned to these data points.

Classification
In the previous section, data points with consistent labels were clustered, while those with inconsistent labels were 
set aside. However, further classification methods are necessary to cluster all stations accurately, including those 
with inconsistent labels. To address this, a Deep Neural Network (DNN) is employed for station classification. 
The model was trained using consistently labeled data points, with 70% of the data serving as the training set, 
and its performance was evaluated based on accuracy on the validation set.

The DNN architecture consists of an input layer with 3 neurons to accommodate the 3-dimensional data 
features, namely N, P, and R. It includes a hidden layer with 10 neurons that utilize the LeakyReLU activation 
function. The output layer has 3 neurons, each representing one of the three clusters into which the stations were 
grouped. This layer employs the Softmax activation function for gradient logarithmic normalization. The Cross-
Entropy loss function was used during training to optimize the model’s performance.

	
H (p, q) = −

∑
n
i=1p (xi) log (q (xi)) � (32)

The weights and biases in the DNN are determined using the stochastic gradient descent strategy, which 
iteratively updates them based on the data. With iterations set to 10,000, the neural network model is trained 
under each time period (IT1-OT4) based on the above architecture. Figure 12 visualizes the architecture of the 
neural network used in this paper.

Table 12 summarizes the accuracy results for eight data groups on the validation set.
The models have shown exceptional performance on the test set, with seven out of the eight groups achieving 

an impressive 100% accuracy, except for OT3. This demonstrates the model’s excellent training and reaffirms the 
effectiveness of the clustering methodology employed in the previous section.

Given this success, the model can accurately classify new stations when provided with relevant information. 
The trained model can also classify unlabeled sites and compare the results with various clustering methods. 
This comparative analysis will offer valuable insights into the model’s superior performance and advantages over 
alternative clustering approaches.

Table 13 presents the final cluster results for 30 randomly selected stations for different time periods. These 
classifiers were trained using the DNN on test sets, ensuring robust evaluation across various time spans. The 
DNN model demonstrates its ability to make accurate predictions for the selected stations, providing valuable 
insights into the performance of the classifiers over different periods. This data allows for assessing the model’s 

k SC CH

2 0.4739 139.7405

3 0.4427 159.6280

4 0.3823 122.7624

5 0.3178 123.5035

6 0.2909 107.8941

7 0.3048 123.5271

8 0.3097 130.1292

9 0.2974 118.8587

Table 10.  Values of CH and SC with different k values under GMM (IT1).
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effectiveness in handling temporal variations and offers crucial information for understanding the overall 
stability and reliability of the predictions.

The stations were clustered using each of the three clustering methods. A neural network was then used to 
re-classify the data points labeled inconsistently under the three algorithms, ensuring that all subway stations 
had a cluster to which they belonged. This final clustering result is believed to combine some of the clustering 
results of the three algorithms, especially for the inconsistently labeled data.

Fig. 9.  IT1 parameter-based evaluation of clustering methods.
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Different clustering algorithms produce different results based on their principles. However, it is unclear 
which set of clustering results is superior. The intersection of the clustering results of the three algorithms was 
taken to leverage all the clustering results. Data points in the same cluster under all three algorithms were 
clustered together. Data points that did not fit into the same cluster were considered to be placed into different 
clusters by algorithms based on different principles.

To address this, a neural network was trained with consistently labeled points. This involved training the 
model with more accurately clustered points to predict the clusters of those currently unlabeled points. This 
approach maximized the accuracy of station prediction by using the clustering results of the three algorithms.

Fig. 10.  Scatterplots of the IT1 clustering under the optimal models selected by K-Means, AGNES, DBSCAN, 
GMM.

 

Method SC CH

K-Means 0.5078 170.0935

AGNES 0.5304 163.0675

DBSCAN 0.5264 85.5240

GMM 0.4427 159.6280

Table 11.  The internal index results corresponding to the model selected by clustering methods.
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Verification of clustering results
As the initial dataset lacks labels, we are limited to evaluating the cluster performance using internal rather than 
external indexes. However, by applying the neural network, we could label each point in the dataset, reasonably 
assuming that these labels are relatively accurate. Leveraging this labeled dataset as a reference model, we can 
now employ external indexes such as JC (Jaccard Coefficient) and ARI (Adjusted Rand Index) to assess the 
performance of each clustering algorithm in reverse.

Using the results obtained from the DNN classifier, we calculate the external indexes for the three clustering 
methods, as presented in Table  14. This approach allows us to verify and compare the performance of each 
algorithm based on the reference labels generated by the neural network.

All of the external index values for the clustering results are relatively large, indicating a difference, but not a 
significant one, between the final clustering results and those of a single algorithm. The Jaccard coefficient (JC) 

Model IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

Accuracy (%) 100 100 100 100 100 100 98.15 100

Table 12.  Models accuracy under each time period (IT1-OT4).

 

Fig. 12.  The basic architecture of a neural network for training consistently labeled stations and predicting 
inconsistently labeled stations.

 

Fig. 11.  Scatter plot representation of cluster results: post-crossing.
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and Adjusted Rand Index (ARI) show that K-Means’ results are superior, suggesting that K-Means substantially 
influences the final clustering results.

Table 14 shows that all three clustering algorithms significantly influence the final clustering results. Most 
data is consistently labeled under all three algorithms, and the DNN prediction utilizes this information. 
Consequently, the predicted results are partially similar to the clustering results of the individual algorithms. 
This further confirms the validity and accuracy of our station classification approach.

A portion of the consistently labeled data was selected as a validation set. Since this data has corresponding 
classes, its results can be used to test the effectiveness of the DNN. For the inconsistently labeled stations, they 
are used as a test set to predict the classes using the trained neural network. However, since clustering results 
from three different algorithms are available, the predicted results can be compared against them. The results in 
Table 14 show that the difference between the predicted and actual clustering results is minimal, verifying the 
feasibility of the predictions to some extent.

Additionally, the DNN model trained earlier can be used to predict classes for new unclassified stations, 
ensuring the model’s usability. The DNN model can also be updated as station data is continuously updated 
to achieve better results. Scaling up the training data by constantly adding new inputs improves the neural 
network’s predictive power, enabling it to better predict the classes of new stations and adapt to new changes 
and trends.

External Indexes K-Means AGNES GMM

JC 0.9423 0.9238 0.8618

ARI 0.9249 0.9153 0.7859

Table 14.  The external indexes for the optimal models under K-Means, AGNES, GMM.

 

Number Station IT1 IT2 IT3 IT4 OT1 OT2 OT3 OT4

1 Weijianian 2 2 2 2 2 2 2 2

2 Shengxian Lake 2 2 2 2 2 2 2 2

3 North Railway Station 3 3 3 3 3 3 3 3

4 Renmin Rd.North 3 3 3 3 3 3 3 3

5 Wenshu Monastery 1 1 1 1 1 1 1 1

6 Luomashi 3 3 3 3 3 3 1 3

7 Tianfu Square 3 3 3 3 3 3 1 3

8 Jinjiang Hotel 1 1 1 1 1 1 1 1

9 Huaxiba 1 1 1 1 1 1 1 1

10 Sichuan Gymnasium 3 3 3 3 3 3 3 3

11 Nijiaqiao 3 3 3 3 3 3 3 3

12 Tongzilin 1 1 1 1 1 1 1 2

13 South Railway Station 3 3 3 3 3 3 3 3

14 Hi-Tech Zone 2 2 2 2 2 1 1 2

15 Financial City 1 2 2 2 2 1 1 2

16 Incubation Park 3 3 3 3 3 3 3 3

17 Jincheng Plaza 2 2 2 2 2 2 2 2

18 Century City 3 3 3 3 3 3 3 3

19 3rd Tianfu Street 2 1 1 2 2 1 1 2

20 5th Tianfu Street 2 2 2 2 2 2 1 2

21 Huafu Avenue 2 2 2 2 2 2 2 2

22 Sihe 2 2 2 2 2 2 2 2

23 Huayang 2 2 2 2 2 2 2 2

24 Haichang Road 3 3 3 3 3 3 3 3

25 Guangfu 2 2 2 2 2 2 2 2

26 Hongshi Park 2 2 2 2 2 2 2 2

27 Luhu Lake 2 2 2 2 2 2 2 2

28 Wuhan Road 2 2 2 2 2 2 2 2

29 Tianfu Park 2 2 2 2 2 2 2 2

30 Western China Int’l Expo City 3 3 3 3 3 3 3 3

Table 13.  The final clustering results of some random stations.
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The results of this study have a great deal of meaning for urban planners and policymakers, especially in the 
case of TOD. The novel classification model explained not only enhances the precision of station classification 
but also gives implementable ideas that may support more efficient and environmentally friendly urban planning.

With the help of the reborn version of the classification model, town planners, and policyholders can 
now make informed decisions about new station planning and its improvement. By looking at the unique 
combinations of property values and the on-time performance for the various station types, the most effective 
recommendations can be made to be more efficient in land use and the area’s transit. The station pair result 
directs highlights of a set of stations that possess analogous features. Thus, roads and sidewalks, bus stops, and 
cycle lanes can be constructed whenever necessary. Train stations must be invested only when high in demand 
rather than just building them all over the city. This step implies the creation of the future city, where technology 
and GI (geographic information) are used to improve the quality of life of residents, businesses, and the natural 
environment with less car dependency.

The authorities must apply adaptive TOD strategies that consider the transition of urban growth and transit 
usage patterns. The estimates of the model can be used to forecast future ridership trends that will enable the 
change of TOD plans to accommodate the volatile downtown urban structure. If the classification model with 
the expanded sustainability schemes is combined, then the Sustainable Development Goals (SDGs) will be 
supported. By concentrating on stations that help use public transport and, on the other hand, do not force 
people to possess personal vehicles, TOD strategies could lessen urban congestion and carbon emissions.

Another necessary part of community engagement is that local authorities, along with urban designers, can 
get the community to participate in their projects with the aid of the sorting model. Urban planners can analyze 
information from the sorting model to interact with local societies efficiently. Planners can get the public’s opinion 
by providing precise and data-supported information about the advantages and future constructions around 
traffic stations. In addition, they can ensure that the TOD projects align with peoples’ needs and preferences.

The main concern is setting up a system for continuously monitoring and examining rail facilities using the 
classification model. Routine appraisals may help to unearth the new patterns and potential mishaps earlier, 
which could provide better interventions to keep the efficiency and effectiveness of TOD strategies at the desired 
level. By encouraging other cities and areas to adopt the classification model, the model will be improved and 
made accessible to other cities and areas. With the help of the best practices and outcomes from the Chengdu 
case study that can serve as a model for the same urban environment, promoting a uniform mode of transit 
station classification and TOD planning would be encouraged.

Urban policies and rules are set to blend and synchronize various urban developments on different scales by 
transcoding the data from the robot into the already existing urban planning paperwork. The decomplication 
of these documents can facilitate clarity when trying to find a way to arrange various instruments to achieve 
sustainable development. Toward this end, urban practitioners working in conjunction with local government 
leaders and land use stakeholders need to realize that before entering its practical application, the application 
of the input code is put through deformation, noise addition, erasing some parts, and other special operations. 
Followed by the deployment of these core measures, by the planners’ and politicians’ willingness, the classification 
model is being led to its full potential, which leads to the pulling up of the already inefficient process and the 
creation of a new and streamlined urban growth utilizing applied Transit-Oriented Development strategy. Global 
warming and environmental degradation are major issues that must be addressed immediately to prevent the 
problem from worsening. The necessary proteins are injected into the programming code to produce options for 
the local government to develop.

According to Table 13, the classification results obtained from the DNN model provide a comprehensive 
understanding of the ridership patterns across rail transit stations during different time periods. These 
classifications have significant implications for TOD policymaking and planning, offering valuable insights 
into how temporal variations in passenger traffic can influence various stages of urban transit planning. The 
model helps assess the effectiveness of transit infrastructure and services, providing planners with data-driven 
approaches to improve the efficiency and sustainability of urban transit systems.

One of the key applications of this classification is in demand management and capacity planning. For 
example, stations like North Railway Station and Renmin Rd. North exhibit consistently high traffic (classification 
3) across all time periods (IT1 to OT4). This suggests that these stations require additional capacity during 
peak and off-peak hours. The classification data can guide transportation planners in making decisions such as 
adjusting the frequency of trains, redesigning station layouts to accommodate higher volumes of passengers, 
and adding amenities to meet increased demand. The insights gained from these classifications allow for better 
resource allocation, helping to prevent over-crowding at crucial transit hubs and ensuring that stations are 
equipped to handle peak demand efficiently.

Additionally, the classification results are instrumental in peak-hour optimization. Stations such as Tianfu 
Square and Sichuan Gymnasium show high ridership during working hours but a decline in traffic during off-
peak or weekend times (OT3, IT4). This pattern indicates the need for peak-hour optimization strategies, such 
as increasing service frequency during high-demand periods or improving station accessibility to better handle 
the flow of passengers during peak times. During off-peak and weekend hours, TOD strategies might consider 
repurposing station spaces for other uses, such as hosting community events or establishing retail pop-ups, 
which would keep the area vibrant even when ridership decreases.

The classification data also offers insights into infrastructure investments and upgrades. For instance, 
stations such as Wenshu Monastery and Jinjiang Hotel consistently show low traffic (classification 1) across all 
time periods, indicating that these stations experience low passenger volumes even during peak hours. This 
information is valuable for urban planners when considering prioritizing infrastructure investments. Instead 
of focusing significant resources on low-traffic stations, planners might decide to allocate more funds to high-
demand stations, while low-traffic stations could be maintained with lighter service routes or alternative modes 
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of transportation such as biking or walking. Furthermore, these low-traffic stations could be targeted with TOD 
policies to increase ridership through development incentives, such as constructing residential or commercial 
properties nearby to draw more passengers.

The classification system also provides a framework for service flexibility and scheduling. For example, the 
Hi-Tech Zone shows varying ridership patterns, with low outbound traffic during off-peak hours (OT2) but 
higher outbound ridership during working hours (OT1). This variation allows transportation planners to adjust 
transit schedules based on real-time data, reducing operational costs during off-peak hours while maintaining 
rider satisfaction during periods of high demand. Flexible scheduling, such as reduced service during off-peak 
times and increased frequency during peak hours, can improve the efficiency of transit systems and better match 
passenger needs without overburdening the network.

Another critical application of these classifications is in weekend transit planning. Stations like Tongzilin 
and Financial City experience notable differences between weekday and weekend ridership patterns, with lower 
inbound traffic on weekends (IT4 = 1) compared to higher weekday traffic. Understanding these differences helps 
planners optimize weekend service routes by reducing service frequency or developing special routes catering 
to weekend commuters and leisure travelers. This flexibility ensures that resources are allocated efficiently, with 
transit services tailored to match the specific demands of each station during different time periods.

The classification data is also essential for supporting mixed-use development in high-traffic areas. Stations 
like South Railway Station show consistently high ridership across all time periods (classification 3 for IT1 to 
OT4). Such stations serve as key commuter hubs and prime locations for mixed-use development, combining 
residential, commercial, and recreational spaces. TOD strategies could promote the development of high-traffic 
areas into vibrant, multi-use communities, fostering economic growth while supporting commuters’ daily needs. 
TOD policies can encourage private investment in real estate, retail, and entertainment in these areas, ensuring 
that the station is a focal point for residents and visitors.

The classification system also highlights opportunities for public-private partnerships. Stations like Century 
City exhibit consistent high traffic across all time periods (classification 3), indicating their importance as key 
transit hubs. These high-traffic stations are ideal candidates for public-private partnerships (PPP) that could 
promote commercial ventures or real estate projects, leveraging the high footfall to attract private investment. 
By working with private stakeholders, TOD strategies can integrate retail spaces, office buildings, and residential 
complexes into the transit network, maximizing these high-demand stations’ economic and social benefits.

Finally, these classifications contribute to the development of sustainability and environmental policies. 
Stations with moderate but consistent traffic, such as Weijianian and Shengxian Lake (classification 2 across 
all conditions), can be focal points for eco-friendly initiatives. By understanding which stations experience 
moderate traffic, planners can design policies to reduce the carbon footprint of transit systems. These stations 
may be integrated with pedestrian-friendly zones, bicycle lanes, or green spaces to encourage environmentally 
sustainable transportation options. Furthermore, TOD policies can promote using renewable energy sources 
and energy-efficient technologies in transit stations, contributing to broader sustainability goals while ensuring 
that these stations continue to serve the community’s needs.

According to the mentioned strategies and examples, classifying passenger traffic into distinct categories 
based on time periods and traffic types provides valuable insights into various aspects of TOD planning. 
These classifications help address challenges in demand management, peak-hour optimization, infrastructure 
investments, service flexibility, and sustainability. By leveraging this data, urban planners can create more 
efficient, resilient, and sustainable transit systems that cater to the evolving needs of commuters and align with 
long-term urban development goals.

Conclusion
Classifying rail transit stations is crucial for shaping Transit-Oriented Development (TOD) and fostering 
sustainable urban growth. This paper presented a pioneering classification model that seamlessly blends 
traditional methodologies with state-of-the-art machine learning (ML) algorithms to analyze comprehensively 
and cluster rail transit stations. By incorporating mathematical models and supervised learning techniques, 
the model achieves a refined evaluation of station attributes, thereby enhancing the precision of classification 
techniques in TOD. This holistic approach enables rigorous station performance analysis and facilitates effective 
planning that aligns with the principles of TOD.

Several results stemming from this study include:

	1.	� MLR, DNN, and KNN regression models were trained using the existing data, and the resulting fitting out-
comes can be observed in Fig. 3. Some data clusters display slight generality, prompting the construction of 
a distribution map illustrating variable distances. Consequently, contradictory points in the data—where 
independent variables exhibit close distances, yet corresponding dependent variables are significantly dis-
tant—were identified and removed. Following the removal process, the three methods mentioned above 
were applied to fit the data, and the corresponding results are displayed in Fig. 6. Notably, the Mean Squared 
Error (MSE) for each time interval’s data fitting remains below 0.012. This result is satisfactory in comparison 
to the situation before anomalous point deletion. As a result, accurate ridership forecasts can be generated 
independently using these well-trained models.

	2.	� K-Means, AGNES, DBSCAN, and GMM algorithms were employed for data clustering. Except for DB-
SCAN, all algorithms grouped the stations into three distinct categories. Evaluation using internal indices is 
presented in Table 11. The outcomes indicate that, in terms of the Silhouette Coefficient, the ranking is AG-
NES > DBSCAN > K-Means > GMM, while for the CH score, the order is K-Means > AGNES > GMM > DB-
SCAN.
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	3.	� Distinct algorithms yield varying clustering outcomes. Consequently, we cross-reference the K-Means, AG-
NES, and GMM results to categorize points exhibiting consistent clustering patterns. Points with incongru-
ent clustering outcomes are temporarily unlabeled. Refer to Table 12 for the outcomes of the neural network 
trained on labeled data. Among the neural networks corresponding to the eight temporal spans, only OT3 
attains an accuracy of 98.15%. The remaining networks achieve 100% accuracy, indicating satisfactory per-
formance on the test sets. Thus, we employ this neural network to predict the classification of unlabeled data 
and assign labels to all instances.

	4.	� After labeling the data, the clustering effectiveness is assessed by computing the external indices ARI and 
JC. Refer to Table 14 for the outcomes. Notably, for both external indices, K-Means > AGNES > GMM. This 
alignment between the site classification predictions from the neural network and the clustering algorithms 
highlights the method’s rationality and accuracy from an alternative perspective.

Possible directions for future studies
Several intriguing avenues for future research can be explored to enhance further the accuracy and depth of rail 
transit station classification within the realm of Transit-Oriented Development (TOD).

One promising direction involves the integration of Partial Differential Equations (PDE) or other advanced 
mathematical models to capture the intricate spatial and temporal dynamics of station performance, enabling a 
more comprehensive understanding of the underlying factors influencing TOD outcomes. Additionally, a fruitful 
path for future investigation lies in harnessing the power of deep learning techniques, such as Convolutional 
Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), to extract nuanced patterns and correlations 
from complex station data, potentially uncovering hidden insights that contribute to more refined classification 
and planning strategies. Furthermore, an interdisciplinary approach that fuses transportation engineering, urban 
planning, and environmental science could yield a holistic framework for station classification, considering 
factors like environmental impact, accessibility, and social equity in conjunction with performance metrics. 
Lastly, exploring the potential integration of real-time data streams, such as crowd flow patterns and energy 
consumption, could provide a dynamic dimension to rail transit station classification, enabling adaptive and 
responsive TOD strategies that evolve with changing urban dynamics.

Exploring new research areas can enhance our knowledge of the diverse characteristics of rail transit stations 
and support the ongoing development of successful and sustainable TOD approaches.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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