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Presenting a model for estimating
the cube compressive strength of
self-compacting concrete in cast in-
situ piles using GEP

Hossein Maleki Toulabi®® & Seyed Azim Hosseini®"*

The cast in-situ pile is a widely used type of deep foundations which its execution in civil projects

is increasing daily. The use of ordinary concrete in this type of piles causes technical and executive
problems, a decrease in the compressive strength (CS) of concrete, and an increase in the permeability
under the ground level. But use of the self-compacting concrete in the cast in-situ piles while
increasing the CS of concrete ensures proper compaction, increase in the execution speed, and easy
placing of concrete. In this article, utilizing the data obtained from the laboratory results and also the
application of soft computing techniques, predicting the degree of CS of self-compacting concrete
(SCCQ) in concrete piles was investigated. To estimate the CS of SCC, a total number of 7 inputs were
implemented. Then, using gene expression programming (GEP) a model was presented for estimating
the CS of SCC in the cast in-situ piles. The results of the neural network showed a precision of 99.98%
which exhibits the high accuracy of the model. The use of this model could greatly help persons,
companies, and research centers in the preparation and construction of self-compacting concrete with
the desired CS.
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The use of concrete cast in-situ deep foundations is continuously increasing. Application of this type of foundation
in such projects as bridge piers, high-rise buildings, marine structures, and heavy industrial structures is of
special importance. Foundations have a major share in maintaining the gravity stability and side stability of
structures and the safety of important structures. Therefore the importance of proper transfer of heavy loads by
executed piles is revealed. Alongside the considerable advantages of cast in-situ piles in terms of load bearing,
the main shortcoming belongs to their concrete placement. After drilling, the issues that might affect the proper
placement of concrete include a decrease in the tremie pipe diameter and damage to its section or change in
its position, and different slump values of concrete. The more important defect which is related to the concrete
quality is due to the invisibility and lack of proper vibration of concrete which might interfere with its quality
control and examination. The impossibility of vibration and uniform compaction of concrete are among the
basic problems and weaknesses of ordinary concrete in this type of pile. In placing concrete in cast in-situ piles,
apart from the abovementioned issues, due to the structural element nature, there is no possible way for full
compaction. Therefore, it is necessary to use self-compacting concrete (SCC) in this type of structure. The early
research works on SCC were published in Japan in the years 1989 to 1991. These studies were concentrated on
new properties of concrete such as filling capacity, yielding, and resistance against separation!?. Sweden was
the first European country which started the development of SCC, and in 1993 extensive research started under
the project name Brite-Euam through the collaboration of European countries. In this research the concretes
were classified according to the combination of Portland cement and limestone powder and implemented for
civil and housing projects as experimental projects’. In these combined cement, use was made of European
concrete committee guidelines®. Also, this research started based on ACI 237R’ and PCI guidelines®. The ACI
committee report was published in 2007. Onyelowe et al.”"!! used various experiments and Artificial neural
networks (ANNs) to comprehensively research the SCC in terms of rheology, thermal characteristics, workability
improvement, permeability, and permeation flow, presenting models and recommendations for enhancing the
SCC.
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Concerning the concrete placing of cast in-situ piles, various research works have been performed. Camp et
al.!?, investigated the methods for concrete placing and preparation which could prevent execution problems
during concrete placing of cast in-situ piles. In this research, use was made of high strength concretes with
different combinations in cast in-situ concrete piles. Dees & Mullins'?, investigated the impacts of different
parameters on the behavior of special concretes used in the cast in-situ piles and demonstrated that easy execution
of self-compacting concrete is related to such parameters as flowability, stability, finishability, consistency, and
pumpability. During concrete filling of piles, due to the lack of forms and impossibility of vibration and also
a fixed path of concrete filling, using tremie pipe with a long length and rather a small diameter could affect
the acceptability of concrete. The other factors such as the invisibility of drilling direction, rather unknown
arrangement of rebar grid, unknown thickness of the concrete cover, and lack of knowledge on the spreading
of concrete are effective on the desirability of concert placed in piles and presence of uncertainty in this
respect. These uncertainties are greatly decreased by using self-compacting concrete. Therefore considering the
widespread application of self-compacting concrete and the advantages provided by using this type of concrete
especially when used in concrete piles, it is essential to conduct an accurate investigation in terms of preparation
and determination of needed compressive strength (CS) for this type of concrete in the projects.

Recently, numerous research works have elaborated on predicting the compressive strength of different
concrete types using various soft calculation techniques. Existing algorithms can find the exact optimal solution.
Yet, they are ineflicient in complex design optimization problems, with their processing time increasing
exponentially in proportion to the number of dimensions of the problem. This makes these models susceptible
to computational error and limitations in applicability to various environmental conditions. This indicates
the necessity of presenting a new model that can address the limitations of existing models at even lower
computational errors with easy implementation steps. Although the developments achieved in information
technology and the processing power of computers have provided practitioners with a broader spectrum of tools
for predicting the compressive strength of various concrete types, the extensiveness of the data for optimization
and presentation of a comprehensive model for predicting the compressive strength of concrete is still beyond
the capabilities of conventional systems, indicating the need for identifying and introducing new methods and
software tools for presenting more efficient models. Thanks to the high accuracy, flexibility, and novelty of gene
expression programming (GEP) as a heuristic algorithm, it was considered in the present research. Trying to
predict possible outputs, this method establishes a relation between the independent and dependent variables
based on existing information in the data without any presumption about the data structure. The primary novelty
of the present research lies in presenting a GEP-based model for predicting the compressive strength of the SCC
in cast-in-situ concrete piles. Indeed, despite its comprehensiveness, the GEP is yet to be adequately considered
as it is relatively new. Accordingly, only a few recent concrete studies have focused on this algorithm. This study
presents a new GEP-based model for estimating the compressive strength of SCC in cast-in-situ piles, providing
a reliable alternative to costly and time-intensive tests for compressive strength evaluation.

Table 1 presents the details on the application of soft computing techniques for CS prediction, obtained from
relevant literature.

Materials and methods

Experimentation and neural network model for SCC

The optimal mixture design for concrete is obtained by selecting the available materials which make the concrete
executable and ensure reaching the expected strength and other characteristics required for hardened concrete
by the designer. Some basic principles that should be considered for self-consolidating concrete are as follows:

No. | Algorithm Year | References
1 ANN 2024 |
2 ML 2024 | 1°
3 | MEP 2024 | 16
4 BML 2022 | 77
5 GEP 2021 |18
6 | ANN,GA 2021 | ¥
7 | ANN, bagging and boosting | 2021 | 2
8 GEP 2021 | %
9 SBRS, GEP, ANFIS 2021 | 2
10 | GEPand RF 2020 | 2
11 | GEP, DT and Bagging 2020 |
12 | GEP 2020 | %
13 | ANN,GA 2020 | %
14 | GEP 2020 | %7

Table 1. The researchers about a prediction of CS.
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Preparation of self-consolidating concrete mixtures
Cement
One of the following specifications: ASTM C150%, C595%, or C1157°° must be present in the cement allowed>.

Silica fume

The stability of SCC mixtures is increased by silica fume. Reducing the water mobility within the concrete matrix
leads to an increase in the mixture stability with the ability of silica fumes. The viscosity of SCC decreased
at relatively low replacement rates 5% or below plastic. The shape, size, and distribution of cement particles
generally determine the rate of replacement required®.

Selection of aggregate

Due to the plastic concrete’s good passing ability and stability, the coarse aggregate (CA) maximum nominal
size should be selected. To obtain the concrete passing ability, the size of CA and the volume of CA is very
important. Therefore, to improve the passing ability, a smaller size proposed in ACI 301>! may be considered for
the maximum nominal size of CA. In terms of the effect on SCC workability, the CA particle shape is also very
important. A rounded CA will impart greater filling ability for the same water content of a mixture than a similar
crushed stone. Mixing different stone sizes can be used to improve the overall properties of the mix. If the CA is
larger than 12.5 mm, as a guide to minimize SCC blockage through the reinforcement. For congested formwork,
the maximum nominal size should then be the absolute CA volume in the concrete volume’s 28 to 32% range.
The total CA volume percentage may be higher for applications without aggregate blocking or passing ability

concerns’.

Fine aggregate A good grade of concrete sand is essential for the fine-aggregate component. To improve the
properties of SCC plastic, a combination of natural and manufactured sand may be useful®.

Coarse aggregate This CA size range is used in highly congested steel reinforcement or challenging concreting
conditions. For the first trial batch, in terms of starting point, an initial ratio of 50% sand and 50% CA (10 mm)
will be suitable®.

Compressive strength test on SCC
In this study, the forty-nine 15X 15X 15-cm cubic samples of mixture were cast for the compressive strength test
and were tested 28 days after casting (Fig. 1).

Preparing model for self-consolidating concrete in cast in-situ piles mixtures

In this study for predicting the CS degree of self-compacting concrete in cast in-situ piles, a total number of 6
inputs including silica fume, FA, CA, cement, water, and high-reactivity metakaolin were selected. Based on
the guidelines from previous research®?, 70% of the data is assumed for training, 15% for testing, and 15% for
validation. Then, using Gene Expression Programming (GEP), a model was presented to estimate the CS of

Fig. 1. Concrete curing tank.
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self-compacting concrete in cast in-situ concrete piles. To verify the proper performance of the finally developed
model by GEP, a statistical analysis was conducted to evaluate the accuracy of the results. Then, Genetic algorithm
(GA) and Artificial neural network (ANN) were further utilized to solve the problem, and their results were
compared to those of the presented model.

ANNs

Artificial neural networks (ANNs) refer to a branch of machine learning (ML) where principles of neural
organization in living organisms are implemented. An ANN is formed by a set of linked nodes called artificial
neurons. Taking an artificial intelligence (AI) model as the brain, the neural synapses and processing nodes
that follow the information analysis are called AI neural networks. In its simplest form, an ANN is made up of
three layers. The first layer is the input layer, in which the data is introduced from the environment in which
the AI develops. The input data is processed by input nodes and classified before being dispatched to the second
layer. The second layer of an ANN is called the hidden layer, where the outputs from the previous layer are
decomposed and processed. Remember that an ANN can have tens of hidden layers. Finally, the output layer
encompasses all pieces of data processed by the network and can return the response to the environment. This
layer can be made from singular or agglomerated nodes.

GA

Genetic algorithm (GA) is a powerful method of solving finite and infinite optimization algorithms based on
natural selection phenomenon. It has been further applied in AI optimization algorithms. In fact, the GA is based
on Darwin’s theory of evolution and genetics. Based on natural evolution and first developed by John Holland**
during the 1960s, this algorithm is usually used to solve problems through optimization. First, the GA randomly
generates a predefined number of possible solutions to the problem—each solution is known as a chromosome.
The set of all generated solutions is known as a population. Once finished with generating the random population
of solutions, the algorithm evaluates all chromosomes based on a predefined fitness function. GAs are especially
applied in the optimization of model parameters in NL. This algorithm has been further used to optimize hyper
parameters like learning rate, regularization parameters, and network architecture in neural networks.

GEP

Gene expression programming (GEP) was first introduced by Ferreira in 1999. As a special GA, it selects
individuals from the population based on a fitness criterion and subjects them to one or more genetic operators.
In GEP, individuals are encoded as annotated sequences of fixed length (i.e., chromosome) and nonlinearly
expressed as trees of various forms and sizes. The structure of each gene is controlled by its head and tail, and
this structural form of the genes enables the GEP to establish a valid program for which the chromosome
modification limit is not important. GEP starts by generating an initial generation of chromosomes by randomly
combining the terminals and functions. A fitness function is then used to evaluate the generation’s significant
individuals (i.e., genes). A proper number of individuals are then probabilistically selected from the generation.
The probabilistic selection criterion is the ratio of the probability of selecting a better-fitted individual to that
of a worse-fitted individual. However, this does not guarantee the non-selection of the worse-fitted individual.
When mathematical operators (resembling RNA) and terminals (resembling proteins or chromosomes) perform
together, evolutionary emulation becomes possible. At each iteration, a new generation is developed by applying
the genetic operators of reproduction, crossover, mutation, and/or replication to a predefined number of selected
individuals, followed by evaluating the new generation of individuals using the fitness function™®.

In this article, GeneXproTools 5.0 was utilized to investigate the accuracy of some experimental data and
present a model for estimating the CS of SSC. Table 2 shows the variation ranges of the variables used in this
study.

Table 3 shows the GEP configuration that was used for CS of SCC simulation.

Figure 2 presents the flowchart for performing this research.

The data are given in Table 4.

Result and discussion

The criterion used for stopping the training of networks was mean square error (MSE) which is the difference
between the mean square of the output and target values. The smaller values indicate the better performance of
the network and a zero value means lack of any error. The regression values measure the correlation between
outputs and targets in the networks. So that R=1 means full relation and R=0 means a random relation. The
MSE and R criteria were selected as the basic criteria for selecting the ideal network. Figure 3 shows the mean

Variable Range
High-reactivity metakaolin (d;) | 2.1-6.6 (kg/m?>)
Silica fume (d,) 24.5-70.7 (kg/m?)
‘Water (dz) 166-189 (lit)
Cement (d,) 350-505 (kg/m®)
CA(d,) 738-847 (kg/m?)
FA (dy) 321-475 (kg/m?)

Table 2. The variation ranges of the variables.
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Parameter Description

Fitness function RMSE

Number of chromosomes | 30

Genes 3

Head size 8
General

Tail size 9

Gene size 26

Linking function Addition

Function set , - 1, X, Max2, Avg2, NOT, Ln, 3Rt

Mutation rate 0.00138

IS transposition rate 0.00546

RIS transposition rate 0.00546
Genetic operators

Inversion rate 0.00546

Gene recombination rate | 0.00277

Gene transposition 0.00277

Constants per gene 10

Data type Floating-point
Numerical constants

Lower bound -10

Upper bound +10

Table 3. Configuration settings.

square of errors in the network which starts from large values and reduces to smaller values. In other words,
this indicates that the network is in the learning state. This diagram has three lines that represent a class of data.
Training the vectors continue till the network error in the validation vectors is decreased. After training the
network, the learning process is stopped.

The gradient of the mean square error (MSE) and validation studies show that the neural network is
convergent. In Fig. 4, the procedure for reaching the MSE obtained from the training process is shown for
different data, using the gradient and validation checks. The training process is stopped when the validation
checks reach no. 6, based on the default value. The gradient is equal to 0.37006 at epoch 14 and the number of
validation checks is 6 at epoch 14.

The best network is the one with 10 neurons in its hidden layer, as it has yielded good regression values with
minimum mean error among all the networks. The regression for training, validation and training data sets was
observed in Fig. 5 which depicts accuracy to of the training to target output data.

The error histogram shown in Fig. 6, depicts the artificial neural network performance. The training data are
shown in the blue color, the validation data are shown in the green color and the test data are shown in the red
color.

The final expression trees extracted using the gene expression programing is demonstrated in Fig. 7. It
consists of three sub-expression trees connected through the addition operator (4). Using Fig. 7, one can obtain
a GEP-based equation, for predicting the CS of SCC in cast in-situ piles (CSq) (Eq. 1).

(I!l‘dX ((5.2718—(](\{1}01“ )+(CA)) , <(Cmncnf )+(*G.0233)>) + (\V‘(}.T()I')

2 2
2

C'Ssoc = {Silica fume} + ¢ log |exp

(1)

N { ((High-reactivity metakaolin) — ((CA48licatume ) 4 (FA))) — ((CA + High-reactivity metakaolin) — (1 — CA))}
2

The statistical parameters summarizing the properties of the variables in the database are presented in Table 5,
while Fig. 8 illustrates the distribution of each parameter.

In contrast, the maximum and minimum values with their mean are also shown in Fig. 9.

Further, the correlation coefficient was calculated to evaluate the predictive power of the linear relations
between the strength of the SCC and the six input parameters, with the results shown in Table 6. The correlation
coefficient between any two variables falls in the range of — 1 to + 1. A correlation coefficient of +1 indicates a
perfect and positive correlation, meaning that a unit increase in the value of one variable leads to a unit increase
in the value of the other variable. A zero correlation coefficient identifies absolutely unrelated variables, while
a correlation coeflicient of — 1 indicates a perfect yet negative correlation, meaning that a unit increase in one
variable leads to a unit decrease in the value of the other variable.

Results show that CA and Cement has the largest impacts on the compressive strength test result on the SCC
samples, while other input variables exhibit weaker correlations to the CS. Therefore, the selected input variables
can be seen as perfect estimators of compressive strength for SCC in cast-in-situ piles.

For the sake of comparison, the outputs of the three models (i.e., GA, ANN, and GEP) were demonstrated
on a Taylor chart (Fig. 10).
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Fig. 2. Flowchart of performing this research.

A Taylor chart is usually devised to compare multiple modeling outputs in the same diagram, where the levels
of error, correlation, and standard deviation of the modeling outputs can be compared™.
The outputs of the GEP and ANN models exhibited tiny deviations from one another, so one could reasonably
evaluate them as identical. The dashed lines indicating the radii of the quarter circle in the Taylor chart show
Pearsons correlation coefficient (i.e., R). The outputs of the GEP and ANN are very close to the R=1 dashed
line, highlighting their excellent accuracy. It can then be stipulated that the GEP model is slightly more robust

than the ANN. The outputs of the GA are somewhat closer to

the R=0.99 dashed line. Comparison of the

standard deviations against observed data proved the proper performance of the three models in estimating the

compressive strength of SCC.

Conclusions

Selection of a proper mix design for making concrete with the CS desired by the designer is of great importance.
In this research, the experimental SCC mix designs were successfully modeled using the ANNs. The input
variables in the SCC mix designs to predict the CS degree of self-compacting concrete in cast in-situ concrete
piles were selected accurately based on the laboratory results. The values of CS of the SCC specimens were used
for the training, validation, and testing of the neural network, and the obtained results were desirable. This
means proper validation and training of the ANN. The analysis of the simulated model proved this assumption
that by extracting the parameters corresponding to the mix design and the experimental results and also the
application of the ANNs one could predict the CS of the SCC in cast in-situ concrete piles with a high precision

equal to 99.98%.
The results obtained from this research are as follows:

o The best type of concrete in technical and execution terms for cast in-situ concrete piles is self-compacting
concrete, provided that a proper balance is established between the flowability and viscosity of concrete.
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CS of SCC
Inputs for model (Outputs)
» High-reastivity V\{ater Coarse aggregate | Fine a§gregate (FA) . .
S No. | Silica fume (kg/m?) | metakaolin (kg/m3) | (lit) Cement (kg/m?) | (CA) (kg/m®) (kg/m?) Experimentation
1 24.5 2.1 171 350 738 881 321
2 24.7 2.1 169 353 741 882 325
3 25.0 2.1 168 357 745 884 329
4 253 2.2 166 362 747 885 331
5 25.7 2.2 168 367 750 885 336
6 25.8 2.2 169 369 753 886 337
7 26.0 2.2 169 372 756 886 339
8 26.3 2.3 168 376 759 887 341
9 26.5 2.3 168 379 762 888 343
10 26.7 2.3 168 381 765 888 345
11 27.0 2.3 169 386 768 889 349
12 27.2 2.3 170 388 769 890 349
13 27.3 2.3 171 390 771 890 353
14 27.5 2.4 172 393 773 891 354
15 27.7 2.4 173 395 775 892 355
16 43.6 4.0 176 396 776 893 356
17 43.7 4.0 178 397 777 893 358
18 43.8 4.0 179 398 778 893 359
19 43.9 4.0 178 399 778 893 361
20 44.1 4.0 176 401 779 893 363
21 44.3 4.0 177 403 779 894 367
22 44.6 4.1 178 405 780 894 369
23 44.8 4.1 179 407 781 894 371
24 45.0 4.1 180 409 782 895 374
25 45.4 4.1 181 413 783 895 379
26 45.5 4.1 176 414 784 895 382
27 45.8 4.2 176 416 785 896 386
28 459 4.2 177 417 786 896 389
29 46.1 42 178 419 788 896 391
30 46.3 4.2 179 421 790 896 393
31 46.6 4.2 176 424 792 897 395
32 46.8 43 175 425 793 898 397
33 47.0 4.3 175 427 794 898 398
34 47.2 43 176 429 795 899 399
35 47.5 43 177 432 797 900 401
36 48.0 4.4 179 436 798 900 403
37 48.3 44 180 439 800 901 408
38 48.6 44 181 442 802 901 411
39 62.0 5.8 186 443 803 902 412
40 62.9 5.8 186 449 806 903 425
41 63.4 5.9 187 453 809 904 438
42 64.1 6.0 189 458 814 905 441
43 64.7 6.0 188 462 819 907 447
44 65.7 6.1 187 469 822 909 453
45 66.2 6.1 185 473 828 911 458
46 66.6 6.2 184 476 833 912 461
47 67.9 6.3 183 485 838 914 465
48 69.2 6.4 181 494 841 916 471
49 70.7 6.6 180 505 847 917 475

Table 4. Data set of GEP model for estimating CS of SCC.
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Fig. 3. The lowest MSE for the validation set in the ANN.

« Due to increased compressive strength using self-compacting concrete, assuming a fixed section and length
for the pile, the percentage of reinforcement at the section is reduced.

« Due to the relatively high compressive strength of self-compacting concretes concerning ordinary concretes
with very high slumps, the durability, and impermeability of the used concrete in the pile also increase.

o The application of self-compacting concrete significantly reduces the uncertainties associated with ordinary
concrete used in piles.

Limitations of the present research include the procurement of standard materials according to relevant
procedures and standard codes. Moreover, preparing experimental specimens of self-compacting concrete is
a susceptible process that needs lots of knowledge and experience. Also, the developed model is valid within
the considered range of each parameter, beyond these ranges, the model must be verified.Considering the
importance of the SCC and its compressive strength, especially regarding the cast-in-situ piles, one can further
study other methods, such as adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP),
multivariate adaptive regression splines (MARS), etc. and compare their results to identify the best and most
efficient method. Confirming the high accuracy of the presented model, results of the present research showed
that the proposed GEP algorithm is easy to implement and highly accurate and offers lower levels of estimation
error coupled with no limitation in terms of input parameters, justifying its applicability as an alternative to
costly and time-intensive experiments that should be otherwise used by engineers, companies, and research
institutes to estimate the compressive strength of SCC in cast-in-situ piles.
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Fig. 7. Expression tree of gene expression programing model.
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Mean 4427 4.02 176.78 415.39 786.31 896.20 384.96
Median 45.40 4.10 177.00 413.00 783.00 895.00 379.00
Maximum 70.7 6.60 189.00 505.00 847.00 917.00 475.00
Minimum 245 2.10 166.00 350.00 738.00 881.00 321.00
Standard deviation 14.55 1.42 6.17 37.81 26.20 8.78 42.78
Variance 211.78 2.02 38.05 1429.74 686.68 77.12 1830.16
Table 5. Statistical measures of variables.
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Fig. 8. Histograms of inputs (in blue color) and output (in green color) variables.
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High-
reactivity CS of
Silica fume metakaolin Water Cement CA FA SCC

Silica fume

High-reactivity

metakaolin

Water 0.926321

Cement 0 0.837198
CA 0.828884
FA 0.824603

CS of SCC 0 68 0 s 0.843011

Table 6. Correlation coefficient results.
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Fig. 10. Comparing the accuracies of the developed models using Taylor chart.
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