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Diagnosing Sjogren’s syndrome requires considerable time and effort from physicians, primarily 
because it necessitates rigorously establishing the presence lymphatic infiltration in the pathological 
tissue of the labial gland. The aim of this study is to use deep learning techniques to overcome these 
limitations and improve diagnostic accuracy and efficiency in pathology. We develop an auxiliary 
diagnostic system for Sjogren’s syndrome. The system incorporates the state-of-the-art object 
detection neural network, YOLOv8, and enables the precise identification and flagging of suspicious 
lesions. We design the multi-dimensional attention module and S-MPDIoU loss function to improve 
the detection performance of YOLOv8. By extracting features from multiple dimensions of the feature 
map, the utilization of the multi-dimensional attention mechanism enhances the feature interaction 
across disparate positions, enabling the network to proficiently learn and retain salient cell features. 
S-MPDIoU introduces an angle penalty term that efficiently minimizes the diagonal distance between 
predicted and ground truth boxes. Additionally, it incorporates a flexible scale factor tailored to 
different size feature maps, which balances the issue of sudden gradient decrease during high overlap, 
thereby accelerating the overall convergence rate. To verify the effectiveness of our methods, we 
create a dataset of lymphocytes using labial gland biopsy pathology images collected from YanTaiShan 
hospital and trained the model with this dataset. The proposed model is assessed using standard 
metrics like precision, recall, mAP. The improved model achieves an increase in recall by 9.1%, mAP.5 
by 3.2%, and mAP.95 by 2%. The study demonstrated deep learning’s potential to analysis pathology 
images, offering a reference framework for the application of deep learning technology in the medical 
domain.
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Sjogren’s syndrome (SS) is a chronic inflammatory autoimmune systemic disease characterized by lymphocyte 
proliferation and progressive damage to exocrine glands1. In their daily work, physicians need to examine each 
pathological section under different magnification lenses to diagnosis Sjogren’s syndrome. This process is lengthy 
and time-consuming. Due to the subjective heterogeneity of physicians at different levels, misdiagnosis and 
missed diagnosis often occur. Accurate and efficient pathological diagnosis has become a significant challenge. 
Currently, the rapid development of digital pathology technology has given rise to AI-assisted pathological 
diagnosis. In the pathological diagnosis of lung, breast, thyroid, and other malignancies, AI-assisted diagnosis 
offers remarkable efficiency, stability, and reproducibility. Its performance is essentially comparable to that of 
professional physicians, providing a viable and promising solution for addressing the challenges inherent in 
manual pathological diagnosis. However, the application of AI technologies in pathological image diagnosis 
faces numerous technical challenges, including complexity of pathological patterns, model overfitting and 
generalization issues, computational inefficiency, lack of model interpretability. Addressing these challenges 
necessitates innovative solutions such as robust AI algorithms capable of capturing subtle pathological differences, 
efficient computational approaches to handle large images. Overcoming these technical barriers is crucial for the 
successful deployment of AI-based diagnostic tools in pathology and their acceptance by physicians and patients 
alike.
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We employ the cutting-edge YOLOv8 model to address the challenges inherent in traditional manual 
diagnosis. Specifically, to tackle the difficulties arising from the small size of lymphocytes and their difficulty in 
being distinguished, this paper introduces two improvements to the YOLOv8 model. The improved YOLOv8 
network framework is shown in Fig. 1. YOLOv8 represents a significant leap forward in object detection 
technology, is characterized by its sophisticated design that integrates cutting-edge backbone and neck 
architectures with an innovative anchor-free split head. Specifically, it utilizes a CSPDarknet53 backbone, which 
is built upon the Darknet53 network and enhanced with cross-stage partial connections (CSP) for improved 
feature extraction while maintaining computational efficiency. The neck of the network incorporates feature 
fusion techniques, such as Spatial Pyramid Pooling (SPP) and Path Aggregation Network (PAN), to aggregate 
multi-scale features, enhancing the model’s robustness and detection capabilities. The loss function of YOLOv8 
comprises both bounding box loss and classification loss. The bounding box loss is a composite of CIoU loss and 
DFL loss, designed to optimize the localization of objects by considering factors such as intersection over union 
(IoU), aspect ratio, and distance from the center point. Meanwhile, the classification loss employs BCE loss to 
accurately classify the detected objects.

The main contributions of this paper are as follows: 

	1.	� An auxiliary diagnostic system is proposed for Sjogren’s syndrome based on this model, effectively improv-
ing diagnostic efficiency.

	2.	� A novel S-MPDIoU loss function is designed to replace the original CIoU loss function, accelerating network 
training and improving detection performance.

	3.	� A novel attention module multi-dimensional attention (MDA) is designed and integrated into the backbone 
of the network to enhance the network’s ability to extract and fuse features.

Fig. 1.  Improved YOLOv8 framework. YOLOv8 consists of three primary parts: backbone, neck, and head. 
“CBS” denotes “Conv + Batch Normalization + Silu”. “C2f ” denotes the C2f module in YOLOv8. To enhance 
feature extraction from the input image, we introduce the MDA module in the backbone to assist in processing 
and analysis.
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The rest organized of this study is: Section 2 presents a concise overview of the relevant research work. Section 
3 presents a detailed explanation of our method. Section 4 presents a detailed introduction to the experimental 
process and analyzes the experimental results. Section 5 presents the conclusion.

Related work
Relevant applications of artificial intelligence in the medical domain
Artificial Intelligence is finding widespread applications across a broad spectrum of domains, including finance, 
agriculture2, and numerous others, but it is in the medical field where its revolutionary impact is particularly 
pronounced. By harnessing advanced algorithms and machine learning techniques, AI has shown remarkable 
efficacy in facilitating the prompt diagnosis of Parkinson’s disease3, empowering clinicians to identify the disease’s 
onset at an earlier stage. This pivotal shift enables more timely interventions, leading to improved patient outcomes, 
slowed disease progression, more effective symptom management, and ultimately, an enhanced quality of life 
for those affected. Parallel to this, AI’s integration into voice pathology diagnosis has brought about a significant 
transformation4. Voice disorders, which encompass a wide spectrum from benign conditions to precursors of 
serious health concerns, often pose challenges in achieving accurate and prompt diagnosis. However, with the 
emergence of AI-powered systems, the accuracy of voice pathology diagnosis has soared. These sophisticated 
systems analyze vocal patterns meticulously, detecting even the most subtle changes indicative of a disorder. By 
enabling earlier detection, AI-based voice pathology diagnosis paves the way for more targeted treatment plans, 
mitigating patient suffering, and enhancing overall healthcare outcomes. Moreover, researchers like Shen et 
al.5 have pioneered innovative multi-scale convolutional neural network (CNN) architectures tailored for lung 
nodule classification in medical imaging. Their approach leverages the power of multi-scale feature extraction, 
enabling the network to capture intricate local patterns alongside broader contextual information across various 
resolutions of lung CT scans. Similarly, Ho et al.6 have further advanced breast cancer detection through a 
deep learning method that integrates multi-scale feature fusion, effectively combining low-level details with 
high-level abstractions to enhance diagnostic accuracy. As technology continues to evolve, the application of 
AI in medicine promises continuous improvements and enhancements, reshaping the future of healthcare and 
enhancing the lives of patients worldwide.

The development of YOLO series object detection networks
Real-time object detection aims to classify and locate targets with low latency, which is crucial for practical 
applications. Over the past few years, significant efforts have been made to develop efficient detectors, with the 
YOLO series emerging as a mainstream choice. Starting with YOLOv17, YOLOv28, and YOLOv39, a typical 
detection architecture was established, comprising a backbone network, neck, and head. YOLOv410 and 
YOLOv5 introduced the CSPNet design to replace DarkNet, while incorporating data augmentation strategies, 
an enhanced PAN, and a broader range of model scales. The technical highlights of YOLOv6 lie in its optimized 
EfficientRep Backbone and Rep-PAN Neck for feature extraction, Anchor-free detection with SimOTA and SIoU 
for precise localization. YOLOv711 introduced E-ELAN to enable rich gradient flow paths and explored various 
trainable bag-of-freebies methods. YOLOv8, meanwhile, proposed the C2f building block for efficient feature 
extraction and fusion. YOLOv912, introduced GELAN to improve the architecture and PGI to enhance the 
training process. YOLOv1013 featured training without Non-Maximum Suppression (NMS), enhanced global 
modeling capabilities through large kernel convolutions and partial self-attention.

Bounding box regression loss function
At the beginning of the development of object detection networks, the Ln−norm loss function was commonly 
used due to its simplicity. However, it exhibited sensitivity to various scales of bounding boxes. As the field 
evolved, the IoU-based bounding box loss function gradually replaced Ln− norm loss function as the mainstream 
approach for computing bounding box loss. This is attributed to its ability to reflect the scale differences between 
the ground truth and predicted bounding boxes. IoU(Intersection over Union) is the ratio of the intersection 
area to the union area between the predicted and ground truth bounding boxes. The calculation formula is 
shown below, where Bpred represents the predicted bounding box and Bgt represents the ground truth bounding 
box.

	
IoU =

Bpred ∩ Bgt

Bpred ∪ Bgt
� (1)

The main idea of IoU-based bounding box loss functions is to minimize the IoU loss. This enables the network 
to learn effective strategies for fine-tuning the position and size of predicted bounding box, thus ensuring precise 
alignment with the ground truth bounding box. In recent years, numerous studies aim to improve the IoU 
loss function. Given that when two boxes fail to overlap, IoU becomes zero and cannot contribute gradients. 
To address this problem, GIoU14 offers a more precise distance metric. The calculation formula for GIoU is as 
follows, where C is the smallest box covering Bgt and Bpred, |C| represents its area. However, GIoU will lost 
effectiveness when the predicted bounding box is completely covered by the ground truth bounding box.

	
GIoU = IoU −

∣∣C − Bpred ∪ Bgt
∣∣

|C|
� (2)

DIoU15 introduces a novel distance penalty term that directs the predicted bounding box towards the center of 
the ground truth bounding box, addressing the problem of GIoU. The calculation formula for DIoU is as follows, 

Scientific Reports |        (2024) 14:24693 3| https://doi.org/10.1038/s41598-024-75925-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where ρ2
(
Bpred, Bgt

)
 represents the squared Euclidean distance between the centers of the two bounding boxes, 

and C2 represents the squared diagonal length of the smallest box covering Bgtand Bpred.

	
DIoU = IoU −

ρ2
(
Bpred, Bgt

)
C2

� (3)

DIoU takes into account the distance between the predicted and ground truth bounding box, thus offering a 
more comprehensive evaluation of the detection quality. However, when the centers of the two boxes overlap, 
DIoU degrades to IoU. To address this problem, the CIoU16 loss function introduces a penalty term that accounts 
for the similarity of the aspect ratios, thus further enhancing the convergence performance. The formulas for 
CIoU are as follows, where ν measures the consistency of the aspect ratios between the two bounding boxes, and 
α is a positive trade-off parameter that balances the distance and aspect ratio.

	
CIoU = IoU −

ρ2
(
Bpred, Bgt

)
C2

− αν � (4)

	
ν =

4

π2

(
tan−1 w

gt

hgt
− tan−1 w

pred

hpred

)2

� (5)

	
α =

ν

1− IoU + ν
� (6)

Based on DIoU, EIoU17 incorporates the absolute values of the width and height of the bounding boxes into 
the loss calculation, further accelerating the convergence speed. The formula for EIoU is as follows, where 
ρ2

(
wpred, wgt

)
 and ρ2

(
hpred, hgt

)
 represent the squared differences in width and height between the two boxes, 

respectively. w2
c  and h2

c  represent the squared width and height of the smallest box covering Bgtand Bpred.

	
EIoU = IoU −

ρ2
(
Bpred, Bgt

)
C2

−
ρ2

(
wpred, wgt

)
w2

c

−
ρ2

(
hpred, hgt

)
h2
c

� (7)

EIoU exhibits sensitivity to both the width and height of bounding boxes, thus effectively addressing the 
limitation of CIoU where the penalty term remains constantly zero when the aspect ratios of the predicted and 
ground truth bounding boxes are identical. This refinement ensures a more comprehensive evaluation of box 
similarity, ultimately leading to improved detection accuracy and faster convergence speed.

SIoU18 redefines the loss function by introducing angle loss, enabling the predicted bounding box to move to 
the axis closest to the ground truth bounding box during training. This avoids the phenomenon of the predicted 
bounding box wandering around the ground truth bounding box. The SIoU loss function comprises four 
components: angle loss, distance loss, shape loss, and IoU loss. The formula is as follows, where ∆ represents 
distance loss and Ω represents shape loss. Due to the complexity of its formula, a detailed elaboration is omitted 
for simplicity. However, SIoU faces challenges in terms of result interpretation due to its complex calculations. 
Furthermore, the introduction of multiple thresholds can complicate the model, potentially reducing 
reproducibility and increasing the difficulty in achieving consistent performance across different settings.

	
SIoU = IoU − ∆ + Ω

2
� (8)

MPDIoU19 incorporates the key ideas from the aforementioned IoU loss functions and addresses the problem 
where the predicted bounding box has similar aspect ratios but different width and height compared to the 
ground truth bounding box. The formula is as follows, where w2 + h2 represents the squared diagonal length of 
the current detection feature map, d21 and d22 represent the squared distance between the top-left and bottom-
right corners of the two bounding boxes, respectively.

	
MPDIoU = IoU − d21

w2 + h2
− d22

w2 + h2
� (9)

In this paper, simulation experiments are conducted to evaluate the performance of the aforementioned IoU loss 
functions. To tackle the slower convergence speed observed in some cases for MPDIoU, we introduce a scale 
strategy and optimize its penalty term, resulting in a significant acceleration of its convergence speed. We name 
the novel IoU loss function as S-MPDIoU, and a detailed discussion will be presented in the subsequent section.

Attention mechanism
The attention mechanism is a pivotal element in boosting the performance of neural networks, and its effectiveness 
has been proven across a diverse array of visual tasks. In the realm of computer vision, two prominent types of 
attention mechanisms are widely utilized: spatial attention and channel attention. Channel attention enables the 
model to discern crucial feature information pertaining to the object, while spatial attention aids in precisely 
locating the object.

The SE20 attention mechanism utilizes a Squeeze-and-Excitation process to extract channel-wise attention 
features. CBAM21 attention mechanism combines channel attention and spatial attention sequentially to improve 
the feature representation ability. GAM22 attention mechanism follows a similar strategy, also integrating 
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channel and spatial attention, but with more parameters to ensure accuracy. SA23 attention mechanism 
employs channel grouping to reduce the parameters, and utilizes spatial and channel attention separately. CA24 
attention mechanism enhances the performance by embedding positional information into channel attention. 
The ECA25 attention mechanism solves the computational overhead and redundancy introduced by the fully 
connected layer or complex model construction of traditional channel attention mechanisms through adaptive 
one-dimensional convolution. EMA26 attention mechanism incorporates positional information into channel 
attention feature extraction using directional pooling, while enriching semantic information and enhancing 
detection performance through cross-spatial multi-scale feature fusion.

It should be noted that although the integration of channel and spatial attention mechanisms can boost 
performance, it concomitantly entails an increased computational cost. Furthermore, obtaining cross channel 
relationships through channel reduction may potentially compromise the representation of deep features.

Overall, the advancements in attention mechanism have significantly enhanced the performance of neural 
networks across diverse visual tasks. Inspired by previous research, we have designed a novel and effective 
attention mechanism, MDA (Multi-Dimensional Attention), which will be discussed in detail in the subsequent 
section.

Method
Sjogren’s syndrome auxiliary diagnosis system
We train and employ a lymphocyte detection model to develop an auxiliary diagnostic system for Sjogren’s 
syndrome, as depicted in the flowchart in Fig. 2. Initially, the system commences by filtering out the background 
from the original whole slide image (WSI), subsequently extracting the pathological tissue. This extracted tissue 
is then systematically segmented into numerous patches, which are then individually fed into the detection 
model for lymphocyte identification. Upon completion of the detection process for each patch, the system 
consolidates and summarizes the detection results. Patches with lymphocyte detection numbers exceeding the 
predetermined threshold are highlighted in red, indicating potential suspicious lesions. Physicians can further 
confirm the presence of lymphatic infiltration based on the red markings on the system, thereby fulfilling the 
purpose of assisting the diagnosis.

S-MPDIOU
We propose a novel and effective IoU loss function named S-MPDIoU. The specific calculation principle of 
S-MPDIoU is illustrated in Fig. 3. The core calculation of S-MPDIoU primarily consists of computing the 

Fig. 3.  Illustration for calculating S-MPDIoU.

 

Fig. 2.  Auxiliary diagnostic system flowchart.
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distances between the top-left and bottom-right corners of the predicted and ground truth bounding boxes. 
This approach enables the model to uniformly control regression metrics, such as the distance, dimension, and 
shape, thus avoiding errors and complexity that would otherwise arise from the separate calculation of various 
indicators. Additionally, the baseline C is calculated based on the angle between the central coordinates of two 
boxes, varying with the specific angles. It accelerates training and enhances detection performance.

As shown in Fig. 3, Bpred represents the predicted bounding box, and Bgt represents the ground truth 
bounding box. α represents the angle between the central coordinates of the two bounding boxes, which is 
less than π2 . Assuming that the central coordinates of the two bounding boxes are 

(
xpredc , ypredc

)
 and (xgtc , ygtc )

, respectively. Ch and Cw represent the width and height between the two centers. The coordinates of the top-
left and bottom-right corners of the two bounding boxes are assumed to be 

(
xpredl , ypredl

)
, 
(
xpredr , ypredr

)
 and (

xgtl , y
gt
l

)
, (xgtr , ygtr ). The two blue lines, d1 and d2, represent the distances between the top-left and bottom-right 

corners of the two bounding boxes, respectively. H and W represent the height and width of the detection feature 
map. The orange line C represents the baseline determined based on the angle between the current predicted and 
ground truth bounding box. The formulas for calculating each variable are as follows:

	 Ch =
∣∣ypredc − ygtc

∣∣ � (10)

	 Cw =
∣∣wpred

c − wgt
c

∣∣ � (11)

	
α = tan−1 Ch

Cw
� (12)

	
d1 =

√(
xpredl − xgtl

)2

+
(
ypredl − ygtl

)2
� (13)

	
d2 =

√(
xpredr − xgtr

)2

+
(
ypredr − ygtr

)2
� (14)

According to the definition of MPDIoU, C represents the diagonal of the feature map, and its calculation formula 
is as follows:

	 C =
√
(H2 +W 2)� (15)

The definition of C in S-MPDIoU takes into account the relative position of the predicted and ground truth 
bounding box. Different C values are flexibly set to make the convergence speed faster compared to using a fixed 
C value. Its definition formula is shown as follows.

If α less than π4 :

	 w1 = W,h1 = W ∗ tanα� (16)

If α greater than π4 :

	
w1 =

H

tanα
, h1 = H � (17)

Based on the above calculations of w1 and h1, the final calculated C is as follows:

	 C =
√
(h12 + w12)� (18)

Although the improved definition of C accelerates the convergence of the bounding box, when the predicted 
bounding box is very close to the ground truth but does not overlap, the gradient contributed by the penalty 
term will decrease significantly, making convergence difficult. To address this issue, we introduce a scale 
factor into the loss function. The definition formula for scale is as follows, where “downsample” represents the 
downsampling ratio of the current detection feature map. For example, when the input image size is 640 × 640 
and the detection feature map size is 80 × 80, the “downsample” is 8 and the scale is 3.

	 scale = log2 (downsample)� (19)

This scale factor ensures that the penalty term continues to provide a substantial gradient even when the two 
bounding boxes are very close to each other, effectively overcoming convergence bottleneck. Note that the scale 
factor serves as a constant to amplify the gradient, and its calculation process is excluded from the gradient 
computation related to the penalty term. The final loss function is defined as follows.

	
S-MPDIoU = IoU − scale ∗

(
d21
C2

− d22
C2

)
� (20)
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MDA
Conventional attention mechanism typically focus on feature information in two dimensions: channel and 
spatial. This lead to diverse design concepts, ranging from average pooling to directional pooling that captures 
features in both width and height dimensions, introducing positional information. Furthermore, multi-scale 
feature interaction enables the flow of information between feature maps of different sizes, enhancing overall 
feature representation capability. However, these techniques often use channel grouping and channel shuffle to 
save parameters. This leads to the loss of input feature information and increases the complexity of the model, 
rendering such techniques unsuitable for some scenarios.

We propose a simple and effective attention mechanism, named Multi-Dimensional Attention (MDA). MDA 
effectively enhances the detection performance of the model while reducing the parameters. The schematic 
diagram of MDA is presented in Fig. 4. Channel attention mechanisms typically perform feature extraction 
in the spatial dimension, whereas spatial attention mechanisms extract features in the channel dimension. 
However, the width and height feature correlation information among channels also holds significant value.

Capturing cross-channel width and height information further enriches and enhances the extracted features. 
This approach establishes a close relationship between each pixel in the feature map and the global context, 
rather than relying on a single dimension. The lymphocyte dataset used in this paper has numerous small-sized 
objects and a complex background with various distractions. Conventional attention mechanisms can easily 
overlook important features. Therefore, adopting multi-dimensional feature extraction can more effectively 
retain valuable information and improve detection accuracy.

Let the input size be C × W × H . Input initially undergoes average pooling along the spatial dimension 
to extract feature information, resulting in a feature vector of size C × 1 × 1, which is roughly the same as 
conventional channel attention. Then we apply adaptive 1D convolution to the feature vector, facilitating cross-
channel information exchange and integrating channel correlations. After nonlinear processing through the 
Sigmoid activation function, these sets of statistics are multiplied by their corresponding elements of the input 
to obtain the refined feature map.

Then, average pooling is applied to the width and height dimensions of the newly obtained feature map for 
feature extraction. The feature vector obtained from the width dimension has a size of 1 × W × 1, indicating that 
it captures cross-channel height information and reflects it in the width dimension. Similarly, the feature vector 
from the height dimension has a size of 1 × 1 × H, capturing cross-channel width information and reflecting 
it in the height dimension. These two dimensional feature vectors are then nonlinearly processed through the 
Sigmoid activation function. Finally, these sets of statistics are multiplied by their corresponding elements of 
input to obtain the output. MDA, with the above design strategy, can fuse multi-dimensional features, resulting 
in benefits for the detection of small and medium-sized objects, while having significantly fewer parameters 
compared to other attention mechanisms.

Experiment and analysis
IoU loss function simulation experiment
Simulation experiment 1
To evaluate the performance of S-MPDIoU compared to other IoU loss functions, we conduct simulation 
experiment 1. Different IoU loss functions exhibit high sensitivity in adjusting the learning rate, so even small 
changes in the learning rate may lead to significant differences in the final convergence effect. To ensure a more 
equitable evaluation, the learning rate is fixed at 0.02. The choice of this small learning rate value is carefully 
considered, as it enables all IoU loss functions to converge while minimizing the impact of learning rate changes 
on the final result.

Assuming the four parameters of the ground truth bounding box are (xgt, ygt, wgt, hgt), the four parameters 
of the predicted bounding box are (x, y, w, h), the loss defined in this simulation experiment is as follows:

	 Loss =
∣∣xgt − x

∣∣ + ∣∣ygt − y
∣∣ + ∣∣wgt − w

∣∣ + ∣∣hgt − h
∣∣� (21)

Fig. 4.  MDA module. Orange, green, and blue are used to represent the feature information of width, height, 
and channel, respectively.
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The training epochs are set to 100,000. A predicted bounding box is considered converged when the loss is less 
than 0.01. The specific experimental results are shown in Fig. 5. The experiment examines the convergence 
effects from three different cases: horizontally aligned boxes, diagonally aligned boxes, and vertically aligned 
boxes. The legend indicates the different IoU loss functions and the epochs needed to achieve convergence. 
Notably, in Fig. 5, S-MPDIoU achieves convergence in all three cases.

As seen in Fig. 5, the initial predicted bounding boxes are larger in size compared to the ground truth 
bounding box. The convergence processes of DIoU and CIoU exhibit distinct shape changes. Initially, they tend 
to enlarge the dimensions of the predicted bounding box and then shift the box towards the ground truth. 
Once the predicted bounding box encompasses the ground truth, DIoU and CIoU will shrink its dimensions to 
achieve convergence.

On the other hand, EIoU and SIoU initially shrink the width and height of the predicted bounding box. As 
one or both of the dimensions (width or height) converge, the predicted bounding box gradually moves closer 
to the ground truth. Notably, EIoU exhibits significantly faster convergence than SIoU. This difference can be 
attributed to the complexity of SIoU’s penalty term, which potentially introduces additional interference, thereby 
slowing down the convergence process.

The convergence of GIoU is more challenging and unstable. In the diagonal case, GIoU behaves similarly 
to DIoU. In the vertical and horizontal cases, GIoU behaves similarly to EIoU. However, these convergence 
processes are all very slow.

MPDIoU does not exhibit significant deformation in all three cases. Its convergence trend is initially to 
reduce the distance, and then to adjust dimensions. However, when the predicted bounding boxes are very close 
to the ground truth yet do not overlap, IoU does not contribute to the gradient calculation, and the gradient 
contribution from MPDIoU’s penalty term diminishes sharply, leading to a notably slow convergence process.

S-MPDIoU exhibits a convergence trend analogous to MPDIoU. In the diagonal case, where the centers of 
the predicted and ground truth bounding box form a 45-degree angle, the baseline length remains identical 
to that of MPDIoU. However, the introduction of scale factor enables S-MPDIoU to sustain a considerable 
gradient, even when the predicted bounding box is close but does not overlap with the ground truth bounding 
box, ultimately achieving a convergence speed almost 6 times faster. In the vertical and horizontal cases, the 
baseline in S-MPDIoU penalty term takes into account the angle between the centers of the two bounding boxes, 
further improving convergence speed by almost 10 times.

Fig. 5.  Diagram of the simulation experiment 1. The diagram depicts three cases: horizontal, diagonal, and 
vertical, arranged from left to right. The ground truth bounding box center coordinates are fixed at [1, 1], with 
both width and height set to 0.5. The predicted bounding box has a fixed width of 1 and a height of 2, with 
center coordinates of [7, 1], [7, 7], and [1, 7], respectively.
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Based on the simulation experiment, it is clearly demonstrated that S-MPDIoU preserves the strengths of 
MPDIoU, effectively preventing abrupt shape variations and wandering during the training process. In each 
epoch, it consistently converges along a fixed direction between the two bounding boxes. By introducing the scale 
factor and redefining the penalty term, S-MPDIoU overcomes the problem of gradient diminution encountered 
by MPDIoU, leading to a marked improvement in convergence speed.

Simulation experiment 2
To further evaluate the convergence performance of different IoU loss functions, we conduct simulation 
experiment 2. In Fig. 6, A and B simulate feature maps of sizes 20 × 20 and 40 × 40, right figures show the 
convergence effect of different IoU loss functions. Inside circles with radii of 10 and 20, respectively, 50 center 
coordinates of predicted bounding boxes are randomly generated and represented as blue dots. Additionally, 5 
center coordinates of ground truth bounding boxes are randomly generated and represented as red dots. Each 
dot corresponds to 7 bounding boxes with varying aspect ratios, shown as red boxes in the left figures. These 
boxes maintain an area of 1, with aspect ratios of 7:1, 4:1, 2:1, 1:1, 1:2, 1:4, and 1:7, respectively. Furthermore, 
each predicted bounding box has 7 additional scales: 0.5, 0.67, 0.75, 1, 1.33, 1.5, and 2. Therefore, the total 
number of regression cases is 89,500 = 50 × 7 × 7 × 5 × 7.

To reduce the complexity of the experiment and accelerate the convergence, the learning rate is fixed at 0.02. 
A predicted bounding box is considered converged when the loss is less than 0.5. Training epochs are set to 
10,000.

Figure 6A simulates the 20 × 20 feature map. During the early stage of training, since the predicted bounding 
boxes are situated relatively close to the ground truth, EIoU effectively adjusts the width and height of the 
predicted bounding boxes, leading to a swift reduction in the calculated loss. However, in the later stage of 
training, due to insufficient gradient contribution from its penalty term for the distance, its convergence speed 
begins to slow down. On the other hand, S-MPDIoU maintains a stable convergence trend and converges earlier 
than EIoU in the end.

Fig. 6.  Schematic diagram of simulation experiment 2. (A) simulates the 20 × 20 feature map and (B) 
simulates the 40 × 40 feature map. The right figures show the convergence performance of different IoU loss 
functions.
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Figure 6B simulates the 40 × 40 feature map. In this case, the distance between the predicted and ground 
truth bounding box is further increased, resulting in a significant increase in the difficulty of convergence for 
loss functions such as CIoU, DIoU, and GIoU, which rely more on IoU. In the early stage of training, these 
IoU loss functions constantly enlarge the width and height of the predicted bounding box, but the movement 
cannot compensate for the loss caused by the shape change, leading to an increase in the total loss. These IoU 
loss functions begin to converge as the deformation of the predicted bounding box gradually tapers off and 
ultimately comes to a halt. However, due to the large distance between the predicted and ground truth bounding 
box and the insufficient gradient contribution from the distance penalty term, their convergences are very slow.

MPDIoU’s advantages are especially apparent when the distance between the predicted and the ground 
truth bounding box is relatively large. Its penalty term significantly contributes to the gradient, allowing the 
predicted bounding box to move quickly towards the ground truth during the early stage of training. However, 
once the predicted bounding box approaches the ground truth, it still faces the problem of a sharp decrease in 
gradient, resulting in a slowdown in convergence speed. Nevertheless, its overall convergence speed is superior 
to other IoU loss functions mentioned above. Although EIoU converges relatively quickly, its convergence also 
slows down due to the distance. In contrast, S-MPDIoU consistently maintains a faster convergence speed, 
demonstrating a significant advantage.

Cell detect experiment
Experimental environment and parameter settings
The original YOLOv8 algorithm provides five different scale models: N, S, M, L, and X. Although the structure of 
these five scale models remains same, each scale model has different depths and widths, resulting in different sizes 
and complexities. In this paper, we test and analyze the YOLOv8n’s ability to detect lymphocytes in experiments.

The platforms used for model training in this experiment are Intel Core i9-13900 CPU and NVIDIA 
GTX4060 8G GPU. The software uses the Windows system, Python 3.11, PyTorch 2.0.1, and Cuda11.8 deep 
learning framework. The implementation uses libraries like torch, torchvision, pyyaml, opencv, matplotlib, and 
Numpy.

The training epochs are set to 100 with a batch size of 6. The input image size is 640 × 640. The initial 
learning rate is set to 0.001, and ADAM is used as the optimization algorithm. The weight decay is 0.005, and the 
momentum is set to 0.937. All default data augmentation methods have been deactivated.

Experimental dataset
The experimental dataset used in this paper is sourced from WSI of labial gland biopsy specimens from 
YanTaiShan Hospital. The use of this dataset has been approved by the Hospital Ethics Review Committee. Due 
to the large size of WSI, direct detection is not feasible. Therefore, we segment the original WSI into patches 
with a size of 640 × 640 at the highest resolution, and create a dataset containing 600 images under the manual 
screening and annotation of professional physicians. It should be noted that the average number of lymphocytes 
contained in a single image exceeds 30, which makes the manual labeling process extremely cumbersome and 
time-consuming. The sole detection object is lymphocyte, and there are a significant number of lymphocytes 
with distinctive and consistent features present in a single image. So we manually annotate 600 images and 
choose a lighter model for training to achieve a balance between model training and annotation complexity. The 
dataset is divided into training, validation, and testing sets in 8:1:1. An example of annotated images is shown in 
Fig. 7, where the green boxes represent manually annotated lymphocytes.

Fig. 7.  Illustration for manually annotating dataset. Green boxes indicate the manually annotated 
lymphocytes.
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Evaluation indicators
We utilize a set of standard metrics to evaluate the performance of the improved YOLOv8n in lymphocyte 
detection tasks. The primary metrics considered in this paper are Recall (R), Precision (P), and mean Average 
Precision (mAP). Since the sole object to be detected in our dataset is lymphocyte, these metrics can be 
represented as follows:

	
mAP =

∫ 1

0

P (R) ⌈R � (22)

	
P =

TP

(TP + FP )
� (23)

	
R =

TP

(TP + FN)
� (24)

Among these metrics, TP (true positive) refers to instances that are correctly predicted as positive, TN (true 
negative) refers to instances that are correctly predicted as negative, FP (false positive) refers instances that 
are incorrectly predicted as positive, and FN (false negative) refers instances that are incorrectly predicted as 
negative.

Experimental results
We first evaluate the performance of different IoU loss functions, and the experimental results are presented 
in Table 1. As can be seen from Table 1, S-MPDIoU has the highest mAP among all IoU loss functions, and 
its precision and recall are also stable. Compared with the CIoU of YOLOv8, its detection precision slightly 
reduces by 0.7%, but the recall increases by 7.8%, mAP.5 increases by 4.3%, and mAP.95 increases by 2.1%. The 
experimental results fully demonstrate the effectiveness of S-MPDIoU.

Then we conduct an experiment to compare and analyze the detection performance of different attention 
mechanisms. The results are shown in Table 2. Compared with SE, CBAM, GAM, CA, ECA, EMA, and SA, 
the MDA module has slightly lower recall, but higher precision and mAP, with relatively fewer parameters. Its 
detection precision increases by 0.5%, recall increases by 6.3%, mAP.5 increases by 3.6%, and mAP.95 increases 
by 1.9%. This experiment proves that integrating MDA modules into the backbone of the detection model helps 
enhance and fuse features, achieving an effective balance between detection accuracy and parameter efficiency.

The heatmaps presented in Fig. 8 demonstrate the efficacy of different attention mechanisms. As shown 
in the figure, the attention area of MDA is smoothly distributed and comprehensive, evidently focusing on 
the prominent features of cells while overcoming background interference that would distract attention. Even 

Algorithm P% R% mAP.5% mAP.95% Parameters

V8n 80.4 77 85.3 35.9 3.006 ×106

+SE 79.8 84.6 88.3 37.8 3.017 ×106

+CBAM 80.3 85.2 89.1 37.2 3.094 ×106

+GAM 78 86.1 87.9 37.9 3.585 ×106

+CA 78.2 84.8 86.5 36.2 3.018 ×106

+ECA 78.8 85.8 88.1 38.2 3.006 ×106

+EMA 76.7 85.8 87 36.8 3.006 ×106

+SA 79.4 80.6 86.2 37.1 3.006 ×106

+MDA 80.9 83.3 88.9 37.8 3.006 ×106

Table 2.  Detection performance of different attention mechanisms.

 

Algorithm P% R% mAP.5% mAP.95%

V8n+CIoU 80.4 77 85.3 35.9

+DIOU 78.6 84.7 87.8 36.8

+GIOU 81.6 84 88.1 38

+EIOU 77.1 82.3 85.7 34.6

+SIOU 77.4 85.5 86.8 36.7

+MPDIOU 77.7 85.6 88.4 37.7

+S-MPDIOU 79.7 84.8 89 38

Table 1.  Detection performance of different IoU loss functions.
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the cell features in the edge area can be effectively captured. Further demonstrate the advantages of the MDA 
module.

Afterwards, we conduct an ablation experiment to evaluate the effectiveness of these improvements. As 
shown in Table 3, after integrating the above improvements into the yolov8n, the final precision of the model 
reaches 80%, a relative decrease of 0.4%. However, the recall reaches 86.1%, a significant increase of 9.1%. In 
addition, mAP. 5 reaches 88.5%, a relative increase of 3.2%, and mAP. 95 reaches 37.9%, a relative increase of 2%. 
These results confirm the effectiveness of the improvements proposed in this paper.

We conducted an exhaustive comparative experiment to rigorously evaluate the performance of our improved 
YOLOv8 model against several state-of-the-art models with similar parameter settings and capabilities, including 
YOLOv9t, YOLOv10n, RT-DETR27, GOLD-YOLO28, and PP-YOLOE29. The results of this experimentation, 
presented in Table 4, offer evidence of the balance our model achieves in terms of detection accuracy and 
complexity.

Specifically, our improved YOLOv8 model demonstrated a notable increase in mean average precision 
(mAP) compared to YOLOv9t and YOLOv10n. This enhancement in accuracy is particularly significant given 
the competitive nature of these models and underscores the effectiveness of our proposed improvements. 
Furthermore, when compared to the transformer-based RT-DETR, our model achieved comparable accuracy. In 

Algorithm mAP.5% mAP.95% Parameters GFLOPs

YOLOv8n 85.3 35.9 3.006 ×106 8.1

YOLOv8s 84.3 37.4 11.126 ×106 28.4

YOLOv9t 84.6 34 2.617 ×106 10.7

YOLOv10n 83 35.5 2.265 ×106 6.5

RT-DETR 84.4 36.4 20 ×106 60

GOLD-YOLO 89.1 38.8 5.976 ×106 10.2

PP-YOLOE+-S 83.2 34.1 7.36 ×106 17.93

OURS 88.5 37.9 3.006 ×106 8.1

Table 4.  Algorithm comparison results.

 

S-MPDIoU MDA P% R% mAP.5% mAP.95%

× × 80.4 77 85.3 35.9

✓ × 79.7 84.8 89 38

× ✓ 80.9 83.3 88.9 37.8

✓ ✓ 80 86.1 88.5 37.9

Table 3.  Results of ablation experiment.

 

Fig. 8.  Heatmaps of different attention mechanisms.
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addition, while the experimental results indicate that our model’s accuracy is marginally lower than the powerful 
GOLD-YOLO, it significantly reduces the parameters and complexity, underscoring its proficiency in striking 
an effective balance between performance and efficiency. Similarly, when compared to the highly optimized 
PP-YOLOE, our model demonstrated competitive results, demonstrating its robustness and adaptability across 
different optimization strategies.

The detection effect of our improved model is shown in Fig. 9, where the red boxes represent the 
lymphocytes detected by the model. As shown in the figure, the improved model fully learns the characteristics 
of lymphocytes, follows the criteria for lymphocyte discrimination, and overcomes the interference caused by 
complex backgrounds. For suspicious similar cells such as epithelial cells and plasma cells, it basically achieves 
correct discrimination and completes the detection and localization task.

Auxiliary diagnostic system for Sjogren’s syndrome
As presented in Fig. 10, the top three images represent the lesions annotated by the physicians, while the 
bottom three images represent the lesions identified by auxiliary diagnostic system. It is evident that the 
system effectively identifies and labels suspicious lesions, which roughly correspond to those annotated by the 
physicians, indicating that the system boasts high accuracy in lesion discernment and can assist in pathological 
diagnosis to a certain extent.

Fig. 10.  Effect of auxiliary diagnostic system. Top three images represent the lesions annotated by the 
physician, and the bottom three images represent the lesions identified by auxiliary diagnostic system.

 

Fig. 9.  Detection effect of our improved model, where the red boxes represent the lymphocytes detected by the 
model.
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Limitations
From the experimental results, it is evident that our designed diagnostic system has attained a high level of 
detection accuracy, thereby partially fulfilling the objective of assisting physicians in diagnosing Sjogren’s 
syndrome. Nevertheless, the system still possesses certain limitations. Firstly, due to the small number of 
datasets, the model may not have fully learned the underlying patterns and relationships within the data. This 
limitation can lead to underfitting, where the model fails to capture the complexity of the data and is unable to 
generalize well to new, unseen examples. As a result, the model’s performance may be suboptimal, and it may 
struggle to make accurate predictions or classifications. Secondly, as the system directly performs pathological 
diagnosis on pathological images, and the preparation of actual pathological images involves multiple steps, 
including specimen collection, processing, staining, and digitalization, the practical application of the system 
in clinical practice still requires careful validation and integration into existing workflows to ensure accuracy, 
reliability, and efficiency in patient care.

Conclusion
In recent years, the application of deep learning technology in the medical field has progressed rapidly, 
significantly contributing to the diagnostic process of physicians through its remarkable efficiency and accuracy. 
The manual diagnosis of Sjogren’s syndrome, however, remains time-consuming and labor-intensive, requiring 
physicians to meticulously discern lymphatic infiltration in pathological sections, ultimately leading to low 
diagnostic efficiency. To tackle this challenge, we devised an approach utilizing deep learning techniques to 
assist in the diagnostic process. Specifically, we developed an auxiliary diagnostic system leveraging the state-
of-the-art object detection network, YOLOV8. This system initially segments the original pathological image 
into multiple patches, which are then individually fed into the detection network. Subsequently, the individual 
detection results are aggregated to yield the final diagnostic outcome. To refine the network’s detection accuracy, 
we introduced the multi-dimensional attention mechanism and S-MPDIoU loss function. The multi-dimensional 
attention mechanism effectively captures cellular features, enhancing detection accuracy by separately extracting 
features from the three dimensions of the feature map. Additionally, the S-MPDIoU loss function mitigates 
the issue of gradient vanishing between ground truth and predicted bounding boxes during training, thereby 
enhancing both training efficiency and detection accuracy.The precision of the improved model decreases by 
0.4%, the recall increases by 9.1%, mAP.5 increases by 3.2%, and mAP.95 increases by 2%. These results prove 
the effectiveness of the improvements.

Our research presents novel diagnostic tools and algorithms that offer fresh insights into Sjogren’s syndrome 
diagnosis. Through the development and refinement of diagnostic tools, our study has achieved a notable 
accuracy of Sjogren’s syndrome diagnosis. This enhanced accuracy empowers physicians to make more informed 
decisions, facilitating earlier interventions and ultimately leading to better patient outcomes.Our research is 
attributed to the valuable collaborations with experts from diverse fields, including medicine and computer 
science. This interdisciplinary approach has enabled us to integrate diverse perspectives and expertise, leading 
to the development of more comprehensive and effective diagnostic solutions for Sjogren’s syndrome. Our study 
not only provides important insights into Sjogren’s syndrome diagnosis but also lays a solid foundation for future 
research.

However, two main limitations were identified: the limited size of the datasets, which could result in 
underfitting and suboptimal model performance, and the complex practical application process of the system 
involving pathological image preparation, requiring careful validation and integration into clinical workflows.
Future research should focus on expanding pathological image datasets using advanced data augmentation, 
conducting comprehensive clinical validation to ensure seamless integration into workflows, and exploring 
multi-modal fusion approaches that integrate additional data sources beyond images to enhance diagnostic 
accuracy and comprehensiveness.

Data availability
The data used to support the findings of this study is available from the corresponding author upon request.
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