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Polycystic Ovary Syndrome (PCOS) is a widespread endocrinological dysfunction impacting women of 
reproductive age, categorized by excess androgens and a variety of associated syndromes, consisting 
of acne, alopecia, and hirsutism. It involves the presence of multiple immature follicles in the 
ovaries, which can disrupt normal ovulation and lead to hormonal imbalances and associated health 
complications. Routine diagnostic methods rely on manual interpretation of ultrasound (US) images 
and clinical assessments, which are time-consuming and prone to errors. Therefore, implementing 
an automated system is essential for streamlining the diagnostic process and enhancing accuracy. 
By automatically analyzing follicle characteristics and other relevant features, this research aims to 
facilitate timely intervention and reduce the burden on healthcare professionals. The present study 
proposes an advanced automated system for detecting and classifying PCOS from ultrasound images. 
Leveraging Artificial Intelligence (AI) based techniques, the system examines affected and unaffected 
cases to enhance diagnostic accuracy. The pre-processing of input images incorporates techniques such 
as image resizing, normalization, augmentation, Watershed technique, multilevel thresholding, etc. 
approaches for precise image segmentation. Feature extraction is facilitated by the proposed CystNet 
technique, followed by PCOS classification utilizing both fully connected layers with 5-fold cross-
validation and traditional machine learning classifiers. The performance of the model is rigorously 
evaluated using a comprehensive range of metrics, incorporating AUC score, accuracy, specificity, 
precision, F1-score, recall, and loss, along with a detailed confusion matrix analysis. The model 
demonstrated a commendable accuracy of 96.54% when utilizing a fully connected classification layer, 
as determined by a thorough 5-fold cross-validation process. Additionally, it has achieved an accuracy 
of 97.75% when employing an ensemble ML classifier. This proposed approach could be suggested for 
predicting PCOS or similar diseases using datasets that exhibit multimodal characteristics.
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Polycystic Ovary Syndrome is a disorder that affects a large number of women worldwide. It causes ovaries to 
produce a high number of immature eggs, which turn into cysts, leading to enlarged ovaries and increased 
androgen production1,2. PCOS was first identified by Stein and Leventhal in 19353, characterized by symptoms 
such as hirsutism, chronic amenorrhea, anovulation, and enlarged ovarian cysts etc. Although Polycystic Ovarian 
Syndrome was recognized earlier, it wasn’t officially included in the International Classification of Diseases 
(ICD-10) by the World Health Organization under the code ’E28.2’ until 19904. In 2009, the definition of PCOS 
was revised to include hyperandrogenism. Hyperandrogenism and polycystic ovary morphology (PCOM)5 are 
fundamental aspects of PCOS, a condition of ovarian dysfunction6. PCOM is defined by an ovarian volume of 
10 ml or 25 follicles per ovary with 8 MHz transducer frequencies. Among the innumerable health challenges 
faced by women in the 21st century7, PCOS has emerged as a prevalent and significant concern impacting 
women of reproductive age (18–44). Approximately one in fifteen women worldwide are affected by PCOS8,9, 
with prevalence rates in India ranging from 3.7 to 22.5%, higher in urban areas than rural areas10, possibly 
due to lifestyle factors and stress11. Estimates suggest that approximately 120 million women, or 4.4% of the 
global female population, are affected by PCOS. In India, Ramamoorthy et al.12 found that 10% of young girls 
suffer from PCOS, which is associated with a high rate of miscarriages and infertility cases10. It is linked to 
various psychological and metabolic issues, including hirsutism, irregular menstrual cycles, sudden weight gain, 
thyroid issues, type 2 diabetes, depression, excessive hair growth, alopecia, oily skin, acne, high blood pressure, 
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sexual dissatisfaction2,13,14, and metabolic issues such as hypertension, hyperinsulinemia, abdominal obesity, 
and dyslipidemia, all of which diminish the quality of life. A family history of PCOS significantly increases 
the risk, with 24%-32% of patients likely to develop the condition15. It can also lead to cancers in the breast16 
or uterus during reproductive age. Low follicle-stimulating hormone (FSH) and luteinizing hormone (LH) 
levels combined with high prolactin levels prevent follicle growth and maturation in ovaries afflicted by PCOS. 
Normally, with the right levels of FSH and LH, a single follicle grows to about 20 mm in diameter and is ready 
for ovulation17. In polycystic ovaries, follicles stop growing at 5–7 mm during ovulation and remain immature. 
These immature follicles secrete a hormone that thickens the uterine lining, leading to spotting or excessive 
bleeding due to prolonged estrogen production.

However, early diagnosis through standardized approaches can lead to effective management with long-
term, symptom-focused treatments. Due to these varied criteria, diagnosing PCOS is challenging, but the 
Rotterdam criteria18 are a widely accepted method. According to the Rotterdam Consensus Criteria (2003)19, 
PCOS is diagnosed if at least two of the specified criterias are met; the measures are oligo-anovulation, clinical 
or biochemical signs of excess androgen activity, if the ovaries have a volume of at least 10 cm3 or contain 10 
or more follicles i.e. polycystic overies. Ultrasound diagnostics use frequencies between 2 and 15 MHz, with 
sound waves sent to the object and reflected back as electrical pulses displayed as grayscale images. The high 
noise and low contrast of US images necessitate better accuracy to detect Polycystic Ovary follicles, which appear 
spherical and clustered in a necklace-like pattern. In contrast, in 2006 the Androgen Excess and PCOS Society 
required the presence of hyperandrogenemia, ovulation disorder, and PCOM for diagnosis4. Each diagnostic 
criterion has distinct clinical implications, such as skin manifestations from excessive androgen, endometrial 
hyperplasia, infertility from ovulation disorders, and risk of ovarian hyperstimulation syndrome (OHSS) from 
PCOM. Ultrasound imaging is a primary tool for early detection of PCOS20, providing vital information on 
the number, volume, and position of follicles. Ultrasound is preferred over CT and MRI due to its low cost, 
accessibility, safety, and real-time results21,22, but it is time-consuming, prone to human error, and reliant on the 
availability of skilled radiologists, particularly in less developed regions. Consequently, many women remain 
undiagnosed and untreated. These challenges underscore the need for intelligent computer-aided systems to 
support gynecologists, traditional methods, which involve image processing and machine learning, are complex 
and less effective, while deep learning methods, despite their accuracy and overcoming manual examination 
limitations, are computationally demanding1,23,24, also an integrated machine learning approach could improve 
diagnostic performance and reduce the computational complexity of identifying PCOS from ultrasound images25. 
In contrast, AI-based approaches are showing promising results in other ultrasound imaging26 applications, such 
as thyroid27–29 , breast cancer detection30 , etc., further enhancing diagnostic accuracy.

Unlike traditional approaches, Haider et al.31 proposed a method that incorporates full contextual 
information surrounding the face from the provided dataset. Leveraging InceptionNet V3 for deep feature 
extraction, they employed attention mechanisms to refine these features. Subsequently, the features were passed 
through transformer blocks and multi-layer perceptron networks to predict various emotional parameters 
simultaneously. Their model excelled in predicting arousal, valence, emotional expression classification, and 
action unit estimation, achieving significant performance on the MTL Challenge validation dataset. Aziz et 
al.32 introduced IVNet, a novel approach for real-time breast cancer diagnosis using histopathological images. 
Transfer learning with CNN models like ResNet50, VGG16, etc., aims for feature extraction and accurate 
classification into grades 1, 2, and 3. IVNet achieves a commendable classification rate. Validation and statistical 
analysis confirm its efficacy. A user-friendly GUI aids real-time cell tracking, facilitating treatment planning. 
IVNet serves as a reliable decision support system for clinicians and pathologists, specially in resource-
constrained settings. The study conducted by Kriti et al.33 evaluated the performance of four pre-trained CNNs 
named ResNet-18, VGG-19, GoogLeNet, and SqueezeNet for classifying breast tumors in ultrasound images. 
The proposed CAD system uses GoogLeNet and a convolutional autoencoder for deep feature extraction, 
followed by correlation-based and fuzzy feature selection, with the final classification done using an ANFC-LH 
classifier. This system aids radiologists in diagnosis and serves as a training tool for radiology students. A smart 
feature extraction method based on Convolutional Autoencoders for semiconductor manufacturing was utilized 
by Maggipinto et al.34, particularly focusing on predicting etch rates using Optical Emission Spectroscopy (OES) 
data. Traditional Machine Learning algorithms struggle with the complexity of OES data, prompting the adoption 
of Convolutional Neural Networks (CNNs) for feature extraction. The proposed method surpasses conventional 
techniques like PCA and statistical moments, offering precise etch rate predictions without domain-specific 
knowledge. Multipath Convolutional Neural Network (M-CNN) for feature extraction and Machine Learning 
(ML) classifiers for severity classification of Diabetic Retinopathy (DR) using Fundus images was employed by 
Gayathri et al.35. Evaluation is conducted across multiple databases using Support Vector Machine, Random 
Forest, and J48 classifiers. Results indicate that the M-CNN network combined with the J48 model performs 
optimally. The proposed technique offers a promising solution for automated DR diagnosis, with potential 
applications in predicting other retinal diseases, thus improving retinal healthcare monitoring.

With about 70% of PCOS cases undiagnosed worldwide, Gopalakrishnan et al.36 presented an automated 
PCOS detection and classification system using ultrasound images. The system preprocesses images with a 
Gaussian low pass filter, segments them using multilevel thresholding, and extracts features with the GIST-MDR 
technique, achieving 93.82% accuracy with the Support Vector Machine (SVM) classifier. Alamoudi et al.37 
conducted a study combining ovarian ultrasound images and clinical data, employing a deep learning model 
for PCOM detection achieving 84.81% accuracy, and fusion models combining image and clinical data with 
82.46% accuracy. The study underscores the importance of clinical data in PCOS detection and highlights the 
potential of automated models to accelerate diagnosis and mitigate associated risks. An Improved Fruit Fly 
Optimization-based Artificial Neural Network (IFFOA-ANN) for classifying normal and abnormal follicles in 
ultrasound images was introduced by Nilofer et al.38, enhancing previous adaptive k-means clustering methods. 
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The technique improves image quality, segments follicles, and extracts features using statistical Grey Level 
Co-occurrence Matrix (GLCM), with the ANN trained on these features. The IFFOA-ANN method achieves 
97.5% accuracy, offering a reliable automated classification system that improves the diagnosis and treatment of 
infertility. Suha39 proposed a hybrid machine-learning method for PCOS detection using 594 ovary ultrasound 
images. It employs a CNN with transfer learning for feature extraction, specifically the VGGNet16 model, 
followed by a stacking ensemble model with XGBoost as the meta-learner. This approach effectively combines 
deep learning and traditional machine learning, outperforming existing techniques in both accuracy and 
execution time. Maheswari et al.40 conducted a study for PCOS detection using ultrasound images, emphasizing 
the importance of image processing in improving computer system performance. It employs adaptive histogram 
equalization to remove noise and extracts features relevant to PCOS. A novel approach called Furious Flies 
is proposed for feature identification, addressing the drawbacks of conventional algorithms. Three stages—
attraction-based ROI selection, follicle selection, and follicle identification—are employed. Classification is 
performed using a Naive Bayesian classifier and artificial neural networks, enabling early detection of PCOS. 
Despite these advancements, several gaps remain: the limited dataset sizes, may not represent the full spectrum 
of PCOS variations, potentially affecting model robustness and generalizability. There is often no discussion 
on potential biases in the datasets used for training, which could impact model performance on unseen data. 
Many studies focus on diagnosing specific conditions like PCOM but do not expand to classify other types 
of ovarian cysts, limiting their clinical utility. Additionally, manual diagnosis of polycystic ovary morphology 
in ultrasound images by specialists introduces subjectivity and variability, impacting diagnostic accuracy and 
consistency. Table 1 represents A comprehensive summary of the literature study and its key findings.Addressing 
these gaps is crucial for developing more robust, generalizable, and clinically useful diagnostic systems. Within 
the framework of this study, we have introduced several pivotal contributions to advance the domain of deep 
learning-based image analysis: 

	1.	� Image Pre-processing Techniques for Improved Diagnostic Precision The study introduces a comprehensive 
approach to pre-processing and segmenting ultrasound images for PCOS detection, incorporating multiple 
techniques such as image resizing, normalization, augmentation, Watershed technique, multilevel thresholding, 
Morphological Processing etc. This meticulous process ensures precise and accurate identification of follicles 
and cysts and contributes to the overall diagnostic accuracy, reducing manual errors and time consumption.

	2.	� Innovative Feature Extraction using the CystNet Hybrid Model This proposed CystNet technique for feature 
extraction is proposed which is a hybrid model that integrates InceptionNet V341,42 and Convolutional Au-

Reference Methodology used Strength Scope of improvement

Patil et al.45

Preprocessing with the Block Matching 3D filter, 
binary and watershed segmentation, and feature 
extraction using various methods such as Tamura 
Gray-Level Co-Occurrence Matrix, edge features, 
and Gabor, with classification performed using 
KNN and RF models to classify Ovarian Masses.

By employing advanced methods such as Block 
Matching 3D filter for pre-processing, binary and 
watershed segmentation for region identification, and 
various feature extraction methods, the paper exhibits a 
comprehensive approach to ovarian mass classification.

The paper could benefit from discussing future 
directions for research, such as exploring additional 
machine learning algorithms or incorporating other 
imaging modalities to improve the overall diagnostic 
capabilities of the system.

Rahman et 
al.46

The research methodology for classifying blood 
cancer included four steps: dataset collection, 
feature extraction with pre-trained CNN models, 
feature optimization, and classification using 
traditional ML classifiers.

By integrating nature-inspired algorithms like Particle 
Swarm Optimization and Cat Swarm Optimization 
with the ResNet50 architecture, the model achieved an 
accuracy of 99.84%.

Future research directions could include developing 
an Android application for real-time classification 
and implementing the model on small IoT devices to 
assist haematologists in blood cancer classification.

Jung et al.47
Convolutional Autoencoder, ResNet, Inception-v3, 
and DenseNet were trained for classifying five 
classes of ovarian ultrasound images.

The use of Gradient-weighted class activation mapping 
provides qualitative insights into how the model 
recognizes valid texture and morphology features from 
ultrasound images.

The CNN models were trained with a relatively small 
number of epochs and batch sizes. Implementing 
the model with a larger number of epochs and more 
efficient batch sizes could yield better results.

Bhosale et 
al.48

Various filtering techniques were evaluated 
to remove noise and accurately segment cysts 
from ultrasound images, with features from the 
segmented areas optimized for the classification of 
ovaries using CNN.

The research integrates various segmentation strategies 
to improve follicle segmentation, showcasing a 
comprehensive approach to image processing in PCOS 
detection.

Future work could explore the impact of various 
hyperparameters and feature selection methods, 
such as optimization algorithms, on the performance 
of the classification models.

Khamparia 
et al.49

The research paper employed transfer learning 
techniques, specifically utilizing the Modified VGG 
(MVGG) architecture for breast cancer detection on 
2D and 3D mammogram images.

Utilizing the Digital Database for Screening 
Mammography (DDSM) dataset and ImageNet for 
pre-training, the research demonstrates a thorough 
and systematic approach to model development and 
evaluation.

The study primarily focused on the performance 
of the model in detecting mammogram images, 
potentially limiting the generalizability of the 
findings to other types of cancer detection.

Gayathri et 
al.35

ML classifiers such as Support Vector Machine, 
Random Forest, and J48 are employed to grade the 
diabetic retinopathy (DR) severity based on the 
features extracted by the Multipath-Convolutional 
Neural Network (M-CNN).

The experiments show high accuracy (99.62%) for 
DR grading, indicating the potential of the proposed 
method for accurate disease detection and grading, 
which is crucial for early intervention and management 
of DR.

Further research could focus on investigating 
the scalability of the proposed method to larger 
datasets or different imaging modalities to assess 
its performance in varied clinical scenarios and 
settings.

Dewi et al.50
Gabor Wavelet approach for feature extraction and 
Competitive Neural Network for classification was 
utilized to detect polycystic ovaries (PCO).

The combination of feature extraction and classification 
methods contributed to a comprehensive system 
design and structured approach for PCO detection and 
automating the identification process.

The study achieved an 80.84% classification accuracy 
with a Competitive Neural Network. Using deep 
learning-based feature extraction could further 
improve PCO classification accuracy and efficiency.

Chen et 
al.51

The paper proposes two types of Convolutional 
Autoencoder Neural Networks (CANN): C-CANN 
for the classification of lung cancer and S-CANN for 
the similarity assessment of lung module images.

By CANN, the paper contributes to the classification 
of pulmonary nodules, offering a novel approach to 
enhancing the accuracy of disease diagnosis through 
medical image analysis.

Enhancing the convolutional autoencoder framework 
to incorporate semi-supervised learning techniques 
could help leverage both labelled and unlabelled data 
for improved feature learning.

Table 1.  Analysis of literature findings
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toencoder43,44deep learning approaches. By leveraging the strengths of both InceptionNet V3, known for its 
efficiency in handling varied spatial hierarchies, and Autoencoders, which excel in unsupervised learning, 
CystNet effectively extracts and highlights critical features from ultrasound images. This dual approach en-
hances the ability of the model to distinguish subtle differences between affected and unaffected cases, there-
by improving the reliability and robustness of the diagnostic process.

	3.	� High-Accuracy Classification Using DenseNet and ML Classifiers The classification phase of the proposed 
system employs a dense Layer or fully connected (FC) layer alongside traditional machine learning classifi-
ers with rigorous 5-fold cross-validation, demonstrating exceptional diagnostic performance.The remaining 
study is structured into four sections, each offering a detailed examination of the research process and out-
comes. Section 2 details the research methodology, encompassing dataset description, image segmentation, 
feature extraction, and PCOS classification. Subsequently, Section 3 conducts a thorough analysis of exper-
imental results. Finally, Section 4 encapsulates the key findings of the study and outlines potential future 
research directions.

Methodology
This section comprises a comprehensive overview of the dataset utilized for training and testing the diagnosis 
model, followed by image preprocessing which includes normalization, augmentation and segmentation. 
Moreover, this section discusses the proposed model for diagnosing PCOS using ultrasound images and 
classifying PCOS and non-PCOS ovaries. The overall framework of this study is visually presented in Fig. 1, 
outlining the various phases involved in the research.

Dataset description
A dataset obtained from Kaggle52 is utilized for training and testing our models, initially comprising 1,924 
images for training and 1,932 for testing. However, due to significant overlap between these sets, the test set 
is discarded, and the training set is utilized exclusively. This set is then split into new training and test sets. It 
includes ultrasound images labelled as ’INFECTED’ (781 images with cystic ovaries) and ’NOT INFECTED’ 
(1,143 images with healthy ovaries). The given ’INFECTED’ and ’NOT INFECTED’ classes uniquely identify 
individuals suffering from PCOS and those who are not, respectively, making this classification method highly 
relevant for real-time medical systems in accurately diagnosing PCOS. Figure 2 shows sample images from both 
categories.

This study has also incorporated the PCOSGen Dataset53, gathered from various online sources. This dataset 
includes 3,200 healthy and 1,468 unhealthy samples, divided into training and test sets, which have been 
medically annotated by a gynaecologist in New Delhi, India. Additionally, the Multi-Modality Ovarian Tumor 
Ultrasound (MMOTU) image dataset54 is utilized, containing 1,639 US images from 294 patients.

Dataset preprocessing
The data preprocessing step is crucial for preparing the ultrasound images for training and testing the diagnosis 
model. It involves several sub-processes: image resizing and normalization, image augmentation, and image 
segmentation techniques are described below:

Figure 1.  Systematic approach outlining each step of the research process.
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Image resizing and normalization
All ultrasound images are resized to a uniform dimension of 224x224 pixels. This standardization ensures that the 
input dimensions are consistent across all images, which is crucial for the convolutional neural network(CNN) to 
process them efficiently. Uniform resizing also helps in reducing computational load and memory requirements 
during model training. After resizing, the pixel values are normalized using min-max normalization55. This 
involves scaling each pixel value I to a range of 0 to 1 using the formula:

	
Inorm =

I − Imin

Imax − Imin
� (1)

where, I→ original pixel value, Imin→ minimum intensity value, and Imax→ maximum intensity value (usually 
255 for 8-bit images). This scaling helps in reducing the variance and making the model training process faster 
and more stable. It also ensures that the pixel values are on a similar scale, preventing any single feature from 
dominating the learning process.

Image augmentation
Image augmentation56 is essential for enhancing the diversity of training data, thereby improving the ability of 
the model to generalize and perform well on unseen samples. It includes applying various transformations to the 
original images, such as rotation, flipping, zooming, and shifting. These operations introduce variations in the 
dataset, simulating real-world scenarios and ensuring robustness in the predictions of the model. Figure 3 depicts 
the workings of augmentation operations visually and these augmentation operations are discussed below to 
provide a comprehensive overview of the transformations applied to the images during the preprocessing stage:

Figure 3.  Visual representation of the different augmentation operations.

 

Figure 2.  Visual comparison of ultrasound images from patients with and without PCOS.
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•	 Rotation: Images I→ rotated by an angle θ randomly selected from the range [−90◦, 90◦]. This transformation 
is represented mathematically as: 

	 Irotated = R(θ) · I � (2)

 Where R(θ)→ rotation matrix for angle θ.

•	 Flipping: Horizontal and vertical flipping are applied, represented as: 

	 Iflipped_horizontal = Fh · I � (3)

	 Iflipped_vertical = Fv · I � (4)

 where Fh and Fv→ horizontal and vertical flip operators, respectively. This effectively doubles the dataset size.

•	 Zooming: Zoom transformations are applied by scaling the image by a factor Z randomly chosen from a range 
[Zmin, Zmax]: 

	 IZoomed = Z(z) · I � (5)

 where Z(z) → zoom transformation matrix.

•	 Shifting: Random width ∆x and height ∆y shifts, up to 20% of the total dimensions, are applied: 

	 Ishifted = T (∆x,∆y) · I � (6)

 Where T (∆x,∆y)→ translation matrix for shifts ∆x and ∆y.

Image segmentation
Image segmentation is a crucial process in image analysis, where an image is partitioned into multiple segments 
or regions to simplify and change the representation of the image into an interpretable format. It is particularly 
important for medical imaging, as it allows for the precise identification and isolation of relevant structures, such 
as identifying cysts in ultrasound images for diagnosing PCOS. In this study, the segmentation process involves 
several steps: noise filtering, contrast enhancement, binarization, multilevel thresholding, and morphological 
processing. The process used for segmentation is visualized step-by-step in Fig. 4.

•	 Noise Filtering: Noise filtering39 aims to smooth out irregularities in the image caused by noise. One common 
technique is Gaussian blur, which applies a convolution operation between the image and a Gaussian kernel. 
Mathematically, this is represented as: 

Figure 4.  Visual steps in image segmentation for PCOS diagnosis.
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Iblurred(x, y) =

k∑
i=−k

k∑
j=−k

I(x + i, y + j)×G(i, j)� (7)

 Where i→ horizontal distance & j→ vertical distance from the center of the kernel, Iblurred(x, y)→ blurred 
pixel value at coordinates (x, y), I(x + i, y + j)→ neighboring pixel values in the original image, and G(i, j) → 
Gaussian kernel values which is mathematically represented as: 

	
G(i, j) =

1

2πσ2
exp

(
−i2 + j2

2σ2

)
� (8)

 The Gaussian filter used has a mean of µ = 0 and a standard deviation of σ = 0.85, which are set to specific 
values during preprocessing to control the amount of smoothing applied.

•	 Contrast Enhancement: Contrast enhancement39 techniques aim to improve the visual quality of an image by 
increasing the intensity differences between pixels. Histogram equalization is a common method that redis-
tributes pixel intensities to achieve a more uniform histogram. Mathematically, the transformation function 
T is computed from the image histogram H and its cumulative distribution function CDF: 

	
T (i) =

L− 1

N ×M

i∑
j=0

H(j)� (9)

 Where T(i) → transformed intensity value, L→ number of intensity levels, and N ×M→ total number of pixels 
in the image.

•	 Watershed Technique: The watershed algorithm40 interprets the intensity gradient of the image as a topograph-
ic surface. It identifies regions of unexpected changes in intensity, indicating potential object boundaries. 
Mathematically, it computes the gradient magnitude ∇I  of the image and treats it as a topographic surface. It 
then identifies regions of low intensity and regions of high intensity to segment the image.

•	 Binarization: This operation simplifies the image by converting grayscale intensity values to binary values, 
effectively separating the foreground from the background. Otsu’s thresholding39 is a widely used technique 
that automatically computes the optimal threshold value T to distinguish between the two classes by mini-
mizing the intra-class variance. The optimal threshold value T is computed by maximizing the between-class 
variance σ2

B, which represents the variance between the two classes of pixel intensities. Mathematically, it can 
be expressed as: 

	
T = argmax

t
(σ2

B(t))� (10)

 In this equation, argmax→ value of t that maximizes σ2
B between-class variance.

•	 Multilevel Thresholding: Multilevel thresholding36 partitions an image into multiple segments by applying 
thresholding operations with different threshold values Ti. This technique is useful for segmenting images 
with complex intensity distributions. Mathematically, it applies thresholding operations with different thresh-
old values T1, T2, . . . , Tn to segment the image into multiple regions. For a grayscale image, this process can 
be represented mathematically as follows: 

	 Segmenti = {p ∈ Image | Ti−1 ≤ Intensity(p) < Ti}� (11)

 Where Segmenti→ region segmented by the ith threshold, Ti−1 and Ti are consecutive threshold values, and 
Intensity(p) denotes the intensity of the pixel p in the image.

•	 Morphological Processing: Morphological operations39 manipulate the shape and structure of objects in the 
image. Erosion, dilation, opening, and closing are common morphological operations. Mathematically, these 
operations are defined using structuring elements (kernels) and applied to binary images to modify object 
boundaries and remove noise. For instance, erosion E and dilation D can be expressed as: 
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E(A) =

n⋂
i=1

(A− Bi)� (12)

	
D(A) =

n⋃
i=1

(A⊕ Bi)� (13)

 Where A→ input binary image, Bi→ structuring element, and ⊕ and − denotes dilation and erosion operations, 
respectively.

Dataset division
The dataset from Kaggle is divided into two sets: 70% for training and 30% for testing. The training set is utilized 
to train the classifier, allowing it to learn patterns and features indicative of PCOS, while the testing set evaluates 
the performance of the model and ensures its ability to generalize and accurately diagnose PCOS on unseen data.

Feature extraction
The process of feature extraction transforms raw data into a set of informative attributes which reduces the 
complexity of the data by focusing on the most relevant aspects, enhancing the performance and efficiency of 
models. InceptionNet V3 and Convolutional Autoencoder have been used for feature extraction in our approach. 
These methods integrate to form a comprehensive model named CystNet, which combines the strengths of both 
techniques to complete the feature extraction process, represented in Fig. 5. Each method is described in detail 
below:

Feature extraction using InceptionNetV3
Unlike traditional CNN models that use specific receptive field sizes in different layers for feature extraction, the 
Inception module employs kernels of various sizes (1×1, 3×3, and 5×5) in parallel41. These parallel features are 
then depth-wise stacked to produce the output of the module. Additionally, a 3×3 max-pooled version of the 
input is included in the feature stack. This combined output delivers rich, multi-perspective feature maps to the 
subsequent convolutional layer, contributing to the effectiveness of the Inception module in applications such as 
medical imaging, in our case with PCOS ultrasound images.

InceptionNet V342, a variant of the Inception architecture, has been employed in this study for feature 
extraction. Retaining three Inception modules and one grid size reduction block, followed by Max Pooling and 
Global Average Pooling layers to decrease the output dimensions. It is a 48-layer deep convolutional neural 
network capable of recognizing intricate patterns and features in medical images and employs convolution 
kernel splitting to break down large convolutions into smaller ones, such as dividing a 3×3 convolution into 3×
1 and 1×3convolutions, developed by Keras and pre-trained on ImageNet. After convolution, the channels are 
aggregated and non-linear fusion is performed, enhancing the adaptability of the network to different scales, 
preventing overfitting, and enhancing spatial feature extraction. With input matrix AX  given in equation 23, the 
convolutional operation followed by ReLU activation, max-pooling, and global average pooling is represented 
as follows:

Figure 5.  CystNet: integrating InceptionNet V3 and convolutional autoencoder for feature extraction.
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AX =



P1,1 · · · P1y

P21 · · · P2y

Px1 · · · Pxy


×



Q1,1 · · · Q1y

Q21 · · · Q2y

Qx1 · · · Qxy


� (14)

	
=

x−1∑
i=0

y−1∑
J=0

P(x−1),(y−j)B(i+1),(j+1)� (15)

	 ReLU = max(0, x)� (16)

	 X (i) = ReLU(W (i) ∗X (i−1) + b(i))� (17)

	 MaxPooling(X)ij = max(Xij)� (18)

	 X
(i)
pooled = MaxPooling(X(i))� (19)

	
GlobalAveragePooling(X) =

1

M ×N

M∑
i=1

N∑
j−1

Xij � (20)

	 Xfeatures = GlobalAveragePooling(X (n))� (21)

In these equations, Wi→ weight tensor of the ithconvolutional layer, Xi→ output feature map after the ith layer, 
b(i)→ bias vector, and Xfeatures→ final feature vector obtained after applying global average pooling, while M and 
N represent the height and width of the spatial dimensions of the feature map X, respectively.

Feature extraction using convolutional autoencoder
An autoencoder can utilize various types of neurons, but convolutional kernels are particularly effective for 
2D data, making them ideal for handling images. Convolutional autoencoders share a structural similarity with 
CNNs, including convolution filters and pooling layers44. Another benefit of CNNs is their ability to maintain 
and utilize the spatial information inherently present in images43. Moreover, the convolutional autoencoder 
converts 2D data representations into 1D arrays. For example, it transforms the positions of m pins, given as 
pairs of coordinates (p, q) in Rm×2, into a 1D format and ensures that the input and output nodes have the same 
dimensionality, allowing for a direct comparison between the input and output images43. This comparison is 
utilized as an objective function to learn the parameters of the autoencoder. Since the learning process is label-
independent, convolutional autoencoders are considered unsupervised methods. Equation 22 is used to express 
the latent encoding of the ith feature map in the encoder for a single-channel input p.

	 li = σ(p ∗ wi + bi)� (22)

where ∗ represents 2D convolution, wi→convolutional filters in the encoder, and σ→ activation function. The 
decoder reconstructs the image using:

	
q = σ

(∑
k∈L

li ∗ w̄i + b

)
� (23)

where b→ bias per input channel, L→ set of latent feature maps, and w̄→ learnable de-convolution filters. The 
objective function minimized during training is the mean squared error (MSE), defined as:

	
O(θ) =

1

2p

m∑
k=1

(pk − qk)
2� (24)

where θ→ parameters of the autoencoder, pk→ the input image in the dataset, and qk→ the reconstructed image 
produced by the autoencoder.

Image classification
After feature extraction, we have applied two approaches for image classification: Classification Using Dense 
Layer and Classification Using ML Classifiers are explained below:

Classification using dense layer
In the Dense Layer classification, a fully connected neural network is used to perform the final classification 
of the extracted features. The network architecture typically consists of multiple dense layers, each followed by 
activation functions and dropout layers to prevent overfitting. The operations or blocks are described below:

Input Layer: The input to the dense network is a feature vector x extracted from the previous stages. If the 
feature vector has n features, it is represented as:
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	 x = [x1, x2, . . . , xn]� (25)

Dense Layers: Each dense layer performs a linear transformation followed by a non-linear activation function. 
For a given layer l, the transformation can be expressed as:

	 Zl = Wla(l−1) + bl� (26)

where a(l−1)→ activation from the previous layer, Wl→ weight matrix of layer l, and bl→ bias vector of layer l. 
The activation function applied to the linear transformation is typically a Rectified Linear Unit (ReLU), defined 
as:

	 al = ReLU(Zl) = max(0, Zl)� (27)

Dropout Layers: Dropout layers are used during training to prevent overfitting by randomly setting a fraction 
p of the input units to zero. Mathematically, this can be expressed as:

	 aldropout = al · dl� (28)

where dl→ binary mask vector sampled from a Bernoulli distribution with parameter p.

Output Layer: The final layer is a dense layer or fully connected layer with a sigmoid activation function that 
outputs the probability of the positive class for binary classification:

	 ŷ = σ(W outaL + bout)� (29)

where W out and bout are the weights and biases of the output layer, aL→ activation from the last hidden layer, 
and σ→ sigmoid function, which is calculated as:

	
σ(z) =

1

1 + e−z
� (30)

Model Compilation: During the training process, the model parameters are optimized using the Adam optimizer, 
which dynamically adjusts the learning rate for efficient convergence. The optimization aims to minimize the 
loss function, specified as the binary cross-entropy, which quantifies the difference between predicted and 
actual labels. Additionally, the training incorporates rigorous 5-fold cross-validation to ensure robustness and 
generalization to unseen data. In 5-fold cross-validation, the dataset is divided into five subsets, and the model 
is trained on four subsets while the remaining one is held out for validation as depicted in Fig. 6. This process 
iterates five times, with each subset used once as the validation data. Mathematically, the loss function can be 
expressed as:

Figure 6.  Visual representation of K-fold cross validation.
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Loss = −1

n

n∑
i=1

[oi log(Pi) + (1− oi) log(1− Pi)]� (31)

where n→ number of samples, oi→ true label of the ith sample, and Pi→ predicted probability of the positive 
class. Additionally, the k-fold cross-validation process is mathematically represented as:

	
CV =

1

K

K∑
k=1

Ek� (32)

where K→ number of folds, and Ek→ performance metric obtained on the kth fold during validation.

Classification using ML algorithms
In addition to the deep learning approach, traditional machine learning classifiers are also employed for the 
classification of PCOS. These classifiers include Naïve Bayes (NB), k-Nearest Neighbors (K-NN), Random Forest 
(RF), and Adaptive Boosting (ADB) where the features extracted by the CystNet model serve as the input for 
these classifiers. Each of the classifiers is briefly discussed below: 

	1.	� K-Nearest Neighbor: The K-NN57 classifier is a straightforward, instance-based learning algorithm used for 
classification tasks. It classifies a new instance by identifying the K closest training instances (neighbors) 
using a distance metric, commonly the Euclidean distance. The Euclidean distance between two instances xi 
and xj  with m features is given by: 

Figure 8.  Confusion matrix representation for approach A and approach B on Kaggle PCOS US images.

 

Figure 7.  Accuracy and loss graphs for approach A on Kaggle PCOS ultrasound images.
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Feature extraction ML classifier Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%)

 CystNet

ADB 97.16 96.12 98.67 97.38 95.41

K-NN 96.01 94.61 97.68 96.12 94.31

NB 96.45 95.97 97.27 96.62 95.51

RF 97.75 96.23 98.29 97.19 97.37

Table 3.  Comparison Table for Approach B with Various ML Models on Kaggle PCOS US Images. Significant 
values are in bold.

 

Feature extraction model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%)

InceptionNet V3 94.68 94.08 95.97 95.01 93.23

Autoencoder 93.97 91.77 97.31 94.46 90.22

ResNet 50 95.55 94.17 97.22 95.67 93.03

DenseNet 121 94.32 92.90 96.64 94.73 91.72

EfficientNet B0 92.98 92.53 92.20 92.36 93.75

CystNet 96.54 94.21 97.44 95.75 95.92

Table 2.  Comparison table for approach A with various DL models on Kaggle PCOS US images. Significant 
values are in bold.

 

Figure 9.  ROC-AUC curves representation for Kaggle PCOS US images.
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d(xi, xj) =

√√√√
m∑
l=1

(xil − xjl)2� (33)

 The class label of the ith neighbor ŷ is then determined by the majority vote of its K-nearest neighbors: 

	 ŷ = mode{yi|i = 1, 2, . . . , K}� (34)

	2.	� Naïve Bayes: Naïve Bayes57 is a probabilistic classifier grounded on Bayes’ theorem, operating with an as-
sumption of feature independence. Given a feature vector x = (x1, x2, . . . , xn) and a class Ck, the classifier 
computes the class with the highest posterior probability using the formula: 

Approach Number of folds Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

 Approach A

5 96.54 94.21 97.44 95.75 95.92

8 95.63 94.70 95.97 95.33 93.98

10 91.10 91.21 91.20 91.21 91.00

Approach B

5 97.75 96.23 98.29 97.19 97.37

8 95.79 95.10 96.45 95.77 95.13

10 93.91 95.67 92.13 93.87 95.73

Table 6.  Comparison table with different number of folds for approach A and approach B on Kaggle PCOS US 
images. Significant values are in bold.

 

Approach Training % & Testing % Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

 Approach A

70% & 30% 96.54 94.21 97.44 95.75 95.92

75% & 25% 95.63 94.70 95.97 95.33 93.98

80% & 20% 95.63 91.21 91.20 91.21 91.00

Approach B

70% & 30% 97.75 96.23 98.29 97.19 97.37

75% & 25% 97.17 96.02 97.08 93.30 96.55

80% & 20% 93.67 92.00 95.83 93.88 91.47

Table 5.  Comparison table with different division of train and test set for approach A and approach B on 
Kaggle PCOS US images. Significant values are in bold.

 

Authors Year Dataset Feature extraction Classification Accuracy

Nilofer et al.38 2021 Kaggle PCOS US images GLCM ANN 97.50%

Gopalakrishnan et al.36 2021 Kaggle PCOS US images GIST-MDR SVM 93.82%

Alamoudi et al.37 2023 King Fahad Hospital US images MobileNet FC 82.46%

Rachana et al.19 2021 Kaggle PCOS US images Entropy, Contrast, Energy, Homogeneity K-NN 97%

Nakhua et al.60 2024 PCOSGen US images GLCM Hybrid ML 92%

Bedi et al.61 2023 MMOTU images Attention Residual Unit AResUNet 97%

Paramasivam et al.62 2024 Kaggle PCOS US images SD_CNN Hybrid ML 96.43%

Chitra et al.63 2023 Kaggle PCOS US images - Hybrid DL 95%

Proposed Approach A - Kaggle PCOS US images CystNet FC 96.54%

Proposed Approach B - Kaggle PCOS US images CystNet RF 97.75%

Proposed Approach A - PCOSGen US images CystNet FC 94.39%

Proposed Approach B - PCOSGen US images CystNet RF 96.12%

Proposed Approach A -  MMOTU images CystNet FC 95.67%

Proposed Approach B -  MMOTU images CystNet RF 97.23%

Table 4.  Comparison of findings across previous studies. Significant values are in bold.
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P (Mk|x) =

P (x|Mk) · P (Mk)

P (x)
� (35)

 This calculation involves the likelihood P (x|Mk), the prior probability P (Mk), and the marginal likelihood 
P(x).

	3.	� Random Forest: An RF57 classifier is an ensemble learning method used for classification tasks, where it con-
structs multiple decision trees and outputs the class that is the mode of the classes predicted by the individual 
trees. Mathematically, for a new instance x, the prediction ŷ is the mode of the predictions from B trees: 

	 ŷ = mode{hb(x)|b = 1, 2, . . . , B}� (36)

 where hb(x) is the prediction of the bth tree. The best split s∗ at each node is found by minimizing the impurity, 
such as the Gini impurity: 

	
s∗ = argmin

s

∑
k∈{L,R}

|Dk|
|D|

· Gini(Dk)� (37)

 where DL and DR are the left and right splits of the node, respectively.

	4.	� Adaptive Boosting: ADB58 classifier combines multiple weak models to create a strong classifier. It iteratively 
trains models, giving more weight to misclassified samples. The final strong classifier H(x) is a weighted sum 
of the individual weak classifiers ht(x): 

	
H(x) = sign

(
T∑
t=1

αtht(x)

)
� (38)

 where t is the index of the individual weak classifiers, and T is the total number of weak classifiers.

Experimental results
Performance evaluation metrics
To assess the performance of the model, various performance metrics have been utilized efficiently. These metrics 
provide a comprehensive evaluation of the model’s effectiveness in accurately classifying the ultrasound images 
and diagnosing PCOS. The foundation for these metrics is the confusion matrix (CM)59, which captures the 
model’s predictions against the actual classifications. The following terms of the confusion matrix are discussed 
below :

•	 True Positive (TPos): This occurs when the classifier correctly identifies a patient as having PCOS.
•	 True Negative (TNeg): This occurs when the classifier correctly identifies a patient as not having PCOS.
•	 False Positive (FPos): This occurs when the classifier incorrectly identifies a patient as having PCOS when 

they do not.
•	 False Negative (FNeg): This occurs when the classifier incorrectly identifies a patient as not having PCOS when 

they actually do.Based on this matrix, several metrics have been calculated and are briefly discussed below: 

	1.	� Accuracy: The ratio of correctly predicted instances to the total instances59. Mathematically, 

	
Accuracy =

TPos + TNeg

TPos + TNeg + FPos + FNeg
� (39)

	2.	� Precision: It indicates the accuracy of the positive predictions made by the model59. Mathematically, 

	
Precision(Pe) =

TPos

TPos + FPos
� (40)
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	3.	� Recall: It measures the ability of the model to identify all relevant instances in the dataset59. Mathematically, 

	
Recall(Re) =

TPos

TPos + FNeg
� (41)

	4.	� F1 Score: The harmonic mean of precision and recall59. Mathematically, 

	
F1 score =

2× Pe ×Re

Pe +Re
� (42)

	5.	� Specificity: It measures the ability of the model to correctly identify negative instances59. Mathematically, 

	
Specificity(se) =

TNeg

TNeg + FPos
� (43)

	6.	� ROC-AUC: The ROC-AUC curve represents the ability of the model to distinguish between classes59.Each 
metric offers a unique perspective on the performance of the model, capturing different aspects of the clas-
sification task. Accuracy, Precision, Recall, F1 Score, Specificity, and ROC-AUC were chosen because they 
collectively measure the model’s ability to correctly identify both positive and negative instances, the trade-
off between precision and recall, and the overall discriminative power of the model.

Result and discussion
The proposed framework for Polycystic Ovary Syndrome (PCOS) detection is implemented using an 8th-
generation Intel Core i7 processor, 8 GB RAM, and Python programming tools. The results demonstrate the 
efficacy of the system in accurately diagnosing PCOS from ultrasound images, with substantial improvements 
over traditional methods. The necessity for precise PCOS diagnosis lies in its significant impact on women’s 
reproductive health, affecting approximately 15% of reproductive-aged women globally. Early detection is vital 
to manage associated symptoms such as acne, alopecia, hirsutism, and infertility, thereby enhancing the quality 
of life and reducing long-term health risks. Our study introduces an advanced automated system that utilizes AI 
techniques, including Machine Learning, Transfer Learning, and Deep Learning, to detect and classify PCOS from 
ultrasound images. The image pre-processing techniques, such as image resizing, normalization, augmentation, 
division, and segmentation which contribute significantly to the accurate identification of follicles and cysts, 
reducing the likelihood of manual errors. Furthermore, the proposed CystNet hybrid model for feature extraction 
integrates InceptionNet V3 and Convolutional Autoencoder approaches, effectively highlighting critical features 
from the ultrasound images and perceiving subtle differences between affected and unaffected cases. This model 
extracts 2048 features from InceptionNet V3 and 1024 features from a convolutional autoencoder, which are 
then rescaled and concatenated, resulting in a total of 3062 features for the subsequent classification stage. The 
classification phase of the system is diverged into two approaches: Approach A and Approach B.

In Approach A, the system employs a dense (fully connected) layer for classification, as detailed in Table 2. 
CystNet achieved an accuracy of 96.54%, a precision of 94.21%, a recall of 97.44%, a F1-score of 95.75%, and a 
specificity of 95.92% on the Kaggle PCOS US images. These metrics indicate a high level of diagnostic precision 
and reliability, outperforming other deep learning models like InceptionNet V3, Autoencoder, ResNet50, 
DenseNet121, and EfficientNetB0. The accuracy and loss graphs in Fig. 7 further illustrate the robust training 
and validation process for Approach A, with minimal overfitting observed. Moreover, the effectiveness of 
Approach A extends to other datasets, as reflected in its better performance on additional datasets. Specifically, 
Approach A achieved an accuracy of 94.39% when applied to the PCOSGen dataset, and this approach further 
demonstrated the robustness with an accuracy of 95.67% on the MMOTU dataset. These results represent the 
versatility and reliability of Approach A across different data sources.

Approach B integrates machine learning classifiers for the final classification phase after feature extraction 
with CystNet. The Random Forest classifier led the performance, achieving an accuracy of 97.75%, a precision of 
96.23%, a recall of 98.29%, a F1-score of 97.19%, and a specificity of 97.37% on the Kaggle PCOS US images, as 
represented in Table 3. This approach outperforms traditional methods and other classifiers such as Adaptive 
Boosting, K-Nearest Neighbors, and Naive Bayes. Figures 8 and 9 depict the confusion matrix and AUC 
curves, respectively, further validating the high diagnostic accuracy of both approaches and highlighting the 
high diagnostic precision and reliability of the suggested model. Furthermore, Approach B exhibited better 
performance across various datasets, demonstrating its capability to generalize effectively. On the PCOSGen 
dataset, this approach attained an accuracy of 96.12%, while on the MMOTU dataset, it excelled further, reaching 
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an accuracy of 97.23%. The outcomes represent the ability of Approach B to maintain high diagnostic accuracy 
and reliability across different medical datasets.

A brief comparison with previous studies indicates that our approach surpasses existing methods in terms 
of accuracy and reliability, emphasizing its potential for medical application. The recent systematic review by 
Arora et al.64 highlights various machine learning algorithms for PCOS diagnosis, observing the challenges and 
limitations of current techniques in capturing the complexity of the syndrome. Paramasivam et al.62 developed 
a Self-Defined CNN (SD_CNN) for PCOS classification, achieving a notable accuracy of 96.43% using a 
Random Forest Classifier. While their model is effective, our approach incorporates a more comprehensive 
feature extraction process, leading to higher accuracy and robustness. A CNN-based automation for PCOS 
diagnosis with a focus on model interpretability using the Grad-CAM technique was presented by Galagan 
et al.65. Moreover, Kermanshahchi et al.66 introduced a machine learning-based model for PCOS detection on 
a specialized dataset. While their approach emphasizes transparency in decision-making, the integration of 
multiple AI techniques in our proposed approach enhances its generalizability across diverse datasets, making it 
more suitable for real-world clinical settings. Table 4 demonstrates that our approach surpasses existing methods 
in terms of accuracy and reliability, further emphasizing its potential for medical application. Additionally, the 
performance consistency across different divisions of training and test sets in Table 5 and various folds for cross-
validation in Table 6 highlight the robustness of our system.

The sophistication of the proposed solution primarily arises from the integration of multiple AI techniques, 
including ML, TL, and DL. The CystNet hybrid model, which combines InceptionNet V3 with a Convolutional 
Autoencoder, involves extensive computation for feature extraction and integration. Unlike existing approaches, 
which often rely on single-stage or less integrated approaches, our method’s novelty lies in its comprehensive 
feature extraction and hybrid model integration, which enhances feature representation and classification 
performance. Despite the advancements, the current solution has limitations. One major limitation is that the 
dataset used for training and evaluation originates from a single source, which may not fully represent the 
variability found in diverse populations. This could affect the generalizability and performance of the model 
in real-world clinical settings. Additionally, the computational demands of the CystNet model may limit 
its practical deployment on devices with lower processing power. Future research should incorporate multi-
source datasets to enhance model robustness. Additionally, real-time deployment and integration into clinical 
workflows pose challenges, necessitating further development in terms of computational efficiency and user-
friendly interfaces for healthcare professionals. However, the experimental results underscore the potential of 
the proposed framework in revolutionizing PCOS diagnosis through automated image analysis and classification 
techniques. By streamlining the diagnostic process and improving accuracy, the framework holds promise in 
facilitating timely interventions and reducing the burden on healthcare professionals, ultimately benefiting 
women’s reproductive health and well-being.

Conclusion and future work
Diagnosing Polycystic Ovary Syndrome is crucial due to its significant impact on the reproductive health of 
women, affecting approximately 15% of reproductive-aged women globally. In this study, a dataset obtained 
from Kaggle, consisting of ultrasound images labeled as ’INFECTED’ (cystic ovaries) and ’NOT INFECTED’ 
(healthy ovaries), is used. These images are augmented using various transformations, such as rotation, flipping, 
zooming, and shifting, and segmented using techniques like the Watershed technique, multilevel thresholding, and 
morphological processing to ensure precise image segmentation. An advanced automated system is developed 
using AI techniques, including ML, TL, and DL, to detect and classify PCOS, with the proposed CystNet hybrid 
model integrating InceptionNet V3 and Convolutional Autoencoder to effectively extract critical features from the 
ultrasound images. During the classification phase, both a dense layer and traditional ML classifiers are employed 
to enhance the robustness of the classification process. With a 5-fold cross-validation process, the dense layer 
approach achieved an accuracy of 96.54%, precision of 94.21%, recall of 97.44%, and specificity of 95.92%, while 
the RF classifier achieved an impressive accuracy of 97.75%, precision of 96.23%, recall of 98.29%, and specificity 
of 97.19%. The results highlight the potential of the proposed framework to streamline the diagnostic process, 
reducing manual errors and time consumption while facilitating timely interventions for women’s reproductive 
health. Future work could focus on incorporating multi-source datasets from diverse populations to improve the 
model’s generalizability. Moreover, enhancing computational efficiency and developing user-friendly interfaces 
are crucial steps to ensure the practical usability of the system.

Data availability and access
The PCOS ultrasound dataset is available at: https://www.kaggle.com/datasets/anaghachoudhari/pcos-detec-
tion-using-ultrasound-images.
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