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CystNet: An Al driven model for
PCOS detection using multilevel
thresholding of ultrasound images
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Polycystic Ovary Syndrome (PCOS) is a widespread endocrinological dysfunction impacting women of
reproductive age, categorized by excess androgens and a variety of associated syndromes, consisting
of acne, alopecia, and hirsutism. It involves the presence of multiple immature follicles in the

ovaries, which can disrupt normal ovulation and lead to hormonal imbalances and associated health
complications. Routine diagnostic methods rely on manual interpretation of ultrasound (US) images
and clinical assessments, which are time-consuming and prone to errors. Therefore, implementing

an automated system is essential for streamlining the diagnostic process and enhancing accuracy.

By automatically analyzing follicle characteristics and other relevant features, this research aims to
facilitate timely intervention and reduce the burden on healthcare professionals. The present study
proposes an advanced automated system for detecting and classifying PCOS from ultrasound images.
Leveraging Artificial Intelligence (Al) based techniques, the system examines affected and unaffected
cases to enhance diagnostic accuracy. The pre-processing of input images incorporates techniques such
as image resizing, normalization, augmentation, Watershed technique, multilevel thresholding, etc.
approaches for precise image segmentation. Feature extraction is facilitated by the proposed CystNet
technique, followed by PCOS classification utilizing both fully connected layers with 5-fold cross-
validation and traditional machine learning classifiers. The performance of the model is rigorously
evaluated using a comprehensive range of metrics, incorporating AUC score, accuracy, specificity,
precision, F1-score, recall, and loss, along with a detailed confusion matrix analysis. The model
demonstrated a commendable accuracy of 96.54% when utilizing a fully connected classification layer,
as determined by a thorough 5-fold cross-validation process. Additionally, it has achieved an accuracy
of 97.75% when employing an ensemble ML classifier. This proposed approach could be suggested for
predicting PCOS or similar diseases using datasets that exhibit multimodal characteristics.

Keywords Polycystic ovary syndrome, Follicles, Image classification, Convolutional autoencoder,
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Polycystic Ovary Syndrome is a disorder that affects a large number of women worldwide. It causes ovaries to
produce a high number of immature eggs, which turn into cysts, leading to enlarged ovaries and increased
androgen production2. PCOS was first identified by Stein and Leventhal in 1935, characterized by symptoms
such as hirsutism, chronic amenorrhea, anovulation, and enlarged ovarian cysts etc. Although Polycystic Ovarian
Syndrome was recognized earlier, it wasn't officially included in the International Classification of Diseases
(ICD-10) by the World Health Organization under the code ’E28.2” until 1990*. In 2009, the definition of PCOS
was revised to include hyperandrogenism. Hyperandrogenism and polycystic ovary morphology (PCOM)? are
fundamental aspects of PCOS, a condition of ovarian dysfunction®. PCOM is defined by an ovarian volume of
10 ml or 25 follicles per ovary with 8 MHz transducer frequencies. Among the innumerable health challenges
faced by women in the 21st century’, PCOS has emerged as a prevalent and significant concern impacting
women of reproductive age (18-44). Approximately one in fifteen women worldwide are affected by PCOS®?,
with prevalence rates in India ranging from 3.7 to 22.5%, higher in urban areas than rural areas!’, possibly
due to lifestyle factors and stress!!. Estimates suggest that approximately 120 million women, or 4.4% of the
global female population, are affected by PCOS. In India, Ramamoorthy et al.'> found that 10% of young girls
suffer from PCOS, which is associated with a high rate of miscarriages and infertility cases!’. It is linked to
various psychological and metabolic issues, including hirsutism, irregular menstrual cycles, sudden weight gain,
thyroid issues, type 2 diabetes, depression, excessive hair growth, alopecia, oily skin, acne, high blood pressure,
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sexual dissatisfaction®!>14, and metabolic issues such as hypertension, hyperinsulinemia, abdominal obesity,

and dyslipidemia, all of which diminish the quality of life. A family history of PCOS significantly increases
the risk, with 24%-32% of patients likely to develop the condition'®. It can also lead to cancers in the breast'®
or uterus during reproductive age. Low follicle-stimulating hormone (FSH) and luteinizing hormone (LH)
levels combined with high prolactin levels prevent follicle growth and maturation in ovaries afflicted by PCOS.
Normally, with the right levels of FSH and LH, a single follicle grows to about 20 mm in diameter and is ready
for ovulation!”. In polycystic ovaries, follicles stop growing at 5-7 mm during ovulation and remain immature.
These immature follicles secrete a hormone that thickens the uterine lining, leading to spotting or excessive
bleeding due to prolonged estrogen production.

However, early diagnosis through standardized approaches can lead to effective management with long-
term, symptom-focused treatments. Due to these varied criteria, diagnosing PCOS is challenging, but the
Rotterdam criteria'® are a widely accepted method. According to the Rotterdam Consensus Criteria (2003)",
PCOS is diagnosed if at least two of the specified criterias are met; the measures are oligo-anovulation, clinical
or biochemical signs of excess androgen activity, if the ovaries have a volume of at least 10 cm® or contain 10
or more follicles i.e. polycystic overies. Ultrasound diagnostics use frequencies between 2 and 15 MHz, with
sound waves sent to the object and reflected back as electrical pulses displayed as grayscale images. The high
noise and low contrast of US images necessitate better accuracy to detect Polycystic Ovary follicles, which appear
spherical and clustered in a necklace-like pattern. In contrast, in 2006 the Androgen Excess and PCOS Society
required the presence of hyperandrogenemia, ovulation disorder, and PCOM for diagnosis®. Each diagnostic
criterion has distinct clinical implications, such as skin manifestations from excessive androgen, endometrial
hyperplasia, infertility from ovulation disorders, and risk of ovarian hyperstimulation syndrome (OHSS) from
PCOM. Ultrasound imaging is a primary tool for early detection of PCOS®, providing vital information on
the number, volume, and position of follicles. Ultrasound is preferred over CT and MRI due to its low cost,
accessibility, safety, and real-time results?122, but it is time-consuming, prone to human error, and reliant on the
availability of skilled radiologists, particularly in less developed regions. Consequently, many women remain
undiagnosed and untreated. These challenges underscore the need for intelligent computer-aided systems to
support gynecologists, traditional methods, which involve image processing and machine learning, are complex
and less effective, while deep learning methods, despite their accuracy and overcoming manual examination
limitations, are computationally demanding!->?4, also an integrated machine learning approach could improve
diagnostic performance and reduce the computational complexity of identifying PCOS from ultrasound images®.
In contrast, Al-based approaches are showing promising results in other ultrasound imaging®® applications, such
as thyroid®”~%°, breast cancer detection®®, etc., further enhancing diagnostic accuracy.

Unlike traditional approaches, Haider et al.>! proposed a method that incorporates full contextual
information surrounding the face from the provided dataset. Leveraging InceptionNet V3 for deep feature
extraction, they employed attention mechanisms to refine these features. Subsequently, the features were passed
through transformer blocks and multi-layer perceptron networks to predict various emotional parameters
simultaneously. Their model excelled in predicting arousal, valence, emotional expression classification, and
action unit estimation, achieving significant performance on the MTL Challenge validation dataset. Aziz et
al.3? introduced IVNet, a novel approach for real-time breast cancer diagnosis using histopathological images.
Transfer learning with CNN models like ResNet50, VGG16, etc., aims for feature extraction and accurate
classification into grades 1, 2, and 3. IVNet achieves a commendable classification rate. Validation and statistical
analysis confirm its efficacy. A user-friendly GUI aids real-time cell tracking, facilitating treatment planning.
IVNet serves as a reliable decision support system for clinicians and pathologists, specially in resource-
constrained settings. The study conducted by Kriti et al.** evaluated the performance of four pre-trained CNNs
named ResNet-18, VGG-19, GoogLeNet, and SqueezeNet for classifying breast tumors in ultrasound images.
The proposed CAD system uses GoogLeNet and a convolutional autoencoder for deep feature extraction,
followed by correlation-based and fuzzy feature selection, with the final classification done using an ANFC-LH
classifier. This system aids radiologists in diagnosis and serves as a training tool for radiology students. A smart
feature extraction method based on Convolutional Autoencoders for semiconductor manufacturing was utilized
by Maggipinto et al.3, particularly focusing on predicting etch rates using Optical Emission Spectroscopy (OES)
data. Traditional Machine Learning algorithms struggle with the complexity of OES data, prompting the adoption
of Convolutional Neural Networks (CNNs) for feature extraction. The proposed method surpasses conventional
techniques like PCA and statistical moments, offering precise etch rate predictions without domain-specific
knowledge. Multipath Convolutional Neural Network (M-CNN) for feature extraction and Machine Learning
(ML) classifiers for severity classification of Diabetic Retinopathy (DR) using Fundus images was employed by
Gayathri et al.’®. Evaluation is conducted across multiple databases using Support Vector Machine, Random
Forest, and J48 classifiers. Results indicate that the M-CNN network combined with the J48 model performs
optimally. The proposed technique offers a promising solution for automated DR diagnosis, with potential
applications in predicting other retinal diseases, thus improving retinal healthcare monitoring.

With about 70% of PCOS cases undiagnosed worldwide, Gopalakrishnan et al.*® presented an automated
PCOS detection and classification system using ultrasound images. The system preprocesses images with a
Gaussian low pass filter, segments them using multilevel thresholding, and extracts features with the GIST-MDR
technique, achieving 93.82% accuracy with the Support Vector Machine (SVM) classifier. Alamoudi et al.”
conducted a study combining ovarian ultrasound images and clinical data, employing a deep learning model
for PCOM detection achieving 84.81% accuracy, and fusion models combining image and clinical data with
82.46% accuracy. The study underscores the importance of clinical data in PCOS detection and highlights the
potential of automated models to accelerate diagnosis and mitigate associated risks. An Improved Fruit Fly
Optimization-based Artificial Neural Network (IFFOA-ANN) for classifying normal and abnormal follicles in
ultrasound images was introduced by Nilofer et al.’, enhancing previous adaptive k-means clustering methods.
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The technique improves image quality, segments follicles, and extracts features using statistical Grey Level
Co-occurrence Matrix (GLCM), with the ANN trained on these features. The IFFOA-ANN method achieves
97.5% accuracy, offering a reliable automated classification system that improves the diagnosis and treatment of
infertility. Suha®® proposed a hybrid machine-learning method for PCOS detection using 594 ovary ultrasound
images. It employs a CNN with transfer learning for feature extraction, specifically the VGGNet16 model,
followed by a stacking ensemble model with XGBoost as the meta-learner. This approach effectively combines
deep learning and traditional machine learning, outperforming existing techniques in both accuracy and
execution time. Maheswari et al.*’ conducted a study for PCOS detection using ultrasound images, emphasizing
the importance of image processing in improving computer system performance. It employs adaptive histogram
equalization to remove noise and extracts features relevant to PCOS. A novel approach called Furious Flies
is proposed for feature identification, addressing the drawbacks of conventional algorithms. Three stages—
attraction-based ROI selection, follicle selection, and follicle identification—are employed. Classification is
performed using a Naive Bayesian classifier and artificial neural networks, enabling early detection of PCOS.
Despite these advancements, several gaps remain: the limited dataset sizes, may not represent the full spectrum
of PCOS variations, potentially affecting model robustness and generalizability. There is often no discussion
on potential biases in the datasets used for training, which could impact model performance on unseen data.
Many studies focus on diagnosing specific conditions like PCOM but do not expand to classify other types
of ovarian cysts, limiting their clinical utility. Additionally, manual diagnosis of polycystic ovary morphology
in ultrasound images by specialists introduces subjectivity and variability, impacting diagnostic accuracy and
consistency. Table 1 represents A comprehensive summary of the literature study and its key findings. Addressing
these gaps is crucial for developing more robust, generalizable, and clinically useful diagnostic systems. Within
the framework of this study, we have introduced several pivotal contributions to advance the domain of deep
learning-based image analysis:

1. Image Pre-processing Techniques for Improved Diagnostic Precision The study introduces a comprehensive
approach to pre-processing and segmenting ultrasound images for PCOS detection, incorporating multiple
techniques such as image resizing, normalization, augmentation, Watershed technique, multilevel thresholding,
Morphological Processing etc. This meticulous process ensures precise and accurate identification of follicles
and cysts and contributes to the overall diagnostic accuracy, reducing manual errors and time consumption.

2. Innovative Feature Extraction using the CystNet Hybrid Model This proposed CystNet technique for feature
extraction is proposed which is a hybrid model that integrates InceptionNet V3442 and Convolutional Au-

feature optimization, and classification using
traditional ML classifiers.

accuracy of 99.84%.

Reference | Methodology used Strength Scope of improvement
Preprocessing with the Block Mgtchmg 3D filter, By employing advanced methods such as Block The paper could benefit from discussing future
binary and watershed segmentation, and feature Y emproying pap &
extraction using various methods sdch as Tamura Matching 3D filter for pre-processing, binary and directions for research, such as exploring additional
Patil et al.*® Grav-Level Co—gOccurrence Matrix, edge features watershed segmentation for region identification, and machine learning algorithms or incorporating other
an dyGabor with dlassification erf(;rmi dusing various feature extraction methods, the paper exhibits a | imaging modalities to improve the overall diagnostic
KNN and RE models to classifsr Ovarian Mass%.s comprehensive approach to ovarian mass classification. | capabilities of the system.
grfcl:rsie:zﬁl: dr:;}}(:z?g:ggz ?;;liiségyligcgtgﬁod By integrating nature-inspired algorithms like Particle | Future research directions could include developing
Rahman et feature extraction with Pr e'_ trained CNN moc’lels Swarm Optimization and Cat Swarm Optimization an Android application for real-time classification
al.1 P > with the ResNet50 architecture, the model achieved an | and implementing the model on small IoT devices to

assist haematologists in blood cancer classification.

Jung et al.?

Convolutional Autoencoder, ResNet, Inception-v3,
and DenseNet were trained for classifying five
classes of ovarian ultrasound images.

The use of Gradient-weighted class activation mapping
provides qualitative insights into how the model
recognizes valid texture and morphology features from
ultrasound images.

The CNN models were trained with a relatively small
number of epochs and batch sizes. Implementing

the model with a larger number of epochs and more
efficient batch sizes could yield better results.

Various filtering techniques were evaluated
to remove noise and accurately segment cysts

The research integrates various segmentation strategies

Future work could explore the impact of various

2D and 3D mammogram images.

and systematic approach to model development and
evaluation.

Bhosale et f . . to improve follicle segmentation, showcasing a hyperparameters and feature selection methods,
48 rom ultrasound images, with features from the . . . o% AR .
al. seemented areas optimized for the classification of comprehensive approach to image processing in PCOS | such as optimization algorithms, on the performance
oviries using CNI\IIJ detection. of the classification models.
The research paper employed transfer learning }v[h;hnf;lg t:;e Elg(lgll)ls)ﬁ; EZiZsfeotrasncc{eIi:;ngNet for The study primarily focused on the performance
Khamparia | techniques, specifically utilizing the Modified VGG re-train%n P t}>1le research demonstrates a%horou h of the model in detecting mammogram images,
etal® (MVGG) architecture for breast cancer detection on | P & 5 potentially limiting the generalizability of the

findings to other types of cancer detection.

Gayathri et
3.1.35

ML classifiers such as Support Vector Machine,
Random Forest, and J48 are employed to grade the
diabetic retinopathy (DR) severity based on the
features extracted by the Multipath-Convolutional
Neural Network (M-CNN).

The experiments show high accuracy (99.62%) for

DR grading, indicating the potential of the proposed
method for accurate disease detection and grading,
which is crucial for early intervention and management
of DR.

Further research could focus on investigating
the scalability of the proposed method to larger
datasets or different imaging modalities to assess
its performance in varied clinical scenarios and
settings.

Gabor Wavelet approach for feature extraction and

The combination of feature extraction and classification
methods contributed to a comprehensive system

The study achieved an 80.84% classification accuracy
with a Competitive Neural Network. Using deep

the similarity assessment of lung module images.

medical image analysis.

. 50 o P
Dew etal. Competitive Neural Netwo rk for. classification was design and structured approach for PCO detection and | learning-based feature extraction could further
utilized to detect polycystic ovaries (PCO). . : p ik . P .
automating the identification process. improve PCO classification accuracy and efficiency.
The paper proposes two types of Convolutional By CANN, the paper contributes to the classification Enhancing the convolutional autoencoder framework
Chen et Autoencoder Neural Networks (CANN): C-CANN | of pulmonary nodules, offering a novel approach to to incorporate semi-supervised learning techniques
al! for the classification of lung cancer and S-CANN for | enhancing the accuracy of disease diagnosis through could help leverage both labelled and unlabelled data

for improved feature learning.

Table 1. Analysis of literature findings
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toencoder*>*4deep learning approaches. By leveraging the strengths of both InceptionNet V3, known for its
efficiency in handling varied spatial hierarchies, and Autoencoders, which excel in unsupervised learning,
CystNet effectively extracts and highlights critical features from ultrasound images. This dual approach en-
hances the ability of the model to distinguish subtle differences between affected and unaffected cases, there-
by improving the reliability and robustness of the diagnostic process.

3. High-Accuracy Classification Using DenseNet and ML Classifiers The classification phase of the proposed
system employs a dense Layer or fully connected (FC) layer alongside traditional machine learning classifi-
ers with rigorous 5-fold cross-validation, demonstrating exceptional diagnostic performance.The remaining
study is structured into four sections, each offering a detailed examination of the research process and out-
comes. Section 2 details the research methodology, encompassing dataset description, image segmentation,
feature extraction, and PCOS classification. Subsequently, Section 3 conducts a thorough analysis of exper-
imental results. Finally, Section 4 encapsulates the key findings of the study and outlines potential future
research directions.

Methodology

This section comprises a comprehensive overview of the dataset utilized for training and testing the diagnosis
model, followed by image preprocessing which includes normalization, augmentation and segmentation.
Moreover, this section discusses the proposed model for diagnosing PCOS using ultrasound images and
classifying PCOS and non-PCOS ovaries. The overall framework of this study is visually presented in Fig. 1,
outlining the various phases involved in the research.

Dataset description

A dataset obtained from Kaggle®? is utilized for training and testing our models, initially comprising 1,924
images for training and 1,932 for testing. However, due to significant overlap between these sets, the test set
is discarded, and the training set is utilized exclusively. This set is then split into new training and test sets. It
includes ultrasound images labelled as INFECTED’ (781 images with cystic ovaries) and 'NOT INFECTED’
(1,143 images with healthy ovaries). The given INFECTED’ and 'NOT INFECTED’ classes uniquely identify
individuals suffering from PCOS and those who are not, respectively, making this classification method highly
relevant for real-time medical systems in accurately diagnosing PCOS. Figure 2 shows sample images from both
categories.

This study has also incorporated the PCOSGen Dataset®, gathered from various online sources. This dataset
includes 3,200 healthy and 1,468 unhealthy samples, divided into training and test sets, which have been
medically annotated by a gynaecologist in New Delhi, India. Additionally, the Multi-Modality Ovarian Tumor
Ultrasound (MMOTU) image dataset™ is utilized, containing 1,639 US images from 294 patients.

Dataset preprocessing

The data preprocessing step is crucial for preparing the ultrasound images for training and testing the diagnosis
model. It involves several sub-processes: image resizing and normalization, image augmentation, and image
segmentation techniques are described below:
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Figure 1. Systematic approach outlining each step of the research process.
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INFECTED NOT INFECTED

Figure 2. Visual comparison of ultrasound images from patients with and without PCOS.
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Figure 3. Visual representation of the different augmentation operations.

Image resizing and normalization

All ultrasound images are resized to a uniform dimension of 224x224 pixels. This standardization ensures that the
input dimensions are consistent across all images, which is crucial for the convolutional neural network(CNN) to
process them efficiently. Uniform resizing also helps in reducing computational load and memory requirements
during model training. After resizing, the pixel values are normalized using min-max normalization®. This
involves scaling each pixel value I to a range of 0 to 1 using the formula:

I - Imin
Inorm i (1)

Imax - ]min

where, [— original pixel value, I;,;,— minimum intensity value, and [;,,x— maximum intensity value (usually
255 for 8-bit images). This scaling helps in reducing the variance and making the model training process faster
and more stable. It also ensures that the pixel values are on a similar scale, preventing any single feature from
dominating the learning process.

Image augmentation

Image augmentation® is essential for enhancing the diversity of training data, thereby improving the ability of
the model to generalize and perform well on unseen samples. It includes applying various transformations to the
original images, such as rotation, flipping, zooming, and shifting. These operations introduce variations in the
dataset, simulating real-world scenarios and ensuring robustness in the predictions of the model. Figure 3 depicts
the workings of augmentation operations visually and these augmentation operations are discussed below to
provide a comprehensive overview of the transformations applied to the images during the preprocessing stage:
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o Rotation: Images I— rotated by an angle  randomly selected from the range [—90°, 90°]. This transformation
is represented mathematically as:

Irotated = R(G) -1 (2)

Where R(f)— rotation matrix for angle 6.

o Flipping: Horizontal and vertical flipping are applied, represented as:

Iﬂippedfhorizont‘al =F,-1 3)
Tfipped_vertical = F - 1 @)

where Fj, and F,— horizontal and vertical flip operators, respectively. This effectively doubles the dataset size.

o Zooming: Zoom transformations are applied by scaling the image by a factor Z randomly chosen from a range
[Zmim Zmax]:

IZoomed = Z(Z) -1 (5)

where Z(z) — zoom transformation matrix.

o Shifting: Random width A, and height A, shifts, up to 20% of the total dimensions, are applied:
Laitea = T(Dr, &) 1 ©

Where T'(A,, A,)— translation matrix for shifts A, and A,,.

Image segmentation

Image segmentation is a crucial process in image analysis, where an image is partitioned into multiple segments
or regions to simplify and change the representation of the image into an interpretable format. It is particularly
important for medical imaging, as it allows for the precise identification and isolation of relevant structures, such
as identifying cysts in ultrasound images for diagnosing PCOS. In this study, the segmentation process involves
several steps: noise filtering, contrast enhancement, binarization, multilevel thresholding, and morphological
processing. The process used for segmentation is visualized step-by-step in Fig. 4.

« Noise Filtering: Noise filtering® aims to smooth out irregularities in the image caused by noise. One common
technique is Gaussian blur, which applies a convolution operation between the image and a Gaussian kernel.
Mathematically, this is represented as:

1)

S
Original Gaussian Watershed Multilevel Morphological
Blurred segmentation Thresholding Processing

Gaussian Enhanced Waterse

Origial Binarization Multilevel Morphological
Blurred Image segmentation Thresholding Processing
Figure 4. Visual steps in image segmentation for PCOS diagnosis.
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I(x +14,y +j) x G(i, ) (7)

\‘\ M»

k
]b]urr( rl z, 1/ E

Where i— horizontal distance & j— vertical distance from the center of the kernel, yjyyed(z, y)— blurred
pixel value at coordinates (x, y), I(x + i,y + j)— neighboring pixel values in the original image, and G(i, j) —
Gaussian kernel values which is mathematically represented as:

. 1 i + 52
Gli.d) = gz e (- 0

The Gaussian filter used has a mean of ;1 = 0 and a standard deviation of ¢ = 0.85, which are set to specific
values during preprocessing to control the amount of smoothing applied.

o Contrast Enhancement: Contrast enhancement®® techniques aim to improve the visual quality of an image by
increasing the intensity differences between pixels. Histogram equalization is a common method that redis-
tributes pixel intensities to achieve a more uniform histogram. Mathematically, the transformation function
T is computed from the image histogram H and its cumulative distribution function CDF:

T(i) = NM[ZH 9)

Where T(i) — transformed intensity value, L— number of intensity levels, and N x M — total number of pixels
in the image.

o Watershed Technique: The watershed algorithm? interprets the intensity gradient of the image as a topograph-
ic surface. It identifies regions of unexpected changes in intensity, indicating potential object boundaries.
Mathematically, it computes the gradient magnitude VI of the image and treats it as a topographic surface. It
then identifies regions of low intensity and regions of high intensity to segment the image.

« Binarization: This operation simplifies the image by converting grayscale intensity values to binary values,
effectively separating the foreground from the background. Otsu’s thresholding®® is a widely used technique
that automatically computes the optimal threshold value T to distinguish between the two classes by mini-
mizing the intra-class variance. The optimal threshold value T is computed by maximizing the between-class
variance 0%, which represents the variance between the two classes of pixel intensities. Mathematically, it can
be expressed as:

T = arg III?;X(U%(t)) (10)

In this equation, arg max— value of t that maximizes Jfg between-class variance.

o Multilevel Thresholding: Multilevel thresholding® partitions an image into multiple segments by applying
thresholding operations with different threshold values 7;. This technique is useful for segmenting images
with complex intensity distributions. Mathematically, it applies thresholding operations with different thresh-
old values 11,75, . . ., T), to segment the image into multiple regions. For a grayscale image, this process can
be represented mathematically as follows:

Segment; = {p € Image | T;,_; < Intensity(p) < T;} (11)
Where Segment,— region segmented by the i threshold, 7;_; and 7; are consecutive threshold values, and
Intensity(p) denotes the intensity of the pixel p in the image.

« Morphological Processing: Morphological operations* manipulate the shape and structure of objects in the
image. Erosion, dilation, opening, and closing are common morphological operations. Mathematically, these
operations are defined using structuring elements (kernels) and applied to binary images to modify object
boundaries and remove noise. For instance, erosion E and dilation D can be expressed as:
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A) = _ﬂ(A - By) (12)
D(A) = LnJ(A © By) (13)

Where A— input binary image, B;— structuring element, and 6 and — denotes dilation and erosion operations,
respectively.

Dataset division

The dataset from Kaggle is divided into two sets: 70% for training and 30% for testing. The training set is utilized
to train the classifier, allowing it to learn patterns and features indicative of PCOS, while the testing set evaluates
the performance of the model and ensures its ability to generalize and accurately diagnose PCOS on unseen data.

Feature extraction

The process of feature extraction transforms raw data into a set of informative attributes which reduces the
complexity of the data by focusing on the most relevant aspects, enhancing the performance and efficiency of
models. InceptionNet V3 and Convolutional Autoencoder have been used for feature extraction in our approach.
These methods integrate to form a comprehensive model named CystNet, which combines the strengths of both
techniques to complete the feature extraction process, represented in Fig. 5. Each method is described in detail
below:

Feature extraction using InceptionNetV3

Unlike traditional CNN models that use specific receptive field sizes in different layers for feature extraction, the
Inception module employs kernels of various sizes (I1x I, 3x3, and 5x5) in parallel*!. These parallel features are
then depth-wise stacked to produce the output of the module. Additionally, a 3x3 max-pooled version of the
input is included in the feature stack. This combined output delivers rich, multi-perspective feature maps to the
subsequent convolutional layer, contributing to the effectiveness of the Inception module in applications such as
medical imaging, in our case with PCOS ultrasound images.

InceptionNet V32, a variant of the Inception architecture, has been employed in this study for feature
extraction. Retaining three Inception modules and one grid size reduction block, followed by Max Pooling and
Global Average Pooling layers to decrease the output dimensions. It is a 48-layer deep convolutional neural
network capable of recognizing intricate patterns and features in medical images and employs convolution
kernel splitting to break down large convolutions into smaller ones, such as dividing a 3x 3 convolution into 3x
I and 1x3convolutions, developed by Keras and pre-trained on ImageNet. After convolution, the channels are
aggregated and non-linear fusion is performed, enhancing the adaptability of the network to different scales,
preventing overfitting, and enhancing spatial feature extraction. With input matrix Ay given in equation 23, the
convolutional operation followed by ReLU activation, max-pooling, and global average pooling is represented

as follows:
: 3}}}3} 3}} } Ii
2 £
s £
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E Convolutxonal MaxPoollng Average Pooling Concatenatlon
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Feature Vector
1_|
ot E"Coder Decoder -
g5 ' 4// £
g g : b, i y =
S E
> N[> ~ > > IE
O«
. #
S
l‘ (g
/"'q, &
2 <
Convl Conv2 Conv3 D,Conv3 D, Comv2 D, Convl

Figure 5. CystNet: integrating InceptionNet V3 and convolutional autoencoder for feature extraction.
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Pl‘l e Plj/ Ql,l e Qly
Ax=| Pu = Py | x| Qu -+ @y (14)
z—1 y-1
=3 Punw-pBuang (15)
i=0 J=0
ReLU = max(0, ) (16)
X® = ReLUW® 5 X~ 4 p(0) (17)
MaxPooling(X );; = max(Xj;) (18)
Xéi))oled = MaxPooling(X ") (19)
] M N
GlobalAveragePooling(X) = T <N ; ; Xij (20)
Xpeatures = Global AveragePooling(X ™) (21)

th th

In these equations, IW'— weight tensor of the i""convolutional layer, X'— output feature map after the i’ layer,
b — bias vector, and X(eatures— final feature vector obtained after applying global average pooling, while M and
N represent the height and width of the spatial dimensions of the feature map X, respectively.

Feature extraction using convolutional autoencoder

An autoencoder can utilize various types of neurons, but convolutional kernels are particularly effective for
2D data, making them ideal for handling images. Convolutional autoencoders share a structural similarity with
CNNs, including convolution filters and pooling layers*. Another benefit of CNN: is their ability to maintain
and utilize the spatial information inherently present in images**. Moreover, the convolutional autoencoder
converts 2D data representations into 1D arrays. For example, it transforms the positions of m pins, given as
pairs of coordinates (p, q) in R™*2, into a 1D format and ensures that the input and output nodes have the same
dimensionality, allowing for a direct comparison between the input and output images*. This comparison is
utilized as an objective function to learn the parameters of the autoencoder. Since the learning process is label-
independent, convolutional autoencoders are considered unsupervised methods. Equation 22 is used to express

the latent encoding of the " feature map in the encoder for a single-channel input p.

l, = O'(p * w; + b,) (22)

where * represents 2D convolution, w;— convolutional filters in the encoder, and 0— activation function. The
decoder reconstructs the image using:

qa(le*wi—&-b) (23)

kel

where b— bias per input channel, L— set of latent feature maps, and w— learnable de-convolution filters. The
objective function minimized during training is the mean squared error (MSE), defined as:

m

00) = —> (pr — ar)? (24)

2]) k=1

where §— parameters of the autoencoder, p,— the input image in the dataset, and ¢, — the reconstructed image
produced by the autoencoder.

Image classification
After feature extraction, we have applied two approaches for image classification: Classification Using Dense
Layer and Classification Using ML Classifiers are explained below:

Classification using dense layer

In the Dense Layer classification, a fully connected neural network is used to perform the final classification

of the extracted features. The network architecture typically consists of multiple dense layers, each followed by

activation functions and dropout layers to prevent overfitting. The operations or blocks are described below:
Input Layer: The input to the dense network is a feature vector x extracted from the previous stages. If the

feature vector has n features, it is represented as:
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v = [y, 29, Ty (25)

Dense Layers: Each dense layer performs a linear transformation followed by a non-linear activation function.
For a given layer ], the transformation can be expressed as:

Zt =Wl 4 ¢ (26)

where a{/~1)— activation from the previous layer, W'— weight matrix of layer /, and b'— bias vector of layer I.

The activation function applied to the linear transformation is typically a Rectified Linear Unit (ReLU), defined
as:

a' = ReLU(Z") = max(0, Z') (27)

Dropout Layers: Dropout layers are used during training to prevent overfitting by randomly setting a fraction
p of the input units to zero. Mathematically, this can be expressed as:

! Lol
Adropout = @ - d (28)
where d'— binary mask vector sampled from a Bernoulli distribution with parameter p.

Output Layer: The final layer is a dense layer or fully connected layer with a sigmoid activation function that
outputs the probability of the positive class for binary classification:

§=o(Wa" +b™) (29)
where WU and b°" are the weights and biases of the output layer, a*— activation from the last hidden layer,
and 0— sigmoid function, which is calculated as:

_ 1
T l4e

o(z) (30)

Model Compilation: During the training process, the model parameters are optimized using the Adam optimizer,
which dynamically adjusts the learning rate for efficient convergence. The optimization aims to minimize the
loss function, specified as the binary cross-entropy, which quantifies the difference between predicted and
actual labels. Additionally, the training incorporates rigorous 5-fold cross-validation to ensure robustness and
generalization to unseen data. In 5-fold cross-validation, the dataset is divided into five subsets, and the model
is trained on four subsets while the remaining one is held out for validation as depicted in Fig. 6. This process
iterates five times, with each subset used once as the validation data. Mathematically, the loss function can be

expressed as:
‘ Training ‘ ‘ Testing ‘
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. FOLD1 || FOLD1 | | FOLDI |eee FOLD1 |
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[ ] [ ] [ ] ]
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Figure 6. Visual representation of K-fold cross validation.
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Figure 7. Accuracy and loss graphs for approach A on Kaggle PCOS ultrasound images.
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Figure 8. Confusion matrix representation for approach A and approach B on Kaggle PCOS US images.

n

Loss = —% Z [0;log(P;) + (1 — 0;) log(1 — P})] (31)

i=1

where n— number of samples, 0,— true label of the i sample, and P,— predicted probability of the positive
class. Additionally, the k-fold cross-validation process is mathematically represented as:

K
1
CV=12) B (32)
k=1
where K— number of folds, and Ej,— performance metric obtained on the k* fold during validation.

Classification using ML algorithms

In addition to the deep learning approach, traditional machine learning classifiers are also employed for the
classification of PCOS. These classifiers include Naive Bayes (NB), k-Nearest Neighbors (K-NN), Random Forest
(RF), and Adaptive Boosting (ADB) where the features extracted by the CystNet model serve as the input for
these classifiers. Each of the classifiers is briefly discussed below:

1. K-Nearest Neighbor: The K-NN°7 classifier is a straightforward, instance-based learning algorithm used for
classification tasks. It classifies a new instance by identifying the K closest training instances (neighbors)
using a distance metric, commonly the Euclidean distance. The Euclidean distance between two instances x;
and z; with m features is given by:
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Figure 9. ROC-AUC curves representation for Kaggle PCOS US images.

Feature extraction model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Specificity (%)
InceptionNet V3 94.68 94.08 95.97 95.01 93.23
Autoencoder 93.97 91.77 97.31 94.46 90.22
ResNet 50 95.55 94.17 97.22 95.67 93.03
DenseNet 121 94.32 92.90 96.64 94.73 91.72
EfficientNet BO 92.98 92.53 92.20 92.36 93.75
CystNet 96.54 94.21 97.44 95.75 95.92

Table 2. Comparison table for approach A with various DL models on Kaggle PCOS US images. Significant
values are in bold.

Feature extraction | ML classifier | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Specificity (%)
ADB 97.16 96.12 98.67 97.38 95.41
K-NN 96.01 94.61 97.68 96.12 94.31
CystNet
NB 96.45 95.97 97.27 96.62 95.51
RF 97.75 96.23 98.29 97.19 97.37

Table 3. Comparison Table for Approach B with Various ML Models on Kaggle PCOS US Images. Significant
values are in bold.
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Authors Year | Dataset Feature extraction Classification | Accuracy
Nilofer et al.* 2021 | Kaggle PCOS US images GLCM ANN 97.50%
Gopalakrishnan et al.*® | 2021 | Kaggle PCOS US images GIST-MDR SVM 93.82%
Alamoudi et al.’ 2023 | King Fahad Hospital US images | MobileNet FC 82.46%
Rachana et al.’? 2021 | Kaggle PCOS US images Entropy, Contrast, Energy, Homogeneity | K-NN 97%
Nakhua et al.* 2024 | PCOSGen US images GLCM Hybrid ML 92%
Bedi et al.®! 2023 | MMOTU images Attention Residual Unit AResUNet 97%
Paramasivam et al.®? 2024 | Kaggle PCOS US images SD_CNN Hybrid ML 96.43%
Chitra et al.® 2023 | Kaggle PCOS US images - Hybrid DL 95%
Proposed Approach A | - Kaggle PCOS US images CystNet FC 96.54%
Proposed ApproachB | - Kaggle PCOS US images CystNet RF 97.75%
Proposed Approach A | - PCOSGen US images CystNet FC 94.39%
Proposed ApproachB | - PCOSGen US images CystNet RF 96.12%
Proposed Approach A | - MMOTU images CystNet FC 95.67%
Proposed ApproachB | - MMOTU images CystNet RF 97.23%
Table 4. Comparison of findings across previous studies. Significant values are in bold.

Approach Training % & Testing % | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | Specificity (%)

70% & 30% 96.54 94.21 97.44 95.75 95.92
Approach A | 75% & 25% 95.63 94.70 95.97 95.33 93.98

80% & 20% 95.63 91.21 91.20 91.21 91.00

70% & 30% 97.75 96.23 98.29 97.19 97.37
Approach B | 75% & 25% 97.17 96.02 97.08 93.30 96.55

80% & 20% 93.67 92.00 95.83 93.88 91.47

Table 5. Comparison table with different division of train and test set for approach A and approach B on
Kaggle PCOS US images. Significant values are in bold.

Approach Number of folds | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | Specificity (%)

5 96.54 94.21 97.44 95.75 95.92
Approach A | 8 95.63 94.70 95.97 95.33 93.98

10 91.10 91.21 91.20 91.21 91.00

5 97.75 96.23 98.29 97.19 97.37
ApproachB | 8 95.79 95.10 96.45 95.77 95.13

10 93.91 95.67 92.13 93.87 95.73

Table 6. Comparison table with different number of folds for approach A and approach B on Kaggle PCOS US
images. Significant values are in bold.

(33)

The class label of the " neighbor 7 is then determined by the majority vote of its K-nearest neighbors:

g =mode{y;|i =1,2,..., K}

2. Naive Bayes: Naive Bayes® is a probabilistic classifier grounded on Bayes’ theorem, operating with an as-

sumption of feature independence. Given a feature vector = = (1, o, . . .

computes the class with the highest posterior probability using the formula:

,x,) and a class C}, the classifier
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P(x|My) - P(My)

P(My|z) = P

(35)

This calculation involves the likelihood P(z|M}), the prior probability P(M}), and the marginal likelihood
P(x).

3. Random Forest: An RF* classifier is an ensemble learning method used for classification tasks, where it con-
structs multiple decision trees and outputs the class that is the mode of the classes predicted by the individual
trees. Mathematically, for a new instance x, the prediction g is the mode of the predictions from B trees:

g =mode{hy(z)[b=1,2,...,B} (36)

where hy(z) is the prediction of the b'" tree. The best split s* at each node is found by minimizing the impurity,
such as the Gini impurity:

D,
" = arg min Z LD” - Gini(Dy) (37)
* he(L.R) D]

where Dy, and Dj, are the left and right splits of the node, respectively.

4. Adaptive Boosting: ADB® classifier combines multiple weak models to create a strong classifier. It iteratively
trains models, giving more weight to misclassified samples. The final strong classifier H(x) is a weighted sum
of the individual weak classifiers /;(x):

T
H(z) = sign (Z Oztht(l’)> (38)

where t is the index of the individual weak classifiers, and T is the total number of weak classifiers.

Experimental results

Performance evaluation metrics

To assess the performance of the model, various performance metrics have been utilized efficiently. These metrics
provide a comprehensive evaluation of the model’s effectiveness in accurately classifying the ultrasound images
and diagnosing PCOS. The foundation for these metrics is the confusion matrix (CM)*, which captures the
model’s predictions against the actual classifications. The following terms of the confusion matrix are discussed
below :

o True Positive (TP,): This occurs when the classifier correctly identifies a patient as having PCOS.

o True Negative (TN,,): This occurs when the classifier correctly identifies a patient as not having PCOS.

o False Positive (F'P,s): This occurs when the classifier incorrectly identifies a patient as having PCOS when
they do not.

o False Negative (I'N.,): This occurs when the classifier incorrectly identifies a patient as not having PCOS when
they actually do.Based on this matrix, several metrics have been calculated and are briefly discussed below:

1. Accuracy: The ratio of correctly predicted instances to the total instances®®. Mathematically,

TP,s+ TNy

Accuracy = 39
° TP+ TN+ FP,+ FN, (39)
2. Precision: It indicates the accuracy of the positive predictions made by the model®®. Mathematically,
TP,
Precision(P,) = —————"—— 40
(Fe) TFos + F Py (40
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3. Recall: Tt measures the ability of the model to identify all relevant instances in the dataset®. Mathematically,

TPy

Recall(R,) = ————
ecall(R,) TP, + FN,, (41)
4. FI Score: The harmonic mean of precision and recall®. Mathematically,
2% P, x R,
F1 score = ————— 42
score P iR (42)

5. Specificity: It measures the ability of the model to correctly identify negative instances®®. Mathematically,

TN,
‘ (43)

Specificity(s.) = TN 1 FP.
eg 0s

6. ROC-AUC: The ROC-AUC curve represents the ability of the model to distinguish between classes®.Each
metric offers a unique perspective on the performance of the model, capturing different aspects of the clas-
sification task. Accuracy, Precision, Recall, F1 Score, Specificity, and ROC-AUC were chosen because they
collectively measure the model’s ability to correctly identify both positive and negative instances, the trade-
off between precision and recall, and the overall discriminative power of the model.

Result and discussion

The proposed framework for Polycystic Ovary Syndrome (PCOS) detection is implemented using an 8th-
generation Intel Core i7 processor, 8 GB RAM, and Python programming tools. The results demonstrate the
efficacy of the system in accurately diagnosing PCOS from ultrasound images, with substantial improvements
over traditional methods. The necessity for precise PCOS diagnosis lies in its significant impact on women’s
reproductive health, affecting approximately 15% of reproductive-aged women globally. Early detection is vital
to manage associated symptoms such as acne, alopecia, hirsutism, and infertility, thereby enhancing the quality
of life and reducing long-term health risks. Our study introduces an advanced automated system that utilizes AI
techniques, including Machine Learning, Transfer Learning, and Deep Learning, to detect and classify PCOS from
ultrasound images. The image pre-processing techniques, such as image resizing, normalization, augmentation,
division, and segmentation which contribute significantly to the accurate identification of follicles and cysts,
reducing the likelihood of manual errors. Furthermore, the proposed CystNet hybrid model for feature extraction
integrates InceptionNet V3 and Convolutional Autoencoder approaches, effectively highlighting critical features
from the ultrasound images and perceiving subtle differences between affected and unaffected cases. This model
extracts 2048 features from InceptionNet V3 and 1024 features from a convolutional autoencoder, which are
then rescaled and concatenated, resulting in a total of 3062 features for the subsequent classification stage. The
classification phase of the system is diverged into two approaches: Approach A and Approach B.

In Approach A, the system employs a dense (fully connected) layer for classification, as detailed in Table 2.
CystNet achieved an accuracy of 96.54%, a precision of 94.21%, a recall of 97.44%, a F1-score of 95.75%, and a
specificity of 95.92% on the Kaggle PCOS US images. These metrics indicate a high level of diagnostic precision
and reliability, outperforming other deep learning models like InceptionNet V3, Autoencoder, ResNet50,
DenseNet121, and EfficientNetB0. The accuracy and loss graphs in Fig. 7 further illustrate the robust training
and validation process for Approach A, with minimal overfitting observed. Moreover, the effectiveness of
Approach A extends to other datasets, as reflected in its better performance on additional datasets. Specifically,
Approach A achieved an accuracy of 94.39% when applied to the PCOSGen dataset, and this approach further
demonstrated the robustness with an accuracy of 95.67% on the MMOTU dataset. These results represent the
versatility and reliability of Approach A across different data sources.

Approach B integrates machine learning classifiers for the final classification phase after feature extraction
with CystNet. The Random Forest classifier led the performance, achieving an accuracy of 97.75%, a precision of
96.23%, a recall of 98.29%, a F1-score of 97.19%, and a specificity of 97.37% on the Kaggle PCOS US images, as
represented in Table 3. This approach outperforms traditional methods and other classifiers such as Adaptive
Boosting, K-Nearest Neighbors, and Naive Bayes. Figures 8 and 9 depict the confusion matrix and AUC
curves, respectively, further validating the high diagnostic accuracy of both approaches and highlighting the
high diagnostic precision and reliability of the suggested model. Furthermore, Approach B exhibited better
performance across various datasets, demonstrating its capability to generalize effectively. On the PCOSGen
dataset, this approach attained an accuracy of 96.12%, while on the MMOTU dataset, it excelled further, reaching
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an accuracy of 97.23%. The outcomes represent the ability of Approach B to maintain high diagnostic accuracy
and reliability across different medical datasets.

A brief comparison with previous studies indicates that our approach surpasses existing methods in terms
of accuracy and reliability, emphasizing its potential for medical application. The recent systematic review by
Arora et al.* highlights various machine learning algorithms for PCOS diagnosis, observing the challenges and
limitations of current techniques in capturing the complexity of the syndrome. Paramasivam et al.®* developed
a Self-Defined CNN (SD_CNN) for PCOS classification, achieving a notable accuracy of 96.43% using a
Random Forest Classifier. While their model is effective, our approach incorporates a more comprehensive
feature extraction process, leading to higher accuracy and robustness. A CNN-based automation for PCOS
diagnosis with a focus on model interpretability using the Grad-CAM technique was presented by Galagan
et al.®>. Moreover, Kermanshahchi et al.*® introduced a machine learning-based model for PCOS detection on
a specialized dataset. While their approach emphasizes transparency in decision-making, the integration of
multiple AI techniques in our proposed approach enhances its generalizability across diverse datasets, making it
more suitable for real-world clinical settings. Table 4 demonstrates that our approach surpasses existing methods
in terms of accuracy and reliability, further emphasizing its potential for medical application. Additionally, the
performance consistency across different divisions of training and test sets in Table 5 and various folds for cross-
validation in Table 6 highlight the robustness of our system.

The sophistication of the proposed solution primarily arises from the integration of multiple AI techniques,
including ML, TL, and DL. The CystNet hybrid model, which combines InceptionNet V3 with a Convolutional
Autoencoder, involves extensive computation for feature extraction and integration. Unlike existing approaches,
which often rely on single-stage or less integrated approaches, our method’s novelty lies in its comprehensive
feature extraction and hybrid model integration, which enhances feature representation and classification
performance. Despite the advancements, the current solution has limitations. One major limitation is that the
dataset used for training and evaluation originates from a single source, which may not fully represent the
variability found in diverse populations. This could affect the generalizability and performance of the model
in real-world clinical settings. Additionally, the computational demands of the CystNet model may limit
its practical deployment on devices with lower processing power. Future research should incorporate multi-
source datasets to enhance model robustness. Additionally, real-time deployment and integration into clinical
workflows pose challenges, necessitating further development in terms of computational efficiency and user-
friendly interfaces for healthcare professionals. However, the experimental results underscore the potential of
the proposed framework in revolutionizing PCOS diagnosis through automated image analysis and classification
techniques. By streamlining the diagnostic process and improving accuracy, the framework holds promise in
facilitating timely interventions and reducing the burden on healthcare professionals, ultimately benefiting
women’s reproductive health and well-being.

Conclusion and future work

Diagnosing Polycystic Ovary Syndrome is crucial due to its significant impact on the reproductive health of
women, affecting approximately 15% of reproductive-aged women globally. In this study, a dataset obtained
from Kaggle, consisting of ultrasound images labeled as INFECTED’ (cystic ovaries) and 'NOT INFECTED’
(healthy ovaries), is used. These images are augmented using various transformations, such as rotation, flipping,
zooming, and shifting, and segmented using techniques like the Watershed technique, multilevel thresholding, and
morphological processing to ensure precise image segmentation. An advanced automated system is developed
using Al techniques, including ML, TL, and DL, to detect and classify PCOS, with the proposed CystNet hybrid
model integrating InceptionNet V3 and Convolutional Autoencoder to effectively extract critical features from the
ultrasound images. During the classification phase, both a dense layer and traditional ML classifiers are employed
to enhance the robustness of the classification process. With a 5-fold cross-validation process, the dense layer
approach achieved an accuracy of 96.54%, precision of 94.21%, recall of 97.44%, and specificity of 95.92%, while
the RF classifier achieved an impressive accuracy of 97.75%, precision of 96.23%, recall of 98.29%, and specificity
of 97.19%. The results highlight the potential of the proposed framework to streamline the diagnostic process,
reducing manual errors and time consumption while facilitating timely interventions for women’s reproductive
health. Future work could focus on incorporating multi-source datasets from diverse populations to improve the
model’s generalizability. Moreover, enhancing computational efficiency and developing user-friendly interfaces
are crucial steps to ensure the practical usability of the system.

Data availability and access
The PCOS ultrasound dataset is available at: https://www.kaggle.com/datasets/anaghachoudhari/pcos-detec-
tion-using-ultrasound-images.
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