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Sentiment analysis is a pivotal tool in understanding public opinion, consumer behavior, and social 
trends, underpinning applications ranging from market research to political analysis. However, 
existing sentiment analysis models frequently encounter challenges related to linguistic diversity, 
model generalizability, explainability, and limited availability of labeled datasets. To address these 
shortcomings, we propose the Transformer and Attention-based Bidirectional LSTM for Sentiment 
Analysis (TRABSA) model, a novel hybrid sentiment analysis framework that integrates transformer-
based architecture, attention mechanism, and recurrent neural networks like BiLSTM. The TRABSA 
model leverages the powerful RoBERTa-based transformer model for initial feature extraction, 
capturing complex linguistic nuances from a vast corpus of tweets. This is followed by an attention 
mechanism that highlights the most informative parts of the text, enhancing the model’s focus on 
critical sentiment-bearing elements. Finally, the BiLSTM networks process these refined features, 
capturing temporal dependencies and improving the overall sentiment classification into positive, 
neutral, and negative classes. Leveraging the latest RoBERTa-based transformer model trained on 
a vast corpus of 124M tweets, our research bridges existing gaps in sentiment analysis benchmarks, 
ensuring state-of-the-art accuracy and relevance. Furthermore, we contribute to data diversity by 
augmenting existing datasets with 411,885 tweets from 32 English-speaking countries and 7,500 
tweets from various US states. This study also compares six word-embedding techniques, identifying 
the most robust preprocessing and embedding methodologies crucial for accurate sentiment analysis 
and model performance. We meticulously label tweets into positive, neutral, and negative classes 
using three distinct lexicon-based approaches and select the best one, ensuring optimal sentiment 
analysis outcomes and model efficacy. Here, we demonstrate that the TRABSA model outperforms the 
current seven traditional machine learning models, four stacking models, and four hybrid deep learning 
models, yielding notable gain in accuracy (94%) and effectiveness with a macro average precision 
of 94%, recall of 93%, and F1-score of 94%. Our further evaluation involves two extended and four 
external datasets, demonstrating the model’s consistent superiority, robustness, and generalizability 
across diverse contexts and datasets. Finally, by conducting a thorough study with SHAP and LIME 
explainable visualization approaches, we offer insights into the interpretability of the TRABSA model, 
improving comprehension and confidence in the model’s predictions. Our study results make it easier 
to analyze how citizens respond to resources and events during pandemics since they are integrated 
into a decision-support system. Applications of this system provide essential assistance for efficient 
pandemic management, such as resource planning, crowd control, policy formation, vaccination 
tactics, and quick reaction programs.
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Due to the growth of textual data on social media platforms, news stories, reviews, and consumer feedback, 
sentiment analysis (SA), a crucial aspect of natural language processing (NLP), has seen growing attention and 
usage across several domains1. Institutes may get crucial insights into public opinion, consumer preferences, 
market trends, and brand impression by identifying and analyzing feelings conveyed in text2. Thus, SA is critical 
in directing marketing initiatives, product development, company strategies, and reputation management3. 
Additionally, SA is useful in various domains, including politics, healthcare, economics, and the social sciences, 
where decision-making and policy development depend on a knowledge of human emotions and attitudes.

Despite its broad use, SA still has issues that need more study and creativity. The lack of generalizability 
and robustness of SA models is one of the primary issues, especially when applying them to various languages, 
domains, and datasets4. Because existing models frequently display different performance levels based on the 
properties of the data, they are less dependable in real-world situations where the data distribution may change 
greatly5. Furthermore, SA models’ interpretability is still a major worry, particularly in high-stakes scenarios 
when model predictions are used to make judgments6. Deep learning (DL) models are black-box in nature, 
which makes it difficult to grasp how these models get to their conclusions. This makes it difficult to implement, 
impedes trust, and holds people accountable for important decision-making processes.

Inspired by these difficulties, this study aims to develop a strong, broadly applicable, and easily interpreted 
model of SA that will overcome the shortcomings of current techniques. Through improvements in DL, attention 
mechanisms, and interpretability methodologies, our goal is to develop a model that performs well on various 
datasets and offers insights into how it makes decisions. This research advances the area of SA by bridging the gap 
between model performance, interpretability, and practical application. We aim to improve the trustworthiness, 
transparency, and usefulness of SA models by employing empirical assessments and interpretability studies. This 
will enable enterprises to make well-informed decisions by relying on dependable sentiment insights.

Our research aims to fill several critical gaps in the existing literature. First, although SA has received a lot 
of attention-especially regarding social media data-more robust and interpretable models are still required to 
classify sentiments across various languages and domains accurately. Many current methods are not transparent, 
scalable, or generalizable, making it difficult to use them in real-world situations. Furthermore, a notable 
deficiency in current datasets for SA is the absence of representation for various English language usage patterns. 
Variations in vocabulary, grammar, and contextual usage of English across national boundaries result in subtle 
discrepancies in the presentation of distinct emotions. This variability presents a problem for SA models, making 
it difficult to assess sentiments appropriately in various language circumstances. More advanced methods are 
required to capture minute semantic subtleties and adjust to changing contextual signals since current models 
may not comprehend sarcasm, context-dependent sentiment changes, or nuanced sentiment expressions.

This study addresses the need for robust and generalizable SA models by proposing the “Transformer and 
Attention-based Bidirectional LSTM for Sentiment Analysis (TRABSA)” model. The TRABSA model integrates 
the strengths of transformer-based architecture and attention mechanisms with recurrent neural networks 
(RNNs) like bidirectional long short-term memory (BiLSTM) to enhance the performance and adaptability of 
SA tasks. Our method seeks to capture the broad diversity of English language usage and offer a more thorough 
knowledge of sentiment expression in various linguistic situations by combining data from several locations 
into a single dataset. By using this method, TRABSA can more effectively adjust to the subtle differences in 
English language usage across various groups, which improves the precision and significance of SA findings. 
We test the performance of the TRABSA model on a range of DL architectures and datasets, including extensive 
Twitter and external social media datasets, with a particular emphasis on scalability, accuracy, and consistency. 
Additionally, we do interpretability assessments utilizing the SHAP and LIME approaches to understand the 
model’s decision-making mechanism. We show the TRABSA model’s generalizability and robustness through 
our thorough examination, providing a viable method for SA in various real-world situations.

Our research makes eight-fold key contributions: 

	1.	� We propose the TRABSA model, a novel hybrid sentiment analysis framework that combines transform-
er-based architectures, attention mechanisms, and BiLSTM networks to improve sentiment analysis perfor-
mance.

	2.	� This research leverages the latest RoBERTa-based transformer model, trained on a vast corpus of 124M 
tweets, to bridge existing gaps in sentiment analysis benchmarks, ensuring state-of-the-art accuracy and 
relevance.

	3.	� We extended the existing dataset by scraping 411,885 tweets from 32 English-speaking countries to include 
diversity in the Global Twitter COVID-19 Dataset, acknowledging the varied perspectives and discourse 
across regions. We scraped an additional 7500 tweets from different states of the USA to deepen geographical 
representation in the USA Twitter COVID-19 Dataset, allowing for localized insights and analysis.

	4.	� This article thoroughly compares word embedding techniques, establishing the most robust preprocessing 
and embedding methodologies essential for accurate sentiment analysis and model performance.

	5.	� We methodically label tweets using three distinct lexicon-based approaches and rigorously select the most 
effective one, ensuring optimal sentiment analysis outcomes and model efficacy.

	6.	� We conduct extensive experiments to assess the TRABSA model’s performance on the UK COVID-19 Twit-
ter Dataset, benchmarking against 7 traditional machine learning (ML) models, 4 stacking models, and 4 DL 
models, demonstrating its superiority and versatility.

	7.	� We evaluate the TRABSA model’s robustness and generalizability across 2 extended and 4 external datasets, 
showcasing its consistent superiority and applicability across diverse contexts and datasets.
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	8.	� We provide insights into the interpretability of the TRABSA model through rigorous analysis using SHAP 
and LIME techniques, enhancing understanding and trust in the model’s predictions.The rest of this article 
is structured as follows: section “Related works” reviews state-of-the-art literature in SA using ML-DL and 
interpretability techniques. In the section “Methodology,” the data collection and preprocessing techniques, 
unsupervised text labeling, implemented ML and DL models for benchmarking, architecture, and method-
ology of the proposed TRABSA model are described. The section “Results” presents the experimental setup, 
evaluation metrics, results, and robustness analysis of the TRABSA model. The SHAP and LIME analysis 
conducted on the TRABSA model are covered in section “Interpretability analysis”. Section “Discussions” 
addresses the findings and implications of our investigation. In conclusion, the article is summarized, and 
future research directions are outlined in section “Conclusions and future directions”.

Related works
When it comes to classifying data into positive, neutral, and negative sentiment polarity, SA is essential. Exploring 
a wide range of emotions is the focus of the emerging domains of SA7. Sentiments can be further classified 
into categories like satisfaction and rage within certain settings, such as political disputes8. The development of 
SA approaches with ambivalence management has allowed classifying emotions into distinct classes, including 
sorrow, anger, anxiety, excitement, and happiness, leading to more nuanced outcomes9. While SA has typically 
focused on textual data, it has expanded to include multimodal SA, which explains data from devices that 
employ audio- or audio-visual formats10. The extension of SA into multimodal analysis highlights its variety 
and complexity, creating opportunities for a wide range of NLP applications. The variety of options is further 
highlighted by the fast growth of NLP, fueled by research in neural networks11. Notably, the development of 
Neurosymbolic AI, which combines symbolic reasoning and deep learning, offers a viable method of improving 
NLP capabilities12, highlighting the various paths NLP research is taking. Lexicon-based methods, ML-based 
methods, and hybrid techniques are the three main methodologies for solving text categorization and emotion 
detection challenges. Word polarity is used by lexicon-based approaches, and ML techniques see text analysis 
as a classification problem that may be further divided into supervised, semi-supervised, and unsupervised 
learning approaches13. SA results are frequently improved in real-world applications by combining ML with 
lexicon-based techniques.

In Ahmed & Ahmed’s work, positive and negative emotions were used to classify gathered fake newspapers 
using a variety of approaches, including TF-IDF, random forest (RF), Naïve Bayes (NB), etc.14. According to 
their results, out of all the classifiers used, the Naïve Bayes classifier had the best accuracy (89.30%). To identify 
feelings in the Twitter sentiment 140 datasets, Gaur et al.15 used TF-IDF feature extraction and the Naïve Bayes 
Classifier. The model produced improved accuracy (84.44%) and precision when measured using several 
performance criteria, such as accuracy, recall, and precision. The COVID-19-related data that Qi & Shabrina16 
examined came from Twitter users in major English cities. They conducted a comparative analysis of ML 
models, including Vader and Textblob, RF, support vector classification (SVC), and multinominal Naïve Bayes 
(MNB) models. According to the results of their investigation, SVC with TF-IDF demonstrated better accuracy 
than the other models. To assess opinions about Saudi cruises, Al Sari et al.17 created three different datasets 
from social media platforms. With oversampled Snapchat data, they used ML techniques, including RF, MLP, 
NB, voting, SVM, and the n-grams feature extraction approach to reach 100% accuracy with the RF algorithm. 
A customized approach for explicit negation detection was presented by Mukherjee et al.18. They used TF-IDF 
for feature extraction and various ML techniques, including NB, SVM, and Artificial Neural Networks (ANN), 
to analyze sentiment in Amazon reviews. According to their research, ANNs using negative classifiers had the 
best accuracy (96.32%). Using reviews from an international hotel, Noori developed a unique algorithm for 
classifying client sentiment19. Following the processing of the reviews, document vectors were created using the 
TF-IDF extractor and trained using SVM, ANN, NB, k-nearest neighbor (KNN), decision tree (DT), and C4.5 
models. Outperforming other models, the DT model scored the highest accuracy (98.9%) with 1800 features. 
Using N-gram extraction, Zahoor and Rohilla20 compared NB, SVM, RF, and long short-term memory networks 
(LSTM) classifiers on preprocessed datasets. In most datasets, including the BJP and ML Khattar datasets, NB 
showed the best accuracy. To turn COVID-19-related tweets into a text corpus and determine the most common 
terms using N-grams, Samuel et al. used logistic regression (LR) and NB models21. Their results showed that for 
short tweets, NB and LR had peak accuracy rates of 91% and 74%, respectively. For lengthier tweets, both models 
performed pretty poorly. Using Maximum Entropy (ME), SVM, and LSTM models, Kumar et al.22 examined the 
effects of age and gender on customer reviews. LSTM used word2vec, but the NB, ME, and SVM algorithms used 
Bag of Words (BOW) feature extraction. For female data, the over-50 age group showed the highest accuracy. 
SVM and MNB with TF-IDF extraction were used by Zarisfi Kermani et al.23 on four Twitter datasets, and they 
proposed semantic scoring techniques to represent features in the vector space. According to their findings, 
the suggested technique outperformed the MNB algorithm in three datasets, with the STS dataset showing the 
greatest MNB performance.

Recent advancements in SA and event detection have introduced several innovative models. DocTopic2Vec, 
proposed by Truică et al.24, enhances document-level SA by combining local and global contexts through 
document and topic embeddings, outperforming traditional methods. EDSA-Ensemble25 improves sentiment 
classification on social media by integrating event detection with SA using an ensemble approach. Petrescu 
et al.26 bridges network and content analysis by combining event detection with SA, achieving high accuracy 
in sentiment determination. For imbalanced datasets, Truică and Leordeanu27 compare machine learning 
algorithms, emphasizing the impact of dataset characteristics on classification performance. Lastly, ATESA-
BÆRT by Apostol et al.28 addresses aspect-based SA using a transformers-based ensemble, outperforming existing 
models in handling reviews with multiple aspects. Additionally, Mitroi et al.29 introduces TOPICDOC2VEC, a 
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new topic-document embedding that combines DOC2VEC and TOPIC2VEC, showing superior performance 
in polarity detection using game reviews.

In 13 languages with different Indic scripts, Bansal et al.30 looked at the identification of objectionable 
language. They assessed four sophisticated transformer-based models and contrasted the Transformer-based 
method with traditional ML models. Out of all of them, XLM-RoBERTa with BiGRU performed better. 
Furthermore, adding emoji embeddings to XLM-RoBERTa improved the model’s efficacy even further. Due 
to the combined dataset’s code-mixing, training using datasets from 13 Indic languages performed better 
than training with separate models. Gupta et al.31 presented a unique emotion analysis approach for real-time 
COVID-19 tweets, examining eight emotions in different domains. The analysis of tweets from India showed 
changes in emotional reactions, such as less happiness except for nature. Because of their commitment, teachers’ 
faith in education has grown. In terms of precision and recall, the method by Gupta et al.32 produced aspect-
based graphical and textual summaries from mobile reviews, outperforming baseline approaches. Using 
Twitter data from the Delhi Election 2020, Gupta et al.33 conducted political echo chamber experiments and 
investigated the elements that contribute to the creation of echo chambers as well as the role played by users of 
opposing parties in promoting partisan material. Gupta and colleagues employed ML algorithms and lexicon-
based methods to assess sentiment in Hindi tweets. They found that an integrated CNN-RNN-LSTM model 
produced an accuracy of 85%34. Basiri et al.35 investigated attitudes about the epidemic in eight different nations 
using DL classification algorithms, and their findings showed distinct sentiment patterns and relationships 
with pandemic indicators. Using the BERT model, Hayawi et al.36 achieved excellent accuracy in their ML-
based method for spotting COVID-19 vaccination disinformation. Using BERT, Vishwamitra et al.37 were 
able to detect hate speech connected to elderly individuals and the Asian community on Twitter during the 
pandemic. They were able to identify separate word connections for various hate speech datasets. Before and 
after the initial COVID-19 case announcement, Chen et al.38 monitored conversations in Luxembourg about 
policy and daily life; post-announcement, travel-related issues dominated, perhaps because of the region’s large 
immigrant population. To emphasize changing emotions over time, Kabir et al.39 used ML for word extraction 
and emotion categorization in COVID-19 tweets. To categorize COVID-19-related Twitter postings, Valdes et 
al.40 created a BERT-based model, proving the use of domain-specific data for improved performance. During 
the pandemic, Tziafas et al.41 used an ensemble architecture to recognize false information, using transformer-
based encoders to achieve high accuracy. Sadia et al.42 obtained high assessment scores using BERT to conduct 
SA of COVID-19 tweets. Song et al.43 analyzed several facets of misinformation diffusion and created a model 
to categorize misinformation related to COVID-19. Using NLP models, Hossain et al. assessed a dataset for 
COVID-19-related misinformation detection, offering preliminary benchmarks for advancement44. During the 
COVID-19 lockdown, Chintalapudi et al.45 used BERT to assess sentiment in Indian tweets, and they showed 
better accuracy than other models.

The literature review reveals several gaps in SA research, particularly in the context of COVID-19 and social 
media sentiment classification. While existing studies have explored SA using various ML algorithms and 
lexicon-based approaches, comprehensive investigations remain lacking across diverse datasets, including those 
from different geographic regions and languages. Additionally, previous research has focused on individual 
datasets or specific domains, neglecting SA models’ broader applicability and generalizability. Moreover, studies 
that directly compare different SA techniques, including DL architectures and ensemble methods, are scarce in 
identifying the most effective approach across various contexts. The need for interpretability and explainability 
in SA models is also apparent, with few studies incorporating techniques such as SHAP and LIME for insights 
into model predictions. These gaps highlight the need for more comprehensive and comparative studies 
encompassing diverse datasets, languages, and evaluation metrics to advance the SA field effectively.

Methodology
Our proposed methodological framework outlines a structured approach to SA, encompassing several key 
stages to ensure robustness and effectiveness in model development and evaluation, as shown in Fig. 1. The first 
stage involves gathering relevant data for SA. We extend existing datasets by collecting additional tweets from 
diverse sources to enhance the dataset’s representativeness and coverage. Following data collection, we perform 
cleaning and preprocessing tasks to ensure the quality and consistency of the data. This includes removing 
noise, expanding contractions, handling duplicates, emojis, and missing tweets, and standardizing text formats. 
The next step involves labeling the data into positive, neutral, and negative sentiments. We leverage the latest 
updated RoBERTa-based pre-trained transformer model for tokenization and sentiment labeling, enabling 
accurate and efficient text data processing. The dataset is divided into training, validation, and test sets after it 
has been labeled. This enables us to use the test set to assess the model’s performance on untested data, refine 
hyperparameters using the validation set, and train the model on a portion of the data. In this step, we build the 
SA model based on our suggested hybrid DL architecture. We used Keras Tuner for hyperparameter optimization 
within the specified search space, focusing on minimizing the validation loss as our objective to achieve the 
best performance. Following model development, we compare the trained model’s performance against baseline 
models or current state-of-the-art methods. We examine the model’s ability to correctly classify sentiments into 
positive, neutral, and negative categories using a variety of metrics, including accuracy, precision, recall, and F1-
score. Finally, we employ XAI techniques to interpret the model’s predictions and gain insights into its decision-
making process. This involves analyzing the model’s internal mechanisms, such as attention weights or feature 
importance, to understand the factors influencing its predictions and enhance model interpretability.

Data collection and preprocessing
In this section, we provide a comprehensive overview of the data collection and preprocessing procedures 
undertaken in our study, which laid the foundation for robust SA of tweets.
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Data sources
This study employed a comprehensive set of seven distinct datasets to facilitate a thorough exploration of SA 
across various dimensions. These datasets were classified into three main categories: Benchmark, Extended, and 
External, each serving a unique purpose in our research.

Benchmark dataset: The benchmark dataset, which forms the basis of our research, was first assembled and 
curated by16. It functions as a standard by which our proposed model’s performance is measured. Interestingly, 
our model outperformed this benchmark dataset, indicating significant progress in SA. This reference dataset 
consists of tweets with geotags from well-known cities in the United Kingdom during the third nationwide 
COVID-19 shutdown. Figure 2 shows the tweets gathered from the three stages in the UK. This group of cities 
includes Greater London, Bristol, South Hampton, Birmingham, Manchester, Liverpool, Newcastle, Leeds, 
Sheffield, and Nottingham. Over the course of three weeks, from January 6, 2021, to July 18, 2021, 77,332 tweets 
were gathered. 29,923 tweets were gathered in the first stage, 24,689 in the second, and 22,720 in the third. Major 
cities such as London, Manchester, Birmingham, and Liverpool were the source of most tweets, with London 
having the highest count with 37,678. Smaller cities, like Newcastle, had just 852 tweets in a six-month period. 

Fig. 1.  This figure depicts the step-by-step methodological framework proposed for tweet sentiment analysis. 
It begins with (a) data collection and extension, followed by (b) data cleaning and preprocessing. Subsequently, 
(c) sentiment labeling into positive, neutral, and negative categories is performed using the ‘cardiffnlp/twitter-
roberta-base-sentiment-latest’ pre-trained transformer, and the dataset is split into training, validation, and 
test sets. The framework proceeds with (d) model development, (e) model benchmarking, and evaluation 
against baseline models or state-of-the-art approaches. Finally, the process concludes with XAI interpretation 
techniques applied to gain insights into the model’s predictions.
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The data distribution is in phases, with the first stage having the greatest data and the third stage having the 
least, as Fig. 2 illustrates. While Newcastle’s contribution was connected with its population and density, London 
consistently supplied the most data.

Extended datasets: To augment our research’s cross-cultural dimension and overcome the geographic 
limitations of the benchmark dataset proposed by Qi and Shabrina, we extended the existing UK COVID-19 
Twitter dataset16. The tweets were sourced through a combination of data extraction tools, specifically Twint and 
the Twitter Academic API. These tools were chosen because of their ability to acquire tweets with geolocation 
information, which is crucial for conducting geographical analyses. However, it should be noted that only a few 
1% of Twitter users actively opt to share their geographic location when composing tweets, and this feature is 
not enabled by default46. The extended datasets, comprising the Global Twitter COVID-19 Dataset and the USA 
Twitter COVID-19 Dataset, are publicly available in the Extended Covid Twitter Datasets repository47.

To ensure a comprehensive dataset, we merged the data collected by Twint and the Twitter Academic API. 
This amalgamation allowed us to access a larger volume of tweets. In identifying tweets related to the COVID-19 
pandemic, we employed specific keywords such as “corona” or “covid” in the Twint search configurations and 
the query field of the Twitter Academic API. This search strategy enabled us to extract tweets and associated 
hashtags containing these pertinent terms. 

	1.	� Extended Global COVID-19 Dataset: This extension involved the comprehensive scraping of 411,885 tweets 
from 32 English-speaking countries. This dataset expansion allowed us to capture sentiment variations across 
diverse English-speaking regions, as illustrated in Fig. 3. In particular, cities such as the “United States,” the 
“United Kingdom,” “Australia,” and “New Zealand” exhibit high tweet volumes, while several other cities 
have comparatively lower tweet counts. Figure 4 illustrates word clouds and word frequencies within tweets 
of the extended datasets. Figure 4 (left) represents a visual summary of the most frequently occurring words 
in a vast dataset related to the COVID-19 pandemic. At the center of this cloud is the word “covid,” which 
dominates with a staggering 226,463 mentions. Other significant terms around it, such as “vaccine,” “case,” 
“test,” and “people,” indicate the key topics and concerns worldwide during the pandemic. Words like “death,” 
“pandemic,” and “health” also hold prominence, highlighting the gravity of public health issues. Addition-
ally, terms like “Trump” and “government” suggest the political dimensions entwined with the pandemic 
discourse.

	2.	� Extended USA COVID-19 Dataset: In addition to the international extension, we further enriched our data 
by creating an extended dataset focusing exclusively on the United States. This dataset comprised 7500 tweets 
meticulously scraped from U.S.-based sources. Including this dataset allows for a closer examination of sen-
timent dynamics within a specific geographical context. Figure 4 (right) specific to the United States reveals 
notable trends and sentiments within the country during the COVID-19 pandemic. In this dataset, words 
like “corona,” “coronavirus,” and “covid” are prominent, underlining the ubiquitous presence of these terms 
in American discussions. Interestingly, words like “fool” and “joke” appear, possibly reflecting a spectrum 
of attitudes towards the pandemic response. Negative expressions like “shit,” “fuck,” and “die” also emerge, 
suggesting the emotional intensity and frustration associated with the situation. Terms like “test” and “case” 
point towards testing and infection rates concerns, while “april” indicates a temporal reference.

Fig. 2.  Stacked bar chart showing tweet distribution in three stages of data collection during third lockdown 
period from the major cities of the UK.
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External datasets: In order to evaluate the robustness and generalizability of our proposed model, we 
incorporated four external datasets sourced from Kaggle, including the Twitter and Reddit Dataset, Apple 
Dataset, and US Airline Dataset (see Data availability section). 

	1.	� Twitter Dataset: This dataset, collected from Twitter, represents diverse tweets covering various topics and 
subject matter. It enables us to assess the model’s adaptability to various Twitter content.

	2.	� Reddit Dataset: The Reddit dataset encompasses user-generated content from the popular social media plat-
form. Its inclusion allows us to explore sentiment patterns in a different online community, offering valuable 
insights into the model’s versatility.

Fig. 4.  This word cloud visualizes the most frequently occurring words in the “Global” (left) and “Only USA” 
(right) datasets of COVID-19-related tweets. The size of each word corresponds to its frequency in the dataset.

 

Fig. 3.  Bar plot showing the distribution of tweets across 32 English-speaking countries.
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	3.	� Apple Dataset: The Apple dataset consists of textual data related to the technology giant Apple Inc. By incor-
porating this dataset, we aim to analyze sentiment in a specific industry context, providing a more nuanced 
view of the model’s performance.

	4.	� US Airline Dataset: This dataset is centered around discussions related to U.S. airlines. It allows us to investi-
gate sentiment trends within the context of the aviation industry, adding yet another layer of applicability to 
our model.

Data cleaning and preprocessing
As a previous study has indicated, preprocessing the raw Twitter data was essential to guarantee the accuracy 
and reliability of our SA because of their informal and unstructured character48. Our thorough data-cleaning 
procedure included the following crucial steps: 

	1.	� Capitalization Standardization: To prevent the recognition of identical words with varying capitalization as 
distinct, we uniformly converted all text to lowercase. This step was crucial for consistent word recognition.

	2.	� Removal of Irrelevant Elements: We methodically eliminated any superfluous content that has no bearing 
on SA, including hashtags (#subject), stated usernames (@username), and any hyperlinks beginning with 
“www,” “http,” or “https.” We also removed terms that were less than two characters and stop words. Stop 
words, though common in text, often lack significant sentiment polarity. Despite being often used in texts, 
stop words frequently lack strong emotive polarity. It’s important to note that negations like “not” and “no” 
were kept in because removing them may change the sense of whole sentences.

	3.	� Handling Repeated Characters: Some users utilize repeating characters in their tweets to highlight intense 
feelings. Words not present in standard lexicons were transformed into their correct forms to standardize 
such expressions. For instance, “sooooo goooood” was normalized to “so good.”

	4.	� Extending Contractions: Removing punctuation after a contraction, such “isn’t” or “don’t,” presented difficul-
ties. They were expanded into their full forms to maintain the meaningfulness of contractions. For instance, 
“isn’t” became “is not.”

	5.	� Elimination of Non-Alphabetical Characters: All punctuation, numerals, and special symbols were removed, 
along with all other non-alphabetical characters and symbols. These extraneous characters had the potential 
to interfere with feature extraction.

	6.	� Elimination of Duplicates and Empty Tweets: We identified and removed duplicated or empty tweets to 
ensure data integrity, creating a clean and consistent dataset.

	7.	� Emojis Transformation: Given the prevalence of emojis in tweets to express sentiment and emotion, we 
adopted the ‘demojize()’ function from Python’s emoji module to transform emojis into their corresponding 
textual meanings. This enhancement was especially beneficial for improving the accuracy of SA.

	8.	� Advanced Cleaning for Specific Approaches: Depending on the SA approach employed, additional cleaning 
steps, such as stemming and Part-of-Speech (POS) tagging, were applied. These steps were particularly rel-
evant for methods relying on resources like SentiWordNet.By rigorously implementing these data-cleaning 
procedures, we ensured that our SA was conducted on a high-quality dataset, minimizing noise and optimiz-
ing the extraction of meaningful sentiment features.

Word embeddings
We used various word embedding approaches in this work to extract contextual and semantic information from 
our textual material. Our NLP tasks performed much better thanks to these embeddings. The word embedding 
techniques we used in our studies are summarized in the next subsections.

Bag-of-Words (BoW): BoW is a classic technique for word representation. It transforms tweets into vectors 
by counting the frequency of words in each tweet. While it doesn’t capture word order or context, it provides 
a straightforward and interpretable way to represent text data. To utilize the BoW approach, we employed the 
‘CountVectorizer‘ function from the scikit-learn library.

Term Frequency-Inverse Document Frequency (TF-IDF): We utilized the TF-IDF embeddings by employing 
the ‘TfidfVectorizer‘ function from the scikit-learn module, which allocates weights to words according to their 
significance in individual tweets and their scarcity throughout the complete dataset. Additionally, it made it 
easier to down-weight frequent keywords, which allowed our models to concentrate on more informative words.

Word2Vec: One of Word2Vec’s advantages is that it can record semantic similarities between words, which 
makes text data analysis more sophisticated. Using neural networks, it represents words as dense vectors in a 
continuous vector space. The ‘word_tokenize‘ function from the NLTK library was utilized to tokenize our tweets, 
as it allows for the breakdown of sentences into individual words. Using the Gensim package, a Word2Vec model 
was produced with the vector size, window size, and skip-gram model set. By using a continuous vector space, 
this approach was able to express words as vectors. Two methods were used to encode full tweets as vectors: sum 
vectorization and average vectorization.

Pre-trained transformers: In our research, we harnessed the power of pre-trained transformer-based 
models from the Hugging Face Transformers library to leverage contextual embeddings for text data. Three 
distinct transformer models were employed, each bringing unique capabilities to the analysis. The ‘distilbert-
base-uncased’ model, known for its efficiency and lightweight nature, was selected for its suitability in scenarios 
where computational resources are constrained. It produces context-aware word embeddings that consider each 
word’s left and right context. We used a state-of-the-art ‘cardiffnlp/twitter-roberta-base-sentiment-latest’ model, 
updated in 2022, to capture sentiment-specific nuances in a tweet. This model was trained on an extensive 
dataset of approximately 124 million tweets collected from January 2018 to December 2021. This model was 
designed for English text and was a robust foundation for our SA endeavors. Additionally, we incorporated 
‘sentence-transformers/all-MiniLM-L6-v2,’ a sophisticated tool that transforms tweets into a dense vector space 
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of 384 dimensions. It transforms entire sentences into fixed-dimensional vectors while maintaining semantic 
information.

Although the code implementation for each transformer followed a similar structure, the choice of model 
brought diversity to our experimentation, enabling us to explore the impact of contextual embeddings on our 
text classification task. To tokenize and process our text data effectively, we employed the model’s associated 
tokenizer, incorporating techniques such as padding and truncation to ensure consistent input lengths. The 
tokenized data was then efficiently processed on the GPU for optimal computational performance. We further 
harnessed the model’s capabilities to extract the hidden states associated with the ‘[CLS]‘ token, which often 
encapsulates the comprehensive context of the text.

Unsupervised text labeling
In ML, labeling vast amounts of text data manually can be time-consuming. To address this challenge and expedite 
the labeling process, we leveraged lexicon-based methods, specifically TextBlob, VADER, and SentiWordNet, to 
automatically assign sentiment scores to tweets. Our sentiment classification scheme employed three categories: 
positive (assigned a value of 1), negative (assigned − 1), and neutral (assigned 0).

We used the BoW method implemented with the CountVectorizer from the scikit-learn library to convert text 
data from our benchmark dataset into a matrix of word frequencies. We conducted a comprehensive evaluation 
to determine the effectiveness of our unsupervised labeling approach. The performance of seven traditional base 
ML models was evaluated against sentiment scores derived from each of the three lexicon approaches: TextBlob, 
VADER, and SentiWordNet. Our evaluation unveiled that TextBlob consistently outperformed VADER and 
SentiWordNet regarding accuracy across all implemented ML models, as shown in Table 1. Hence, we used 
TextBlob-based labels for further benchmarking.

Models used
Traditional ML models
Our analysis encompasses a diverse set of models traditional ML models, including traditional base models, 
their stacked ensembles, and voting classifiers. The aim was to comprehensively evaluate the performance of 
these models using different text representations. The following models were used: 

	 1.	� Random Forest (RF): RF is an ensemble learning method that aggregates the predictions of multiple deci-
sion trees. It is known for its robustness and ability to handle high-dimensional data.

	 2.	� Naive Bayes (NB): NB is a probabilistic classifier based on Bayes’ theorem, assuming independence among 
features. It is particularly well-suited for text classification tasks.

	 3.	� Support Vector Machine (SVM): SVM is a powerful classifier that aims to find a hyperplane that best sepa-
rates data points in a high-dimensional space. It is effective for both linear and non-linear classification.

	 4.	� Gradient Boosting Machine (GBM): GBM is an ensemble learning technique that builds decision trees 
sequentially, focusing on the mistakes of the previous trees. It often leads to strong predictive performance.

	 5.	� LightGBM (LGBM): LightGBM is a gradient-boosting framework for efficiency and speed. It uses a histo-
gram-based approach for tree construction.

	 6.	� XGBoost: XGBoost is another popular gradient-boosting library known for its scalability and performance 
optimization. It has been widely used in various ML competitions.

	 7.	� CatBoost: CatBoost is a gradient-boosting library specializing in categorical feature support. It is known for 
its ability to tackle categorical data effectively.

	 8.	� LGBM + K-Nearest Neighbors (KNN) + Multi-Layer Perceptron (MLP): We explored an ensemble ap-
proach by combining LGBM with KNN and MLP to leverage the strengths of different algorithms.

	 9.	� RF + KNN + MLP: Similarly to the previous ensemble, we combined RF with KNN and MLP to diversify 
our modeling approach further.

	10.	� GBM + RF Stacking Classifier: Stacking is an ensemble technique where multiple models’ predictions are 
combined using another model. Here, we stack GBM and RF to improve predictive accuracy potentially.

	11.	� GBM + RF Voting Classifier: Voting classifiers combine the predictions of multiple models by majority 
voting. We used this ensemble technique to take advantage of the collective wisdom of GBM and RF.We 
explored various combinations of word embeddings and text representations for each model, including 
BoW, TF-IDF, Word2Vec, and pre-trained transformer models for text tokenization. These different rep-

ML model

Accuracy of Lexicon based methods

TextBlob VADER SentiWordNet

RF 67% 65% 57%

NB 66% 59% 61%

SVM 73% 66% 72%

GBM 79% 71% 69%

LGBM 79% 73% 70%

XGBoost 76% 70% 71%

Catboost 74% 69% 68%

Table 1.  Performance evaluation of unsupervised sentiment labeling approaches.
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resentations allowed us to assess the impact of text preprocessing on model performance and gain insights 
into which models were most effective for sentiment classification.

Deep neural networks (DNNs)
To rigorously evaluate tweet sentiment classification, we employed a diverse set of DNN models, each with 
distinct architectural characteristics. We utilized the Keras Tuner for hyperparameter tuning across these models 
to ensure optimal performance. The search space included LSTM layer units ranging from 128 to 768, dense 
layer units from 64 to 512, dropout rates from 0.1 to 0.5, and learning rates from 1× 10−5 to 1× 10−2. Using 
Keras Tuner’s Random Search method, we identified the best parameters for each model, significantly enhancing 
their performance. This systematic exploration, coupled with comprehensive text representations and optimized 
hyperparameters, provided valuable insights into the performance of various DNN architectures.

Our initial model, the ‘Single-Dense Layered Neural Network,’ started with a transformer for feature 
extraction. A single dense layer with 512 units and ReLU activation captured high-level representations. The 
simplicity of this architecture allowed us to establish a baseline for performance comparison.

Building upon this foundation, we introduced the ‘3 dense layers of neural network. After global averaging of 
the transformer’s outputs, three sequential dense layers were introduced, with decreasing units (512, 256, 128) to 
refine feature representations progressively. In particular, dropout regularization was applied after the first dense 
layer, enhancing model robustness.

We introduced the ‘BiLSTM + 3 Hidden Dense Layers’ model to explore the nuances of SA texts further. 
This architecture incorporated a BiLSTM layer, which is a special type of RNN, enabling the network to capture 
sequential dependencies in the input data. Following the BiLSTM layer, three additional dense layers (512, 256, 
and 128 units) were used to distill the features further. Dropout was applied to enhance model generalization.

Lastly, we explored hybrid architecture with the ‘BiLSTM + CNN’ model. Here, the model combined the 
strengths of a BiLSTM layer with convolutional layers. The convolutional layers, with 64 filters and varying 
kernel sizes, added a spatial perspective to feature extraction. Subsequently, two dense layers (128 and 64 units) 
were introduced to further process the extracted features.

Proposed TRABSA model
The proposed TRABSA model presents a systematic and effective architecture for SA, as shown in Fig. 5. The 
model utilizes the ‘cardiffnlp/twitter-roberta-base-sentiment-latest’ pre-trained transformer, capitalizing on 
its contextual understanding of the text. The architecture begins with input layers, including ‘input_ids’ and 
‘attention_mask,’ where a maximum sequence length of 256 tokens is utilized. RoBERTa is used for its excellent 
performance in tasks involving natural language understanding. It encodes the input tweet text and generates 
contextual embeddings.

The input data is then organized into a TensorFlow dataset, shuffled, and batched for training. The batch 
size is set to 16 to facilitate efficient training. The labels are one-hot encoded to prepare them for multiclass 
classification. The dataset is split into training and validation sets for rigorous evaluation. In optimizing the 
TRABSA model, Keras Tuner plays a crucial role by systematically exploring a well-defined search space to 
fine-tune various hyperparameters. The search space includes the number of units in the BiLSTM layer, ranging 
from 128 to 512, which balances model complexity and efficiency. Additionally, three Dense layers are tuned 

Fig. 5.  Model architecture of the proposed TRABSA model.
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with units ranging from 128 to 768, 64 to 512, and 32 to 256, respectively, affecting the model’s capacity and 
computational demands. The dropout rate varies from 0.1 to 0.5 to prevent overfitting, while the learning rate is 
explored logarithmically between 1e−5 and 1e−3 to optimize convergence speed. The tuning process employs 
Random Search to sample various hyperparameter combinations, providing an efficient way to explore the space 
without exhaustive search. After running multiple trials, the tuner identifies the best hyperparameter settings 
(see Fig. 5) based on validation loss, ensuring an optimized balance between performance and computational 
efficiency.

The core architecture of the TRABSA model is based on the pre-trained RoBERTa-base model architecture 
with specific enhancements:

•	 Input Layers: Two input layers are defined—‘input_ids’ and ‘attention_mask,’ which receive the tokenized 
input tweet sequences and their corresponding attention masks, ensuring proper handling of padded fixed-
length sequences.

•	 Transformer embeddings: The transformer produces contextual embeddings, which capture rich information 
about the text. These embeddings are then subjected to ‘Global Average Pooling’ to reduce the dimensionality 
while retaining essential features. A reshaping operation is applied to prepare the data for subsequent layers.

•	 BiLSTM: The BiLSTM layer is an advanced type of RNN designed to enhance sequence modeling by captur-
ing contextual information from both directions in a sequence. In this model, the BiLSTM layer is configured 
with 512 units in each direction, totaling 512× 2 units. The forward LSTM network processes the sequence 
from start to end, while the backward LSTM network processes it from end to start. This bidirectional ap-
proach allows the BiLSTM layer to integrate information from both past and future tokens, providing a more 
nuanced understanding of the text.

•	 Self-attention mechanism: An attention layer is incorporated, which applies self-attention to the output of the 
BiLSTM. This mechanism allows the model to weigh the importance of different parts of the input sequence, 
which can be critical for understanding the nuances of sentiment in tweets.

•	 Dense layers: A series of densely connected layers are added to capture complex patterns and relationships 
within the data. While there are multiple dense layers, their architecture plays a crucial role. A 512-unit dense 
layer with ReLU activation serves as the primary feature extractor, followed by two more dense layers (256 
and 128 units) to refine representations progressively. A dropout layer with a 0.05 dropout rate contributes to 
regularization and helps prevent overfitting.

•	 Flatten layer: After processing through the dense layers, the output tensor is flattened to a 1D vector.
•	 Classifier head: The classifier head consists of a dense layer with three units, using the softmax activation 

function. It produces the input tweet’s final sentiment classification probabilities (positive, negative, or 
neutral).The model is compiled using the Adam optimizer with a learning rate of 4× 10−5 and categorical 
cross-entropy loss. Categorical accuracy is used as the evaluation metric. We included model checkpointing, 
early stopping, and callbacks to optimize model training. The early stopping mechanism monitors validation 
loss and restores the best weights to prevent overfitting. The training process involves fitting the model on the 
training dataset and validating it on the validation dataset for 50 epochs; however, due to the early stopping 
mechanism, the iterations stop after 23 epochs.

The learning rate scheduler callback function adjusted the learning rate during our model training. The function 
calculates the learning rate for each epoch based on an initial learning rate and an exponential decay factor, 
which controls the rate at which the learning rate decreases over epochs. In this specific implementation, the 
exponential decay formula is utilized, where the learning rate is multiplied by the exponent of a negative constant 
k = 0.1 multiplied by the epoch number. As the epoch increases, the learning rate exponentially decreases, 
allowing for a gradual reduction in the learning rate during training. This technique helps optimize the training 
process by fine-tuning the learning rate to improve model convergence and performance over successive epochs, 
as shown in Fig. 6.

Figure 7 comprehensively evaluates the TRABSA model’s performance in tweet SA. The top left corner 
showcases the model’s classification metrics plot, illustrating precision, recall, and F1-score metrics for each 
sentiment class. Moving clockwise, the confusion matrix provides a detailed analysis of the model’s classification 
performance by comparing predicted sentiment labels with actual labels. The loss vs. epoch curve illustrates its 
training and validation loss over successive epochs, while the training and validation accuracy vs. epoch curve 
depicts the model’s learning progress and convergence. Together, these visualizations offer insights into the 
TRABSA model’s classification accuracy, convergence, and optimization process, aiding researchers in assessing 
its performance and identifying areas for improvement.

The TRABSA model’s architecture combines the strengths of RoBERTa’s contextual embeddings, BiLSTM’s 
sequence modeling, attention mechanisms for capturing interdependencies, and a well-designed set of dense 
layers to improve SA accuracy for tweet data. This architecture demonstrated superior performance compared 
to other models, making it a noteworthy addition to the field of SA.

Results
Experimental setup
Table 2 overviews the hardware and software specifications used in our ML and DL experiments. It includes 
details on the CPU, GPU, TPU, RAM, Python version, and essential libraries utilized to conduct the research.

Evaluation metrics
We use a variety of assessment indicators in our research to determine our models’ overall success. These 
measurements show how well the models correctly categorize sentiments across various classifications. The 
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F1-score, accuracy, precision, recall, and macro-average metrics are among the crucial assessment measures 
employed. These are computed using the following definitions of true positives (TP), false positives (FP), and 
false negatives (FN):

	
Precision =

TP

TP + FP
� (1)

	
Precision =

TP

TP + FP
� (2)

	
F1-score = 2× Precision × Recall

Precision + Recall
� (3)

Fig. 6.  This figure depicts the learning rate scheduler callback function utilized during model training. It 
visualizes the decayed learning rate as the epoch increases, alongside the corresponding training and validation 
accuracy, as well as training and validation loss, plotted against variable learning rates.
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Recall, also known as sensitivity, quantifies the percentage of properly identified positive occurrences among 
all real positive instances, whereas precision describes the proportion of correctly classified positive instances 
among all cases projected as positive. The F1-score, which is derived from the harmonic mean of accuracy and 
recall, offers a fair indicator of model performance.

The accuracy metric quantifies the percentage of properly identified occurrences out of all instances, as follows:

	
Accuracy =

TP + TN

TP + TN + FP + FN
� (4)

Resources used Specifications

Intel(R) Xeon(R) CPU x86 with a clock frequency of 2 GHz, 4 vCPU cores, 18GB

NVIDIA T4 x2 GPU 2560 Cuda cores, 16 GB

Google TPU 8 TPU v3 cores. 128 GB

RAM 16 GB DDR4

Python Version 3.10.12

Libraries Numpy, pandas, matplotlib, seaborn, nltk, TensorFlow, keras, PyTorch, genism, scikit-learn, joblib, transformers, re, string, shap, scipy, lime

Table 2.  Details of hardware and software specifications.

 

Fig. 7.  Masterplot illustrating the TRABSA model’s performance starting from the top right and proceeding 
clockwise including the (a) classification metrics plot, (b) confusion matrix, (c) loss vs Epoch curve, (d) 
training and validation accuracy vs Epoch curve.
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Where TN represents true negatives.

Furthermore, we calculate the F1-score, recall, and macro-average accuracy to present a comprehensive 
evaluation of the model’s performance across all sentiment classes:

	
Macro Average Precision =

1

N

N∑
i=1

Precisioni � (5)

	
Macro Average Recall =

1

N

N∑
i=1

Recalli � (6)

	
Macro Average F1-score =

1

N

N∑
i=1

F1-scorei � (7)

Where N  represents the total number of sentiment classes.

Together, these evaluation measures offer a thorough analysis of the model’s performance employed in this 
research, assisting in the choice and improvement of SA models.

Results
Analyzing the performance of various models across different word embedding techniques reveals significant 
variations in their effectiveness for SA tasks. Among the traditional models, GBM and LightGBM consistently 
demonstrate strong performance across all word embedding techniques, achieving macro average F1-scores 
ranging from 79% to 83%. Pre-trained transformer models like BERT and RoBERTa exhibit competitive 
performance, with the RoBERTa model showcasing high accuracy across various configurations, especially 
when combined with advanced neural network architectures. Notably, the TRABSA model outperforms all other 
models across all evaluation metrics, demonstrating exceptional macro average precision (94%), macro average 
recall (93%), macro average F1-score (94%), and accuracy of 94% (see Table 3). This significant improvement 
underscores the efficacy of the TRABSA framework in SA tasks, surpassing even state-of-the-art transformer 
models like RoBERTa.

We used BoW, TFIDF, word2vec, BERT, SBERT, and RoBERTa as word embeddings with several ML and 
two DL models. When we noticed a significant improvement in the accuracy (above 80%) while using RoBERTa 
word embeddings with simple DL architectures, we decided to implement more complex hybrid DL models: 
BiLSTM+3 Hidden Layers NN, BiLSTM+CNN, and TRABSA.

Compared to the best-performing traditional models like GBM (81%), LightGBM (83%), stacked 
LGBM+KNN+MLP (84%), and advanced hybrid state-of-the-art BiLSTM+3 Hidden Layers NN (85%), the 
TRABSA model achieves an impressive accuracy of 94%, indicating a substantial improvement of at least 9% 
over the closest competitors. The TRABSA model consistently outperforms others in accuracy and macro 
average precision, recall, and F1-score, demonstrating its robustness and effectiveness across different evaluation 
criteria. Even when compared to sophisticated neural network architectures like Single Hidden Layer NN (84%) 
and 3 Hidden Layers NN (84%), the TRABSA model exhibits a remarkable performance boost of ≈ 10%, 
further emphasizing its superiority in SA tasks. The TRABSA model’s outstanding performance underscores 
its hybrid architecture’s efficacy, which integrates transformer-based mechanisms, attention mechanisms, and 
BiLSTM networks to capture nuanced sentiment patterns effectively. The findings suggest that while pre-trained 
transformer models like BERT and RoBERTa offer competitive performance, customized architectures like 
TRABSA tailored specifically for SA tasks can yield substantial accuracy and predictive power improvements.

The ablation study presented in Table 4 offers a detailed analysis of the proposed TRABSA model by 
examining the effects of removing or altering key components. The full model, not shown in this table, achieves 
the highest performance, with macro average precision and F1-score reaching 94%, macro average recall at 93%, 
and accuracy at 94%. This highlights the effectiveness of the BiLSTM, Attention, and Dense layers in capturing 
complex patterns from the data.

When the BiLSTM, Attention, and Dense layers are all removed, the model’s performance drastically drops 
to 76% for precision, 75% for recall, 75% for F1-score, and 76% for accuracy. The reduction in training time (≈
1290 s) and inference time (≈116 s) indicates the computational savings from eliminating these layers, but the 
performance decline reveals their critical role in generalizing well to the data.

In the model where only the Attention layer is removed, the performance sees a significant improvement 
compared to the full removal of BiLSTM and Dense layers. This configuration achieves an 85% macro average 
precision, 84% recall, and 84% F1-score, with an accuracy of 84%. The training time is ≈2250 s, and the inference 
time is ≈146 s, suggesting that while the Attention layer adds value, its absence doesn’t drastically impair the 
model’s ability to capture temporal dependencies, likely due to the strength of the BiLSTM.

Interestingly, replacing the BiLSTM with a unidirectional LSTM results in a slight drop in performance 
across all metrics, with precision at 83%, recall at 82%, F1-score at 82%, and accuracy at 83%. As expected, the 
training and inference times (≈2381 s and ≈142 s, respectively) show that unidirectional LSTMs are slightly 
more efficient but at the cost of losing the bidirectional context offered by the BiLSTM.

Moreover, the model without the Dropout layer exhibits similar performance to the attention-removed 
configuration, maintaining 84% across all metrics, but with a slightly faster training time (≈2201 s) and inference 
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Word embedding Model
Macro average 
precision

Macro average 
recall Macro average F1-score Accuracy

Training 
time (s)

Inference 
time (s)

BoW RF 75% ± 1% 61% ± 2% 61% ± 2% 67% ± 1% 6.73 0.03

BoW NB 63% ± 1% 62% ± 2% 62% ± 2% 64% ± 1% 0.82 0.01

BoW SVM 76% ± 2% 76% ± 2% 76% ± 2% 77% ± 1% 4.35 0.30

BoW GBM 82% ± 1% 79% ± 1% 79% ± 1% 81% ± 1% 262.81 0.02

BoW LGBM 83% ± 1% 81% ± 1% 81% ± 1% 83% ± 1% 35.54 0.01

BoW XGBoost 77% ± 0% 75% ± 1% 75% ± 1% 78% ± 0% 86.50 0.02

BoW Catboost 80% ± 0% 74% ± 1% 75% ± 1% 77% ± 1% 536.16 0.02

BoW LGBM+KNN+MLP 82% ± 1% 81% ± 2% 81% ± 2% 84% ± 0% 1422.53 45.43

BoW RF+KNN+MLP 74% ± 1% 73% ± 2% 74% ± 1% 75% ± 1% 1212.43 40.54

BoW GBM+RF Stacking Classifier 78% ± 0% 76% ± 1% 76% ± 1% 78% ± 0% 1364.06 50.57

BoW GBM+RF Voting Classifier 78% ± 0% 69% ± 1% 70% ± 1% 72% ± 1% 1250.37 48.30

BoW Single Hidden Layer NN 71% ± 4% 69% ± 4% 69% ± 4% 72% ± 4% 646.34 24.53

BoW 3 Hidden Layers NN 68% ± 4% 67% ± 4% 67% ± 4% 70% ± 4% 904.64 25.35

TFIDF RF 69% ± 1% 60% ± 3% 60% ± 3% 66% ± 2% 6.75 0.04

TFIDF NB 65% ± 1% 56% ± 3% 56% ± 3% 61% ± 2% 0.89 0.02

TFIDF SVM 74% ± 2% 70% ± 3% 70% ± 3% 73% ± 2% 5.15 0.46

TFIDF GBM 80% ± 1% 77% ± 3% 77% ± 3% 79% ± 1% 273.51 0.05

TFIDF LGBM 80% ± 0% 77% ± 3% 78% ± 3% 80% ± 1% 36.12 0.02

TFIDF XGBoost 68% ± 1% 67% ± 1% 67% ± 1% 70% ± 1% 87.22 0.03

TFIDF Catboost 74% ± 1% 72% ± 1% 72% ± 1% 74% ± 1% 542.44 0.03

TFIDF LGBM+KNN+MLP 79% ± 0% 77% ± 1% 77% ± 1% 79% ± 0% 1532.37 46.24

TFIDF RF Bagging 76% ± 0% 48% ± 1% 43% ± 1% 56% ± 1% 764.34 35.34

TFIDF RF+KNN+MLP 75% ± 1% 71% ± 3% 72% ± 2% 74% ± 0% 1254.65 42.75

TFIDF GBM+RF Stacking Classifier 77% ± 0% 76% ± 1% 76% ± 1% 78% ± 0% 1352.53 52.65

TFIDF GBM+RF Voting Classifier 75% ± 0% 69% ± 2% 70% ± 1% 73% ± 0% 1283.23 50.75

TFIDF Single Hidden Layer NN 68% ± 3% 67% ± 4% 67% ± 4% 69% ± 2% 650.34 22.43

TFIDF 3 Hidden Layers NN 93% ± 3% 92% ± 4% 92% ± 3% 93% ± 4% 954.64 27.53

word2vec RF 51% ± 1% 49% ± 2% 49% ± 2% 56% ± 1% 6.82 0.05

word2vec NB 41% ± 1% 34% ± 1% 19% ± 1% 36% ± 1% 1.03 0.04

word2vec SVM 67% ± 0% 49% ± 2% 45% ± 3% 57% ± 1% 5.78 0.57

word2vec GBM 51% ± 1% 50% ± 2% 50% ± 2% 56% ± 1% 282.10 0.08

word2vec LGBM 53% ± 1% 49% ± 1% 47% ± 1% 57% ± 1% 37.41 0.03

word2vec XGBoost 55% ± 1% 50% ± 2% 48% ± 2% 56% ± 1% 88.60 0.03

word2vec Catboost 71% ± 0% 49% ± 1% 45% ± 1% 57% ± 1% 553.37 0.04

word2vec LGBM+KNN+MLP 53% ± 1% 46% ± 2% 41% ± 3% 53% ± 1% 1448.76 47.34

word2vec RF+KNN+MLP 55% ± 1% 49% ± 3% 43% ± 3% 57% ± 1% 1345.53 55.23

word2vec GBM+RF Stacking Classifier 46% ± 2% 45% ± 2% 45% ± 2% 51% ± 1% 1412.64 53.73

word2vec GBM+RF Voting Classifier 47% ± 1% 47% ± 1% 47% ± 1% 53% ± 1% 1350.23 28.78

word2vec Single Hidden Layer NN 36% ± 5% 45% ± 4% 40% ± 4% 53% ± 3% 704.65 28.34

word2vec 3 Hidden Layers NN 38% ± 4% 48% ± 4% 42% ± 4% 56% ± 3% 1034.89 33.38

BERT RF 53% ± 2% 51% ± 3% 49% ± 3% 58% ± 1% 805.43 45.53

BERT NB 50% ± 3% 51% ± 2% 50% ± 2% 53% ± 1% 1.12 0.07

BERT SVM 52% ± 2% 52% ± 2% 52% ± 2% 56% ± 1% 6.12 0.76

BERT GBM 56% ± 1% 54% ± 2% 54% ± 2% 60% ± 2% 291.11 0.11

BERT LGBM 58% ± 2% 57% ± 2% 57% ± 2% 61% ± 2% 37.66 0.03

BERT XGBoost 56% ± 2% 56% ± 2% 56% ± 2% 60% ± 2% 89.10 0.04

BERT Catboost 56% ± 2% 49% ± 2% 46% ± 2% 57% ± 2% 562.29 0.05

BERT LGBM+KNN+MLP 61% ± 1% 59% ± 2% 59% ± 2% 62% ± 1% 1623.65 65.34

BERT RF+KNN+MLP 60% ± 1% 58% ± 2% 57% ± 2% 62% ± 1% 1443.22 60.44

BERT GBM+RF Stacking Classifier 55% ± 2% 54% ± 2% 54% ± 2% 56% ± 1% 1523.75 70.23

BERT GBM+RF Voting Classifier 60% ± 1% 58% ± 2% 58% ± 2% 66% ± 0% 1452.45 67.85

BERT Single Hidden Layer NN 61% ± 3% 58% ± 4% 59% ± 4% 62% ± 2% 945.53 35.64

BERT 3 Hidden Layers NN 62% ± 4% 60% ± 4% 60% ± 4% 64% ± 4% 1305.39 45.49

SBERT RF 61% ± 0% 48% ± 3% 44% ± 4% 54% ± 2% 6.95 0.06

Continued

Scientific Reports |        (2024) 14:24882 15| https://doi.org/10.1038/s41598-024-76079-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


time (≈140 s). This suggests that Dropout contributes to regularization, but its absence does not significantly 
degrade performance, possibly due to the robustness of the RoBERTa embeddings and other layers.

The study underscores the importance of BiLSTM and Attention layers for optimal performance while 
also demonstrating the computational costs associated with these enhancements. The model without these 
components, while more computationally efficient, sacrifices accuracy, confirming the balance between 
complexity and performance in the proposed TRABSA model.

Robustness test of TRABSA model
The TRABSA model consistently demonstrates robustness and generalizability across datasets and DL 
architectures, as evidenced by its consistent performance metrics. Across various datasets, including the Global 
COVID-19 Dataset, the USA COVID-19 Dataset, the External Twitter Dataset, the Reddit Dataset, the Apple 

Word embedding Model
Macro average 
precision

Macro average 
recall

Macro average 
F1-score Accuracy

Training 
time (s)

Inference 
time (s)

RoBERTa w/o1 BiLSTM + Attention + 3 Dense 
Layers 76% ± 2% 75% ± 3% 75% ± 2% 76% ± 3% 1290.53 115.68

RoBERTa w/o BiLSTM + Attention Layer 81% ± 1% 80% ± 1% 80% ± 1% 80% ± 2% 3500.23 169.34

RoBERTa w/o Attention Layer 85%  ±  2% 84%  ±  3% 84%  ±  2% 84%  ±  2% 2250.15 145.85

RoBERTa w/o 3 Dense Layers 82%  ±  2% 81%  ±  3% 81%  ±  3% 82%  ±  3% 2245.64 150.14

RoBERTa w/o Dropout Layer 84%  ±  1% 84%  ±  1% 84%  ±  1% 84%  ±  2% 2200.70 140.45

RoBERTa LSTM instead of BiLSTM Layer 83%  ±  2% 82% ± 3% 82% ± 2% 83% ± 3% 2380.90 142.30

Table 4.  Ablation test of the proposed TRABSA model. “w/o” stands for “without,” indicating the absence of 
the specific component in the TRABSA model configuration

 

Word embedding Model
Macro average 
precision

Macro average 
recall Macro average F1-score Accuracy

Training 
time (s)

Inference 
time (s)

SBERT NB 53% ± 2% 40% ± 3% 32% ± 4% 44% ± 2% 1.14 0.09

SBERT SVM 56% ± 1% 57% ± 2% 56% ± 2% 58% ± 1% 6.28 0.81

SBERT GBM 55% ± 2% 51% ± 2% 49% ± 2% 55% ± 2% 302.43 0.15

SBERT LGBM 55% ± 2% 52% ± 2% 50% ± 2% 56% ± 2% 38.18 0.04

SBERT XGBoost 56% ± 2% 56% ± 2% 56% ± 2% 57% ± 2% 90.53 0.06

SBERT Catboost 69% ± 0% 48% ± 3% 42% ± 4% 53% ± 2% 577.54 0.05

SBERT LGBM+KNN+MLP 55% ± 2% 49% ± 2% 47% ± 2% 53% ± 2% 1734.23 68.64

SBERT RF+KNN+MLP 56% ± 1% 54% ± 2% 54% ± 2% 57% ± 1% 1522.42 63.43

SBERT GBM+RF Stacking Classifier 44% ± 2% 44% ± 2% 43% ± 2% 48% ± 1% 1623.86 72.57

SBERT GBM+RF Voting Classifier 53% ± 2% 50% ± 2% 50% ± 2% 54% ± 2% 1553.54 74.67

SBERT Single Hidden Layer NN 55% ± 3% 55% ± 4% 54% ± 3% 59% ± 3% 954.64 38.48

SBERT 3 Hidden Layers NN 56% ± 4% 57% ± 3% 57% ± 3% 59% ± 2% 1402.54 48.48

RoBERTa RF 62% ± 2% 62% ± 2% 62% ± 2% 64% ± 1% 7.23 0.08

RoBERTa NB 63% ± 1% 55% ± 2% 52% ± 3% 54% ± 2% 1.16 1.05

RoBERTa SVM 65% ± 1% 65% ± 1% 65% ± 1% 67% ± 0% 6.76 0.88

RoBERTa GBM 63% ± 2% 62% ± 3% 63% ± 2% 65% ± 2% 314.44 0.17

RoBERTa LGBM 64% ± 2% 63% ± 3% 64% ± 2% 66% ± 1% 38.89 0.05

RoBERTa XGBoost 65% ± 1% 63% ± 2% 63% ± 2% 66% ± 1% 91.14 0.07

RoBERTa Catboost 63% ± 2% 62% ± 3% 61% ± 4% 64% ± 2% 583.28 0.07

RoBERTa LGBM+KNN+MLP 66% ± 2% 66% ± 2% 65% ± 3% 66% ± 2% 1823.93 72.23

RoBERTa RF+KNN+MLP 58% ± 3% 55% ± 2% 55% ± 2% 60% ± 1% 1654.54 67.76

RoBERTa GBM+RF Stacking Classifier 61% ± 3% 61% ± 3% 61% ± 3% 63% ± 2% 1705.36 75.96

RoBERTa GBM+RF Voting Classifier 60% ± 2% 60% ± 2% 59% ± 3% 60% ± 2% 1653.78 73.47

RoBERTa Single Hidden Layer NN 84% ± 4% 84% ± 4% 84% ± 4% 84% ± 4% 1349.46 154.39

RoBERTa 3 Hidden Layers NN 84% ± 3% 83% ± 4% 83% ± 4% 84% ± 3% 1898.05 153.64

RoBERTa BiLSTM+3 Hidden Layers NN 84% ± 3% 84% ± 3% 84% ± 3% 85% ± 2% 3404.54 148.43

RoBERTa BilSTM+CNN 83% ± 2% 81% ± 4% 82% ± 3% 83% ± 2% 5328.73 178.64

RoBERTa Proposed TRABSA model 94% ± 1% 93% ± 2% 94% ± 1% 94% ± 1% 3675.21 147.14

Table 3.  Comprehensive 10-fold cross-validated mean performance evaluation metrics with standard 
deviations for various models and embeddings, including time performance (training and inference times).
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Dataset, and the US Airline Dataset, the TRABSA model consistently achieves high macro average precision, 
recall, F1-score, and accuracy values. For instance, in the Global COVID-19 Dataset, the TRABSA model attains 
an impressive 98% macro average precision, recall, F1-score, and accuracy. Similarly, the USA COVID-19 
dataset maintains high scores, obtaining 87% in terms of accuracy. The trend continues across External datasets, 
with the TRABSA model consistently performing exceptionally well, achieving an average accuracy of 97% on 
the Twitter Dataset, 95% on the Reddit Dataset, 90% on the Apple Dataset, and 96% on the US Airline Dataset 
(see Table 5). These consistent and high-performance metrics underscore the reliability and effectiveness of the 
TRABSA model across diverse datasets and DL architectures, reaffirming its robustness and generalizability in 
SA tasks.

The robustness and generalizability of our TRABSA model are evident through its superior performance 
compared to a wide range of state-of-the-art models used in multiclass sentiment analysis (SA) on Twitter data. 
Table 6 summarizes these comparisons, showcasing how TRABSA consistently outperforms models across 
multiple datasets. Notably, on the global COVID-19 dataset, TRABSA achieves an exceptional macro average 
precision, recall, F1-score, and accuracy of 98%, significantly surpassing models such as Jlifi et al.58, which 
utilized the Ens-RF-BERT approach and achieved a macro average F1-score of 94.03% and accuracy of 93.01%. 
Similarly, the model by Sazan et al.57, which employed RoBERTa+fastText, attained an F1-score of 92.05% but 
still falls short when compared to TRABSA’s 95% F1-score on the US Airline dataset. Furthermore, the CNN-
LSTM model proposed by Mohbey et al.56 achieved 91.24% F1-score, showcasing a respectable result, but it is 
outperformed by TRABSA’s 98% on the global COVID-19 dataset.

What sets TRABSA apart is its consistent performance across different datasets, including both domain-
specific (e.g., the US Airline dataset, where it achieved 96% accuracy) and global datasets. In contrast, other 
models often exhibit variability in performance depending on the dataset or sentiment categories. This ability 
to generalize across diverse contexts, such as pandemic-related tweets and US airline sentiment, highlights 
TRABSA’s robustness in handling complex multiclass SA tasks. The models compared in this table span various 

Dataset type Dataset name DL models

Evaluation metrics

Training 
time (s)

Inference 
time (s)

Macro average 
precision

Macro average 
Recall

Macro average 
F1-score Accuracy

Extended
Global 
COVID-19 
Dataset

Single Hidden Layer NN 97% ± 0% 97% ± 0% 97% ± 0% 97% ± 1% 7365 491

3 Hidden Layers NN 97% ± 0% 97% ± 0% 97% ± 0% 97% ± 1% 7755 517

BiLSTM+3 Hidden Layers NN 97% ± 1% 97% ± 1% 97% ± 1% 97% ± 1% 5709 518

BiLSTM+CNN 11% ± 5% 33% ± 4% 17% ± 5% 33% ± 4% 8789 536

Proposed TRABSA Model 98% ± 0% 98% ± 0% 98% ± 0% 98% ± 1% 8288 518

Extended
USA 
COVID-19 
Dataset

Single Hidden Layer NN 81% ± 3% 81% ± 3% 81% ± 3% 83% ± 3% 870 58

3 Hidden Layers NN 85% ± 3% 83% ± 1% 84% ± 2% 85% ± 3% 696 58

BiLSTM+3 Hidden Layers NN 85% ± 1% 85% ± 1% 85% ± 1% 86% ± 0% 1218 59

BiLSTM+CNN 17% ± 5% 33% ± 5% 22% ± 4% 51% ± 1% 413 59

Proposed TRABSA Model 87% ± 1% 86% ± 1% 86% ± 1% 87% ± 1% 1081 47

External Twitter 
dataset

Single Hidden Layer NN 93% ± 3% 93% ± 3% 93% ± 3% 93% ± 3% 9891 495

3 Hidden Layers NN 92% ± 1% 92% ± 1% 92% ± 1% 92% ± 1% 4608 288

BiLSTM+3 Hidden Layers NN 92% ± 3% 92% ± 3% 92% ± 3% 92% ± 3% 8700 291

BiLSTM+CNN 53% ± 2% 49% ± 4% 46% ± 3% 49% ± 4% 1752 292

Proposed TRABSA model 97% ± 1% 97% ± 1% 97% ± 1% 97% ± 1% 6602 287

External Reddit dataset

Single Hidden Layer NN 94% ± 3% 93% ± 3% 94% ± 3% 94% ± 3% 1494 90

3 Hidden Layers NN 94% ± 1% 94% ± 1% 94% ± 1% 94% ± 2% 2415 119

BiLSTM+3 Hidden Layers NN 94% ± 1% 94% ± 2% 94% ± 2% 94% ± 1% 2464 101

BiLSTM+CNN 94% ± 1% 94% ± 0% 94% ± 0% 94% ± 0% 1944 119

Proposed TRABSA Model 94% ± 1% 93% ± 0% 94% ± 0% 95% ± 1% 2200 94

External Apple dataset

Single Hidden Layer NN 81% ± 1% 82% ± 2% 81% ± 1% 84% ± 3% 96 11

3 Hidden Layers NN 83% ± 2% 81% ± 3% 82% ± 3% 85% ± 1% 55 10

BiLSTM+3 Hidden Layers NN 87% ± 2% 85% ± 4% 86% ± 3% 89% ± 0% 140 12

BiLSTM+CNN 85% ± 1% 83% ± 3% 84% ± 2% 87% ± 0% 130 11

Proposed TRABSA Model 88% ± 1% 86% ± 2% 86% ± 2% 90% ± 0% 210 12

External US Airline 
dataset

Single Hidden Layer NN 93% ± 3% 93% ± 3% 93% ± 3% 94% ± 2% 1201 48

3 Hidden Layers NN 94% ± 2% 93% ± 3% 93% ± 3% 94% ± 2% 1166 53

BiLSTM+3 Hidden Layers NN 94% ± 1% 93% ± 2% 94% ± 1% 94% ± 1% 1012 46

BiLSTM+CNN 94% ± 3% 93% ± 4% 93% ± 4% 94% ± 3% 842 40

Proposed TRABSA Model 95% ± 0% 95% ± 0% 95% ± 0% 96% ± 1% 897 39

Table 5.  Generalizability and robustness of the proposed TRABSA model on both the extended and external 
datasets.
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techniques, from traditional models such as BoW+SVC16 to more modern DL architectures like CNN-LSTM56 
and transformer-based approaches such as BERT49, yet none achieve the same level of performance as TRABSA.

Statistical validation
To assess the performance of our proposed TRABSA model against the other top-performing models 
benchmarked in this study, we performed a 10-fold cross-validated two-tailed paired t-test, each with 50 
epochs, on key evaluation metrics: accuracy, macro average precision, recall, and F1-score. By top-performing 
model, we refer to the best combination of word embedding and the model obtained from Table 3. Our null 
hypothesis (H0) stated that there is no significant difference between the performance of each model and the 
TRABSA model for the respective metrics. In contrast, the alternative hypothesis (H1) posited that a significant 
difference does exist. We utilized a significance level of α = 5%, with a Bonferroni correction to account for 
multiple comparisons. The t-test results (see Table 7) revealed that for all metrics-accuracy, precision, recall, 
and F1-score-the TRABSA model showed statistically significant improvements compared to the other models 
(p− values < 0.05 after adjustment) by rejecting the H0. For example, the accuracy of the TRABSA model was 
significantly higher than that of BoW+RF, with a t-value of 108.7332 and a p-value of 2.39× 10−15, suggesting 
a meaningful enhancement in performance. Similarly, the TRABSA model consistently demonstrated superior 
results with significant t-statistics and p-values for precision and recall. These findings robustly support the 
efficacy of the TRABSA model in delivering enhanced performance metrics compared to traditional models.

Interpretability analysis
This section discusses the interpretability analysis of the TRABSA model, employing SHAP and LIME techniques 
to enhance explainability.

SHAP
A useful tool for deciphering and understanding the results of ML models is the SHapley Additive exPlanations 
(SHAP) framework60. The computation and presentation of the relevance assigned to each characteristic in the 
prediction process are made easier by utilizing the SHAP Python package. Calculating SHAP values, which 
measure feature contribution and improve the interpretability of ML models, is essential to the SHAP framework. 
When the features (x) are unknown, a SHAP value specifies how to go from the expected or base value E[f (x)] 
to the actual output f . Furthermore, by clarifying the direction of the link between features and the target 
variable, SHAP values shed light on how characteristics affect predictions. A characteristic with a SHAP value of 
1 or − 1, for example, significantly influences the prediction for a given data point favorably or negatively. On the 
other hand, a feature that approaches 0 in SHAP value has a negligible contribution to the prediction60. A range 
of graphs are provided by the SHAP framework to help in the understanding of feature contributions and to aid 
in the interpretation and justification of ML models. The following represents how SHAP values are calculated:

	
ϕi(x) =

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f (S ∪ {i})− f (S)]� (8)

Where:

Study Model used Dataset

Macro 
average 
precision

Macro 
average 
recall

Macro average 
F1-score Accuracy

Qi & Shabrina (2023)16 BoW+SVC UK COVID-19 Twitter Dataset 69.66% 70.33% 69.66% 71.00%

Ours TRABSA UK COVID-19 Twitter Dataset 94.00% 93.00% 94.00% 94.00%

dos Santos Neto et al., (2024)49 BERT TripAdvisor 87.70% 88.20% 87.90% 88.20%

Brum & Volpe Nunes (2018)50 BERT TweetSentBR 73.27% 72.75% 72.96% 72.75%

De Souza et al. (2018)51 MultiFiT-Twitter LM Twitter NPS 72.43% 72.46% 72.43% 72.46%

Pilar et al. (2023)52 Neighbor-sentiment InterTASS 57.76% 51.39% 54.39% 61.35%

Su & Kabala (2023)53 GloVe100+LSTM 500k ChatGPT-related Tweets 
Jan-Mar 2023 81.10% 81.10% 81.10% 81.10%

Memiş et al. (2024)54 Multiclass CNN model with 
pre-trained word embedding Turkish Financial Tweets – – – 72.73%

Kp et al. (2024)55 Ensemble classifier Twitter API Dataset 91.29% 89.65% 87.32% 93.42%

Mohbey et al. (2024)56 CNN-LSTM Monkeypox Tweets 91.24% 91.24% 91.24% 91.24%

Sazan et al., 2024)57 RoBERTa+fastText US Airline Dataset 92.08% 92.02% 92.05% 92.02%

Ours TRABSA US Airline Dataset 95.00% 95.00% 95.00% 96.00%

Jlifi et al. (2024)58 Ens-RF-BERT Hashtag Covid19 Tweets 94.03% 93.05% 94.03% 93.01%

Bhardwaj et al. (2024)59 BoW+LR COV19Tweets Dataset 82.00% 81.80% 81.60% 81.80%

Ours TRABSA Global COVID-19 dataset 98.00% 98.00% 98.00% 98.00%

Table 6.  Summary of the proposed models in the state-of-the-art tweet sentiment analysis literature.
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ϕi(x) = the SHAP value for feature i in the context of input x,
N  = the set of all features,
S = a subset of features excluding i,
f (S) = the model’s prediction with features S,
f (S ∪ {i}) = the model’s prediction with features S and feature i included.
This formulation encapsulates the incremental contribution of feature i towards the prediction, considering 

all possible combinations of features.

SHAP text plot
A thorough illustration of how specific tokens inside a text instance affect a TRABSA model’s output may be seen 
in Fig. 8. The graphic illustrates sections that boost (in red) or reduce (in blue) the model’s sentiment forecast 
by superimposing significance values over the original text. This makes it possible to comprehend how certain 
words or phrases fit into the larger feeling the text is trying to convey nuancedly. Furthermore, the hierarchical 
structure of significance values preserves the structural linkages between tokens, providing insights into intricate 
interactions within the text. A comprehensive picture of how the text’s combined characteristics affect the model’s 
output is given by the force plot that goes with it; positive features raise the prediction while negative features 
reduce it. By allowing users to investigate the connections between text segments and how those connections 
affect the model’s predictions, interactive capability further improves interpretability. All things considered, the 
figure makes it easier to comprehend how the TRABSA model makes decisions and helps with text-based data 
interpretation and analysis.

SHAP bar plot
The NLP global summaries of the influence of tokens inside a dataset are shown in Fig. 9. Every bar in the 
graphic illustrates how significantly a token affects the model’s predictions over the full dataset. Each bar’s height 
represents the influence of the token; higher bars denote greater significance. The plot collects the individual 
contributions of tokens over numerous instances by compressing the Explanation object over its rows, usually 
by summing. This method generates a bar chart with as many columns as there were unique tokens in the 
original dataset by treating each kind of token as a feature. Big groups are split up, and each token gets an equal 
portion of the total group significance value if the Explanation object contains hierarchical values. Furthermore, 
arranging the bar chart in a descending sequence helps reveal which tokens have a major impact on the model’s 
predictions.

LIME
The LIME method provides a methodical technique for evaluating individual predictions given by complicated 
ML models, which stands for Locally Interpretable Model-Agnostic Explanations60. This approach works by 
estimating the model’s behavior around a given forecast. Fundamentally, LIME utilizes a local linear explanation 
model that follows Eq. (9) to the letter, making it an additive feature attribution method. LIME presents the idea 
of “interpretable inputs,” which are condensed representations of the original inputs and are represented as x0. 
A binary vector of interpretable inputs is mapped to the original input space via the transformation x = hx(x0)
. Different kinds of mappings hx are used for different input spaces. For example, when applied to bag-of-words 
text characteristics, hx translates a binary vector (signaling the presence or absence of words) to the appropriate 
word count in the source text. LIME aims to minimize the objective function to determine the coefficients ϕ:

Model
t-value 
(Accuracy)

p-value 
(Accuracy)

t-value 
(Precision)

p-value 
(Precision)

t-value 
(Recall)

p-value 
(Recall)

t-value (F1 
score)

p-value 
(F1 
score)

BoW_RF 108.7332 2.39E−15 59.19424 5.65E−13 135.5109 3.30E−16 128.4593 5.33E−16

BoW_NB 161.109 6.95E−17 95.1292 7.95E−15 120.9821 9.15E−16 105.8549 3.04E−15

BoW_SVM 85.36398 2.10E−14 67.73762 1.68E−13 66.34988 2.03E−13 51.12919 2.10E−12

BoW_GBM 54.78734 1.13E−12 35.68181 5.28E−11 48.87382 3.15E−12 52.17979 1.75E−12

BoW_LGBM 61.19279 4.19E−13 29.05617 3.30E−10 41.47385 1.37E−11 49.3594 2.88E−12

BoW_XGBoost 91.83215 1.09E−14 62.80512 3.32E−13 101.6696 4.37E−15 96.5374 6.96E−15

BoW_Catboost 82.98394 2.71E−14 42.12589 1.19E−11 120.3859 9.56E−16 63.42425 3.04E−13

BoW_LGBM+KNN+MLP 56.52622 8.54E−13 39.37306 2.19E−11 53.2787 1.45E−12 44.7578 6.94E−12

BoW_RF+KNN+MLP 115.5203 1.39E−15 54.42813 1.20E−12 83.80527 2.48E−14 81.01391 3.37E−14

BoW_GBM+RF Stacking Classifier 95.87232 7.41E−15 76.63942 5.55E−14 125.9309 6.38E−16 104.5914 3.39E−15

BoW_GBM+RF Voting Classifier 126.3773 6.18E−16 67.23083 1.80E−13 89.36265 1.39E−14 74.88783 6.83E−14

RoBERTa_Single Hidden Layer NN 46.94341 4.52E−12 31.96107 1.41E−10 41.38057 1.40E−11 30.30619 2.27E−10

RoBERTa_3 Hidden Layers NN 51.66872 1.91E−12 33.33187 9.70E-11 97.90134 6.14E−15 39.84824 1.96E−11

RoBERTa_BiLSTM+3 Hidden Layers NN 43.79562 8.43E−12 26.53577 7.41E−10 56.63986 8.39E−13 46.28162 5.14E−12

RoBERTa_BiLSTM+CNN 57.76621 7.03E−13 40.85393 1.57E−11 45.50036 5.98E−12 60.10854 4.92E−13

Table 7.  10-fold cross-validated paired t-tests comparing macro-average precision, recall, F1 scores, and 
accuracy of the top-performing models against the TRABSA model.
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ξ = argmin

g∈G
(L(f, g, πx0) + Ω(g))� (9)

The loss function in this case is represented by L, which expresses how loyal the explanation model g(z0) is to the 
original model f (hx(z0)). This evaluation is performed across a set of samples weighted by the local kernel πx0 
in the reduced input space. Furthermore, the penalty term Ω discourages the explanation model g from being 
overly complicated. Since g follows Equation 9 and L uses a squared loss formulation, using penalized linear 
regression methods is typically necessary to solve Eq. (9).

LIME text explainer plot
The LIME Text Explainer visualization is a useful tool for understanding how particular elements or tokens 
inside a text affect the model’s predictions. Every text token is plotted along the horizontal axis in Fig. 10, and 
its contribution to the prediction is indicated along the vertical axis. Usually, the plot shows how important 
tokens are by emphasizing how they affect the model’s output. Analyzing each token’s contribution amount and 
direction is necessary to understand a LIME Text Explainer plot. Stronger impacts on the model’s prediction are 
indicated by tokens with bigger positive or negative contributions. On the other hand, tokens with contributions 
closer to zero indicate a negligible influence on the prediction. Additionally, the plot could draw attention to 
particular words or phrases that greatly impact the model’s ability to make decisions. Understanding these 
influential tokens can provide valuable insights into how the model processes and evaluates textual data.

Discussions
Our methodology and results demonstrate a significant advancement in SA compared to existing literature. 
While prior studies have explored diverse models and techniques, our TRABSA model introduces a unique 
hybrid approach combining transformer-based architectures, attention mechanisms, and BiLSTM networks. 
This innovative combination enables our model to effectively capture nuanced sentiment patterns, resulting in 
notably higher accuracy and performance across multiple evaluation metrics than traditional and state-of-the-
art transformer models such as BERT and RoBERTa. We conducted a thorough analysis to assess the robustness 
of our TRABSA model across various datasets and scenarios, consistently observing superior performance 
across multiple datasets, including extended and external ones. Additionally, our model demonstrates resilience 
to variations in sentiment expression and context, reaffirming its reliability in diverse real-world scenarios.

This novel hybrid approach offers several benefits to the field, including unparalleled accuracy, robustness, 
and generalizability across diverse datasets and scenarios. By leveraging the strengths of each component, the 
TRABSA model can revolutionize SA applications, providing researchers, businesses, and policymakers with 
deeper insights into public opinion, consumer sentiment, and social trends. Its innovative architecture and 
superior performance represent a significant advancement in the quest for more accurate and reliable SA tools, 
with implications extending beyond academic research.

Fig. 8.  The figure illustrates the importance of each token overlaid on the original text corresponding to that 
token. It showcases the significance of individual tokens in sentiment prediction, where red regions denote 
parts of the text increasing the model’s output (positive sentiment), while blue regions indicate a decrease in 
the model’s output (negative sentiment). a Positive sentiment. b Neutral sentiment. c Negative sentiment.
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Fig. 9.  Summarized importance of tokens in the dataset: (a) Neutral tokens displayed in their natural order, 
(b) Negative tokens sorted in descending order, and (c) Positive tokens sorted in ascending order. Each bar 
represents the overall importance of a token, with taller bars indicating greater influence. a Neutral tokens 
displayed in their natural order. b Negative tokens sorted in descending order. c Positive tokens sorted in 
ascending order.
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The practical implications of the TRABSA model’s advancements are profound, offering tangible benefits 
across various real-world applications. In market research, the model’s ability to accurately analyze sentiment 
from social media, customer reviews, and other online sources empowers companies to gain valuable insights 
into consumer preferences, market trends, and brand sentiment. This knowledge informs strategic decision-
making processes, product development strategies, and marketing campaigns, ultimately enhancing customer 
satisfaction and competitive advantage. Furthermore, in social media monitoring and reputation management, 
the TRABSA model equips organizations with tools to monitor public sentiment, identify emerging issues or 
crises, and proactively respond to customer feedback in real-time. Detecting and addressing potential issues 
early on enables businesses to safeguard their reputation and maintain positive relationships with their target 
audience. Additionally, in the context of public opinion analysis and political discourse, the TRABSA model 
provides policymakers and analysts with a powerful tool for gauging public sentiment, identifying key concerns, 
and tracking changes in public perception over time. This knowledge informs policy decisions, communication 
strategies, and crisis management efforts, ultimately contributing to more informed and responsive governance. 
The practical applications of the TRABSA model extend across a wide range of industries and domains, offering 
transformative benefits for businesses, governments, and society as a whole.

Conclusions and future directions
Our research has yielded significant findings and contributions to SA. We have achieved remarkable results 
by developing and evaluating the TRABSA model, a novel hybrid approach combining transformer-based 
architectures, attention mechanisms, and BiLSTM networks. Leveraging the latest RoBERTa-based transformer 

Fig. 10.  LIME Text Explainer vertical bar plot in descending order of token contributions, illustrating the 
impact of each token on the TRABSA model’s predictions. a Positive sentiment. b Neutral sentiment. c 
Negative sentiment.

 

Scientific Reports |        (2024) 14:24882 22| https://doi.org/10.1038/s41598-024-76079-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model and expanding the datasets, we have demonstrated the TRABSA model’s exceptional accuracy and 
relevance, bridging existing gaps in SA benchmarks. Thorough comparisons of word embedding techniques 
and methodical labeling of tweets using lexicon-based approaches have further enhanced the effectiveness of 
SA methodologies. Our experiments and benchmarking efforts have highlighted the superiority of the TRABSA 
model over traditional and state-of-the-art models, showcasing its versatility and robustness across diverse 
datasets and scenarios. With macro-average precision of 94%, macro-average recall of 93%, macro-average 
F1-score of 94%, and accuracy of 94%, our model has proven its efficacy in capturing nuanced sentiment 
patterns. Additionally, exploring model interpretability techniques using SHAP and LIME has enhanced our 
understanding and trust in the TRABSA model’s predictions, reinforcing its practical applicability.

Despite the significant advancements achieved in our research, several avenues remain for future exploration 
and improvement in interpretable SA. Firstly, there is scope for refining and expanding model interpretability 
techniques to provide deeper insights into the factors influencing sentiment predictions. Additionally, 
integrating multimodal data sources such as text, images, and audio could enhance the richness and accuracy 
of SA. Addressing ethical considerations regarding bias, fairness, and privacy in SA models is paramount for 
responsible deployment and usage. Furthermore, exploring the application of SA in emerging domains such as 
healthcare, finance, and politics could uncover new challenges and opportunities for research and innovation. 
Overall, continued research in interpretable SA holds the potential to drive meaningful advancements in AI 
technologies and contribute to more informed decision-making in various fields.

Data availability
The extended datasets, comprising the Global Twitter COVID-19 Dataset and the USA Twitter COVID-19 Data-
set, are publicly available for download from the Extended Covid Twitter Datasets (https://data.mendeley.com/
datasets/2ynwykrfgf/1) repository47. Additionally, the external datasets used in our research were sourced from 
Kaggle, including the Twitter and Reddit Dataset (https://www.kaggle.com/datasets/cosmos98/twitter-and-red-
dit-sentimental-analysis-dataset), Apple Dataset (https://www.kaggle.com/datasets/seriousran/appletwittersen-
timenttexts), and US Airline Dataset (https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment). 
The code for reproducibility is available in https://github.com/Abrar2652/nlp-roBERTa-biLSTM-attention.
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