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OPEN A hybrid transformer and attention
based recurrent neural network for
robust and interpretable sentiment
analysis of tweets

Md Abrar Jahin3, Md Sakib Hossain Shovon?3, M. F. Mridha%3"“, Md Rashedul Islam*>"“ &
Yutaka Watanobe®

Sentiment analysis is a pivotal tool in understanding public opinion, consumer behavior, and social
trends, underpinning applications ranging from market research to political analysis. However,
existing sentiment analysis models frequently encounter challenges related to linguistic diversity,
model generalizability, explainability, and limited availability of labeled datasets. To address these
shortcomings, we propose the Transformer and Attention-based Bidirectional LSTM for Sentiment
Analysis (TRABSA) model, a novel hybrid sentiment analysis framework that integrates transformer-
based architecture, attention mechanism, and recurrent neural networks like BiLSTM. The TRABSA
model leverages the powerful RoBERTa-based transformer model for initial feature extraction,
capturing complex linguistic nuances from a vast corpus of tweets. This is followed by an attention
mechanism that highlights the most informative parts of the text, enhancing the model’s focus on
critical sentiment-bearing elements. Finally, the BiLSTM networks process these refined features,
capturing temporal dependencies and improving the overall sentiment classification into positive,
neutral, and negative classes. Leveraging the latest RoBERTa-based transformer model trained on

a vast corpus of 124M tweets, our research bridges existing gaps in sentiment analysis benchmarks,
ensuring state-of-the-art accuracy and relevance. Furthermore, we contribute to data diversity by
augmenting existing datasets with 411,885 tweets from 32 English-speaking countries and 7,500
tweets from various US states. This study also compares six word-embedding techniques, identifying
the most robust preprocessing and embedding methodologies crucial for accurate sentiment analysis
and model performance. We meticulously label tweets into positive, neutral, and negative classes
using three distinct lexicon-based approaches and select the best one, ensuring optimal sentiment
analysis outcomes and model efficacy. Here, we demonstrate that the TRABSA model outperforms the
current seven traditional machine learning models, four stacking models, and four hybrid deep learning
models, yielding notable gain in accuracy (94%) and effectiveness with a macro average precision

of 94%, recall of 93%, and F1-score of 94%. Our further evaluation involves two extended and four
external datasets, demonstrating the model’s consistent superiority, robustness, and generalizability
across diverse contexts and datasets. Finally, by conducting a thorough study with SHAP and LIME
explainable visualization approaches, we offer insights into the interpretability of the TRABSA model,
improving comprehension and confidence in the model’s predictions. Our study results make it easier
to analyze how citizens respond to resources and events during pandemics since they are integrated
into a decision-support system. Applications of this system provide essential assistance for efficient
pandemic management, such as resource planning, crowd control, policy formation, vaccination
tactics, and quick reaction programs.
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Due to the growth of textual data on social media platforms, news stories, reviews, and consumer feedback,
sentiment analysis (SA), a crucial aspect of natural language processing (NLP), has seen growing attention and
usage across several domains'. Institutes may get crucial insights into public opinion, consumer preferences,
market trends, and brand impression by identifying and analyzing feelings conveyed in text?. Thus, SA is critical
in directing marketing initiatives, product development, company strategies, and reputation management.
Additionally, SA is useful in various domains, including politics, healthcare, economics, and the social sciences,
where decision-making and policy development depend on a knowledge of human emotions and attitudes.

Despite its broad use, SA still has issues that need more study and creativity. The lack of generalizability
and robustness of SA models is one of the primary issues, especially when applying them to various languages,
domains, and datasets?’. Because existing models frequently display different performance levels based on the
properties of the data, they are less dependable in real-world situations where the data distribution may change
greatly’. Furthermore, SA models’ interpretability is still a major worry, particularly in high-stakes scenarios
when model predictions are used to make judgments®. Deep learning (DL) models are black-box in nature,
which makes it difficult to grasp how these models get to their conclusions. This makes it difficult to implement,
impedes trust, and holds people accountable for important decision-making processes.

Inspired by these difficulties, this study aims to develop a strong, broadly applicable, and easily interpreted
model of SA that will overcome the shortcomings of current techniques. Through improvements in DL, attention
mechanisms, and interpretability methodologies, our goal is to develop a model that performs well on various
datasets and offers insights into how it makes decisions. This research advances the area of SA by bridging the gap
between model performance, interpretability, and practical application. We aim to improve the trustworthiness,
transparency, and usefulness of SA models by employing empirical assessments and interpretability studies. This
will enable enterprises to make well-informed decisions by relying on dependable sentiment insights.

Our research aims to fill several critical gaps in the existing literature. First, although SA has received a lot
of attention-especially regarding social media data-more robust and interpretable models are still required to
classify sentiments across various languages and domains accurately. Many current methods are not transparent,
scalable, or generalizable, making it difficult to use them in real-world situations. Furthermore, a notable
deficiency in current datasets for SA is the absence of representation for various English language usage patterns.
Variations in vocabulary, grammar, and contextual usage of English across national boundaries result in subtle
discrepancies in the presentation of distinct emotions. This variability presents a problem for SA models, making
it difficult to assess sentiments appropriately in various language circumstances. More advanced methods are
required to capture minute semantic subtleties and adjust to changing contextual signals since current models
may not comprehend sarcasm, context-dependent sentiment changes, or nuanced sentiment expressions.

This study addresses the need for robust and generalizable SA models by proposing the “Transformer and
Attention-based Bidirectional LSTM for Sentiment Analysis (TRABSA)” model. The TRABSA model integrates
the strengths of transformer-based architecture and attention mechanisms with recurrent neural networks
(RNNG) like bidirectional long short-term memory (BiLSTM) to enhance the performance and adaptability of
SA tasks. Our method seeks to capture the broad diversity of English language usage and offer a more thorough
knowledge of sentiment expression in various linguistic situations by combining data from several locations
into a single dataset. By using this method, TRABSA can more effectively adjust to the subtle differences in
English language usage across various groups, which improves the precision and significance of SA findings.
We test the performance of the TRABSA model on a range of DL architectures and datasets, including extensive
Twitter and external social media datasets, with a particular emphasis on scalability, accuracy, and consistency.
Additionally, we do interpretability assessments utilizing the SHAP and LIME approaches to understand the
model’s decision-making mechanism. We show the TRABSA model’s generalizability and robustness through
our thorough examination, providing a viable method for SA in various real-world situations.

Our research makes eight-fold key contributions:

1. We propose the TRABSA model, a novel hybrid sentiment analysis framework that combines transform-
er-based architectures, attention mechanisms, and BiLSTM networks to improve sentiment analysis perfor-
mance.

2. This research leverages the latest ROBERTa-based transformer model, trained on a vast corpus of 124M
tweets, to bridge existing gaps in sentiment analysis benchmarks, ensuring state-of-the-art accuracy and
relevance.

3. We extended the existing dataset by scraping 411,885 tweets from 32 English-speaking countries to include
diversity in the Global Twitter COVID-19 Dataset, acknowledging the varied perspectives and discourse
across regions. We scraped an additional 7500 tweets from different states of the USA to deepen geographical
representation in the USA Twitter COVID-19 Dataset, allowing for localized insights and analysis.

4. This article thoroughly compares word embedding techniques, establishing the most robust preprocessing
and embedding methodologies essential for accurate sentiment analysis and model performance.

5. We methodically label tweets using three distinct lexicon-based approaches and rigorously select the most
effective one, ensuring optimal sentiment analysis outcomes and model efficacy.

6. We conduct extensive experiments to assess the TRABSA model’s performance on the UK COVID-19 Twit-
ter Dataset, benchmarking against 7 traditional machine learning (ML) models, 4 stacking models, and 4 DL
models, demonstrating its superiority and versatility.

7. We evaluate the TRABSA model’s robustness and generalizability across 2 extended and 4 external datasets,
showcasing its consistent superiority and applicability across diverse contexts and datasets.
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8. We provide insights into the interpretability of the TRABSA model through rigorous analysis using SHAP
and LIME techniques, enhancing understanding and trust in the model’s predictions.The rest of this article
is structured as follows: section “Related works” reviews state-of-the-art literature in SA using ML-DL and
interpretability techniques. In the section “Methodology;” the data collection and preprocessing techniques,
unsupervised text labeling, implemented ML and DL models for benchmarking, architecture, and method-
ology of the proposed TRABSA model are described. The section “Results” presents the experimental setup,
evaluation metrics, results, and robustness analysis of the TRABSA model. The SHAP and LIME analysis
conducted on the TRABSA model are covered in section “Interpretability analysis” Section “Discussions”
addresses the findings and implications of our investigation. In conclusion, the article is summarized, and
future research directions are outlined in section “Conclusions and future directions”.

Related works

When it comes to classifying data into positive, neutral, and negative sentiment polarity, SA is essential. Exploring
a wide range of emotions is the focus of the emerging domains of SA”. Sentiments can be further classified
into categories like satisfaction and rage within certain settings, such as political disputes®. The development of
SA approaches with ambivalence management has allowed classifying emotions into distinct classes, including
sorrow, anger, anxiety, excitement, and happiness, leading to more nuanced outcomes’. While SA has typically
focused on textual data, it has expanded to include multimodal SA, which explains data from devices that
employ audio- or audio-visual formats!’. The extension of SA into multimodal analysis highlights its variety
and complexity, creating opportunities for a wide range of NLP applications. The variety of options is further
highlighted by the fast growth of NLP, fueled by research in neural networks'!. Notably, the development of
Neurosymbolic Al which combines symbolic reasoning and deep learning, offers a viable method of improving
NLP capabilities'?, highlighting the various paths NLP research is taking. Lexicon-based methods, ML-based
methods, and hybrid techniques are the three main methodologies for solving text categorization and emotion
detection challenges. Word polarity is used by lexicon-based approaches, and ML techniques see text analysis
as a classification problem that may be further divided into supervised, semi-supervised, and unsupervised
learning approaches'. SA results are frequently improved in real-world applications by combining ML with
lexicon-based techniques.

In Ahmed & Ahmed’s work, positive and negative emotions were used to classify gathered fake newspapers
using a variety of approaches, including TF-IDF, random forest (RF), Naive Bayes (NB), etc.!%. According to
their results, out of all the classifiers used, the Naive Bayes classifier had the best accuracy (89.30%). To identify
feelings in the Twitter sentiment 140 datasets, Gaur et al.!® used TF-IDF feature extraction and the Naive Bayes
Classifier. The model produced improved accuracy (84.44%) and precision when measured using several
performance criteria, such as accuracy, recall, and precision. The COVID-19-related data that Qi & Shabrinal®
examined came from Twitter users in major English cities. They conducted a comparative analysis of ML
models, including Vader and Textblob, RF, support vector classification (SVC), and multinominal Naive Bayes
(MNB) models. According to the results of their investigation, SVC with TF-IDF demonstrated better accuracy
than the other models. To assess opinions about Saudi cruises, Al Sari et al.}? created three different datasets
from social media platforms. With oversampled Snapchat data, they used ML techniques, including RE, MLP,
NB, voting, SVM, and the n-grams feature extraction approach to reach 100% accuracy with the RF algorithm.
A customized approach for explicit negation detection was presented by Mukherjee et al.'®. They used TF-IDF
for feature extraction and various ML techniques, including NB, SVM, and Artificial Neural Networks (ANN),
to analyze sentiment in Amazon reviews. According to their research, ANNs using negative classifiers had the
best accuracy (96.32%). Using reviews from an international hotel, Noori developed a unique algorithm for
classifying client sentiment'®. Following the processing of the reviews, document vectors were created using the
TF-IDF extractor and trained using SVM, ANN, NB, k-nearest neighbor (KNN), decision tree (DT), and C4.5
models. Outperforming other models, the DT model scored the highest accuracy (98.9%) with 1800 features.
Using N-gram extraction, Zahoor and Rohilla?® compared NB, SVM, RE, and long short-term memory networks
(LSTM) classifiers on preprocessed datasets. In most datasets, including the BJP and ML Khattar datasets, NB
showed the best accuracy. To turn COVID-19-related tweets into a text corpus and determine the most common
terms using N-grams, Samuel et al. used logistic regression (LR) and NB models?!. Their results showed that for
short tweets, NB and LR had peak accuracy rates of 91% and 74%, respectively. For lengthier tweets, both models
performed pretty poorly. Using Maximum Entropy (ME), SVM, and LSTM models, Kumar et al.?? examined the
effects of age and gender on customer reviews. LSTM used word2vec, but the NB, ME, and SVM algorithms used
Bag of Words (BOW) feature extraction. For female data, the over-50 age group showed the highest accuracy.
SVM and MNB with TF-IDF extraction were used by Zarisfi Kermani et al.?* on four Twitter datasets, and they
proposed semantic scoring techniques to represent features in the vector space. According to their findings,
the suggested technique outperformed the MNB algorithm in three datasets, with the STS dataset showing the
greatest MNB performance.

Recent advancements in SA and event detection have introduced several innovative models. DocTopic2Vec,
proposed by Truica et al.?%, enhances document-level SA by combining local and global contexts through
document and topic embeddings, outperforming traditional methods. EDSA-Ensemble? improves sentiment
classification on social media by integrating event detection with SA using an ensemble approach. Petrescu
et al.?® bridges network and content analysis by combining event detection with SA, achieving high accuracy
in sentiment determination. For imbalanced datasets, Truici and Leordeanu?” compare machine learning
algorithms, emphasizing the impact of dataset characteristics on classification performance. Lastly, ATESA-
BZRT by Apostol etal.?® addresses aspect-based SA using a transformers-based ensemble, outperforming existing
models in handling reviews with multiple aspects. Additionally, Mitroi et al.? introduces TOPICDOC2VEC, a
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new topic-document embedding that combines DOC2VEC and TOPIC2VEC, showing superior performance
in polarity detection using game reviews.

In 13 languages with different Indic scripts, Bansal et al.* looked at the identification of objectionable
language. They assessed four sophisticated transformer-based models and contrasted the Transformer-based
method with traditional ML models. Out of all of them, XLM-RoBERTa with BiGRU performed better.
Furthermore, adding emoji embeddings to XLM-RoBERTa improved the models efficacy even further. Due
to the combined dataset’s code-mixing, training using datasets from 13 Indic languages performed better
than training with separate models. Gupta et al.’! presented a unique emotion analysis approach for real-time
COVID-19 tweets, examining eight emotions in different domains. The analysis of tweets from India showed
changes in emotional reactions, such as less happiness except for nature. Because of their commitment, teachers’
faith in education has grown. In terms of precision and recall, the method by Gupta et al.>? produced aspect-
based graphical and textual summaries from mobile reviews, outperforming baseline approaches. Using
Twitter data from the Delhi Election 2020, Gupta et al.>* conducted political echo chamber experiments and
investigated the elements that contribute to the creation of echo chambers as well as the role played by users of
opposing parties in promoting partisan material. Gupta and colleagues employed ML algorithms and lexicon-
based methods to assess sentiment in Hindi tweets. They found that an integrated CNN-RNN-LSTM model
produced an accuracy of 85%>*. Basiri et al.? investigated attitudes about the epidemic in eight different nations
using DL classification algorithms, and their findings showed distinct sentiment patterns and relationships
with pandemic indicators. Using the BERT model, Hayawi et al.’® achieved excellent accuracy in their ML-
based method for spotting COVID-19 vaccination disinformation. Using BERT, Vishwamitra et al.¥” were
able to detect hate speech connected to elderly individuals and the Asian community on Twitter during the
pandemic. They were able to identify separate word connections for various hate speech datasets. Before and
after the initial COVID-19 case announcement, Chen et al.*® monitored conversations in Luxembourg about
policy and daily life; post-announcement, travel-related issues dominated, perhaps because of the region’s large
immigrant population. To emphasize changing emotions over time, Kabir et al.** used ML for word extraction
and emotion categorization in COVID-19 tweets. To categorize COVID-19-related Twitter postings, Valdes et
al.%0 created a BERT-based model, proving the use of domain-specific data for improved performance. During
the pandemic, Tziafas et al.*! used an ensemble architecture to recognize false information, using transformer-
based encoders to achieve high accuracy. Sadia et al.*? obtained high assessment scores using BERT to conduct
SA of COVID-19 tweets. Song et al.*> analyzed several facets of misinformation diffusion and created a model
to categorize misinformation related to COVID-19. Using NLP models, Hossain et al. assessed a dataset for
COVID-19-related misinformation detection, offering preliminary benchmarks for advancement**. During the
COVID-19 lockdown, Chintalapudi et al.*> used BERT to assess sentiment in Indian tweets, and they showed
better accuracy than other models.

The literature review reveals several gaps in SA research, particularly in the context of COVID-19 and social
media sentiment classification. While existing studies have explored SA using various ML algorithms and
lexicon-based approaches, comprehensive investigations remain lacking across diverse datasets, including those
from different geographic regions and languages. Additionally, previous research has focused on individual
datasets or specific domains, neglecting SA models’ broader applicability and generalizability. Moreover, studies
that directly compare different SA techniques, including DL architectures and ensemble methods, are scarce in
identifying the most effective approach across various contexts. The need for interpretability and explainability
in SA models is also apparent, with few studies incorporating techniques such as SHAP and LIME for insights
into model predictions. These gaps highlight the need for more comprehensive and comparative studies
encompassing diverse datasets, languages, and evaluation metrics to advance the SA field effectively.

Methodology

Our proposed methodological framework outlines a structured approach to SA, encompassing several key
stages to ensure robustness and effectiveness in model development and evaluation, as shown in Fig. 1. The first
stage involves gathering relevant data for SA. We extend existing datasets by collecting additional tweets from
diverse sources to enhance the dataset’s representativeness and coverage. Following data collection, we perform
cleaning and preprocessing tasks to ensure the quality and consistency of the data. This includes removing
noise, expanding contractions, handling duplicates, emojis, and missing tweets, and standardizing text formats.
The next step involves labeling the data into positive, neutral, and negative sentiments. We leverage the latest
updated RoBERTa-based pre-trained transformer model for tokenization and sentiment labeling, enabling
accurate and efficient text data processing. The dataset is divided into training, validation, and test sets after it
has been labeled. This enables us to use the test set to assess the model’s performance on untested data, refine
hyperparameters using the validation set, and train the model on a portion of the data. In this step, we build the
SA model based on our suggested hybrid DL architecture. We used Keras Tuner for hyperparameter optimization
within the specified search space, focusing on minimizing the validation loss as our objective to achieve the
best performance. Following model development, we compare the trained model’s performance against baseline
models or current state-of-the-art methods. We examine the model’s ability to correctly classify sentiments into
positive, neutral, and negative categories using a variety of metrics, including accuracy, precision, recall, and F1-
score. Finally, we employ XAI techniques to interpret the model’s predictions and gain insights into its decision-
making process. This involves analyzing the model’s internal mechanisms, such as attention weights or feature
importance, to understand the factors influencing its predictions and enhance model interpretability.

Data collection and preprocessing
In this section, we provide a comprehensive overview of the data collection and preprocessing procedures
undertaken in our study, which laid the foundation for robust SA of tweets.
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Fig. 1. This figure depicts the step-by-step methodological framework proposed for tweet sentiment analysis.
It begins with (a) data collection and extension, followed by (b) data cleaning and preprocessing. Subsequently,
(c) sentiment labeling into positive, neutral, and negative categories is performed using the ‘cardiffnlp/twitter-
roberta-base-sentiment-latest’ pre-trained transformer, and the dataset is split into training, validation, and
test sets. The framework proceeds with (d) model development, (e) model benchmarking, and evaluation
against baseline models or state-of-the-art approaches. Finally, the process concludes with XAl interpretation
techniques applied to gain insights into the model’s predictions.

Data sources

This study employed a comprehensive set of seven distinct datasets to facilitate a thorough exploration of SA
across various dimensions. These datasets were classified into three main categories: Benchmark, Extended, and
External, each serving a unique purpose in our research.

Benchmark dataset: The benchmark dataset, which forms the basis of our research, was first assembled and
curated by'°. It functions as a standard by which our proposed model’s performance is measured. Interestingly,
our model outperformed this benchmark dataset, indicating significant progress in SA. This reference dataset
consists of tweets with geotags from well-known cities in the United Kingdom during the third nationwide
COVID-19 shutdown. Figure 2 shows the tweets gathered from the three stages in the UK. This group of cities
includes Greater London, Bristol, South Hampton, Birmingham, Manchester, Liverpool, Newcastle, Leeds,
Sheftield, and Nottingham. Over the course of three weeks, from January 6, 2021, to July 18, 2021, 77,332 tweets
were gathered. 29,923 tweets were gathered in the first stage, 24,689 in the second, and 22,720 in the third. Major
cities such as London, Manchester, Birmingham, and Liverpool were the source of most tweets, with London
having the highest count with 37,678. Smaller cities, like Newcastle, had just 852 tweets in a six-month period.
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Fig. 2. Stacked bar chart showing tweet distribution in three stages of data collection during third lockdown
period from the major cities of the UK.

The data distribution is in phases, with the first stage having the greatest data and the third stage having the
least, as Fig. 2 illustrates. While Newcastle’s contribution was connected with its population and density, London
consistently supplied the most data.

Extended datasets: To augment our research’s cross-cultural dimension and overcome the geographic
limitations of the benchmark dataset proposed by Qi and Shabrina, we extended the existing UK COVID-19
Twitter dataset!®. The tweets were sourced through a combination of data extraction tools, specifically Twint and
the Twitter Academic API. These tools were chosen because of their ability to acquire tweets with geolocation
information, which is crucial for conducting geographical analyses. However, it should be noted that only a few
1% of Twitter users actively opt to share their geographic location when composing tweets, and this feature is
not enabled by default*. The extended datasets, comprising the Global Twitter COVID-19 Dataset and the USA
Twitter COVID-19 Dataset, are publicly available in the Extended Covid Twitter Datasets repository?’.

To ensure a comprehensive dataset, we merged the data collected by Twint and the Twitter Academic API.
This amalgamation allowed us to access a larger volume of tweets. In identifying tweets related to the COVID-19
pandemic, we employed specific keywords such as “corona” or “covid” in the Twint search configurations and
the query field of the Twitter Academic API. This search strategy enabled us to extract tweets and associated
hashtags containing these pertinent terms.

1. Extended Global COVID-19 Dataset: This extension involved the comprehensive scraping of 411,885 tweets
from 32 English-speaking countries. This dataset expansion allowed us to capture sentiment variations across
diverse English-speaking regions, as illustrated in Fig. 3. In particular, cities such as the “United States,” the
“United Kingdom,” “Australia,” and “New Zealand” exhibit high tweet volumes, while several other cities
have comparatively lower tweet counts. Figure 4 illustrates word clouds and word frequencies within tweets
of the extended datasets. Figure 4 (left) represents a visual summary of the most frequently occurring words
in a vast dataset related to the COVID-19 pandemic. At the center of this cloud is the word “covid,” which
dominates with a staggering 226,463 mentions. Other significant terms around it, such as “vaccine,” “case,”
“test,” and “people,” indicate the key topics and concerns worldwide during the pandemic. Words like “death,”
“pandemic,” and “health” also hold prominence, highlighting the gravity of public health issues. Addition-
ally, terms like “Trump” and “government” suggest the political dimensions entwined with the pandemic
discourse.

2. Extended USA COVID-19 Dataset: In addition to the international extension, we further enriched our data
by creating an extended dataset focusing exclusively on the United States. This dataset comprised 7500 tweets
meticulously scraped from U.S.-based sources. Including this dataset allows for a closer examination of sen-
timent dynamics within a specific geographical context. Figure 4 (right) specific to the United States reveals
notable trends and sentiments within the country during the COVID-19 pandemic. In this dataset, words
like “corona,” “coronavirus,” and “covid” are prominent, underlining the ubiquitous presence of these terms
in American discussions. Interestingly, words like “fool” and “joke” appear, possibly reflecting a spectrum
of attitudes towards the pandemic response. Negative expressions like “shit,” “fuck,” and “die” also emerge,
suggesting the emotional intensity and frustration associated with the situation. Terms like “test” and “case”
point towards testing and infection rates concerns, while “april” indicates a temporal reference.
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Fig. 3. Bar plot showing the distribution of tweets across 32 English-speaking countries.
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Fig. 4. This word cloud visualizes the most frequently occurring words in the “Global” (left) and “Only USA”
(right) datasets of COVID-19-related tweets. The size of each word corresponds to its frequency in the dataset.

External datasets: In order to evaluate the robustness and generalizability of our proposed model, we
incorporated four external datasets sourced from Kaggle, including the Twitter and Reddit Dataset, Apple
Dataset, and US Airline Dataset (see Data availability section).

1. Twitter Dataset: This dataset, collected from Twitter, represents diverse tweets covering various topics and
subject matter. It enables us to assess the model’s adaptability to various Twitter content.

2. Reddit Dataset: The Reddit dataset encompasses user-generated content from the popular social media plat-
form. Its inclusion allows us to explore sentiment patterns in a different online community, offering valuable
insights into the model’s versatility.
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3. Apple Dataset: The Apple dataset consists of textual data related to the technology giant Apple Inc. By incor-
porating this dataset, we aim to analyze sentiment in a specific industry context, providing a more nuanced
view of the model’s performance.

4. US Airline Dataset: This dataset is centered around discussions related to U.S. airlines. It allows us to investi-
gate sentiment trends within the context of the aviation industry, adding yet another layer of applicability to
our model.

Data cleaning and preprocessing

As a previous study has indicated, preprocessing the raw Twitter data was essential to guarantee the accuracy
and reliability of our SA because of their informal and unstructured character®. Our thorough data-cleaning
procedure included the following crucial steps:

1. Capitalization Standardization: To prevent the recognition of identical words with varying capitalization as
distinct, we uniformly converted all text to lowercase. This step was crucial for consistent word recognition.

2. Removal of Irrelevant Elements: We methodically eliminated any superfluous content that has no bearing
on SA, including hashtags (#subject), stated usernames (@username), and any hyperlinks beginning with
“www;” “http,” or “https” We also removed terms that were less than two characters and stop words. Stop
words, though common in text, often lack significant sentiment polarity. Despite being often used in texts,
stop words frequently lack strong emotive polarity. It's important to note that negations like “not” and “no”
were kept in because removing them may change the sense of whole sentences.

3. Handling Repeated Characters: Some users utilize repeating characters in their tweets to highlight intense
feelings. Words not present in standard lexicons were transformed into their correct forms to standardize
such expressions. For instance, “s00000 goooood” was normalized to “so good.”

4. Extending Contractions: Removing punctuation after a contraction, such “isn’t” or “don’t;” presented difficul-
ties. They were expanded into their full forms to maintain the meaningfulness of contractions. For instance,
“isn’t” became “is not.”

5. Elimination of Non-Alphabetical Characters: All punctuation, numerals, and special symbols were removed,
along with all other non-alphabetical characters and symbols. These extraneous characters had the potential
to interfere with feature extraction.

6. Elimination of Duplicates and Empty Tweets: We identified and removed duplicated or empty tweets to
ensure data integrity, creating a clean and consistent dataset.

7. Emojis Transformation: Given the prevalence of emojis in tweets to express sentiment and emotion, we
adopted the ‘demojize()’ function from Python’s emoji module to transform emojis into their corresponding
textual meanings. This enhancement was especially beneficial for improving the accuracy of SA.

8. Advanced Cleaning for Specific Approaches: Depending on the SA approach employed, additional cleaning
steps, such as stemming and Part-of-Speech (POS) tagging, were applied. These steps were particularly rel-
evant for methods relying on resources like SentiWordNet.By rigorously implementing these data-cleaning
procedures, we ensured that our SA was conducted on a high-quality dataset, minimizing noise and optimiz-
ing the extraction of meaningful sentiment features.

Word embeddings

We used various word embedding approaches in this work to extract contextual and semantic information from
our textual material. Our NLP tasks performed much better thanks to these embeddings. The word embedding
techniques we used in our studies are summarized in the next subsections.

Bag-of-Words (BoW): BoW is a classic technique for word representation. It transforms tweets into vectors
by counting the frequency of words in each tweet. While it doesn’t capture word order or context, it provides
a straightforward and interpretable way to represent text data. To utilize the BoOW approach, we employed the
‘CountVectorizer function from the scikit-learn library.

Term Frequency-Inverse Document Frequency (TF-IDF): We utilized the TF-IDF embeddings by employing
the “TfidfVectorizer* function from the scikit-learn module, which allocates weights to words according to their
significance in individual tweets and their scarcity throughout the complete dataset. Additionally, it made it
easier to down-weight frequent keywords, which allowed our models to concentrate on more informative words.

Word2Vec: One of Word2Vec’s advantages is that it can record semantic similarities between words, which
makes text data analysis more sophisticated. Using neural networks, it represents words as dense vectors in a
continuous vector space. The ‘word_tokenize function from the NLTK library was utilized to tokenize our tweets,
as it allows for the breakdown of sentences into individual words. Using the Gensim package, a Word2Vec model
was produced with the vector size, window size, and skip-gram model set. By using a continuous vector space,
this approach was able to express words as vectors. Two methods were used to encode full tweets as vectors: sum
vectorization and average vectorization.

Pre-trained transformers: In our research, we harnessed the power of pre-trained transformer-based
models from the Hugging Face Transformers library to leverage contextual embeddings for text data. Three
distinct transformer models were employed, each bringing unique capabilities to the analysis. The ‘distilbert-
base-uncased’ model, known for its efficiency and lightweight nature, was selected for its suitability in scenarios
where computational resources are constrained. It produces context-aware word embeddings that consider each
word’s left and right context. We used a state-of-the-art ‘cardiffnlp/twitter-roberta-base-sentiment-latest’ model,
updated in 2022, to capture sentiment-specific nuances in a tweet. This model was trained on an extensive
dataset of approximately 124 million tweets collected from January 2018 to December 2021. This model was
designed for English text and was a robust foundation for our SA endeavors. Additionally, we incorporated
‘sentence-transformers/all-MiniLM-L6-v2, a sophisticated tool that transforms tweets into a dense vector space
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of 384 dimensions. It transforms entire sentences into fixed-dimensional vectors while maintaining semantic
information.

Although the code implementation for each transformer followed a similar structure, the choice of model
brought diversity to our experimentation, enabling us to explore the impact of contextual embeddings on our
text classification task. To tokenize and process our text data effectively, we employed the model’s associated
tokenizer, incorporating techniques such as padding and truncation to ensure consistent input lengths. The
tokenized data was then efficiently processed on the GPU for optimal computational performance. We further
harnessed the model’s capabilities to extract the hidden states associated with the ‘[CLS]‘ token, which often
encapsulates the comprehensive context of the text.

Unsupervised text labeling

In ML, labeling vast amounts of text data manually can be time-consuming. To address this challenge and expedite
the labeling process, we leveraged lexicon-based methods, specifically TextBlob, VADER, and SentiWordNet, to
automatically assign sentiment scores to tweets. Our sentiment classification scheme employed three categories:
positive (assigned a value of 1), negative (assigned — 1), and neutral (assigned 0).

We used the BoOW method implemented with the CountVectorizer from the scikit-learn library to convert text
data from our benchmark dataset into a matrix of word frequencies. We conducted a comprehensive evaluation
to determine the effectiveness of our unsupervised labeling approach. The performance of seven traditional base
ML models was evaluated against sentiment scores derived from each of the three lexicon approaches: TextBlob,
VADER, and SentiWordNet. Our evaluation unveiled that TextBlob consistently outperformed VADER and
SentiWordNet regarding accuracy across all implemented ML models, as shown in Table 1. Hence, we used
TextBlob-based labels for further benchmarking.

Models used

Traditional ML models

Our analysis encompasses a diverse set of models traditional ML models, including traditional base models,
their stacked ensembles, and voting classifiers. The aim was to comprehensively evaluate the performance of
these models using different text representations. The following models were used:

1. Random Forest (RF): RF is an ensemble learning method that aggregates the predictions of multiple deci-
sion trees. It is known for its robustness and ability to handle high-dimensional data.

2. Naive Bayes (NB): NB is a probabilistic classifier based on Bayes’ theorem, assuming independence among
features. It is particularly well-suited for text classification tasks.

3. Support Vector Machine (SVM): SVM is a powerful classifier that aims to find a hyperplane that best sepa-
rates data points in a high-dimensional space. It is effective for both linear and non-linear classification.

4. Gradient Boosting Machine (GBM): GBM is an ensemble learning technique that builds decision trees
sequentially, focusing on the mistakes of the previous trees. It often leads to strong predictive performance.

5. LightGBM (LGBM): LightGBM is a gradient-boosting framework for efficiency and speed. It uses a histo-
gram-based approach for tree construction.

6. XGBoost: XGBoost is another popular gradient-boosting library known for its scalability and performance
optimization. It has been widely used in various ML competitions.

7. CatBoost: CatBoost is a gradient-boosting library specializing in categorical feature support. It is known for
its ability to tackle categorical data effectively.

8. LGBM + K-Nearest Neighbors (KNN) + Multi-Layer Perceptron (MLP): We explored an ensemble ap-
proach by combining LGBM with KNN and MLP to leverage the strengths of different algorithms.

9. RF + KNN + MLP: Similarly to the previous ensemble, we combined RF with KNN and MLP to diversify
our modeling approach further.

10. GBM + RF Stacking Classifier: Stacking is an ensemble technique where multiple models’ predictions are
combined using another model. Here, we stack GBM and RF to improve predictive accuracy potentially.
11. GBM + RF Voting Classifier: Voting classifiers combine the predictions of multiple models by majority

voting. We used this ensemble technique to take advantage of the collective wisdom of GBM and REWe
explored various combinations of word embeddings and text representations for each model, including
BoW, TF-IDF, Word2Vec, and pre-trained transformer models for text tokenization. These different rep-

Accuracy of Lexicon based methods
ML model | TextBlob | VADER | SentiWordNet
RF 67% 65% 57%
NB 66% 59% 61%
SVM 73% 66% 72%
GBM 79% 71% 69%
LGBM 79% 73% 70%
XGBoost | 76% 70% 71%
Catboost | 74% 69% 68%

Table 1. Performance evaluation of unsupervised sentiment labeling approaches.
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resentations allowed us to assess the impact of text preprocessing on model performance and gain insights
into which models were most effective for sentiment classification.

Deep neural networks (DNNs)

To rigorously evaluate tweet sentiment classification, we employed a diverse set of DNN models, each with
distinct architectural characteristics. We utilized the Keras Tuner for hyperparameter tuning across these models
to ensure optimal performance. The search space included LSTM layer units ranging from 128 to 768, dense
layer units from 64 to 512, dropout rates from 0.1 to 0.5, and learning rates from 1 x 107° to 1 x 1072, Using
Keras Tuner’s Random Search method, we identified the best parameters for each model, significantly enhancing
their performance. This systematic exploration, coupled with comprehensive text representations and optimized
hyperparameters, provided valuable insights into the performance of various DNN architectures.

Our initial model, the ‘Single-Dense Layered Neural Network, started with a transformer for feature
extraction. A single dense layer with 512 units and ReLU activation captured high-level representations. The
simplicity of this architecture allowed us to establish a baseline for performance comparison.

Building upon this foundation, we introduced the ‘3 dense layers of neural network. After global averaging of
the transformer’s outputs, three sequential dense layers were introduced, with decreasing units (512, 256, 128) to
refine feature representations progressively. In particular, dropout regularization was applied after the first dense
layer, enhancing model robustness.

We introduced the ‘BiLSTM + 3 Hidden Dense Layers’ model to explore the nuances of SA texts further.
This architecture incorporated a BILSTM layer, which is a special type of RNN, enabling the network to capture
sequential dependencies in the input data. Following the BiLSTM layer, three additional dense layers (512, 256,
and 128 units) were used to distill the features further. Dropout was applied to enhance model generalization.

Lastly, we explored hybrid architecture with the ‘BiLSTM 4+ CNN’ model. Here, the model combined the
strengths of a BILSTM layer with convolutional layers. The convolutional layers, with 64 filters and varying
kernel sizes, added a spatial perspective to feature extraction. Subsequently, two dense layers (128 and 64 units)
were introduced to further process the extracted features.

Proposed TRABSA model

The proposed TRABSA model presents a systematic and effective architecture for SA, as shown in Fig. 5. The
model utilizes the ‘cardiffnlp/twitter-roberta-base-sentiment-latest’ pre-trained transformer, capitalizing on
its contextual understanding of the text. The architecture begins with input layers, including ‘input_ids’ and
‘attention_mask, where a maximum sequence length of 256 tokens is utilized. ROBERTa is used for its excellent
performance in tasks involving natural language understanding. It encodes the input tweet text and generates
contextual embeddings.

The input data is then organized into a TensorFlow dataset, shuffled, and batched for training. The batch
size is set to 16 to facilitate efficient training. The labels are one-hot encoded to prepare them for multiclass
classification. The dataset is split into training and validation sets for rigorous evaluation. In optimizing the
TRABSA model, Keras Tuner plays a crucial role by systematically exploring a well-defined search space to
fine-tune various hyperparameters. The search space includes the number of units in the BiLSTM layer, ranging
from 128 to 512, which balances model complexity and efficiency. Additionally, three Dense layers are tuned
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Fig. 5. Model architecture of the proposed TRABSA model.
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with units ranging from 128 to 768, 64 to 512, and 32 to 256, respectively, affecting the model’s capacity and
computational demands. The dropout rate varies from 0.1 to 0.5 to prevent overfitting, while the learning rate is
explored logarithmically between le—5 and le—3 to optimize convergence speed. The tuning process employs
Random Search to sample various hyperparameter combinations, providing an efficient way to explore the space
without exhaustive search. After running multiple trials, the tuner identifies the best hyperparameter settings
(see Fig. 5) based on validation loss, ensuring an optimized balance between performance and computational
efficiency.

The core architecture of the TRABSA model is based on the pre-trained RoBERTa-base model architecture
with specific enhancements:

o Input Layers: Two input layers are defined—‘input_ids’ and ‘attention_mask, which receive the tokenized
input tweet sequences and their corresponding attention masks, ensuring proper handling of padded fixed-
length sequences.

o Transformer embeddings: The transformer produces contextual embeddings, which capture rich information
about the text. These embeddings are then subjected to ‘Global Average Pooling’ to reduce the dimensionality
while retaining essential features. A reshaping operation is applied to prepare the data for subsequent layers.

o BiLSTM: The BiLSTM layer is an advanced type of RNN designed to enhance sequence modeling by captur-
ing contextual information from both directions in a sequence. In this model, the BiLSTM layer is configured
with 512 units in each direction, totaling 512 x 2 units. The forward LSTM network processes the sequence
from start to end, while the backward LSTM network processes it from end to start. This bidirectional ap-
proach allows the BiLSTM layer to integrate information from both past and future tokens, providing a more
nuanced understanding of the text.

o Self-attention mechanism: An attention layer is incorporated, which applies self-attention to the output of the
BiLSTM. This mechanism allows the model to weigh the importance of different parts of the input sequence,
which can be critical for understanding the nuances of sentiment in tweets.

o Dense layers: A series of densely connected layers are added to capture complex patterns and relationships
within the data. While there are multiple dense layers, their architecture plays a crucial role. A 512-unit dense
layer with ReLU activation serves as the primary feature extractor, followed by two more dense layers (256
and 128 units) to refine representations progressively. A dropout layer with a 0.05 dropout rate contributes to
regularization and helps prevent overfitting.

o Flatten layer: After processing through the dense layers, the output tensor is flattened to a 1D vector.

o Classifier head: The classifier head consists of a dense layer with three units, using the softmax activation
function. It produces the input tweet’s final sentiment classification probabilities (positive, negative, or
neutral). The model is compiled using the Adam optimizer with a learning rate of 4 x 1075 and categorical
cross-entropy loss. Categorical accuracy is used as the evaluation metric. We included model checkpointing,
early stopping, and callbacks to optimize model training. The early stopping mechanism monitors validation
loss and restores the best weights to prevent overfitting. The training process involves fitting the model on the
training dataset and validating it on the validation dataset for 50 epochs; however, due to the early stopping
mechanism, the iterations stop after 23 epochs.

The learning rate scheduler callback function adjusted the learning rate during our model training. The function
calculates the learning rate for each epoch based on an initial learning rate and an exponential decay factor,
which controls the rate at which the learning rate decreases over epochs. In this specific implementation, the
exponential decay formula is utilized, where the learning rate is multiplied by the exponent of a negative constant
k = 0.1 multiplied by the epoch number. As the epoch increases, the learning rate exponentially decreases,
allowing for a gradual reduction in the learning rate during training. This technique helps optimize the training
process by fine-tuning the learning rate to improve model convergence and performance over successive epochs,
as shown in Fig. 6.

Figure 7 comprehensively evaluates the TRABSA model’s performance in tweet SA. The top left corner
showcases the model’s classification metrics plot, illustrating precision, recall, and F1-score metrics for each
sentiment class. Moving clockwise, the confusion matrix provides a detailed analysis of the model’s classification
performance by comparing predicted sentiment labels with actual labels. The loss vs. epoch curve illustrates its
training and validation loss over successive epochs, while the training and validation accuracy vs. epoch curve
depicts the model’s learning progress and convergence. Together, these visualizations offer insights into the
TRABSA model’s classification accuracy, convergence, and optimization process, aiding researchers in assessing
its performance and identifying areas for improvement.

The TRABSA model’s architecture combines the strengths of ROBERTa’s contextual embeddings, BiLSTM’s
sequence modeling, attention mechanisms for capturing interdependencies, and a well-designed set of dense
layers to improve SA accuracy for tweet data. This architecture demonstrated superior performance compared
to other models, making it a noteworthy addition to the field of SA.

Results

Experimental setup

Table 2 overviews the hardware and software specifications used in our ML and DL experiments. It includes
details on the CPU, GPU, TPU, RAM, Python version, and essential libraries utilized to conduct the research.

Evaluation metrics
We use a variety of assessment indicators in our research to determine our models’ overall success. These
measurements show how well the models correctly categorize sentiments across various classifications. The
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Fig. 6. This figure depicts the learning rate scheduler callback function utilized during model training. It
visualizes the decayed learning rate as the epoch increases, alongside the corresponding training and validation
accuracy, as well as training and validation loss, plotted against variable learning rates.
Fl-score, accuracy, precision, recall, and macro-average metrics are among the crucial assessment measures
employed. These are computed using the following definitions of true positives (TP), false positives (FP), and
false negatives (FN):
TP
Precision = ———— 1
TP+ FP W
TP
Precision = ———— 2
TP+ FP @
Precision x Recall
Fl-score =2 X ————— 3
Precision + Recall ®)
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Fig. 7. Masterplot illustrating the TRABSA model’s performance starting from the top right and proceeding
clockwise including the (a) classification metrics plot, (b) confusion matrix, (c) loss vs Epoch curve, (d)
training and validation accuracy vs Epoch curve.
Resources used Specifications
Intel(R) Xeon(R) CPU | x86 with a clock frequency of 2 GHz, 4 vCPU cores, 18GB
NVIDIA T4 x2 GPU 2560 Cuda cores, 16 GB
Google TPU 8 TPU v3 cores. 128 GB
RAM 16 GB DDR4
Python Version 3.10.12
Libraries Numpy, pandas, matplotlib, seaborn, nltk, TensorFlow, keras, PyTorch, genism, scikit-learn, joblib, transformers, re, string, shap, scipy, lime

Table 2. Details of hardware and software specifications.

Recall, also known as sensitivity, quantifies the percentage of properly identified positive occurrences among
all real positive instances, whereas precision describes the proportion of correctly classified positive instances
among all cases projected as positive. The F1-score, which is derived from the harmonic mean of accuracy and
recall, offers a fair indicator of model performance.

The accuracy metric quantifies the percentage of properly identified occurrences out of all instances, as follows:

TP+TN

4
TP+TN+FP+FN )

Accuracy =
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Where TN represents true negatives.

Furthermore, we calculate the Fl-score, recall, and macro-average accuracy to present a comprehensive
evaluation of the model’s performance across all sentiment classes:

N
1
Macro Average Precision = i ; Precision; (5)
N
1
Macro Average Recall = v ; Recall; (6)
N
1
Macro Average Fl-score = w Z Fl-score; (7)
i=1

Where N represents the total number of sentiment classes.

Together, these evaluation measures offer a thorough analysis of the model’s performance employed in this
research, assisting in the choice and improvement of SA models.

Results

Analyzing the performance of various models across different word embedding techniques reveals significant
variations in their effectiveness for SA tasks. Among the traditional models, GBM and LightGBM consistently
demonstrate strong performance across all word embedding techniques, achieving macro average F1-scores
ranging from 79% to 83%. Pre-trained transformer models like BERT and RoBERTa exhibit competitive
performance, with the RoBERTa model showcasing high accuracy across various configurations, especially
when combined with advanced neural network architectures. Notably, the TRABSA model outperforms all other
models across all evaluation metrics, demonstrating exceptional macro average precision (94%), macro average
recall (93%), macro average F1-score (94%), and accuracy of 94% (see Table 3). This significant improvement
underscores the efficacy of the TRABSA framework in SA tasks, surpassing even state-of-the-art transformer
models like RoBERTa.

We used BoW, TFIDE, word2vec, BERT, SBERT, and RoBERTa as word embeddings with several ML and
two DL models. When we noticed a significant improvement in the accuracy (above 80%) while using RoBERTa
word embeddings with simple DL architectures, we decided to implement more complex hybrid DL models:
BiLSTM+3 Hidden Layers NN, BILSTM+CNN, and TRABSA.

Compared to the best-performing traditional models like GBM (81%), LightGBM (83%), stacked
LGBM+KNN+MLP (84%), and advanced hybrid state-of-the-art BILSTM+3 Hidden Layers NN (85%), the
TRABSA model achieves an impressive accuracy of 94%, indicating a substantial improvement of at least 9%
over the closest competitors. The TRABSA model consistently outperforms others in accuracy and macro
average precision, recall, and F1-score, demonstrating its robustness and effectiveness across different evaluation
criteria. Even when compared to sophisticated neural network architectures like Single Hidden Layer NN (84%)
and 3 Hidden Layers NN (84%), the TRABSA model exhibits a remarkable performance boost of ~ 10%,
further emphasizing its superiority in SA tasks. The TRABSA model’s outstanding performance underscores
its hybrid architecture’s efficacy, which integrates transformer-based mechanisms, attention mechanisms, and
BiLSTM networks to capture nuanced sentiment patterns effectively. The findings suggest that while pre-trained
transformer models like BERT and RoBERTa offer competitive performance, customized architectures like
TRABSA tailored specifically for SA tasks can yield substantial accuracy and predictive power improvements.

The ablation study presented in Table 4 offers a detailed analysis of the proposed TRABSA model by
examining the effects of removing or altering key components. The full model, not shown in this table, achieves
the highest performance, with macro average precision and F1-score reaching 94%, macro average recall at 93%,
and accuracy at 94%. This highlights the effectiveness of the BiLSTM, Attention, and Dense layers in capturing
complex patterns from the data.

When the BiLSTM, Attention, and Dense layers are all removed, the model’s performance drastically drops
to 76% for precision, 75% for recall, 75% for F1-score, and 76% for accuracy. The reduction in training time (=
1290 s) and inference time (/116 s) indicates the computational savings from eliminating these layers, but the
performance decline reveals their critical role in generalizing well to the data.

In the model where only the Attention layer is removed, the performance sees a significant improvement
compared to the full removal of BILSTM and Dense layers. This configuration achieves an 85% macro average
precision, 84% recall, and 84% F1-score, with an accuracy of 84%. The training time is ~2250 s, and the inference
time is ~~146 s, suggesting that while the Attention layer adds value, its absence doesn’t drastically impair the
model’s ability to capture temporal dependencies, likely due to the strength of the BiLSTM.

Interestingly, replacing the BiLSTM with a unidirectional LSTM results in a slight drop in performance
across all metrics, with precision at 83%, recall at 82%, F1-score at 82%, and accuracy at 83%. As expected, the
training and inference times (/2381 s and ~142 s, respectively) show that unidirectional LSTMs are slightly
more efficient but at the cost of losing the bidirectional context offered by the BiLSTM.

Moreover, the model without the Dropout layer exhibits similar performance to the attention-removed
configuration, maintaining 84% across all metrics, but with a slightly faster training time (~2201 s) and inference
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Macro average | Macro average Training Inference

Word embedding | Model precision recall Macro average F1-score | Accuracy | time (s) time (s)
BoW RF 75% + 1% 61% + 2% 61% + 2% 67% + 1% | 6.73 0.03
BoW NB 63% + 1% 62% + 2% 62% + 2% 64% + 1% | 0.82 0.01
BoW SVM 76% + 2% 76% + 2% 76% + 2% 77% + 1% | 4.35 0.30
BoW GBM 82% + 1% 79% + 1% 79% + 1% 81% + 1% | 262.81 0.02
BoW LGBM 83% + 1% 81% + 1% 81% + 1% 83% + 1% | 35.54 0.01
Bow XGBoost 77% + 0% 75% + 1% 75% + 1% 78% + 0% | 86.50 0.02
Bow Catboost 80% =+ 0% 74% + 1% 75% + 1% 77% + 1% | 536.16 0.02
BoW LGBM+KNN+MLP 82% + 1% 81% + 2% 81% + 2% 84% + 0% | 1422.53 45.43
BoW RF+KNN+MLP 74% + 1% 73% + 2% 74% + 1% 75% + 1% | 1212.43 40.54
BoW GBM+REF Stacking Classifier 78% + 0% 76% + 1% 76% + 1% 78% + 0% | 1364.06 50.57
BoW GBM+RF Voting Classifier 78% + 0% 69% + 1% 70% + 1% 72% + 1% | 1250.37 48.30
BoW Single Hidden Layer NN 71% + 4% 69% + 4% 69% + 4% 72% + 4% | 646.34 24.53
BoW 3 Hidden Layers NN 68% =+ 4% 67% + 4% 67% + 4% 70% + 4% | 904.64 25.35
TFIDF RF 69% + 1% 60% + 3% 60% + 3% 66% +2% | 6.75 0.04
TFIDF NB 65% =+ 1% 56% + 3% 56% + 3% 61% 2% | 0.89 0.02
TFIDF SVM 74% + 2% 70% + 3% 70% + 3% 73% +2% | 5.15 0.46
TFIDF GBM 80% + 1% 77% + 3% 77% + 3% 79% + 1% | 273.51 0.05
TFIDF LGBM 80% + 0% 77% + 3% 78% + 3% 80% =+ 1% | 36.12 0.02
TFIDF XGBoost 68% =+ 1% 67% + 1% 67% + 1% 70% + 1% | 87.22 0.03
TFIDF Catboost 74% + 1% 72% + 1% 72% + 1% 74% + 1% | 542.44 0.03
TFIDF LGBM+KNN+MLP 79% + 0% 77% + 1% 77% + 1% 79% + 0% | 1532.37 46.24
TFIDF RF Bagging 76% + 0% 48% + 1% 43% + 1% 56% + 1% | 764.34 35.34
TFIDF RF+KNN+MLP 75% + 1% 71% + 3% 72% + 2% 74% + 0% | 1254.65 42.75
TFIDF GBM-+REF Stacking Classifier 77% + 0% 76% + 1% 76% + 1% 78% + 0% | 1352.53 52.65
TFIDF GBM-+RF Voting Classifier 75% + 0% 69% + 2% 70% + 1% 73% + 0% | 1283.23 50.75
TFIDF Single Hidden Layer NN 68% =+ 3% 67% + 4% 67% + 4% 69% =+ 2% | 650.34 22.43
TFIDF 3 Hidden Layers NN 93% + 3% 92% + 4% 92% + 3% 93% + 4% | 954.64 27.53
word2vec RF 51% + 1% 49% + 2% 49% + 2% 56% + 1% | 6.82 0.05
word2vec NB 41% + 1% 34% + 1% 19% + 1% 36% + 1% | 1.03 0.04
word2vec SVM 67% = 0% 49% + 2% 45% + 3% 57% + 1% | 5.78 0.57
word2vec GBM 51% + 1% 50% + 2% 50% + 2% 56% + 1% | 282.10 0.08
word2vec LGBM 53% + 1% 49% + 1% 47% + 1% 57% £ 1% | 37.41 0.03
word2vec XGBoost 55% + 1% 50% £ 2% 48% + 2% 56% + 1% | 88.60 0.03
word2vec Catboost 71% + 0% 49% + 1% 45% + 1% 57% + 1% | 553.37 0.04
word2vec LGBM+KNN+MLP 53% + 1% 46% + 2% 41% + 3% 53% + 1% | 1448.76 47.34
word2vec RF+KNN+MLP 55% + 1% 49% + 3% 43% + 3% 57% + 1% | 1345.53 55.23
word2vec GBM+REF Stacking Classifier | 46% =+ 2% 45% + 2% 45% + 2% 51% + 1% | 1412.64 53.73
word2vec GBM+RF Voting Classifier 47% + 1% 47% + 1% 47% + 1% 53% + 1% | 1350.23 28.78
word2vec Single Hidden Layer NN 36% + 5% 45% + 4% 40% + 4% 53% + 3% | 704.65 28.34
word2vec 3 Hidden Layers NN 38% + 4% 48% + 4% 42% + 4% 56% + 3% | 1034.89 33.38
BERT RF 53% £ 2% 51% + 3% 49% + 3% 58% + 1% | 805.43 45.53
BERT NB 50% + 3% 51% £ 2% 50% + 2% 53% + 1% | 1.12 0.07
BERT SVM 52% + 2% 52% £ 2% 52% + 2% 56% £ 1% | 6.12 0.76
BERT GBM 56% + 1% 54% + 2% 54% + 2% 60% + 2% | 291.11 0.11
BERT LGBM 58% + 2% 57% + 2% 57% + 2% 61% + 2% | 37.66 0.03
BERT XGBoost 56% + 2% 56% + 2% 56% + 2% 60% + 2% | 89.10 0.04
BERT Catboost 56% + 2% 49% + 2% 46% + 2% 57% + 2% | 562.29 0.05
BERT LGBM+KNN+MLP 61% + 1% 59% + 2% 59% + 2% 62% + 1% | 1623.65 65.34
BERT RF+KNN+MLP 60% + 1% 58% + 2% 57% + 2% 62% + 1% | 1443.22 60.44
BERT GBM+REF Stacking Classifier 55% + 2% 54% + 2% 54% + 2% 56% + 1% | 1523.75 70.23
BERT GBM+RF Voting Classifier 60% =+ 1% 58% + 2% 58% + 2% 66% + 0% | 1452.45 67.85
BERT Single Hidden Layer NN 61% =+ 3% 58% + 4% 59% + 4% 62% + 2% | 945.53 35.64
BERT 3 Hidden Layers NN 62% + 4% 60% =+ 4% 60% + 4% 64% + 4% | 1305.39 45.49
SBERT RF 61% + 0% 48% + 3% 44% + 4% 54% + 2% | 6.95 0.06
Continued
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Macro average | Macro average Training Inference
‘Word embedding | Model precision recall Macro average F1-score | Accuracy | time (s) time (s)
SBERT NB 53% + 2% 40% + 3% 32% + 4% 44% +2% | 1.14 0.09
SBERT SVM 56% + 1% 57% + 2% 56% + 2% 58% + 1% | 6.28 0.81
SBERT GBM 55% + 2% 51% + 2% 49% + 2% 55% + 2% | 302.43 0.15
SBERT LGBM 55% + 2% 52% + 2% 50% + 2% 56% + 2% | 38.18 0.04
SBERT XGBoost 56% + 2% 56% + 2% 56% + 2% 57% + 2% | 90.53 0.06
SBERT Catboost 69% + 0% 48% + 3% 42% + 4% 53% + 2% | 577.54 0.05
SBERT LGBM+KNN+MLP 55% + 2% 49% + 2% 47% + 2% 53% + 2% | 1734.23 68.64
SBERT RF+KNN+MLP 56% + 1% 54% + 2% 54% + 2% 57% + 1% | 1522.42 63.43
SBERT GBM+REF Stacking Classifier | 44% + 2% 44% + 2% 43% + 2% 48% + 1% | 1623.86 72.57
SBERT GBM+RF Voting Classifier 53% + 2% 50% + 2% 50% + 2% 54% + 2% | 1553.54 74.67
SBERT Single Hidden Layer NN 55% + 3% 55% + 4% 54% + 3% 59% + 3% | 954.64 38.48
SBERT 3 Hidden Layers NN 56% -+ 4% 57% + 3% 57% + 3% 59% + 2% | 1402.54 48.48
RoBERTa RF 62% + 2% 62% + 2% 62% + 2% 64% + 1% | 7.23 0.08
RoBERTa NB 63% + 1% 55% + 2% 52% + 3% 54% + 2% | 1.16 1.05
RoBERTa SVM 65% + 1% 65% + 1% 65% + 1% 67% + 0% | 6.76 0.88
RoBERTa GBM 63% + 2% 62% + 3% 63% + 2% 65% + 2% | 314.44 0.17
RoBERTa LGBM 64% + 2% 63% + 3% 64% + 2% 66% + 1% | 38.89 0.05
RoBERTa XGBoost 65% + 1% 63% + 2% 63% + 2% 66% + 1% | 91.14 0.07
RoBERTa Catboost 63% + 2% 62% + 3% 61% + 4% 64% + 2% | 583.28 0.07
ROBERTa LGBM+KNN+MLP 66% + 2% 66% + 2% 65% + 3% 66% + 2% | 1823.93 72.23
RoBERTa RF+KNN+MLP 58% =+ 3% 55% + 2% 55% + 2% 60% + 1% | 1654.54 67.76
RoBERTa GBM+REF Stacking Classifier | 61% + 3% 61% + 3% 61% + 3% 63% + 2% | 1705.36 75.96
RoBERTa GBM+RF Voting Classifier 60% + 2% 60% + 2% 59% =+ 3% 60% + 2% | 1653.78 73.47
RoBERTa Single Hidden Layer NN 849% =+ 4% 849% + 4% 84% + 4% 84% + 4% | 1349.46 154.39
RoBERTa 3 Hidden Layers NN 849% + 3% 83% + 4% 83% + 4% 849% + 3% | 1898.05 153.64
ROBERTa BiLSTM+3 Hidden Layers NN | 84% + 3% 849% + 3% 84% + 3% 85% + 2% | 3404.54 148.43
RoBERTa BilSTM+CNN 83% + 2% 81% + 4% 82% + 3% 83% + 2% | 5328.73 178.64
RoBERTa Proposed TRABSA model 94% + 1% 93% + 2% 94% + 1% 94% + 1% | 3675.21 147.14
Table 3. Comprehensive 10-fold cross-validated mean performance evaluation metrics with standard
deviations for various models and embeddings, including time performance (training and inference times).
Macro average | Macro average | Macro average Training Inference
Word embedding | Model precision recall Fl-score Accuracy | time (s) time (s)
RoBERTa ‘ﬁ’;}‘jirfiLSTM + Attention + 3 Dense | 7, , 59, 75% + 3% 75% + 2% 76% + 3% | 1290.53 115.68
RoBERTa w/o BiLSTM + Attention Layer 81% + 1% 80% + 1% 80% + 1% 80% +2% | 3500.23 169.34
RoBERTa w/o Attention Layer 85% + 2% 84% =+ 3% 84% + 2% 84% =+ 2% | 2250.15 145.85
RoBERTa w/o 3 Dense Layers 82% + 2% 81% + 3% 81% + 3% 82% + 3% | 2245.64 150.14
RoBERTa w/o Dropout Layer 84% + 1% 84% + 1% 84% + 1% 84% + 2% | 2200.70 140.45
RoBERTa LSTM instead of BiLSTM Layer 83% + 2% 82% + 3% 82% + 2% 83% +3% | 2380.90 142.30
Table 4. Ablation test of the proposed TRABSA model. “w/0” stands for “without,” indicating the absence of
the specific component in the TRABSA model configuration
time (/<140 s). This suggests that Dropout contributes to regularization, but its absence does not significantly
degrade performance, possibly due to the robustness of the RoOBERTa embeddings and other layers.

The study underscores the importance of BILSTM and Attention layers for optimal performance while
also demonstrating the computational costs associated with these enhancements. The model without these
components, while more computationally efficient, sacrifices accuracy, confirming the balance between
complexity and performance in the proposed TRABSA model.

Robustness test of TRABSA model

The TRABSA model consistently demonstrates robustness and generalizability across datasets and DL

architectures, as evidenced by its consistent performance metrics. Across various datasets, including the Global

COVID-19 Dataset, the USA COVID-19 Dataset, the External Twitter Dataset, the Reddit Dataset, the Apple
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Dataset, and the US Airline Dataset, the TRABSA model consistently achieves high macro average precision,
recall, F1-score, and accuracy values. For instance, in the Global COVID-19 Dataset, the TRABSA model attains
an impressive 98% macro average precision, recall, Fl-score, and accuracy. Similarly, the USA COVID-19
dataset maintains high scores, obtaining 87% in terms of accuracy. The trend continues across External datasets,
with the TRABSA model consistently performing exceptionally well, achieving an average accuracy of 97% on
the Twitter Dataset, 95% on the Reddit Dataset, 90% on the Apple Dataset, and 96% on the US Airline Dataset
(see Table 5). These consistent and high-performance metrics underscore the reliability and effectiveness of the
TRABSA model across diverse datasets and DL architectures, reaffirming its robustness and generalizability in
SA tasks.

The robustness and generalizability of our TRABSA model are evident through its superior performance
compared to a wide range of state-of-the-art models used in multiclass sentiment analysis (SA) on Twitter data.
Table 6 summarizes these comparisons, showcasing how TRABSA consistently outperforms models across
multiple datasets. Notably, on the global COVID-19 dataset, TRABSA achieves an exceptional macro average
precision, recall, F1-score, and accuracy of 98%, significantly surpassing models such as Jlifi et al.’, which
utilized the Ens-RF-BERT approach and achieved a macro average F1-score of 94.03% and accuracy of 93.01%.
Similarly, the model by Sazan et al.*’, which employed RoBERTa+fastText, attained an F1-score of 92.05% but
still falls short when compared to TRABSA’s 95% F1-score on the US Airline dataset. Furthermore, the CNN-
LSTM model proposed by Mohbey et al.> achieved 91.24% F1-score, showcasing a respectable result, but it is
outperformed by TRABSA’s 98% on the global COVID-19 dataset.

What sets TRABSA apart is its consistent performance across different datasets, including both domain-
specific (e.g., the US Airline dataset, where it achieved 96% accuracy) and global datasets. In contrast, other
models often exhibit variability in performance depending on the dataset or sentiment categories. This ability
to generalize across diverse contexts, such as pandemic-related tweets and US airline sentiment, highlights
TRABSA’ robustness in handling complex multiclass SA tasks. The models compared in this table span various

Evaluation metrics
Macro average | Macro average | Macro average Training | Inference
Dataset type | Dataset name | DL models precision Recall Fl1-score Accuracy | time (s) | time (s)
Single Hidden Layer NN 97% + 0% 97% + 0% 97% + 0% 97% + 1% | 7365 491
Global 3 Hidden Layers NN 97% + 0% 97% + 0% 97% + 0% 97% + 1% | 7755 517
Extended COVID-19 BiLSTM+3 Hidden Layers NN | 97% + 1% 97% + 1% 97% + 1% 97% + 1% | 5709 518
Dataset
atase BiLSTM+CNN 1% + 5% 33% + 4% 17% + 5% 33%+4% | 8789 | 536
Proposed TRABSA Model 98% + 0% 98% + 0% 98% + 0% 98% + 1% | 8288 518
Single Hidden Layer NN 81% + 3% 81% + 3% 81% + 3% 83% + 3% | 870 58
USA 3 Hidden Layers NN 85% + 3% 83% + 1% 84% + 2% 85% + 3% | 696 58
Extended COVID-19 BiLSTM+3 Hidden Layers NN | 85% =+ 1% 85% + 1% 85% + 1% 86% + 0% | 1218 59
Dataset
atase BiLSTM+CNN 17% + 5% 33% & 5% 22% & 4% 51%+ 1% | 413 59
Proposed TRABSA Model 87% + 1% 86% + 1% 86% + 1% 87% + 1% | 1081 47
Single Hidden Layer NN 93% + 3% 93% + 3% 93% =+ 3% 93% + 3% | 9891 495
3 Hidden Layers NN 92% + 1% 92% + 1% 92% + 1% 92% + 1% | 4608 288
External g:;:st:: BiLSTM+3 Hidden Layers NN | 92% =+ 3% 92% + 3% 92% + 3% 92% =+ 3% | 8700 291
BiLSTM+CNN 53% + 2% 49% + 4% 46% + 3% 49% + 4% | 1752 292
Proposed TRABSA model 97% + 1% 97% + 1% 97% + 1% 97% + 1% | 6602 287
Single Hidden Layer NN 94% + 3% 93% + 3% 94% + 3% 94% + 3% | 1494 90
3 Hidden Layers NN 94% + 1% 94% + 1% 94% + 1% 94% + 2% | 2415 119
External Reddit dataset | BILSTM+3 Hidden Layers NN | 94% + 1% 94% + 2% 94% + 2% 94% + 1% | 2464 101
BiLSTM+CNN 94% + 1% 94% + 0% 94% + 0% 94% + 0% | 1944 119
Proposed TRABSA Model 94% + 1% 93% + 0% 94% + 0% 95% =+ 1% | 2200 94
Single Hidden Layer NN 81% + 1% 82% + 2% 81% + 1% 84% + 3% | 96 11
3 Hidden Layers NN 83% + 2% 81% + 3% 82% =+ 3% 85% + 1% | 55 10
External Apple dataset | BILSTM+3 Hidden Layers NN | 87% + 2% 85% + 4% 86% + 3% 89% + 0% | 140 12
BiLSTM+CNN 85% + 1% 83% + 3% 84% + 2% 87% + 0% | 130 11
Proposed TRABSA Model 88% + 1% 86% + 2% 86% + 2% 90% + 0% | 210 12
Single Hidden Layer NN 93% + 3% 93% + 3% 93% + 3% 94% + 2% | 1201 48
3 Hidden Layers NN 94% + 2% 93% + 3% 93% + 3% 94% + 2% | 1166 53
External gast ;:f:th“e BiLSTM+3 Hidden Layers NN | 94% + 1% 93% + 2% 94% + 1% 94% + 1% | 1012 46
BiLSTM+CNN 94% + 3% 93% + 4% 93% + 4% 94% + 3% | 842 40
Proposed TRABSA Model 95% + 0% 95% + 0% 95% + 0% 96% + 1% | 897 39

Table 5. Generalizability and robustness of the proposed TRABSA model on both the extended and external
datasets.
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Macro Macro

average | average | Macro average
Study Model used Dataset precision | recall | Fl-score Accuracy
Qi & Shabrina (2023)'° BoW+SVC UK COVID-19 Twitter Dataset 69.66% 70.33% | 69.66% 71.00%
QOurs TRABSA UK COVID-19 Twitter Dataset 94.00% 93.00% | 94.00% 94.00%
dos Santos Neto et al., (2024)* | BERT TripAdvisor 87.70% 88.20% | 87.90% 88.20%
Brum & Volpe Nunes (2018)*° | BERT TweetSentBR 73.27% 72.75% | 72.96% 72.75%
De Souza et al. (2018)°! MultiFiT-Twitter LM Twitter NPS 72.43% 72.46% | 72.43% 72.46%
Pilar et al. (2023)°? Neighbor-sentiment InterTASS 57.76% 51.39% | 54.39% 61.35%
Su & Kabala (2023)% GloVel00+LSTM faor?_kMCa}r"“zt(%zT'related Tweets | g1 10% | 81.10% | 81.10% 81.10%
Menmis et al. (2024)°* g/ﬁslgzllf: dc“ljol\r] d";gfgié‘gg‘g Turkish Financial Tweets - - - 72.73%
Kp etal. (2024)% Ensemble classifier Twitter API Dataset 91.29% 89.65% | 87.32% 93.42%
Mohbey et al. (2024)° CNN-LSTM Monkeypox Tweets 91.24% 91.24% | 91.24% 91.24%
Sazan et al., 2024)°>7 RoBERTa+fastText US Airline Dataset 92.08% 92.02% | 92.05% 92.02%
Ours TRABSA US Airline Dataset 95.00% 95.00% | 95.00% 96.00%
Jlifi et al. (2024)8 Ens-RF-BERT Hashtag Covid19 Tweets 94.03% 93.05% | 94.03% 93.01%
Bhardwaj et al. (2024)% BoW+LR COV19Tweets Dataset 82.00% 81.80% | 81.60% 81.80%
Ours TRABSA Global COVID-19 dataset 98.00% 98.00% | 98.00% 98.00%

Table 6. Summary of the proposed models in the state-of-the-art tweet sentiment analysis literature.

techniques, from traditional models such as BOW+SVC!® to more modern DL architectures like CNN-LSTM®¢
and transformer-based approaches such as BERT*, yet none achieve the same level of performance as TRABSA.

Statistical validation

To assess the performance of our proposed TRABSA model against the other top-performing models
benchmarked in this study, we performed a 10-fold cross-validated two-tailed paired t-test, each with 50
epochs, on key evaluation metrics: accuracy, macro average precision, recall, and F1-score. By top-performing
model, we refer to the best combination of word embedding and the model obtained from Table 3. Our null
hypothesis (Hy) stated that there is no significant difference between the performance of each model and the
TRABSA model for the respective metrics. In contrast, the alternative hypothesis (H;) posited that a significant
difference does exist. We utilized a significance level of o = 5%, with a Bonferroni correction to account for
multiple comparisons. The t-test results (see Table 7) revealed that for all metrics-accuracy, precision, recall,
and F1-score-the TRABSA model showed statistically significant improvements compared to the other models
(p — values < 0.05 after adjustment) by rejecting the Hy. For example, the accuracy of the TRABSA model was
significantly higher than that of BOW+RE, with a t-value of 108.7332 and a p-value of 2.39 x 107!, suggesting
a meaningful enhancement in performance. Similarly, the TRABSA model consistently demonstrated superior
results with significant t-statistics and p-values for precision and recall. These findings robustly support the
efficacy of the TRABSA model in delivering enhanced performance metrics compared to traditional models.

Interpretability analysis
This section discusses the interpretability analysis of the TRABSA model, employing SHAP and LIME techniques
to enhance explainability.

SHAP

A useful tool for deciphering and understanding the results of ML models is the SHapley Additive exPlanations
(SHAP) framework®. The computation and presentation of the relevance assigned to each characteristic in the
prediction process are made easier by utilizing the SHAP Python package. Calculating SHAP values, which
measure feature contribution and improve the interpretability of ML models, is essential to the SHAP framework.
When the features () are unknown, a SHAP value specifies how to go from the expected or base value E[f(z)]
to the actual output f. Furthermore, by clarifying the direction of the link between features and the target
variable, SHAP values shed light on how characteristics affect predictions. A characteristic with a SHAP value of
1 or — 1, for example, significantly influences the prediction for a given data point favorably or negatively. On the
other hand, a feature that approaches 0 in SHAP value has a negligible contribution to the prediction®. A range
of graphs are provided by the SHAP framework to help in the understanding of feature contributions and to aid
in the interpretation and justification of ML models. The following represents how SHAP values are calculated:

i)=Y

SCN\{i}

[SIINT =[S =1)
|NV]!
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Where:
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p-value
t-value p-value t-value p-value t-value | p-value | t-value (F1 | (F1

Model (Accuracy) | (Accuracy) | (Precision) | (Precision) | (Recall) | (Recall) | score) score)

BoW_RF 108.7332 2.39E-15 59.19424 5.65E—13 135.5109 | 3.30E—16 | 128.4593 5.33E—-16
BoW_NB 161.109 6.95E—17 95.1292 7.95E—15 120.9821 | 9.15E—-16 | 105.8549 3.04E—-15
BoW_SVM 85.36398 2.10E—-14 67.73762 1.68E—13 66.34988 | 2.03E—13 | 51.12919 2.10E-12
BoW_GBM 54.78734 1.13E-12 35.68181 5.28E—11 48.87382 | 3.15E—12 | 52.17979 1.75E—-12
BoW_LGBM 61.19279 4.19E-13 29.05617 3.30E-10 41.47385 | 1.37E—11 | 49.3594 2.88E—12
BoW_XGBoost 91.83215 1.09E—-14 62.80512 3.32E-13 101.6696 | 4.37E—15 | 96.5374 6.96E—15
BoW_Catboost 82.98394 2.71E-14 42.12589 1.19E—-11 120.3859 | 9.56E—16 | 63.42425 3.04E-13
BoW_LGBM+KNN+MLP 56.52622 8.54E—13 39.37306 2.19E-11 53.2787 1.45E—12 | 44.7578 6.94E—-12
BoW_RF+KNN+MLP 115.5203 1.39E-15 54.42813 1.20E-12 83.80527 | 2.48E—14 | 81.01391 3.37E-14
BoW_GBM+REF Stacking Classifier 95.87232 741E-15 76.63942 5.55E—14 125.9309 | 6.38E—16 | 104.5914 3.39E-15
BoW_GBM+REF Voting Classifier 126.3773 6.18E—16 67.23083 1.80E—13 89.36265 | 1.39E—14 | 74.88783 6.83E—14
ROBERTa_Single Hidden Layer NN 46.94341 4.52E—-12 31.96107 1.41E-10 41.38057 | 1.40E—11 | 30.30619 2.27E-10
RoBERTa_3 Hidden Layers NN 51.66872 1.91E-12 33.33187 9.70E-11 97.90134 | 6.14E—15 | 39.84824 1.96E—11
RoBERTa_BiLSTM+3 Hidden Layers NN | 43.79562 8.43E—-12 26.53577 7.41E-10 56.63986 | 8.39E—13 | 46.28162 5.14E—12
RoBERTa_BiLSTM+CNN 57.76621 7.03E-13 40.85393 1.57E-11 45.50036 | 5.98E—12 | 60.10854 4.92E-13

Table 7. 10-fold cross-validated paired t-tests comparing macro-average precision, recall, F1 scores, and
accuracy of the top-performing models against the TRABSA model.

¢i(x) = the SHAP value for feature i in the context of input z,

N = the set of all features,

S = a subset of features excluding i,

f(S) = the model’s prediction with features S,

f(S U {i}) = the model’s prediction with features .S and feature i included.

This formulation encapsulates the incremental contribution of feature i towards the prediction, considering
all possible combinations of features.

SHAP text plot

A thorough illustration of how specific tokens inside a text instance affect a TRABSA model’s output may be seen
in Fig. 8. The graphic illustrates sections that boost (in red) or reduce (in blue) the model’s sentiment forecast
by superimposing significance values over the original text. This makes it possible to comprehend how certain
words or phrases fit into the larger feeling the text is trying to convey nuancedly. Furthermore, the hierarchical
structure of significance values preserves the structural linkages between tokens, providing insights into intricate
interactions within the text. A comprehensive picture of how the text’s combined characteristics affect the model’s
output is given by the force plot that goes with it; positive features raise the prediction while negative features
reduce it. By allowing users to investigate the connections between text segments and how those connections
affect the model’s predictions, interactive capability further improves interpretability. All things considered, the
figure makes it easier to comprehend how the TRABSA model makes decisions and helps with text-based data
interpretation and analysis.

SHAP bar plot

The NLP global summaries of the influence of tokens inside a dataset are shown in Fig. 9. Every bar in the
graphic illustrates how significantly a token affects the model’s predictions over the full dataset. Each bar’s height
represents the influence of the token; higher bars denote greater significance. The plot collects the individual
contributions of tokens over numerous instances by compressing the Explanation object over its rows, usually
by summing. This method generates a bar chart with as many columns as there were unique tokens in the
original dataset by treating each kind of token as a feature. Big groups are split up, and each token gets an equal
portion of the total group significance value if the Explanation object contains hierarchical values. Furthermore,
arranging the bar chart in a descending sequence helps reveal which tokens have a major impact on the model’s
predictions.

LIME

The LIME method provides a methodical technique for evaluating individual predictions given by complicated
ML models, which stands for Locally Interpretable Model-Agnostic Explanations®. This approach works by
estimating the model’s behavior around a given forecast. Fundamentally, LIME utilizes a local linear explanation
model that follows Eq. (9) to the letter, making it an additive feature attribution method. LIME presents the idea
of “interpretable inputs,” which are condensed representations of the original inputs and are represented as x.
A binary vector of interpretable inputs is mapped to the original input space via the transformation « = h, ()
. Different kinds of mappings 5, are used for different input spaces. For example, when applied to bag-of-words
text characteristics, h, translates a binary vector (signaling the presence or absence of words) to the appropriate
word count in the source text. LIME aims to minimize the objective function to determine the coeflicients ¢:
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Fig. 8. The figure illustrates the importance of each token overlaid on the original text corresponding to that
token. It showcases the significance of individual tokens in sentiment prediction, where red regions denote
parts of the text increasing the model’s output (positive sentiment), while blue regions indicate a decrease in
the model’s output (negative sentiment). a Positive sentiment. b Neutral sentiment. ¢ Negative sentiment.
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The loss function in this case is represented by L, which expresses how loyal the explanation model g(z) is to the
original model f(h,(2)). This evaluation is performed across a set of samples weighted by the local kernel 7,
in the reduced input space. Furthermore, the penalty term () discourages the explanation model g from being
overly complicated. Since g follows Equation 9 and L uses a squared loss formulation, using penalized linear
regression methods is typically necessary to solve Eq. (9).

LIME text explainer plot

The LIME Text Explainer visualization is a useful tool for understanding how particular elements or tokens
inside a text affect the model’s predictions. Every text token is plotted along the horizontal axis in Fig. 10, and
its contribution to the prediction is indicated along the vertical axis. Usually, the plot shows how important
tokens are by emphasizing how they affect the model’s output. Analyzing each token’s contribution amount and
direction is necessary to understand a LIME Text Explainer plot. Stronger impacts on the model’s prediction are
indicated by tokens with bigger positive or negative contributions. On the other hand, tokens with contributions
closer to zero indicate a negligible influence on the prediction. Additionally, the plot could draw attention to
particular words or phrases that greatly impact the model’s ability to make decisions. Understanding these
influential tokens can provide valuable insights into how the model processes and evaluates textual data.

Discussions
Our methodology and results demonstrate a significant advancement in SA compared to existing literature.
While prior studies have explored diverse models and techniques, our TRABSA model introduces a unique
hybrid approach combining transformer-based architectures, attention mechanisms, and BiLSTM networks.
This innovative combination enables our model to effectively capture nuanced sentiment patterns, resulting in
notably higher accuracy and performance across multiple evaluation metrics than traditional and state-of-the-
art transformer models such as BERT and RoBERTa. We conducted a thorough analysis to assess the robustness
of our TRABSA model across various datasets and scenarios, consistently observing superior performance
across multiple datasets, including extended and external ones. Additionally, our model demonstrates resilience
to variations in sentiment expression and context, reaffirming its reliability in diverse real-world scenarios.
This novel hybrid approach offers several benefits to the field, including unparalleled accuracy, robustness,
and generalizability across diverse datasets and scenarios. By leveraging the strengths of each component, the
TRABSA model can revolutionize SA applications, providing researchers, businesses, and policymakers with
deeper insights into public opinion, consumer sentiment, and social trends. Its innovative architecture and
superior performance represent a significant advancement in the quest for more accurate and reliable SA tools,
with implications extending beyond academic research.
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Fig. 9. Summarized importance of tokens in the dataset: (a) Neutral tokens displayed in their natural order,
(b) Negative tokens sorted in descending order, and (c) Positive tokens sorted in ascending order. Each bar
represents the overall importance of a token, with taller bars indicating greater influence. a Neutral tokens
displayed in their natural order. b Negative tokens sorted in descending order. ¢ Positive tokens sorted in
ascending order.
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Fig. 10. LIME Text Explainer vertical bar plot in descending order of token contributions, illustrating the
impact of each token on the TRABSA model’s predictions. a Positive sentiment. b Neutral sentiment. ¢
Negative sentiment.

The practical implications of the TRABSA model’s advancements are profound, offering tangible benefits
across various real-world applications. In market research, the model’s ability to accurately analyze sentiment
from social media, customer reviews, and other online sources empowers companies to gain valuable insights
into consumer preferences, market trends, and brand sentiment. This knowledge informs strategic decision-
making processes, product development strategies, and marketing campaigns, ultimately enhancing customer
satisfaction and competitive advantage. Furthermore, in social media monitoring and reputation management,
the TRABSA model equips organizations with tools to monitor public sentiment, identify emerging issues or
crises, and proactively respond to customer feedback in real-time. Detecting and addressing potential issues
early on enables businesses to safeguard their reputation and maintain positive relationships with their target
audience. Additionally, in the context of public opinion analysis and political discourse, the TRABSA model
provides policymakers and analysts with a powerful tool for gauging public sentiment, identifying key concerns,
and tracking changes in public perception over time. This knowledge informs policy decisions, communication
strategies, and crisis management efforts, ultimately contributing to more informed and responsive governance.
The practical applications of the TRABSA model extend across a wide range of industries and domains, offering
transformative benefits for businesses, governments, and society as a whole.

Conclusions and future directions

Our research has yielded significant findings and contributions to SA. We have achieved remarkable results
by developing and evaluating the TRABSA model, a novel hybrid approach combining transformer-based
architectures, attention mechanisms, and BiLSTM networks. Leveraging the latest RoBERTa-based transformer

Scientific Reports |

(2024) 14:24882

| https://doi.org/10.1038/s41598-024-76079-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

model and expanding the datasets, we have demonstrated the TRABSA model’s exceptional accuracy and
relevance, bridging existing gaps in SA benchmarks. Thorough comparisons of word embedding techniques
and methodical labeling of tweets using lexicon-based approaches have further enhanced the effectiveness of
SA methodologies. Our experiments and benchmarking efforts have highlighted the superiority of the TRABSA
model over traditional and state-of-the-art models, showcasing its versatility and robustness across diverse
datasets and scenarios. With macro-average precision of 94%, macro-average recall of 93%, macro-average
Fl-score of 94%, and accuracy of 94%, our model has proven its efficacy in capturing nuanced sentiment
patterns. Additionally, exploring model interpretability techniques using SHAP and LIME has enhanced our
understanding and trust in the TRABSA model’s predictions, reinforcing its practical applicability.

Despite the significant advancements achieved in our research, several avenues remain for future exploration
and improvement in interpretable SA. Firstly, there is scope for refining and expanding model interpretability
techniques to provide deeper insights into the factors influencing sentiment predictions. Additionally,
integrating multimodal data sources such as text, images, and audio could enhance the richness and accuracy
of SA. Addressing ethical considerations regarding bias, fairness, and privacy in SA models is paramount for
responsible deployment and usage. Furthermore, exploring the application of SA in emerging domains such as
healthcare, finance, and politics could uncover new challenges and opportunities for research and innovation.
Overall, continued research in interpretable SA holds the potential to drive meaningful advancements in AI
technologies and contribute to more informed decision-making in various fields.

Data availability

The extended datasets, comprising the Global Twitter COVID-19 Dataset and the USA Twitter COVID-19 Data-
set, are publicly available for download from the Extended Covid Twitter Datasets (https://data.mendeley.com/
datasets/2ynwykrfgf/1) repository?’. Additionally, the external datasets used in our research were sourced from
Kaggle, including the Twitter and Reddit Dataset (https://www.kaggle.com/datasets/cosmos98/twitter-and-red-
dit-sentimental-analysis-dataset), Apple Dataset (https://www.kaggle.com/datasets/seriousran/appletwittersen-
timenttexts), and US Airline Dataset (https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment).
The code for reproducibility is available in https://github.com/Abrar2652/nlp-roBERTa-biLSTM-attention.
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