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Early and accurate diagnosis is crucial to prevent disease development and define therapeutic 
strategies. Due to predominantly unspecific symptoms, diagnosis of autoimmune diseases (AID) is 
notoriously challenging. Clinical decision support systems (CDSS) are a promising method with the 
potential to enhance and expedite precise diagnostics by physicians. However, due to the difficulties 
of integrating and encoding multi-omics data with clinical values, as well as a lack of standardization, 
such systems are often limited to certain data types. Accordingly, even sophisticated data models fall 
short when making accurate disease diagnoses and presenting data analyses in a user-friendly form. 
Therefore, the integration of various data types is not only an opportunity but also a competitive 
advantage for research and industry. We have developed an integration pipeline to enable the use 
of machine learning for patient classification based on multi-omics data in combination with clinical 
values and laboratory results. The application of our framework resulted in up to 96% prediction 
accuracy of autoimmune diseases with machine learning models. Our results deliver insights into 
autoimmune disease research and have the potential to be adapted for applications across disease 
conditions.
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Autoimmune diseases (AIDs) affect approximately 7% of the population1,2. The past two decades have witnessed 
an increasing incidence of AIDs2–4 resulting in an annual cost of $14  billion to healthcare systems3,5. This 
diverse group of diseases is among the most challenging to diagnose and they often remain undiagnosed until 
progression to an advanced stage. As a result, the disease remains untreated for a long time and can progress 
continuously, while patients face high-impact health consequences6. AIDs are conventionally classified based 
on the involved organ or system7, leading to over 100 clinically distinct disorders. Historically, AIDs have 
been treated as distinct entities, partly due to their management by specialized medical disciplines. However, 
the emergence of comprehensive omics data has facilitated a more precise understanding of AIDs. Molecular 
genomic, immunomic and metabolomic profiles have the potential to serve as early biomarkers for diagnosis 
and enable prompt therapeutical intervention8–12. However, the integration and interoperation of omics data 
are obstacles to the transition to personalized medicine. The bottleneck in omics techniques is not due to data 
generation, but rather to constraints in data management, integration, analysis, visualization and interpretation. 
These limitations have caused a substantial delay in the progress of omics over the past decade. An additional 
challenge is the identification of meaningful and interpretable relationships within integrated omics data13. 
Analytical pipelines for each type of omics data are already available, and multi-omics approaches are being 
developed for a wide range of biological problems14. However, combining clinical, laboratory, and omics data 
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without standard analytical procedures can affect data interpretation. Additionally, integrated and encoded data 
are needed as input to artificial intelligence and machine learning (ML) methods that detect diagnostically and 
therapeutically relevant patterns in large datasets15.

Clinical data sets can support precision diagnostics as well. Electronic health records (EHR) contain clinical 
data subject to multiple regulations and rules to safeguard patient privacy and prevent misuse. On the other 
hand, observational data sets, while offering the advantage of large scale and generalizability of their findings, 
come with their own set of constraints that must be addressed before adequate analysis is possible. These 
constraints include potential inaccuracies or inconsistencies due to errors or missing data, their dynamic nature 
resulting from being captured or not over time, and the potential for bias due to non-random selection of tests 
and treatments. Despite these challenges, both clinical data from EHRs and observational data have the potential 
to offer significant benefits for medical research due to their low cost and large scale16,17.

Alongside clinical records, laboratory data is routinely generated by examination of blood, urine and other 
biological samples. Laboratory tests may be required for the diagnosis, the development of a treatment strategy, 
and monitoring. Cytokine levels, commonly measured through hematological analysis evaluation represent 
some of the most frequently reported laboratory tests18.

Over 200 genetic loci have been associated with autoimmune disorders. Whole genome sequencing (WGS) 
technology sequences an organism’s entire DNA, while whole-exome sequence (WES) targets only the 1–2% 
of the human genome containing protein-coding genes. Although smaller, the exome is critical for identifying 
genetic variations underlying genetic disorders. Exome sequencing is a cost-effective and time-efficient 
alternative to WGS that can identify disease-contributing genetic variations with fewer resources and less 
time19,20. This sequencing method has been used to identify rare or novel deleterious variants as the genetic 
causes of disease and can lead to identification of personalized treatments21,22. Despite the demonstrated utility 
of integrated omics data, WES data have been underutilized in qualitatively responsive diagnostic procedures in 
conjunction with other omics, clinical, and laboratory data23.

In addition, B-cell repertoire high-throughput sequencing has revealed good evidence for a pathological 
role of B-cells in three polygenic AIDs: Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS) and 
Rheumatoid Arthritis (RA)8,24. However, immunomics data alone has limited utility in the differential diagnosis 
of autoimmune disorders25. Single-cell-level description of immune repertoires, such as V, D, and J germlines 
and CDR3 clonal diversity, identify health and disease-related patterns24,26,27.

Metabolomics has shown potential to diagnose AIDs28. Liquid chromatography-mass spectrometry (LC-
MS) has evolved into an effective technique for concurrently identifying numerous metabolites, including amino 
acids, lipids, and carbohydrates29, providing essential data about potential metabolic abnormalities.

Clinical, laboratory and multi-omics have potential in precision of diagnostics in AIDs, however, integration 
of multiple and high-dimensional data remains a challenge. Several integration procedures have been 
proposed, each with benefits and limitations30–32. These datasets are transformed to minimize their complexity 
and variability with approaches of feature selection and feature extraction33. To apply ML for improved AID 
diagnostics, categorical data needs to be encoded into numerical representations A suitable encoding method of 
omics data that include biological sequences is one-hot encoding: a validated approach that converts inputs into 
binary form34–36. However, there is no standard approach for encoding genomic sequencing data for in silico 
diagnosis of genetic diseases. Previous encoding methods annotated gene mutations using predictors of genomic 
variant effects or by encoding each genetic variant of each chromosome, that result in a large number of feature 
vectors, thus increasing data model complexity. To address this issue, we provide an encoding strategy to capture 
the accumulation of genetic variants per chromosome as well as of antibody sequences37. Heterogeneity, data 
sparsity, and the feature-to-sample ratio make it challenging to apply machine learning to multi-omics data. In 
addition, imbalanced classes in disease classification increase the risk of overfitting. To address these challenges, 
we applied dimensionality reduction techniques for feature selection and extraction within each data type38, 
generated digital patients and applied oversampling to balance data classes, thus enabling data transformation for 
integration and the application of ML reducing biases. We propose standardized preprocessing, comprehensive 
feature selection and encoding methods to mitigate issues in multi-omics data integration. We show their effect 
on ML prediction accuracy and potential biomarker discovery for precision diagnostics.

Results
Clinical, laboratory, and multi-omics data integration pipeline
It has been demonstrated that the combination of molecular with non-omics data has shown to provide a more 
accurate diagnosis than utilizing either type of information separately39. We developed a versatile pipeline to 
preprocess raw data and integrate different health data types to enable ML models classify and support the 
diagnosis of AIDs (Fig. 1). The integration of multiple data types in organized, coherent, and comprehensive 
data structures enabled the application of a wide range of analytical techniques. An integrated analysis of clinical, 
laboratory, and omics characteristics of patients enhanced the confidence in predicting AIDs. Additionally, the 
structure of our pipeline enables the application of ML to an ever-increasing range of omics data. The methods 
developed and the proposed pipeline contribute to consolidate multi-omics data integration in the biomedical 
field and establish its applicability in terms of validation and standardization.

Data types provide insights to reduce data dimensionality and identify
Relevant features
We have integrated various data types that differ in structure and quality. Therefore, we harmonized the data 
differences through pre-processing procedures. First, we identified from each different data type the relevant 
features. We then integrated the features. This preprocessing resulted in the same feature space for each patient. 
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By incorporating synthetic samples to each data type, we ensured that all patients had a standardized input of 
features. To enhance the successful reuse of clinical health data, we addressed challenges highlighted by Ferro 
et al.40. These include capturing and integrating data from various hospitals, accurately processing feature types 
through feature selection methods, combining features at the lowest common granular level, and handling 
missing data by exploring various methods and using imputation. Clinical data included four different types 
of variables, with numeric values representing 67.58% (Fig. 2A). To integrate categorical variables effectively, 
they were transformed into a uniform data object type, specifically numerical, representing the entire dataset. 
Laboratory data (Table S2) were used to identify similarities across samples using principal component analysis 
(PCA) for clustering. The first two principal components, capturing 4.46% and 3.35% of the total variance 
respectively, revealed a notable difference between autoimmune and non-autoimmune patients, forming two 
distinct clusters. When autoimmune patients were separated into their sub-disease groups, the differentiation 
was not substantial, resulting in several overlaps from patients with different disease classes in the same cluster 
(Fig. 2B).

This lack of clear separation underscores the need to incorporate deeper genetic understanding of AIDs. 
Genomics has progressed the understanding of the genetic basis for various AIDs. Research efforts have 
been directed at discovering common variations. These are genetic variations not primarily associated with 
autoimmune-specific conditions. Specifically, variations with a minor allele frequency (MAF) value range of 0.5–
5% in the population are typical of AIDs41. We selected MAF ≤ 1% according to clinical best practices. To further 
reduce genetic variant features, we applied filtering methods based on the predicted functional consequences 
of specific genetic variants (Table S3). Specifically, AID samples showed an increased number of variants on 
chromosomes 3, 6, 7 and 14 (Fig. S4). Autoimmune patients had fewer long indels but a higher proportion of 
shorter mutations such as insertions and deletions compared to healthy individuals (Fig. S5). Based on this 
information, it was feasible to substantially reduce the number of derived genomic features (Fig. 2D, Table S4), 
lowering the risk of generating noise.

In immunomics, BCR sequencing investigations revealed enrichment of certain IGHV gene family usages, 
especially among their gene subfamilies. Several gene subfamilies have been found to be closely tied to 
autoimmunity8. IGHV4-34 and IGHV3-30 V genes subfamilies were prevalent in autoimmune patients8,42,43. 
We analyzed the frequency of V genes at the family and subfamily level, validating the patterns of expression 
observed in literature in comparison to the control group (Fig. S3A, S3B). Compared to healthy controls, we 
observed a substantial increase in IGHV1-69, IGHV4-34, IGHV4-39, IGHV4-59, and IGHV4-61 in SLE patients. 
In contrast, the SLE group had a considerably lower level of IGHV3-23 than the healthy cohort. Importantly, 
RA patients had higher frequencies of IGHV1-69, IGHV4-39, and IGHV5-51 and lower levels of IGHV3-23 
and IGHV4-34 compared to healthy individuals (Fig. S3B, Table S5). Additionally, we evaluated expression 
of J genes. We noticed an evident decrease in IGHJ4 in both SLE and RA autoimmune groups, as well as a 
rise in the frequency of IGHJ3 for AID patients and a modest increase in the frequency of IGHJ1 (Fig. S3A). 
Network analysis revealed an altered degree distribution between autoimmune patients and the control cohort 
(Fig. 2C). Frequency distributions of CDR3 clones revealed that autoimmune repertoires were polarized towards 
few specific clones (Fig. S2A), while there is no significant difference in the CDR3 a.a. length distributions across 
cohorts (Fig. S2B). Antibody repertoires of healthy individuals showed an exponential sequence similarity degree 
distribution44. We observed that autoimmune repertoires exhibit mixed degree distribution fits, potentially 

Fig. 1.  Health data integration and machine learning workflow for personalized diagnostics of autoimmune 
diseases. (A) Clinical, laboratory and omics data were collected, preprocessed and integrated. (B) Data was 
further transformed and selected features of each data type were extracted, integrated and one-hot encoded. 
(C) Machine learning methods were applied to analyze and classify autoimmune diseases. The various models 
were validated and evaluated.
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indicating the repeated exposure of the patient to its autoantigens over several cycles, resembling a mix sequence 
space architecture between a healthy (exponential in RA, interestingly Poisson in SLE) and an immunized 
repertoire (powerlaw, Fig.  2C). After immunization or infection, it is expected that immune repertoires will 
revert to a powerlaw distribution. These networks are centered around key CDR3 nodes, suggesting that network 
hub clones may be targets for precision therapeutic interventions to alter disease development at the repertoire 
level44. Integrating immunomics data underscores the potential of CDR3 sequences as diagnostic, prognostic, 
and therapeutic biomarkers.

Metabolomics data was analyzed by clustering the concentration levels of several targeted metabolites across 
samples from 3 cohorts of HC, RA and PsA (Fig. 2F, Table S6). The results revealed that specific metabolites 
(i.e., Dl-dihydrosphingosine, turmerone, glycerol1-hexadecanoate, epsilon caprolactam, palmitic acid, 
phytenate, palmitoylethanolamide, hexadecasphinganine, hexadecanamide, kynurenic acid, deoxyadenosine, 
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Dl-Ala-Dl-Ala, glycocholate, oxoproline, lysophosphatidylethanolamine, dihydrosphingosine, cholesterol) with 
higher concentrations in the HC group determined the clustering of these individuals together. Autoimmune 
patients formed two mainly separated clusters with few interspacing samples. Certain metabolites with higher 
concentrations in the healthy cohort are known to favor anti-inflammatory effects, consistent with their greater 
occurrence in HC45,46. Typical concentrations of metabolites determined the separation of autoimmune and 
control samples in distinct clusters, and clustering with certain degree of overlap among autoimmune cohorts. 
Metabolites that clearly distinguished healthy individuals from arthritis patients were compared to metabolites 
from research that examined healthy individuals and SLE patients47. We reported the distinguished metabolites 
of SLE and RA (Table S6) as predictor features for this data type.

Further, after the data transofrmation and encoding of the data types was completed, the encoded features 
showed specific patterns in each data type. Out of several millions of potential inputs, our integrated dataset 
encoded a total of 84 unique variables, including 24 clinical, 13 laboratory, 9 genomic, 21 immunomic, and 17 
metabolomic features. These features were derived from the previously described analysis (e.g., V and J gene 
pattern analysis). Across all patient data, the one-hot encoding method produced a total of 10 614 of “1” values 
and 24 414 of “0” values. The ratio of “1” and “0” values was found to be approximately the same across the 
majority of data types for healthy individuals and AID patients. Interestingly, immunomics and metabolomics 
data were more balanced in amounts “0” and “1” values in samples from autoimmune patients compared to 
all samples (including healthy controls) when compared to clinical, laboratory and genomic data (Fig. 3A). In 
order to understand this observation further, we investigated at the differences in encoding results, expressing 
them in percentages (Fig. 3B). Examining the distribution of the labels “0” and “1” by data type, we found that 
when referring exclusively to the AID cohort, there is only a negligible change in the data categories “Clinical,” 
“Laboratory,” and “Genomics” compared to the total number of patients. In the immunomics and metabolomics 
data, however, the hit-encoded values “1” were approximately 75% higher. It showed, that autoimmune patients 
more likely exhibited notable deviations in immunomics and metabolomics features, but not in other data types. 
This suggests the need not to overlook the interrelationship between immune data and metabolites, which is 
known to be a vital aspect of personalized medicine.

Furthermore, we examined which “1” features were mostly represented in all samples (including HC) and 
AID-specific samples. In samples including healthy patients, more than half of the 30 most frequent reported 
features were clinical or lab data, while in AID samples, only one-fifth of these were clinical or laboratory data 
(Fig. 3C). In both groups, immunomics had a comparable number of frequent “1” encoded features. In contrast 
to the group including the healthy control cohort, a notably largerproportion of the top frequent characteristics 
were allocated to metabolomics data in the AID cohort. Out of 21, 12 immunomic features were reported as ‘1’ 
values in the AID group compared to all samples. Among the 17 represented metabolites, 11 showed ‘1’ values in 
the AID group, compared to 5 in the all-samples group. This highlighted the impact of metabolomics in feature 
representation for integrated clinical, laboratory, and omics data analysis.

Performance evaluation of machine learning models applied to integrated data
Machine learning methods such as Logistic Regression (LR), Random Forest (RF), Stochastic Gradient Descent 
Classifier (SGD), Neural Networks (NN), and Support Vector Machines (SVM) were used to analyze and assess 
the performance of the various algorithms on multiclassification problems for the prediction of AIDs. The 
majority of these models were based on a collection of common ML algorithms designed to examine health 
data48. We calculated the prediction accuracy of the five models using a single data type, such as clinical data, 
and compared it to the accuracy of the same models applied to multiple data types, including clinical, laboratory, 
and genomics data (Fig. 4).

The objective was to classify whether a sample was predicted as healthy (HC), Systemic Lupus Erythematosus 
(SLE), or Rheumatoid Arthritis (RA). The prediction accuracy of the classification and AUC-values were 
compared to define the best performing model on datasets containing either a single data type or multiple data 
types.

We determined the macro- and micro-average AUCs of a decision tree algorithm from clinical data and from 
an integrated dataset of clinical, laboratory and genomics data (Fig. 4A, Fig. S1). Results indicated the highest 
AUC values with integrated data (right panel). Minimal differences between the models suggested no significant 

Fig. 2.  Analysis of integrated clinical, laboratory and omics data. (A) Summary statistics of clinical data 
showed the distribution of clinical data types and identifies non-informative data objects for reduction of data. 
(B) PCA of cytokine concentrations in AID and non-AID patients. Laboratory data differentiated autoimmune 
and non-autoimmune patients. However, cytokine concentrations overlapped when subdividing AID into 
disease types. (C) Immunomics germline gene analysis revealed high frequency of certain combinations of 
V and J genes across cohorts, where red indicates a high frequency and light blue a low frequency. (D) Top 
panel: The cumulative degree frequency (CDF) distributions of CDR3 (a.a.) similarities in B-cell repertoires of 
representative samples of AID patients showed a mixed power-law (orange) and Poisson (gray) distribution in 
SLE. Bottom panel: power-law and exponential (red) degree distribution in RA. (E) Complexity of genomics 
data for diagnosis was largely reduced by applying preprocessing additional filtering procedures (see Methods). 
(F) Concentration of altered metabolites in AID comparing HC (green bar), and arthritis cohorts (red and blue 
bars). Dark blue indicates a high concentration of metabolites and light blue indicates a low concentration of 
metabolites. The clustering resulted in distinctive clusters. HC cohort cluster was clearly separated from the 
remaining cohorts.

◂
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class imbalance. Increased performance was observed with metabolomics and especially immunomics alone; 
however, these did not exceed the AUC values of the integrated dataset (Fig. S6).

In addition, the accuracy of all classifiers was determined by 5-fold and 10-fold cross-validation. The results 
were compared using both individual data types and integrated data (Fig. 4B, Fig. S7). The prediction accuracy 
median values were lower (predominantly around 75–80%) when only a single data type like clinical data was 

Fig. 3.  Encoding of integrated clinical, laboratory and multi-omics data. (A) After binary encoding, the 
retrieved characteristics exhibited a comparable pattern of normally distributed values “0” in the 5–95th 
percentile and potentially disease-relevant values (anomalies) “1” in the < 5th and > 95th percentile across 
all data categories. (B) Clinical data, immunomics, and metabolomics revealed a prevalence of “1” encoded 
values. Genomics and laboratory data on the other hand were observed to be rather rare across all patients. (C) 
Although laboratory results within < 5th and > 95th percentile were seldom detected overall within the top 15 
features, some of these were among the highly ranked features in samples classified as autoimmune.
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incorporated. A difference in performance between the individual algorithms was shown, with LR, NN and 
RF performing better. The performance of all examined classifiers increased up to median accuracy of 96% 
when ML models were applied to an integrated dataset comprising clinical, laboratory, and genomics data. This 
prediction score was higher compared to the models applied to individual data types.

Furthermore, weighting of feature importance generated by grid search cross-validated Random Forest 
classifier was applied to integrated dataset containing clinical data, laboratory data and multi-omics data—
namely genomics, immunomics and metabolomics—ranked parameters on their importance towards the multi-
class prediction of healthy, SLE or RA and in the binary classification of SLE and RA. Contrary to utilizing 
default parameters for our model, the objective was to simulate an optimized setting where multiple data types 
were available and hyperparameters were fine-tuned. The focus was to discern the impact that individual data 
types would exercise on performance when operating within this type of scenario. Feature importance revealed 
that metabolomic data, when available, were the most important datatype for the prediction of RA patients. On 
the other hand, clinical, laboratory and immunomics features have different weights of importance among the 15 
most important features for the classification of healthy and autoimmune cohorts (Fig. S8). These results further 
illustrate the potential of data integration for precise diagnostics.

 Discussion
Access to multi-omics data has brought about a transformative shift in biomedicine, driving advancements in 
systems biology and deepening our understanding of biological phenomena. The integration of multi-omics 
to clinical and laboratory data is essential for personalized medicine, along with the potential inclusion of 
exposomes. Procedures to overcome related challenges hold the promise to enhance clinical advantages from 

Fig. 4.  Machine learning methods applied to integrated data. (A) ROC curve calculations using autoimmune 
data revealed how different types of data impact the performance of machine learning model with a 
representative example of a random forest classifier. AUC increased once clinical data was integrated to 
additional data types such as laboratory and genomics. (B) The performance of selected classifiers was 
evaluated and compared using stratified cross-validations, revealing an improvement in prediction accuracy 
for each model when integrated data is used compared to a single data type.
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outputs of omics facilities13. To address the persistent challenges to harmonize diverse data in life sciences, we 
developed a pipeline to combine various types of datasets. This framework integrates complex omics datasets 
with clinical and laboratory information. Notably, the issues that our pipeline addresses have been recognized 
also across recently developed methodologies that merge multi-omics with clinical data. This integration schema 
not only tackles the complexities arising from data heterogeneity and differing scales intrinsic to multi-omics 
investigations, but also supports future concurrent strategies32,49–51. The capacity to integrate and synthesize 
such data from various sources carries the potential to expand evidence-based medical studies, therefore 
offering a competitive advantage in the field of clinical research52. Moreover, our approach to incorporate diverse 
data types holds the promise to discriminate better between specific autoimmune disorders and other diseases 
that mimic their clinical manifestations. Our approach builds upon the need to develop and refine existent 
multi-omics integration procedures49,53, and emphasizes the inclusion of clinical data alongside the complex 
integration of multi-omics datasets. Given the overlap of symptoms characteristic of various AIDs, including 
RA and SLE, the advancement of robust data integration methodologies is imperative for the enhancement of 
diagnostic algorithms across a broad spectrum of diseases.

This adaptable framework readily accommodates additional data types by establishing guiding principles. 
For example, lipidomics has shown promising results to enhance diagnostic capabilities54. This omics type of 
data can be promptly integrated in the framework proposed here due to similar preprocessing and encoding 
methods. This convergence demonstrates a contextually nuanced and straightforward applicability, thereby 
distinguishing it from initial frameworks dedicated to analogous data integration paradigms. However, while 
our pipeline demonstrates broad applicability, its efficacy regarding the use of synthetic data and digital patients 
necessitates further investigation and validation within specific clinical contexts. Additionally, variations in the 
amount of available data among different data types that necessitate the use of synthetic patient data raise the 
potential concern of removing biological dependencies from the original data, thereby compromising their 
significance. Furthermore, the assumption of independence across characteristics might not be applicable in 
the real-world scenario. Future research should explore methods to generate synthetic data that account for 
biological relationships among characteristics. Another limitation involves the risk of overfitting when expanding 
the feature set with additional data types. Careful consideration of the selected features is essential.

The holistic approach of the integration platform presented here enables researchers to gain comprehensive 
insights into disease complexities. This platform allows for benchmarking of new ML methods, paving the way 
for advanced diagnostic strategies.

Our adaptable data integration framework enhances personalized medicine by integrating diverse data types. 
This development supports advancements in technologies such as IoT in healthcare. Its utility extends to the 
continuous integration of real-time data from wearable devices and smart sensors, which can be harnessed 
to improve patient care and monitoring55. Moreover, this framework leverages computational techniques 
that empower accurate disease diagnosis, targeted treatment planning, and efficient resource allocation. Such 
developments underline the potential of technology-driven approaches for healthcare resilience against global 
challenges and to accelerate the advancement of personalized treatment strategies56. The value to further develop 
integration procedures together with nature-inspired optimization methods such as Particle Swarm Optimization 
and Genetic Algorithms is crucial for addressing complex healthcare problems including disease prediction and 
resource allocation57. Given the increased adoption of such integrative approaches in healthcare for diverse 
biological challenges and disease understanding58–60, further investigation and applications of these methods 
could lead to more personalized and effective healthcare interventions. However, the efficient application of the 
integration pipeline and the ML methods presented here, further depend on the implementation of nationwide 
semantic and technical interoperability standards. Future developments of this pipeline can accelerate the 
integration of additional multi-omics data, nutritional data and digital biomarkers into next-generation EHR 
solutions, as well as foster its use in clinical decision support systems.

 Materials & methods
The present study utilized patient data to investigate and evaluate data integration, along with subsequent 
applications of ML methods. The representative patient data were sourced from multiple sources and hospitals. 
Datasets I-IV were accessed through the University Hospital Institutions of Strasbourg, Freiburg, and Mainz. 
This data were used for the design and evaluation of the pipeline’s principle and functionality. Additionally, 
supplementary datasets (V-XII) were collected from published studies as described below. This approach 
enabled a robust examination of the concept and methodology while diverse and relevant data sources for 
testing purposes were ensured.

Data
Clinical
Dataset I. The Rheuma-Vor App (RAPP) dataset included clinical data in the form of a physician’s questionnaire 
from 815 patients with symptoms of rheumatoid disease, specifically rheumatoid arthritis (RA), axial 
spondyloarthritis (SpA), and psoriatic arthritis (PsA). Seventeen questions were designed to refute or confirm 
suspicion of one of these three AIDs. These diseases are among the most common inflammatory joint diseases, 
which pose a major challenge for rheumatologists in terms of diagnosis, treatment and monitoring61.

Dataset II. The Lupus BioBank of the upper Rhine valley (LBBR) database contained clinical and biological 
information (serum, plasma, DNA, cells) on 1300 patients with autoimmune disorders. Patients were diagnosed 
with several types of AIDs, such as systemic lupus erythematosus (SLE) and systemic sclerosis (SS). This data 
was gathered from 17 hospitals in the upper Rhine region in France and Germany. Since the original dataset 
contained missing data, a subset of 215 SLE patients with full data and a Systemic Lupus Erythematosus Disease 
Activity Index (SLEDAI) score of at least 6 was extracted. The SLEDAI is a scoring system used to assess the 
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disease activity and severity, and a score 6 can result from a combination of moderate manifestations across 
different categories of the scoring system.

Laboratory
Dataset III. Bead-based multiplex assays were employed to measure concentrations of cytokines, chemokines, 
immunoglobulins and other biomarkers to provide information about their expressions in AID patients. 
Serum data was analyzed utilizing BioLegend LEGENDplex™ Data Analysis Software. Results represent the 
concentration expressed in pg/mL, if not indicated otherwise. The data was generated from samples of 23 SLE 
patients.

Genomics
Dataset IV. For whole exome analysis, Genomic DNA was extracted from blood using the QIAamp DNA 
Mini Kit (Qiagen). Exomic regions of the DNA were enriched using the SureSelect Human All Exon Kit V5 
(Agilent Technologies), TruSeq Exome Kit (Illumina) or Twist Core Exome (Twist Bioscience). The enriched 
exome samples were sequenced using Paired-end (2 × 75 bp) sequencing on a NextSeq500 Illumina sequencer. 
Exome data from one SLE patient and a control group of 96 healthy donors was generated and provided by the 
Strasbourg University Hospital. All participants gave their informed consent, and the study was approved by the 
University Hospital institutional review board.

Dataset V. WES on 32 systemic sclerosis (SSc) patients using the Nimblegen SeqCap EZ Human Exome 
Library v3.0 Kit was performed from The University of California, San Francisco (UCSF)62. Genomic DNA was 
extracted from whole blood using QIAGEN Puregene Blood Kits. Library preparation was performed using 
NuGEN Ovation Ultralow Library Systems or the Nextera DNA Sample Preparation Kit. Sequencing of 100 bp 
paired-end reads was conducted on an Illumina HiSeq 2000.

Immunomics
Dataset VI. Samples from five RA patients were gathered according to Stanford University or the University of 
Pittsburgh methods approved by the Institutional Review Board (IRB). The subjects satisfied the 1987 and 2010 
standards established by the American College of Rheumatology. PBMCs were separated using density gradient 
centrifugation with Ficoll-Paque™ PLUS (GE Healthcare Life Sciences) or Lympho-prep (Axis-shield). Heavy 
chain and light chain genes were amplified using gene-specific PCR primers, then 2 × 300 paired-end reads were 
sequenced with Illumina MiSeq63.

Dataset VII. Serial blood samples of eight participants with established RA who tested positive for anti-
citrullinated protein antibodies (ACPA) using an anti-cyclic citrullinated peptide assay were obtained in heparin 
tubes after obtaining written informed permission from all possible research participants in accordance with 
methods authorized by the Stanford University Institutional Review Board42. Patients with RA satisfied the 1987 
and 2010 American College of Rheumatology categorization criteria. Heavy chain and light chain genes from 
plasmablasts were amplified from pooled cDNA using gene-specific polymerase chain reaction (PCR) primers 
and 2 × 300 paired-end reads were sequenced with Illumina MiSeq.

Dataset VIII. SLE patients were recruited if they were classified as having a moderate-severe flare according 
to the SELENA-SLEDAI flare index. Furthermore, they were receiving minimal immunosuppression at the 
time of the flare. All SLE patients met the EULAR/ACR classification criteria, which are often used to establish 
the diagnosis of SLE by experienced rheumatologists. Data was generated as described by Tipton et al.64. 
Briefly, approximately 0.1–3 × 105 mononuclear cells were isolated from peripheral blood of eight SLE patients 
experiencing acute flares. Total RNA was reverse transcribed to cDNA and library amplificons were sequenced 
with Illumina MiSeq 250 × 2 or 300 × 2.

Dataset IX. PBMCs from SLE patients (N = 3) and healthy controls (HC, N = 3) were isolated from the 
University of Colorado Anschutz Medical Campus65. B cells were isolated using the 10X Chromium Controller. 
The V(D)J Enrichment for Human B-cells (version 1.1) and the Chromium Next GEM Single Cell5’ Library 
kits were used to generate V(D)J-enriched libraries which were sequenced on a NovaSEQ 6000 (Illumina) with 
2 × 150 paired-end reads.

Dataset X. Memory B-cells (CD19+, CD27+) were isolated from peripheral B-cells of 7 healthy donors, 
and RNA was transcribed into cDNA. Immunoglobulin-specific primers were used for PCR amplification and 
subjected to high-throughput sequencing of 2 × 300 bp paired-end reads with the Illumina MiSeq platform66.

Dataset XI. Five pairs of adult monozygotic, twins (N = 10) provided written informed consent to participate 
in research on seasonal influenza vaccinations at Stanford University School of Medicine. PBMCs were extracted 
from their peripheral blood and memory B-cells were identified based on CD20 and CD27 expression. Only one 
sample from each twin pair was used for the study, resulting in a total of 5 samples67. Sequencing was performed 
with Illumina MiSeq 2 × 300 bp paired-end reads.

Metabolomics
Dataset XII. Metabolic profiling of fecal samples was performed by Wang et al.68 using a UHPLC (ExionLCTM 
AD) in conjunction with a Triple TOF 5600 + mass spectrometer (American, AB Sciex). Chromatographic 
separation was done with a Waters Acquity UPLC HSS T3 (1.8 mm, 2.1 × 100 mm). Column temperature was 
set at 40 °C and the injection volume corresponded to 5 µl. For data acquisition, full scan mode as well as positive 
and negative ion modes were coupled with information dependent acquisition (IDA) modes that triggered 
production scans. The full scan range was defined to 100–1500 m/z and ion scan range to 50-1250 m/z with high 
sensitivity.
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Preprocessing and annotation
Clinical data
The data were anonymized and preprocessed to remove erroneous values and missing data. Categorical 
characteristics were transformed in nominal values where numbers were used as labels for distinct categories, 
while numerical characteristics were transformed into discrete categories.

Laboratory
Given the dataset exclusively comprised patients diagnosed with an autoimmune condition (N = 23), it was 
essential to construct a new dataset. This new dataset integrated synthetically generated digital healthy and 
autoimmune patient data with existing cytokine measurement data from autoimmune patients. Each synthetic 
patient received a unique identifier associated with a specific classification target: SLE, RA, or HC (healthy 
control). In simulating healthy patients, random values within the defined healthy range—based on the 
minimum, maximum, and mean concentrations of soluble mediators—were employed. Only values within this 
established range were considered.

Genomics
Sequencing reads were aligned to the human genome sequence assembly hg19 using the Burrows-Wheeler 
Alignment tool (BWA)69. The alignments were converted from a sequence alignment map (SAM) format to 
be sorted and indexed to binary alignment map (BAM) files (SAMtools versions 1.7 to 1.8)70. Duplicate reads 
were removed using Picard 2.21.9. Local realignments around insertions or deletions and base quality score 
recalibration were performed using the Genome Analysis Toolkit (GATK) 3.2-2. Small indels were identified 
using the GATK HaplotypeCaller and filtered according to the best-practice guidelines of the Immunology 
Laboratory, University Hospital of Strasburg71. Variants that passed the filters (Table S3) were annotated with 
Variant Effect Predictor (VEP), the Ensembl variant effect predictor72.

Immunomics
Antibody raw read sequences were VDJ annotated with IgBLAST version 1.17.073. Heavy chains were analyzed as 
the major determinant for clonal type definition and antigen-binding74. Several steps to preprocess samples were 
applied in order to increase data quality75. Clonotypes were only retained if they were functionally productive, 
composed of at least four amino acids (a.a.), and had a minimal read count of two76. The IgBLAST algorithm 
marks a sequence as productive only if it contains no stop codons and if it is in-frame (the last coding triplet for 
the V gene in the query is in-frame with the first complete coding triplet for the J genes). Moreover, the removal 
of unique CDR3 sequences has the potential to enhance sensitivity and specificity. Sensitivity reflects the extent 
to which each sequence pattern represents the diversity within immune sequences of a single cluster, while 
specificity indicates the proportion of immune sequences from other clusters that are accurately identified and 
excluded77. Clones were defined by 100% a.a. sequence identity of CDR3 regions.

Metabolomics
Raw data was imported into XCMS (version 3.6.3) to perform automatic data preparation, i.e., peak picking and 
retention time correction. Metabolites were identified and mapped using OSI/SMMS software (Dalian ChemData 
Solution Information Technology Co., Ltd., PR China), Human Metabolome Database (http://www.hmdb.ca/), 
Lipidmaps (https://lipidmaps.org/) and LipidBlast (https://fiehnlab.ucdavis.edu/projects/lipidblast)68.

Synthetic data generation
To address the issue of sample imbalance in our datasets, we implemented an oversampling approach78. Our 
largest dataset, the RAPP dataset (Dataset I, see Methods), served as the benchmark reference for the oversampling 
due to its sample size (N = 815). The principal objective was to align the sample counts of smaller datasets with 
the reference count, ensuring a standard sample size across all datasets. In scenarios where the sample counts 
from other datasets were less than the reference count, we generated synthetic samples. This iterative process of 
synthetic sample generation continued until the total count within each subset equated to the reference count of 
815. The motivation is to reach homogeneity across all datasets, enabling a normalized comparative analysis of 
the results derived from equally distributed datasets. In line with the clinical dataset’s target labels, the number 
of synthetic digital patients was adjusted in each data type, resulting in 398 HC, 215 patients with the label 
“SLE,” and 202 patients with the label “RA.” To match the targeted oversampling approach for laboratory data, 
synthetic patients were generated by determining healthy and unhealthy ranges of 45 distinct soluble mediators 
following a Gaussian distribution. The ranges of mediators were defined by minimum, maximum and mean 
concentration values, and by applying a standard deviation of σ = max−µ

2.2 , in which disease-specific patterns of 
concentration values of cytokines and chemokines were used to generate synthetic samples79. Synthetic omics 
data was generated by synthetic data vault (SDV) GAN model in accordance with the anticipated oversampling 
strategy80.

Encoding
Encoding of categorical data
Data sets primarily composed of categorical values, typically clinical data from health questionnaires, were 
converted to binary format. Most questions had “yes” or “no” responses, allowing direct transformation of these 
variables into a binary state, “1” or “0”. Responses not explicitly marked as “yes” in the original EHR data were 
categorized as “no” in the binary conversion.
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Accumulation-based encoding
Encoding on a categorical basis was not a feasible approach to transform the remaining laboratory and omics 
data into a binary form, as this was not compatible with the intended data integration strategy of dimensionality 
reduction33.

To address this challenge, we developed a method for binary encoding based on the cumulative values of 
each attribute as illustrated in supplementary Fig. S1. Prior investigations on B-cell sequencing have highlighted 
abnormal occurrences of specific heavy chain genes in autoimmune patients, particularly with notable 
enrichments of certain gene families8. Anomalies were detected by assessing the extent to which the enrichment 
of specific features, such as for example the expression levels of certain V or J genes or the concentration level 
of certain metabolites, deviated significantly from the average. These anomalies were labeled as “1” and deemed 
conspicuous within our binary encoding framework. To establish the abnormality range, previous studies have 
employed the inter-percentile range between the 5th and 95th percentiles when analyzing omics data81–83. 
We adopted this methodology consistently adopted whenever it applicable to data that could be meaningfully 
accumulated and deemed suitable for the specific features under consideration. This methodology proves 
insufficient when categorical variables are inclued, necessitating the alternate approach described in the section 
“Encoding of Categorical Data.”

Dimensional reduction techniques
The rapid introduction of a high number of features is one of the challenges in integrating omics data. To apply 
ML to integrated data efficiently, data models are required to be as simple as possible. The following analytic 
techniques were used to establish relevant characteristics based on data types, which were then used in data 
integration.

PCA of soluble mediators’
Cytokine measurements were decreased in dimensionality and scaled to two principal components per feature 
using Principal Component Analysis (PCA). These reflect the variance of each sample to the mean and were 
calculated using StandardScaler from the Sklearn package version 1.0.2.

Gene frequency distribution
The annotated immunoglobulin repertoire data were analyzed for their abundance level using R version 4.1.2 in 
Rstudio build 351. The frequency of V and J genes was calculated as the occurrence of the specific gene family 
and subgroup of a sequence in a sample, and in a cohort. CDR3 sequences frequency was calculated sample- and 
cohort-wise. CDR3 diversity as cumulative frequency and networks were calculated for each sample.

Network analysis of immune repertoire
A network analysis of CDR3 sequences (a.a.) was conducted to examine the clonal sequence space architecture 
for each patient group, following established methodologies44. The antibody network degree distribution was 
calculated based on the Levenshtein distance (LD) between CDR3 sequences. Nodes representing similar CDR3 
sequences were connected if they had an LD of 1, indicating a difference of a single amino acid. To optimize 
feature selection for ML, networks were used to identify a subset of sequences that accounted for a large portion 
of the sequence diversity, while minimizing the impact of less authoritative sequences in the network.

Metabolite analysis
Numerical peaks of 95 positively ion mapped metabolites from 36 HC, and 56 arthritis patients, namely 29 
RA patients and 27 PsA patients, were read in using Pandas version 1.4.1. Data were normalized and fit using 
MinMaxScaler from Sklearn version 1.0.2. The different metabolites were presented in a heat map representing 
the abundance level of expressed metabolites and were simultaneously organized with hierarchical cluster 
analysis using Seaborn version 0.11.2, resulting in a Clustermap (Fig. 2E).

Machine learning models
Dimensionality reduction methods, including feature extraction and selection, were used to optimize training 
in multi-omics datasets with fewer observation samples than features. Feature extraction was used to transform 
a subset of inputs into a feature, while feature selection was performed to identify within original features ones 
that maximize the accuracy of predictive models37,84. The analysis involved the application of the supervised 
machine learning (ML) methods Logistic Regression (LR), Random Forest (RF), Stochastic Gradient Descent 
Classifier (SGD), Neural Networks (NN), and Support Vector Machines (SVM). These models were applied to 
the preprocessed and integrated datasets. The data was divided into training and test sets, with the training set 
using 70% of the data and the test set using the remaining 30%85. To discern the potential benefits arising from 
data integration, we intentionally employed default values as hyperparameters for the respective models. This 
approach facilitates an understanding of the advantageous effects of data integration, even when models have not 
been subjected to exhaustive hyperparameter tuning. Specifically, for LR, the “liblinear” solver was used. For RF 
models, 200 trees were used. For SGD, 1000 iterations were performed. Deep learning has proven to be a suitable 
approach for processing heterogeneous and complex data. Therefore, an NN model was applied to the integrated 
and encoded omics dataset86. Specifically, a multilayer perceptron model that used the “relu” activation function 
with “adam” specified as solver, and one a hidden layer with 100 nodes, was applied. For SVM, the “poly” kernel 
was selected with degree 3 and cost 1. Classification accuracy, precision, sensitivity (recall), and area under the 
receiver operating characteristic curve (AUC) were used to assess the performance of all models. The AUC is 
a metric used in binary classification, quantifying the degree or measure of separability between classes. It tells 
how well a model is capable of distinguishing between classes, where a perfect classifier would have an AUC of 
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1.0, and a random classifier would have an expected AUC of 0.5. Classification accuracy, precision, sensitivity 
(recall), and area under the receiver operating characteristic curve (AUC) were used to assess the performance 
of all models (see supplementary information, including Fig. S6 and S7)87. The experiments were designed to 
address a multiclass classification problem. Using the available data models, the respective classifiers ought to 
be able to predict as precisely as possible whether a patient has one of the two AIDs “RA” or “SLE”, respectively, 
or whether they could be considered healthy “HC.” In order to maintain data integrity and enhance experiment 
reliability, few samples with labels indicating other AIDs, such as “PsA”, “SpA” or “SS,” which were present only 
in certain datasets, were deliberately excluded from the ML analysis. By prioritization the use of robust and 
more complete datasets, our approach minimized the need to generate synthetic data. Both macro- and micro-
average AUC were calculated and ROC curves generated to evaluate classifier performance (Table S1)88. These 
metrics are critical in ML, especially with imbalanced class sizes. Macro-average AUC calculates the AUC for 
each class independently and averages these values, providing an overall assessment of discriminative ability 
across multiple classes, irrespective of class size. Micro-average AUC aggregates the true positive, false positive, 
and false negative rates across all classes before calculating the AUC, thus reflecting the global performance of 
the model across all classes by weighing each sample equally. As our data sets had a balanced proportion of AID 
and non-AID patients (AID = 417 patients, non-AID = 398), but a minor imbalance in the number of samples 
across all three cohorts (HC = 398, RA = 202, SLE = 215), we examined both scores concurrently. Training and 
validation were performed with k-fold cross-validation (k = 5 and k = 10, Fig. 4 shows results with k = 10). The 
classifiers employed in this study are adapted from the python library scikit-learn.

 Code and data availability
All scripts are available in the aiHealthLab’s GitLab repository upon request to Enkelejda Miho (enkelejda.
miho@fhnw.ch). Anonymized clinical and genetic data contributed by collaborators can be shared upon 
justified request to Enkelejda Miho (enkelejda.miho@fhnw.ch). Data obtained from public sources is specifically 
indicated throughout the text and referenced to the original publication.

Data availability
All scripts are available in the aiHealthLab’s GitLab repository upon request to Enkelejda Miho (enkelejda.miho@
fhnw.ch). Some of the patient clinical and genetic data were contributed by collaborators and can be shared upon 
justified request from Enkelejda Miho (enkelejda.miho@fhnw.ch). Data obtained from public sources is specifi-
cally indicated throughout the text and referenced to the original publication.
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