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Model optimization is a problem of great concern and challenge for developing an image classification 
model. In image classification, selecting the appropriate hyperparameters can substantially boost the 
model’s ability to learn intricate patterns and features from complex image data. Hyperparameter 
optimization helps to prevent overfitting by finding the right balance between complexity and 
generalization of a model. The ensemble genetic algorithm and convolutional neural network 
(EGACNN) are proposed to enhance image classification by fine-tuning hyperparameters. The 
convolutional neural network (CNN) model is combined with a genetic algorithm GA) using stacking 
based on the Modified National Institute of Standards and Technology (MNIST) dataset to enhance 
efficiency and prediction rate on image classification. The GA optimizes the number of layers, kernel 
size, learning rates, dropout rates, and batch sizes of the CNN model to improve the accuracy 
and performance of the model. The objective of this research is to improve the CNN-based image 
classification system by utilizing the advantages of ensemble learning and GA. The highest accuracy 
is obtained using the proposed EGACNN model which is 99.91% and the ensemble CNN and spiking 
neural network (CSNN) model shows an accuracy of 99.68%. The ensemble approaches like EGACNN 
and CSNN tends to be more effective as compared to CNN, RNN, AlexNet, ResNet, and VGG models. 
The hyperparameter optimization of deep learning classification models reduces human efforts and 
produces better prediction results. Performance comparison with existing approaches also shows the 
superior performance of the proposed model.
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The optimization of hyperparameters is a difficult task with broad ramifications across industries including 
driverless cars and medical applications. The deep learning model’s performance is highly dependent on a number 
of hyperparameters including learning rates, batch sizes, network topologies, and regularization parameters. 
These all have a significant impact on the model’s effectiveness. The collective representation of hyperparameter 
tuning is a difficult and time-consuming procedure due to the intricate structure, interdependencies, and the 
large search space of these parameters1. Finding the ideal configuration frequently requires navigating this 
complex landscape which takes a lot of time and computer power to complete through iterative trial and error. 
Furthermore, the optimal hyper-parameter sets might vary greatly between datasets and classification issues. It 
is essential to address this challenge successfully by maximizing the efficacy and accuracy of image classification 
models, enabling them to realize their full potential in real-world applications. However, there is no one-size-
fits-all solution to this problem2.

The main goal of this research is to investigate cutting-edge methods and techniques for image classification 
by hyperparameter optimization. Improving the model’s performance is important but it is reducing the human 
efforts and computer labor needed to complete the task3. Handwritten numbers have numerous applications 
including handwriting recognition, postal zip code extraction, and processing bank checks. However, recognizing 
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these numbers is challenging due to their unique stroke types, sizes, and orientations4. Various methods have been 
attempted including artificial neural network (ANN), support vector machine (SVM), rule-based reasoning, and 
multi-column deep neural networks. User-independent online handwritten digit recognition faces challenges 
in categorizing strokes. The objective is to use a deep learning model to identify handwritten digit patterns and 
train a model that can categorize numbers based on their patterns5. Recent studies show that deep hierarchical 
neural networks improve supervised pattern categorization through unsupervised pre-training. These networks 
focusing on deep convolutional neural networks (DCNNs) have shown potential in various data sets. However, 
educating them on central processing units (CPUs) can be time-consuming and expensive6. Fast parallel 
neural net code for graphics cards has solved this issue allowing for faster image classification than CPU-based 
methods7.

The network’s capacity optimizes to identify intricate patterns and features in images through the iterative 
adjustments to weights and biases of the back-propagation training method8. Through this procedure, CNN can 
accurately complete tasks like segmentation, object identification, and image categorization9. CNN is the key 
component of deep learning that enables complex image mapping and classification. It improved the computer 
vision systems using their ability to automatically learn hierarchical representations. CNN-based LeNet-5 
architecture excels in image classification, and computer vision-related tasks10.

The problems of hyperparameter tuning in Image classification are the main topic especially as they relate 
to CNNs. The work suggests a novel method to optimize hyperparameters and raise the accuracy of image 
classification by merging ensemble genetic algorithms (EGAs) with CNN models. The goal of this research is to 
address problems with model complexity, genetic algorithm (GA) optimization, processing power needs, and 
dataset generalization. Preparing the dataset, training individual CNN models, optimizing genetic algorithms, 
adjusting hyperparameters, and evaluating the models are all part of the proposed technique. The difficulties and 
suggested method are described emphasizing the expected advances in image recognition and computer vision 
technologies. With an emphasis on thorough experiments using industry-standard datasets like MNIST. This 
research seeks to offer insightful information for practical applications in a range of sectors.

•	 This study explores the impact of hyperparameter tuning on ensemble model performance using an evolu-
tionary algorithm for improved precision, generalization, and resilience in image classification applications.

•	 The GA-based hyperparameter optimization for deep learning model using the stacking ensemble technique 
called ensemble genetic algorithm and CNN (EGACNN) has been proposed for image categorization and to 
enhance model performance.

•	 The deep learning models such as CNN, recurrent neural network (RNN), AlexNet, residual neural net-
work (ResNet), VGG, convolutional recurrent neural network (CRNN), and ensemble of CNN and spiking 
neural network (CSNN) have been used and combined with GA to enhance dataset comprehension and 
decision-making in image classification. Ensemble learning enhances image classification system flexibility 
by combining CNN architectures, especially when dataset differences cause individual models to struggle.

•	 Experiments results of these models highlight the superiority of the proposed ensemble model for image 
classification by evaluating through accuracy, precision, recall, and F1 score.

Although optimizing hyperparameters is essential for improving the performance of image classification models 
current approaches frequently encounter considerable difficulties. Recent research takes more time to execute 
simple tasks and is computationally expensive. These traditional grid search and random search strategies 
necessitate a thorough investigation of the hyperparameter space without ensuring optimal outcomes11. 
Furthermore, these techniques result in inefficiencies particularly with complicated models like deep neural 
networks because they fail to adaptively focus on the most promising areas of the hyperparameter space12. 
Although more successful Bayesian optimization can suffer in high-dimensional hyperparameter spaces 
and may lose its effectiveness in noisy or costly objective function evaluations. Furthermore, a fundamental 
component of real-world applications with constrained resources is the capacity to balance the trade-offs between 
accuracy and computing cost something that many optimization techniques fail to do well. These drawbacks 
emphasize the need for more sophisticated and flexible optimization methods including those incorporating 
genetic algorithms to quickly and accurately adjust hyperparameters for better model performance in image 
classification applications13.

The structure of the preceding paper is as follows: Section 2 presents the literature analysis of the current 
systems and their limitations. Section 3 presents the methodology which describes the methods and techniques 
adopted to carry out experiments and the structure of the methodology. Section 4 presents the performance of 
deep learning models in comparative analysis. Section 5 describes the conclusion of the research.

Related work
One of the most important tasks in computer vision is classifying images into predefined classes based on their 
visual information. CNN has become the industry standard for image classification. CNN can learn complex 
feature relationships from raw data14. The deep learning models consist of many layers carrying out operations 
such as convolving, pooling, etc. Different levels of abstraction are used by these layers to extract and integrate 
data. CNN are trained on large datasets which enable them to learn the relationships between input features 
and output classes by analyzing images and the labels that correspond to them15. CNN uses the learned 
representations during inference to analyze previously unseen images and predict their classes.16.

A CNN model for small dataset regularization techniques and model average ensemble enhance 
generalization and classification accuracy in cloud categorization research17. Evaluation using the SWIMCAT 
dataset demonstrates perfect classification accuracy highlighting the model’s tenacity18. An MCUa dynamic 
deep CNN model classifies breast histology images using multilevel context-aware models and uncertainty 
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quantification achieving high accuracy by addressing categorization challenges due to visual heterogeneity 
and lack of contextual information in large digital data19. Researchers examine the performance effects of 
hyperparameters and model optimization techniques on four DNN models. The findings indicate that different 
models and performance factors are affected by hyperparameters20. Moreover, the research advises practitioners 
to take into account a variety of performance indicators and to be aware of the cumulative nature of optimization 
and hyperparameter tuning21.

CNN image classification using data augmentation and batch normalization enhances precision and 
effectiveness by normalizing input and creating fresh training samples from existing data22. The EnsNet 
ensemble learning method combines FCSNs with a basic CNN segmenting feature maps into subsets and 
training FCSNs to forecast class labels23. A majority vote from both CNNs determines the model’s output aiming 
to improve object identification performance24. The CE-ResNet model was developed by combining a ResNet 
with a capsule neural network (CapsNet) technique. CNNs are utilized as classifiers for fruit recognition and 
pricing in supermarkets25.

To improve image classification methods, this work combines the capabilities of CNNs and Genetic 
Algorithms. Inspired by the evolutionary processes found in nature GAs are remarkably adept at exploring 
intricate solution spaces to find nearly optimal configurations26. These algorithms explore a wide range 
of options through iterative refinement focusing on solutions that perform better. Meanwhile, CNNs are 
industry mainstays in image classification because of their intrinsic capacity to extract complex patterns and 
hierarchical features from unprocessed pixel data. However, the CNN performance is highly dependent on the 
fine-tuning of hyperparameters like learning rates, network topologies, and regularization strategies. Adjusting 
these hyperparameters by hand is time-consuming and frequently does not fully capture the range of possible 
combinations.27.

This work aims to overcome the difficulties associated with hyperparameter optimization, model 
generalization, and robustness in image classification tasks by integrating GAs into CNN training. A new era of 
efficiency in this field is anticipated as a result of the mutually beneficial combination of CNNs and GAs which 
promises to improve the flexibility and robustness of image classification models in addition to streamlining 
the optimization process28. Researchers consider many different hyperparameters and architectural choices 
that significantly affect the CNN model’s performance while fine-tuning it with GAs. These parameters include 
things like the number of layers, learning rates, batch and filter sizes, and how the convolutional and pooling 
processes are set up. Each set of parameters indicates a potential CNN architecture generating a diverse set of 
options for the GA29.

The process begins with an assessment of each specific CNN design using a validation dataset. Each 
architecture’s fitness is evaluated using performance metrics like classification accuracy or loss function values. 
This initial evaluation serves as the foundation for further optimization phases and provides a benchmark to 
compare different configurations. Through iterative evolution, GAs improve the population of CNN structures 
across multiple generations. With every cycle genetic processes including crossover and mutation result in the 
production of new individuals. Crossover produces offspring with a variety of features by combining traits from 
two-parent architectures30. Mutation introduces small random modifications to particular structures which 
promotes exploration of new solution areas. Individuals with greater fitness levels have a higher probability of 
producing progeny due to mechanisms of selection. Natural selection is a process that results in advantageous 
traits being passed down to the following generation. Configurations that perform better in terms of classification 
accuracy and loss minimization are gradually adopted by the population31.

GAs have the potential to be optimized but they face a number of obstacles that limit their effectiveness. 
The great dimensionality of images, each pixel representing features a significant obstacle since it creates a vast 
search field for solutions. Furthermore, the optimization landscape is complicated by the non-linear and non-
convex relationship between image characteristics and class labels, which frequently causes GAs to struggle to 
converge to global optima32. In picture classification jobs, where it can be difficult to discover an ideal trade-
off, the GAs become problematic. Moreover, to guarantee both efficacy and computational efficiency, CNN 
designs or hyperparameters must be represented and encoded in a way that is appropriate for GAs. To overcome 
these obstacles, novel algorithmic designs and hybrid strategies are required, which combine GAs with other 
optimization methods or make use of parallel computing frameworks to increase GAs’ efficiency in CNN 
architecture optimization for image classification applications33.

The genetic algorithm improves the CNN model’s hyperparameters using a population-based optimization 
technique. This technique compares new algorithms to different parameters to enhance classification 
performance on the MNIST dataset34. EAs optimize artificial neural network design and parameters automating 
hyperparameter tweaking and simulating natural evolution. This research utilizes a two-level genetic algorithm 
and neuro evolution to find CNN and neural network’s topologies balancing the search time and fitness 
integrity35. The method speeds up fitness evaluation and allows adaptable CNN structures to outperform 
previous techniques and reduce training time36. Wound treatment optimization (WTO) a distributed method 
inspired by biological processes was used to train a LeNet CNN model learning parameters37. This method 
improved training time and accuracy on the MNIST dataset. This technique can be applied in various fields 
including robotics, multi-agent systems, etc.38.

The MR-DCAE model detects reconstruction problems and employs a deep convolutional autoencoder 
to identify radio transmissions that are not allowed. To maintain manifold invariance the model incorporates 
a similarity estimator and is optimized via entropy-stochastic gradient descent. MR-DCAE demonstrates 
cutting-edge performance when tested on the AUBI2020 dataset successfully identifying unauthorized signals 
in intricate settings39. Ms-RaT model which uses multi-scale analysis to improve feature learning from radio 
signals employs dual channel representation. Extensive simulations and ablation investigations validate that the 

Scientific Reports |         (2025) 15:1003 3| https://doi.org/10.1038/s41598-024-76178-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model provides greater accuracy with equivalent or lower computing complexity than existing deep learning 
methods40.

The lightweight MobileViT neural network which uses clustered constellation pictures from I/Q sequences 
for real-time modulation classification was recently introduced in Automatic Modulation Classification (AMC) 
work. On the RadioML 2016.10a dataset, this model which was created for edge computing platforms performs 
better than previous approaches and has shown to be resilient in a variety of scenarios. When it comes to using 
deep learning for real-time AMC on devices with limited resources MobileViT is a trailblazing method41. For 
real-time AMC in drone communication systems MobileRaTis a lightweight transformer model with pruning 
based on information entropy has been presented. It achieves higher accuracy and efficiency on public datasets. 
This method shows flexibility to different communication scenarios by combining pruning for the first time with 
a transformer model for temporal signal processing42. In order to recognize partial discharge patterns in power 
transformers a hybrid CNN-LSTM model that makes use of dual-channel pictures from PRPD and PRPS has 
been presented. This method outperforms both conventional and sophisticated deep learning techniques as it is 
the first to leverage dual-channel spectrum inputs43.

There are clear benefits and drawbacks to using both genetic algorithms and CNNs for image classification 
especially when using the MNIST dataset. Because CNNs can automatically extract and learn features from the 
images they perform exceptionally well and accurately on the MNIST dataset making them highly useful for 
this purpose. They are preferred for image classification because they take advantage of their robust findings 
and translation invariance which allow them to extract hierarchical features. CNNs can be limited in contexts 
with limited resources though as they need higher processing power and a lot of data to train well. On the 
other hand evolutionary algorithms can be used to choose feature subsets or tune hyperparameters which may 
enhance CNN performance however they are less frequent for direct image classification applications. Although 
they provide a population-based flexible method of problem solving their iterative nature can make them 
computationally expensive and less effective for direct classification problems. Due to their direct approach and 
high accuracy, CNNs typically perform better than genetic algorithms for image classification tasks in practical 
applications genetic algorithms on the other hand might be more appropriate for problems linked to optimizing 
CNN configurations. Table 1 provides a critical summary of discussed research works.

Methodology
The efficiency of image classification has been increased in this research based on hyperparameter optimization 
using a GA. The MNIST dataset is a well-known benchmark dataset for image classification tasks and serves as 

Refs. Technique Benefits Limitation

44
Using the MNIST dataset the hybrid model combines SVM for 
binary classification and CNN for automatic feature extraction to 
improve handwritten digit recognition.

On the MNIST dataset the CNN-SVM hybrid model uses 
the advantages of SVM’s classification capabilities and 
CNN’s feature extraction to achieve excellent recognition 
accuracy (99.28%).

Because it combines CNN and 
SVM the hybrid model might need 
a significant amount of processing 
power to train.

45

Using global optimization and genetic operations such as selection, 
crossover, and mutation the method combines genetic algorithms 
with CNNs to optimize initial weights for the classification of liver 
CT tumor pictures.

Compared to conventional CNN and SVM approaches 
combining genetic algorithms with CNN improves 
medical-aided diagnosis and increases classification 
accuracy for liver CT images.

Because genetic algorithms are used 
in this method for initial weight 
optimization there may be an 
increase in computational complexity 
and training time.

46 Use evolutionary techniques for joint optimization of a committee of 
CNNs and hyperparameter optimization.

Reduces the need for human tuning beats the state-of-the-
art on MNIST and improves performance with a CNN 
committee.

Needs a lot of resources is sensitive to 
the initial settings and has problems 
with bigger datasets.

47 Combines training three-layer CNN with GA for global search and 
optimal weight initialization.

Improves training time and accuracy by using GA to 
optimally initialize network weights.

Increased computational complexity 
due to the GA optimization process.

48 Use GA to optimize hyperparameters and combine it with SAE, 
CNN, and GA for the prediction of anemia.

98.50% prediction accuracy for anemia is attained using 
GA-assisted hyperparameter optimization.

Complexities in choosing appropriate 
hyperparameters and higher 
processing demands.

49
Selects trainable layers for transfer CNN models using the GA 
optimizing according to accuracy and the number of trainable 
layers.

By using GA to optimize trainable layers 97% classification 
accuracy is attained for datasets about cats and dogs.

Computationally demanding and 
needs to converge across several 
generations.

50

Used evolutionary algorithms and Bayesian optimization to 
investigate hyperparameter search techniques concentrating on 
CIFAR-10 datasets and investigating the hybridization of genetic 
algorithms with local search techniques.

Potential advancement for network construction and 
training optimization through the hybridization of 
evolutionary algorithms with local search techniques.

On CIFAR-10 datasets no discernible 
gain in performance over state-of-
the-art approaches.

51
Enhanced evolutionary algorithms with elements from nature for 
hyperparameter optimization and included significance sampling a 
Monte Carlo-based technique for reducing variance.

Improved hyperparameter solution space exploration 
resulting in improved model performance.

Added complexity and computational 
expense as a result of more 
improvements inspired by nature.

52
Efficiently explored and optimized CNN topologies and 
hyperparameters for image classification using a genetic approach 
called fast-CNN.

CNN architectures can be designed and optimized more 
quickly than with conventional techniques.

Possibly not as accurate as the best 
manually optimized models.

53
Analyzed using the Gradient-Descent Algorithm and the GA 
with a particular encoding technique for layer connectivity, filter 
dimensions, and fully connected layer nodes.

Automated design of CNN architectures without the need 
for data preprocessing or post-processing allowing for 
efficient exploration of network configurations.

It could take a lot of processing 
power to train CNNs from scratch at 
every stage of evolution.

54
Framework using genetic algorithms to optimize and choose 
features from CNN models that have already been trained for 
various detection tasks.

Minimizes human labor and optimizes the procedure for 
various tasks by automating the selection of helpful features 
from CNN models that have already been trained.

It could take a lot of computer power 
to assess and choose features from 
several trained models.

Table 1.  Advantages and disadvantages of existing research works.
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the main source of data. The MNIST dataset is used in experiments with deep learning approaches because it 
contains a sizable collection of hand-drawn digits from 0 to 9 in grayscale images. The dataset is collected from 
the well-known dataset repository Kaggle. The normalization and one hot encoding technique are used on the 
MNIST dataset images to improve model resilience. Then image augmentation is applied to scale the images to 
a uniform dimension by standardizing pixel values and increasing the dataset images. To make sure the data 
is appropriate for training for deep learning learning models, data preparation is an essential first step. The 
MNIST dataset is used to train deep learning models such as CNN, RNN, AlexNet, ResNet, VGG, CSNN, and 
proposed EGACNN. Figure 1 shows the methodological architecture of the proposed model. To get the best 
classification results and accuracy, the training process involves fine-tuning model parameters and optimizing 
hyperparameters. Each model’s performance is evaluated using measures including F1-score, recall, accuracy, 
and precision.

The validation approach is also used such as cross-validation to ensure the model’s generalizability. The 
ensemble method is used to improve the performance of categorization and bagging, boosting, and stacking 
affect the accuracy of the model. The predictions of deep learning base models will be combined with genetic 
algorithms to construct ensemble models that will produce more effective results. This research employs a strict 
experimental design that includes cross-validation and the right statistical testing to confirm the findings. This 
research determines the best models and ensemble procedures for MNIST digit classification as well as highlights 
the model’s weaknesses and plus points.

Dataset
The MNIST dataset, a commonly used dataset in computer vision, consists of 60,000 handwritten numbers 
divided into training and test sets with 50,000 and 10,000 samples respectively as shown in Table 2 and Fig. 2.

Training set Images Dimension Y-axis Dimension X-axis

Train X 60000 28 28

Train Y 60000 (Labels)

Test X 10000 28 28

Test Y 10000 (Labels)

Table 2.  Training and testing images in the MNIST datasets.

 

Fig. 1.  CNN and genetic algorithm-based methodological architecture.
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Image normalization
Since data normalization has a major impact on the convergence and performance of deep learning models in 
the proposed image classification framework. The processes and techniques utilized to preprocess and normalize 
the entered image data are referred to as image normalization. The goal of data normalization is to guarantee that 
differences in the strength and distribution of the input features do not obstruct the model’s training procedure. 
More pixel standardization and attention to problems like lighting or contrast variance can result in more stable 
and convergent models. Gaining an understanding of the subtitle of data normalization is critical to the success 
of the image classification system because it guarantees that the features in the input images can be efficiently 
learned and represented by deep learning models.

Genetic algorithm
The GA algorithm belongs to the heuristic class that follows the concepts of genetics and natural selection. GA 
is used to determine the ideal collection of hyperparameters for a deep learning model such as a CNN when it 
comes to hyperparameter optimization. Hyperparameters are configurations that control a model’s performance 
and behavior they are not determined by the data. Finding the ideal set of these parameters to optimize model 
performance is the difficult part of hyperparameter optimization.

Population and individuals
The population in GA for hyperparameter tuning is a group of possible solutions where each member represents 
a particular set of hyperparameters. A person is organized as a vector with each gene representing a certain 
hyperparameter. A person could be represented as [0.001, 32, 64, 3x3, 0.5] where 0.001 stands for learning rate, 
32 for batch size, 64 for number of filters, 3x3 for filter size, and 0.5 for dropout rate. Collectively these members 
of the population investigate various combinations of hyperparameters guiding the optimization procedure in 
the direction of the optimal model configuration.

Crossover
The process of creating offspring by fusing the genetic material (hyperparameters) of two-parent people is 
known as crossover. By doing this the natural reproduction process is mimicked and the children are able to 
inherit traits (hyperparameters) from both parents. The crossover procedure adds variety without compromising 
the integrity of the previously discovered solutions. If parent 1 has hyperparameters [0.001, 32, 64, 3x3, 0.5] 
and parent 2 has [0.01, 64, 128, 5x5, 0.2], a crossover might produce offspring like [0.001, 32, 128, 5x5, 0.2] 
and [0.01, 64, 64, 3x3, 0.5]. Let θp1 and θp2 be the parent vectors, and θo1 and θo2 be the offspring vectors. The 
crossover operation can be expressed as:

	 θo1 =[θp1[1 : k], θp2[k + 1 : n]] � (1)

	 θo2 =[θp2[1 : k], θp1[k + 1 : n]] � (2)

where k is a randomly chosen crossover point.

Mutation
A mutation modifies a person’s CNN model hyperparameters at random. By keeping the population’s genetic 
variety intact, this procedure keeps the algorithm from settling too rapidly on a local optimum. Usually, there 
is little chance involved in applying mutation.For instance in the individual [0.001, 32, 64, 3x3, 0.5] a mutation 

Fig.2.  Samples from the MNIST dataset.
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might alter the learning rate to 0.0001 resulting in a new individual [0.0001, 32, 64, 3x3, 0.5]. Mutation 
introduces small random changes to the offspring’s hyperparameters to maintain diversity. The mutation 
operation can be expressed as:

	 θmut
i = θi + δ� (3)

where δ is a small random perturbation applied to the hyperparameter θi, often sampled from a normal 
distribution.

Environmental selection
After the offspring generation, environmental selection is used to decide which individuals participate to make 
the next generation. This can be based on elitism where the best-performing individuals are always carried over. 
The next generation is formed by selecting the top M individuals from the union of parents and offspring:

	 Next Generation = Top M individuals from {Parents ∪ Offspring}� (4)

where M is the population size.

Fitness function
Every member of the population is assessed according to their quality by the fitness function. When it comes 
to hyperparameter optimization the fitness function is usually determined by the model’s performance which 
includes validation loss, accuracy, and F1-score after training with the hyperparameters that the individual 
represents. Better model performance is indicated by a higher fitness score.

The fitness function evaluates the performance of a CNN model with a specific set of hyperparameters. Let 
θ = [θ1, θ2, . . . , θn] represent the vector of hyperparameters for the CNN where θi is a specific hyperparameter 
(e.g., learning rate, batch size). The fitness function F (θ) is typically based on the model’s performance on a 
validation set:

	 F (θ) = Accuracy(θ) or F (θ) = −Loss(θ)� (5)

Selection
The process of selecting members of the current population to produce future generations’ offspring is known as 
selection. larger fitness scorers have a larger chance of being chosen since they are superior candidates.

Best solution
The set of hyperparameters with the highest fitness score, or the best-performing individual, is chosen as the 
ideal hyperparameter configuration for the model once the GA ends. The final model is then trained using this 
solution. Figure 3 shows the flow of this whole process.

Deep learning models
The use of deep learning models has drastically changed the fields of computer vision and image classification. 
This research investigates the crucial significance of deep learning that combines the power of CNNs with the 
efficiency of GA for image classification. The deep learning models are employed in detail by providing clarity 
on the architecture, training protocols, and hyperparameter tuning strategies that underpin the innovative 
approach.

ResNet model
The input images are reshaped using the ResNet Model which scales the pixel values to an appropriate range. In 
the ResNet model design, residual blocks are included allowing the network to learn residual mappings rather 
than the intended mappings directly. There are numerous residual blocks in a typical ResNet design and each 
block has several convolutional layers with skip connections that omit one or more levels. The ResNet model 
includes setting the number of residual blocks, the number of filters in each convolutional layer, and other 
hyperparameters. The model is then assembled using an appropriate loss function and an optimizer such as 
Adam. The training data is employed to train the ResNet model based on the given label that is used to learn the 
model for optimization of the parameters during training. To update the model’s weights forward and backward 
propagation is used throughout the training phase. The test data is utilized to evaluate the trained ResNet model. 
The evaluation is performed using measures to evaluate the model’s performance on unknown data is a common 
practice in assessment. The fundamental units of the network are called residual blocks and are introduced by 
the ResNet concept. The equation below defines a residual block:

	 y = F (x, Wi) + x� (6)

where x is the input to the residual block, typically the feature map output from a previous layer or block. Wi 
denotes the weights of the layers within the residual block, which could include convolutional layers, batch 
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normalization, and activation functions. F (x, Wi) represents the transformation applied to the input x by these 
layers.

Instead of merely outputting F (x, Wi), a residual block adds the original input x to the transformed input 
F (x, Wi), creating a residual or skip connection. The result y is the sum of the original input x and the 
transformation F (x, Wi).

The main idea behind using residual blocks is to address the vanishing gradient problem, which can hinder 
the training of very deep neural networks. By incorporating the input x into the output, residual blocks facilitate 
the flow of gradients during backpropagation, enabling the training of deeper networks that perform better on 
complex tasks.

The ResNet model used in this study contains several layers. The first layer is a conv2d layer with (None, 26, 
26, 64) output shape and has 640 parameters. It is followed by another convolutional layer conv2d-I with (None, 
24, 24, 64) output shape and 36,928 trainable parameters. Next is the max-pooling2d layer with an output shape 
of (None, 12, 12, 64), followed by a dropout layer with a (None, 12, 12, 64) output shape and a flatten layer with 
an output shape of (None, 9216). These three layers have zero trainable parameters. They are followed by a dense 
layer with (None,128) output shape and have 11,79,776 trainable parameters. In the end, dropout-I and dense-I 
layers are placed with output shapes of (None,128) and (none, 10), respectively, and have 0 and 1290 trainable 
parameters.

Convolutional neural network
The following layers make up the CNN model that is used to classify images on the MNIST dataset. The conv2D 
layer has a ReLU activation function and 32 3x3 filter elements. It accepts a single channel of 28x28 input images. 
The selection of the largest value within each pool the max-pooling 2D layer with a pool size of 2x2 reduces the 
spatial dimensions of the 64 3x3-pixel Conv2D filters with a ReLU activation function. Using a pool size of 2x2, 
the MaxPooling2D layer is a layer of flattening that converts 2D feature maps into 1D vectors 64-unit dense layer 
with a ReLU activation function Class probabilities are produced via a dense layer with a softmax activation 
function.

The sparse categorical cross entropy loss function and the Adam optimizer are used to create the model. The 
model is trained with a batch size of 32 throughout 1 epoch. The test dataset is used to evaluate the model. The 
model summary also offers a thorough explanation of the model’s architecture. A CNN model’s equation can be 
shown as a series of operations. The convolutional layer involves the following operation

	 Z1 = ϕ1(F1 ∗ X + b1)� (7)

Fig.  3.  Optimization of CNN hyperparameter with GA.
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where F1 represents the convolutional filter applied to the input X , and b1 is the bias term added to the result. 
The function ϕ1 denotes the activation function that is applied element-wise to the convolution result. The 
output of this layer, Z1, is a feature map that captures important features from the input data.

	 Z2 = ϕ2(F2 ∗ Z1 + b2)� (8)

where Z1 is the input to the second convolutional layer, F2 is the filter applied to Z1, and b2 is the bias term. The 
activation function ϕ2 is applied to the result, producing the output feature map Z2.

The pooling layers involve:

	 P1 = Pm(Z1)2 � (9)

	 P2 = Pm(Z2) � (10)

where Pm represents the pooling function applied to the feature map Z1. This operation produces P1, which is 
the down-sampled version of Z1. Similarly, Pm is applied to the feature map Z2, resulting in the pooled feature 
map P2.

Fully connected layers can be represented as:

	 Y = σ(Dl(Pk) + c)� (11)

where Pk  is the input, Dl is the weight matrix, and c is the bias term. The activation function σ is applied to the 
result of the linear transformation Dl(Pk) + c, producing the final output Y  which can be used for tasks such 
as classification.

The CNN model designed for this study contains seven layers. The first layer is a conv2d layer with (None, 26, 
26, 32) output shape and 320 trainable parameters followed by a max-pooling2d layer with (None, 13,13, 32) 
output shape. After that, another conv2d layer is placed with an output shape of (None, 11, 11, 64) and has 18,496 
trainable parameters. It is followed by a max-pooling2d-I layer with a (None, 5, 5, 64) output shape. A flatten 
layer is placed after that followed by a dense layer with 64 neurons and has 102,464 trainable parameters. In the 
end, a dense-I layer is placed for the number of classes, i.e., 10.

Recurrent neural network
RNNs are particularly well-suited for tasks involving sequential data due to their ability to analyze information 
sequentially. The RNN model is used to analyze the image pixels sequentially considering each row or column of 
pixels as a time step even if the MNIST dataset comprises static images. RNNs excel at capturing local dependencies 
within sequential data, making them adept at processing images where such dependencies exist. Their ability 
to handle variable-length sequences allows RNNs to accommodate images of different sizes effectively. RNNs 
can help work with datasets that have fluctuating image dimensions, even if the MNIST collection only contains 
fixed-size images. After training on sequence-related tasks such as text or time series analysis, RNN models 
can be refined or utilized as a starting point for addressing image classification challenges. Pre-trained RNN 
models can capture high-level features or contextual data that prove beneficial for image classification tasks. This 
computational effectiveness is particularly advantageous when operating under constraints of time or computing 
resources, thus rendering RNNs a valuable asset in such scenarios. Layer-wise model summary of RNN is given 
in Table 3. An expression for the central equation of a basic RNN model is as follows

	 Ht = σ(Whx · Xt + Whh · Ht−1 + bh)� (12)

where Xt represents the input at t, and Ht−1 is the hidden state. The weight matrix Whx is for the input Xt, while 
Whh is for the previous hidden state Ht−1. The bias term bh is added to the result of the linear combination. The 
function σ denotes the activation function applied to the linear transformation, introducing non-linearity into 
the hidden state calculation.

	 Yt = softmax(Wyh · Ht + by) � (13)

Layer Output shape Parameters

rnn-I Multiple 5952

dense-I Multiple 650

Table 3.  RNN model layer summary.
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In Equation 13, Wyh is the weight matrix for state Ht. The bias term by  is added to the result of the linear 
transformation. The softmax function is then applied to the result, which converts the raw scores into probabilities, 
suitable for classification tasks. The softmax makes Yt a probability distribution over possible classes.

AlexNet model
With the MNIST dataset for image classification, AlexNet can recognize handwritten digits with a high degree 
of accuracy. For tasks like digit identification, AlexNet’s design which includes several convolutional and pooling 
layers enables it to learn complicated information from images. Additionally, the MNIST dataset is a wonderful 
place to start learning about image classification and deep learning techniques because it is comparably small 
and straightforward to other image datasets. The convolutional layers and max-pooling layers of the AlexNet 
model work similarly to the CNN model. Convolutional layers of AlexNet are represented as:

	 Z1 = ϕ1(F1 ∗ X + b1) � (14)

	 Z2 = ϕ2(F2 ∗ Z1 + b2) � (15)

where X  represents the input to the first convolutional layer, where F1 is the convolutional filter applied to X
, and b1 is the bias term. The function ϕ1 denotes the activation function. The output Z1 is a feature map that 
highlights important features from the input. The second convolutional layer operates on Z1 using a different 
filter F2 and bias b2, with ϕ2 applied to the result, producing Z2 as the output feature map.

Max-pooling layers are represented as:

	 P1 = Pm(Z1) � (16)

	 P2 = Pm(Z2) � (17)

where Pm represents the pooling operation, applied to the features Z1 and Z2. Pooling reduces the spatial 
dimensions of the feature maps Z1 and Z2, resulting in P1 and P2, respectively. This reduction helps in 
decreasing the computational complexity and mitigating overfitting by preserving the most important features 
while discarding less significant details.

The AlexNet is made of 11 layers to identify characters in this study. The first layer is a conv2d with a (None, 
26, 26, 32) output shape and has 320 trainable parameters. It is followed by a batch normalization layer having a 
(None, 26, 26, 32) output shape and 128 parameters. Next comes the max-pooling2d layer which has a (None, 13, 
13, 32) output shape. Another conv2d layer is placed after this with an output shape of (None, 11, 11, 64) and has 
18,496 trainable parameters. The batch-normalization-1 layer is placed after that with an output shape of None, 
11, 11, 64) and 256 trainable parameters. The max-pooling2d-1 layer has an output shape of (None, 5, 5, 64), 
followed by the conv2d-2 layer with (None, 3, 3, 128) output shape and 73,856 trainable parameters. After that, 
the flatten and dense layers are placed with the dense layer having 256 neurons. The dropout layer has an output 
shape of (None, 256), followed by the final dense layer with 10 neurons to predict the final class.

VGG model
The CNN architecture known as VGG is renowned for its intricate and detailed design. It is widely recognized 
for its remarkable depth and is available in two primary variations: VGG16, which comprises 16 weight layers, 
and VGG19, which consists of 19 weight layers. These designs are increasingly prevalent due to their ability to 
extract intricate information from images, making them well-suited for various computer vision applications, 
including image categorization. Employing deeper CNN architectures like VGG in more complex datasets, 
such as those found in large-scale image recognition tasks or datasets containing numerous objects, intricate 
backgrounds, and fine features, could provide insights into their full capabilities. T

For more complicated datasets with a large variety of objects and scenarios, the additional layers of VGG can 
help it learn hierarchical features and abstract representations of input images. When compared to a shallower 
architecture like AlexNet the extra depth of VGG may not significantly improve accuracy for MNIST which 
largely includes identifying handwritten digits. When compared to a shallower architecture like AlexNet, the 
additional depth of VGG may not significantly enhance accuracy for datasets like MNIST, which primarily 
involves identifying handwritten digits. In conclusion, while VGG stands as a robust CNN architecture capable 
of learning complex features, its full potential may not be realized when applied to straightforward datasets like 
MNIST. Assessing the performance of neural networks on more challenging and intricate image classification 
tasks often yields greater insights into their functionality and advantages. Convolutional layers of VGG can be 
represented as

	 Z1,1 =ϕ1(F1,1 ∗ X + b1,1) � (18)

	 Z1,2 =ϕ2(F1,2 ∗ Z1,1 + b1,2) � (19)
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where X  represents the input image. In the first convolutional layer, F1,1 is the filter applied to X , and b1,1 is the 
associated bias term. The activation function ϕ1 introduces non-linearity to the convolutional output, producing 
Z1,1. The second convolutional layer takes Z1,1 as input, applies the filter F1,2 with bias b1,2, and applies the 
activation function ϕ2 to yield Z1,2.

The max-pooling layer operates as follows

	 P1 =max-pool(Z1,2) � (20)

	 P2 =max-pool(Z2,2) � (21)

where max-pool denotes the max-pooling operation applied to Z1,2 and Z2,2. This operation reduces the 
spatial dimensions of the feature maps while retaining the most significant features.

In the end, the fully connected layer can be represented as

	 Y = σ(Dl(Pk) + c)� (22)

where Pk  represents the output from the pooling layers, which is flattened and passed through the fully connected 
layer. Dl is the weight matrix for this layer, and c is the bias term. The activation function σ (e.g., softmax for 
classification) is applied to produce the final output Y , which represents the predicted class probabilities for the 
input image.

This study adopts a 14-layer VGG model comprising convolutional, max-pooling, flatten, and dense layers. The 
first and second layers are conv2d layers each with an output shape of (None, 28, 28, 64), followed by a max-
pooling2d layer with a (None, 14, 14, 64) output shape. After that, conv2d-III and conv2d-IV layers are placed 
each with an output shape of (None, 14, 14, 128). Another max-pooling layer is placed after these layers which 
has an output shape of (None, 7, 7, 128). After the second max-pooling layer, three conv2d layers are placed and 
each layer has the same output shape of (None, 7, 7, 256). Afterward, a max-pooling2d layer is placed with a 
(None, 3, 3, 256) output shape is placed. It is followed by a flatten layer. In the end, three dense layers are placed 
with 4096, 4096, and 10 neurons.

CSNN model
A CSNN model is used to handle visual categorization tasks. The input images are utilized to extract features 
using the CNN and the retrieved features are processed using the SNN in a spiking manner. To increase 
accuracy numerous models are combined through stacking. This architecture has the advantage of being 
even more accurate than CSNN or stacking alone when used with the MNIST dataset for image classification. 
While stacking can be effective for combining the capabilities of many models the SNN can be useful for jobs 
that require temporal processing such as recognizing sequences of digits in a handwritten number. SNNs are 
also renowned for their energy economy and capacity for data processing in a way that is more biologically 
believable. To fully benefit from the energy efficiency advantages of SNNs, the design might be more difficult to 
implement and needs specialized hardware. However, it might be a useful exercise to comprehend how several 
neural network types can be integrated to carry out challenging tasks like image categorization. Let’s combine 
these layers to produce the layered model equation:

	 Y = SNN(ZCNN,last)� (23)

Equation 23 represents the integration of Convolutional Neural Network (CNN) features with Spiking Neural 
Network (SNN) processing. In this equation, ZCNN, last denotes the output feature map from the final 
convolutional layer of a CNN. This feature map encapsulates the high-level abstracted features extracted by 
the convolutional layers. The function SNN(·) signifies the processing by the spiking neural network, which 
takes ZCNN, last as its input. The SNN is designed to handle temporal aspects of data and can provide a more 
biologically plausible model of neural processing. The output Y  represents the final classification or prediction 
result of the CSNN model, derived after the SNN has processed the features from the CNN. This integration 
allows the CSNN to leverage the spatial feature extraction capabilities of CNNs while benefiting from the 
temporal dynamics and spiking behavior of SNNs.

For the CSNN model, conv2d-4 has an output shape of (None, 26, 26, 32) with 320 parameters, followed by 
max-pooling2d-4 and flatten-4 layers with an output shape of (None, 13, 13, 32) and (None, 5408). Afterward, 
two dense layers are added with (None, 64) and (None,10) shape, followed by a conv2d-5 layer with (None, 26, 
26, 32) output shape. Another max-pooling layer is added with a (None, 13, 13, 32) shape which is followed by 
a (None, 5408)-shaped flatten layer. In the end, four dense layers are added with (none, 128), (None, 10), (None, 
64), and (None, 10).
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CNN-LSTM
The MNIST dataset is classified using the CNN-LSTM model, which combines sequential and convolutional 
learning techniques. The MNIST dataset is first preprocessed independently for CNN and LSTM inputs. 
It consists of grayscale photographs of handwritten digits. In order to extract high-level representations, the 
CNN component processes the spatial properties of the images via a succession of convolutional and max-
pooling layers, followed by flattening and dense layers. By restructuring the images into sequences, the LSTM 
component is able to capture temporal dependencies and handle the sequential character of the input. To get 
the classification results, the outputs from both models are concatenated and input into a final dense layer with 
a softmax activation function. After compilation, the merged model is validated on the test set and trained on 
the training set. Accuracy and loss measures are used to evaluate the model’s performance and epoch-specific 
accuracy trends are displayed to gauge the model’s capacity for generalization and learning. The summary of the 
model’s layer is given in Table 4.

DCAE
Handwritten digits are classified using the deep convolutional autoencoder (Mr-DCAE) on the MNIST dataset. 
First, the photos in the dataset are reshaped and normalized. The Mr-DCAE architecture is composed of an 
encoder that uses convolutional and max-pooling layers to compress the input images into lower-dimensional 
representations, and a decoder that uses convolutional and upsampling layers to reconstruct the images. To the 
encoded information, a classification layer is additionally included, which enables the model to predict digit 
classes. Accuracy is the main evaluation parameter, and the model is trained using sparse categorical cross-
entropy loss and the Adam optimizer. By monitoring training and validation accuracy throughout epochs 
and producing a classification report based on test predictions, performance is evaluated. Table 5 provides a 
summary of layers.

EGACNN
CNN and GA are combined to solve image categorization tasks, as shown in Fig.  4. The evolutionary algorithm 
is used to optimize the CNN hyperparameters while the CNN itself is utilized to extract features from the input 
images. This architecture has the advantage of being able to automatically optimize the CNN hyperparameters 
without requiring user adjustment when used with the MNIST dataset for image classification. When compared 
to manually adjusting the hyperparameters this can result in greater accuracy and quicker convergence.

While more complex architectures like the one mentioned may be challenging to construct and require 
greater processing power compared to simpler designs like AlexNet or VGG, it can still be a beneficial exercise 
to understand how various optimization methods can improve the efficiency of deep learning systems. The 
ensemble model contains different layers comprising various output shapes and parameters which are given in 
Table 6.

Evaluation parameters
The proposed model is evaluated using accuracy, precision, recall, and F1 score all have complementing qualities 
it is imperative to employ them all in conjunction. Determining the percentage of correctly classified instances 
in the total accuracy offers a wide indication of overall correctness nevertheless in scenarios where there is an 

Layer Output shape Param no.

inputlayer (None, 28, 28, 1) 0

conv2d (None, 28, 28, 32) 320

maxpooling2d (None, 14, 14, 32) 0

conv2d1 (None, 14, 14, 64) 18,496

maxpooling2d1 (None, 7, 7, 64) 0

flatten (None, 3136) 0

dense (None, 64) 200,768

dense1 (None, 10) 650

Table 5.  DCAE model layer summary.

 

Layer Output shape Param no.

inputlayer3 (None, 28, 28) 0

inputlayer4 (None, 28, 28, 1) 0

functional5 (None, 128) 80,384

functional6 (None, 64) 121,280

concatenate (None, 192) 0

dense5 (None, 10) 1,930

Table 4.  CNN-LSTM model layer summary.
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imbalance in classes accuracy may be deceptive. Precision measures the percentage of real positive predictions 
among all predicted positives highlighting the model’s critical ability to prevent false positives which can be 
expensive. Recall illustrates the model’s capacity to find all pertinent occurrences by calculating the percentage 
of true positives out of all actual positives. This is crucial when there is a substantial problem with missing 
positives. As the harmonic mean of recall and precision, the F1 score strikes a balance between the two metrics 
and offers a single, all-encompassing performance score that is particularly helpful in situations when datasets 
are unbalanced. When combined these metrics provide a comprehensive and detailed assessment of the model’s 
performance in several different areas.

Precision is a crucial metric used in evaluating the performance of classification models, particularly in 
scenarios where the balance between the number of true positive and false positive predictions is important. The 
precision of a model is defined by the formula:

	
Precision = T P

T P + F P
� (24)

In Equation 24, T P  (True Positives) show instances correctly classified as positive while F P  (False Positives) 
show incorrectly classified as positive. Precision measures the ratio of correctly predicted positive samples. A 
high precision value shows the model’s capability to give low false positives, which is desirable in applications 
where false positive errors are costly or critical. Conversely, low precision suggests that the model has a high 
rate of false positives, indicating that many of the positive predictions made by the model are incorrect. Recall 
also known as sensitivity or true positive rate, is a performance metric used to assess the effectiveness of a 
classification model, especially in detecting positive instances. The recall of a model is defined by the formula:

	
Recall = T P

T P + F N
� (25)

Recall measures the proportion of actual positive instances that were correctly classified by the model, providing 
insight into the model’s ability to identify positive cases. A high recall value indicates that the model is effective 
at detecting most of the positive instances, which is particularly important in scenarios where missing a positive 

Layer Output shape Parameters

conv2d-19 (None, 26, 26, 32) 320

conv2d-20 (None, 24, 24, 32) 9248

flatten-10 (None, 18432) 0

dense-20 (None, 128) 2359424

dense-21 (None, 10) 1290

Table 6.  The layer-wise summary of the proposed EGACNN model.

 

Fig.  4.  Ensemble genetic and CNN model-based image classification approach.
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case has significant consequences, such as in medical diagnostics or fraud detection. Conversely, low recall 
signifies that the model is missing many of the positive instances, leading to a higher number of false negatives.

The F1-Score is a metric used to evaluate the performance of classification models, particularly in situations 
where both precision and recall are important. It provides a single measure that balances the trade-off between 
precision and recall, offering a comprehensive assessment of a model’s accuracy. The F1-Score is defined by the 
formula:

	
F1-Score = 2 · Precision · Recall

Precision + Recall
� (26)

The F1-Score is the harmonic mean of precision and recall, which ensures that both metrics contribute equally 
to the final score. A high F1-Score indicates that the model achieves a good balance between precision and recall, 
which is desirable in the case of imbalanced class distribution. Conversely, a low F1-Score suggests that there is a 
significant imbalance between precision and recall, highlighting the need for further model refinement.

Results and discussion
The proposed ensemble model combines GA and CNN where GA is used to enhance the model’s performance 
by hyperparameter tuning. We provide the research findings and demonstrate how the proposed method 
works for image classification tasks. We systematically provide the empirical results achieved through rigorous 
experimentation and explore the ramifications of conclusions to improving image categorization system 
performance. The promising results have been obtained from the confluence of these two different paradigms. 
The representational strength of CNNs and the computational efficiency of genetic algorithms. In the end, 
we hope to add to the continuing conversation in the field of computer vision and image categorization by 
thoroughly examining these results and elucidating the benefits, drawbacks, and revelations derived from our 
methodology.

Results for CNN model
Figure 5 shows the training and validation accuracy and loss of the CNN model. It can be seen that the model 
improves its accuracy with each epoch and reaches a 99% accuracy.

Table 7 shows the performance results of the CNN model. The CNN model performs much better when the 
epoch is raised for image classification using the MNIST dataset. The maximum accuracy of this model is 0.9921 
and the maximum epoch is 30. The accuracy for the 5 epoch is 0.9891 it rose by 0.9914 for epoch 10, 0.9916 for 
epoch 15, 0.9916 for epoch 20, and 0.9917 for epoch 25.

Fig.  5.  CNN model’s training and validation graph.
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Results of RNN model
The performance of the RNN model concerning training and validation accuracy and training and validation 
loss is presented in Fig.  6. The model’s performance is improved with each passing epoch and it obtains a stable 
accuracy once it reaches epoch 17.

In terms of image classification, the RNN model performs better when the epoch is raised these improvements 
are substantial, as shown in Table 8. The maximum accuracy in this research is 0.9638 for the maximum epoch at 
30. The accuracy of the model for the first 5 epochs is 0.9575 it increases to 0.9445 for epoch 10 it gets to 0.9661 
for epoch 15 it reaches 0.9663 for epoch 20 and it reaches 0.9611 for epoch 25.

Results using AlexNet model
The AlexNet model performs much better when the epoch is raised when it is used with the MNIST dataset for 
image classification, shown in Table 9. This model shows maximum accuracy is 0.9919 and the maximum epoch 
is 30. The accuracy of the 5 epoch is 0.9897 it increased by 0.9907 for epoch 10 it increased by 0.9922 for epoch 
15; by the 20 epoch accuracy is 0.9991 and it increased by 0.9933 for epoch 25.

Epoch Accuracy Precision Recall F1-score

5 0.9575 0.9579 0.9570 0.9572

10 0.9445 0.9451 0.9444 0.9437

15 0.9661 0.9665 0.9655 0.9659

20 0.9663 0.9667 0.9658 0.9660

25 0.9611 0.9609 0.9611 0.9608

30 0.9638 0.9633 0.9635 0.9633

Table 8.  Summary of RNN model’s performance.

 

Fig.  6.  RNN model’s training and validation graph.

 

Epoch Accuracy Precision Recall F1-score

5 0.9891 0.9891 0.9889 0.9889

10 0.9914 0.9913 0.9913 0.9913

15 0.9916 0.9916 0.9915 0.9916

20 0.9916 0.9915 0.9916 0.9916

25 0.9917 0.9901 0.9899 0.9900

30 0.9921 0.9917 0.9917 0.9917

Table 7.  Summary of CNN model’s performance.
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Results using ResNet model
Table 10 presented the recall, f1-score, accuracy, and precision of the model. When a ResNet model is used with 
the MNIST dataset for Image classification improves its performance considerably with an increase in epoch. 
The maximum accuracy in this research is 0.9929 and the maximum epoch is 30. The accuracy of the 5 epoch 
model is 0.9909 it increases to 0.9915 for epoch 10 it increases to 0.9922 for epoch 15 it is 0.9922 for epoch 20 
and it is 0.9926 for epoch 25.

Results using VGG model
Table 11 displays the accuracy, precision, recall and f1-score. Enhancing the epoch of a VGG model with the 
MNIST dataset is used to improve the performance of image classification dramatically. The maximum epoch 
and accuracy in this research are 30 and 0.9915 respectively. The accuracy for the 5-epoch model is 0.9904 for 
epochs 10 through 25 the accuracy rises to 0.9968, 0.9912, and 0.9922 for epochs 20 and 25 respectively.

Results using RSNN model
The model’s accuracy, precision, recall, and F1 score are shown in Table 12. Increasing the epoch greatly improves 
the performance of the proposed Model RSNN with the MNIST dataset in image classification. The highest 

Epoch Accuracy Precision Recall F1-score

5 0.9742 0.9744 0.9743 0.9742

10 0.9744 0.9746 0.9739 0.9741

15 0.9749 0.9747 0.9746 0.9746

20 0.9748 0.9748 0.9744 0.9745

25 0.9760 0.9758 0.9757 0.9757

30 0.9719 0.9721 0.9715 0.9717

Table 12.  RSNN model’s performance summary.

 

Epoch Accuracy Precision Recall F1-score

5 0.9904 0.9906 0.9902 0.9904

10 0.9968 0.9871 0.9865 0.9867

15 0.9912 0.9912 0.9912 0.9912

20 0.9922 0.9923 0.9921 0.9922

25 0.9919 0.9920 0.9918 0.9919

30 0.9915 0.9914 0.9914 0.9914

Table 11.  VGG model’s performance summary.

 

Epoch Accuracy Precision Recall F1-score

5 0.9909 0.9910 0.9908 0.9909

10 0.9915 0.9914 0.9914 0.9914

15 0.9922 0.9921 0.9921 0.9921

20 0.9922 0.9922 0.9922 0.9922

25 0.9926 0.9926 0.9924 0.9925

30 0.9929 0.9928 0.9928 0.9928

Table 10.  Summary of ResNet model’s performance.

 

Epoch Accuracy Precision Recall F1-score

5 0.9897 0.9896 0.9895 0.9895

10 0.9907 0.9906 0.9906 0.9906

15 0.9922 0.9922 0.9922 0.9922

20 0.9891 0.9892 0.9891 0.9891

25 0.9933 0.9933 0.9933 0.9933

30 0.9919 0.9921 0.9917 0.9919

Table 9.  Summary of AlexNet model’s performance.
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accuracy achieved by the model is 0.9719 and its maximum epoch is 30. The accuracy of the 5-epoch model is 
0.9742, which increases to 0.9744 for epoch 10, 0.9749 for epoch 15, 0.9748 for epoch 20, and 0.9760 for epoch 
25.

Results using CRNN model
Table 13 shows the performance of the CRNN model used in this study. The suggested CRNN model performs 
much better when the epoch is raised when it comes to Image classification using the MNIST dataset. The 
maximum epoch and accuracy of this model are 30 and 0.9911 respectively. The five-epoch model’s accuracy is 
0.9868 which increases to 0.9876 for epoch 10 it increases to 0.9890 for epoch 15 it is 0.9898 for epoch 20 and it 
is 0.9904 for epoch 25.

Results using CSNN model
When the epoch is raised the suggested CSNN model performs significantly better for image classification using 
the MNIST dataset, as shown in Table 14. The maximum accuracy in this research is 0.9931 and the maximum 
epoch is 30. The accuracy of the 5-epoch model is 0.9893 it grows to 0.9917 for epoch 10, 0.9910 for epoch 15, 
0.9910 for epoch 20, and 0.9931 for epoch 25 with its increased accuracy.

Results using CNN-LSTM model
The CNN-LSTM model on the MNIST dataset for image classification when the epoch is increased. In this 
research, the maximum epoch is 20 and the maximum accuracy is 0.9922. The five-epoch model’s accuracy is 
0.9900; with its enhanced accuracy, it grows to 0.9919 for epoch 10, 0.9886 for epoch 15, 0.9909 for epoch 25, 
and 0.9899 for epoch 30. The graphical representation in Fig.  7 of the model with accuracy, precision, recall, and 
F1 score is shown in Table 15.

Results using DCAE model
The DCAE model on the MNIST dataset image classification increases with the epoch. In this research, the 
maximum epoch is 20 with a maximum accuracy is 0.9914. The accuracy of the five-epoch model is 0.9891, 
for epochs 10 through 30, it increases to 0.9902, 0.9901, 0.9897, and 0.9899 with its enhanced precision. The 
graphical representation in Fig.  8 of the model with accuracy, precision, recall, and F1 score is shown in Table 16.

Results using proposed EGACNN model
Figure 9 shows the training accuracy and training loss of the proposed EGACNN model when used with different 
generations of the GA algorithm. It can be observed that with each generation of GA, the training accuracy is 
increased while the training loss is reduced.

Table 17 shows the performance of the proposed approach concerning accuracy, precision, etc. When the 
epoch is increased there is a noticeable improvement in the suggested (EGACNN) model performance for image 
classification using the MNIST dataset. The maximum accuracy in this research is 0.9901, and the maximum 
epoch is 30. The accuracy for the 5-epoch model is 0.9991, for epoch 10 it is 0.9905, for epoch 15 it is 0.9912, for 
epoch 20 it is 0.9901, and for epoch 25 it is 0.9894.

Epoch Accuracy Precision Recall F1-score

5 0.9893 0.9893 0.9891 0.9891

10 0.9917 0.9916 0.9915 0.9916

15 0.9910 0.9909 0.9909 0.9909

20 0.9921 0.9920 0.9920 0.9920

25 0.9931 0.9930 0.9930 0.9930

30 0.9931 0.9931 0.9929 0.9930

Table 14.  CSNN model’s performance summary.

 

Epoch Accuracy Precision Recall F1-score

5 0.9868 0.9868 0.9866 0.9867

10 0.9876 0.9876 0.9876 0.9876

15 0.9890 0.9889 0.9888 0.9889

20 0.9898 0.9898 0.9897 0.9897

25 0.9904 0.9904 0.9903 0.9903

30 0.9911 0.9910 0.9910 0.9910

Table 13.  CRNN model’s performance summary.
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Fig.  8.  DCAE model graph.

 

Epoch Accuracy Precision Recall F1-score

5 0.9900 0.9900 0.9900 0.9900

10 0.9919 0.9902 0.9901 0.9902

15 0.9886 0.9900 0.9900 0.9900

20 0.9922 0.9900 0.9900 0.9900

25 0.9909 0.9800 0.9900 0.9900

30 0.9899 0.9900 0.9800 0.9800

Table 15.  CNN-LSTM model performance summary.

 

Fig.  7.  CNN-LSTM model graph.

 

Scientific Reports |         (2025) 15:1003 18| https://doi.org/10.1038/s41598-024-76178-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Analysis
The EGACNN model surpasses individual models like CNN, RNN, AlexNet, ResNet, and VGG. The CNN’s 
capacity to learn and generalize from the data is greatly enhanced by the GA iterative and adaptive optimization of 
critical hyperparameters like learning rates, batch sizes, and regularization techniques. Compared to alternative 
models that do not make use of such thorough optimization this leads to improved accuracy and faster model 
convergence. While the CNN and CSNN ensemble has strong performance as well it is not as hyperparameter-
refined as EGACNN. This demonstrates the advantages of merging and optimizing several algorithms and 
performs better in image classification tasks as a result of integrating CNN’s strengths in feature extraction with 
GA’s optimization techniques.

Performance of all deep learning models
A performance comparison of all deep learning models with the proposed EGACNN model would provide 
insight into the better results of the proposed approach. Table 18 provides the comparative results of all models 
concerning their best performance in terms of accuracy and the associated epoch at which they get the best 

Epoch Accuracy Precision Recall F1-score

5 0.9991 0.9879 0.9878 0.9878

10 0.9905 0.9905 0.9905 0.9905

15 0.9912 0.9912 0.9912 0.9912

20 0.9901 0.9901 0.9901 0.9901

25 0.9894 0.9895 0.9895 0.9895

30 0.9901 0.9901 0.9901 0.9901

Table 17.  EGACNN model’s performance summary.

 

Fig.  9.  Training accuracy and training loss graphs for the proposed EGACNN model.

 

Epoch Accuracy Precision Recall F1-score

5 0.9891 0.9900 0.9800 0.9800

10 0.9902 0.9900 0.9800 0.9900

15 0.9901 0.9800 0.9900 0.9800

20 0.9914 0.9900 0.9800 0.9900

25 0.9897 0.9900 0.9700 0.9800

30 0.9899 0.9900 0.9800 0.9800

Table 16.  DCAE model performance summary.
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accuracy. It can be seen that the proposed model obtains the best results with an accuracy score of 0.9991 which 
is the highest among all the employed models thereby indicating its potential to produce better results with fewer 
epochs.

Ablation study
For further corroboration, 10-fold cross-validation is also done using 10-fold and 5-fold cross-validation to see 
how the proposed approach performs on smaller data folds. The proposed is to check how the model will behave 
in the case of using small dataset samples. In addition, different numbers of epochs are also used for cross-
validation, thereby providing the performance analysis of the proposed model from multiple aspects.

Table 19 shows the results using 5-folds where the dataset is divided into 5 folds, each containing 10% of 
the original dataset. Results suggest that the performance of the model is best using five folds as discussed 
previously. Compared to the results reported earlier, scores for performance metrics vary slightly when using 
five-fold cross-validation. However, the differences in evaluation metrics are higher in the case of using ten-fold 
cross-validation, as shown in Table 20. It is so because, in the case of using ten folds, the sample size for training 
is smaller which affects the performance of the model. The best accuracy is obtained using 20 epochs which 
obtains a 0.9909 accuracy score which is reduced compared to the previous best accuracy score of 0.9991. Despite 
that, the performance is good and generalizable thereby showing the robustness of the proposed approach.

Performance with existing approaches
The performance of the proposed approach is considered against existing approaches that perform image 
classification. For a fair comparison, we have selected the studies that utilized the MNIST dataset for experiments. 
Performance comparison is provided in Table 21. We considered several recent state-of-the-art models for 
comparison. For example,55 utilized an AlexNet model and achieved an accuracy score of 0.923. Similarly, the 
study56 used an AlexNet model on the MNIST dataset and showed an accuracy score of 0.9874. The authors 
designed a custom CNN model in57 and obtained a 0.98 accuracy score. Performance analysis indicates that 

Epochs Accuracy Precision Recall F1-score

5 0.9884 0.9885 0.9884 0.9884

10 0.9892 0.9893 0.9892 0.9892

15 0.9860 0.9861 0.9860 0.9859

20 0.9909 0.9910 0.9910 0.9910

25 0.9868 0.9869 0.9868 0.9868

30 0.9890 0.9890 0.9890 0.9890

Table 20.  Performance using 10 folds.

 

Epochs Accuracy Precision Recall F1-score

5 0.9983 0.9871 0.9880 0.9880

10 0.9897 0.9895 0.9885 0.9905

15 0.9901 0.9902 0.9912 0.9911

20 0.9900 0.9901 0.9891 0.9901

25 0.9848 0.9884 0.9895 0.9889

30 0.9899 0.9901 0.9901 0.9869

Table 19.  Performance using 5 folds.

 

Models Epoch Accuracy Precision Recall F1-score

CNN 30 0.9921 0.9917 0.9917 0.9917

RNN 20 0.9663 0.9667 0.9658 0.9660

AlexNet 25 0.9933 0.9933 0.9933 0.9933

ResNet 30 0.9929 0.9928 0.9928 0.9928

VGG 10 0.9968 0.9871 0.9865 0.9867

RSNN 25 0.9760 0.9758 0.9757 0.9757

CRNN 30 0.9911 0.9910 0.9910 0.9910

CSNN 30 0.9931 0.9931 0.9929 0.9930

EGACNN 5 0.9991 0.9879 0.9878 0.9878

Table 18.  Comparative analysis of deep learning models with the proposed EGACNN.
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the proposed ensemble model shows the best results compared to existing approaches by obtaining an accuracy 
score of 0.9991.

Future work
In this research, to tackle the problem of hyperparameter tuning in image classification the ensemble GA and 
CNN EGACNN has been proposed. Through the integration of CNN and GA for optimization the EGACNN 
model achieves impressive accuracy as demonstrated by its maximum reported score of 99.91% on the MNIST 
dataset. This ensemble method works better than individual models like CNN, RNN, AlexNet, ResNet, and VGG 
proving that combining several approaches can improve Image classification performance. The findings point 
to a great deal of promise for using ensemble methods to increase the effectiveness and prediction accuracy of 
image classification tasks. This has important ramifications for future studies and applications in a variety of 
domains, such as autonomous cars, agriculture, security, and surveillance. Currently, the ensemble model has 
higher training time which is not suitable for real-time response-requiring applications, however, in the future 
we intend to work on reducing its computational complexity.

Conclusion
Image classification is used in many fields and sectors including autonomous vehicles, agriculture, security 
and surveillance, and medical imaging. Image classification is finding ever-wider applications as new use cases 
and technological advancements occur. Accurate image classification is essential for a variety of tasks in each 
of these fields from threat identification in security and surveillance to disease diagnosis in medical imaging. 
Hyperparameter tuning is essential to improving image classification models’ performance. The accuracy 
convergence speed and generalization abilities of the model can all be greatly enhanced by carefully modifying 
hyperparameters like learning rates, batch sizes, and regularization strategies. The process of optimization 
guarantees that the model is precisely adjusted to the unique features and intricacies of the data it is supposed 
to categorize.

This study proposes an ensemble model EGACNN, leveraging the genetic algorithm and CNN to tackle the 
problem of hyperparameter tweaking in image classification. This methodology uses stacking techniques based 
on the MNIST dataset to combine the power of CNN with the optimization skills of a genetic algorithm. The 
objective of this approach is to improve image classification task efficiency and prediction rates. The EGACNN 
model yielded remarkably accurate results with a 99.91% accuracy. The results indicate that the ensemble method 
EGACNN is more effective than individual models like CNN, RNN, AlexNet, ResNet, and VGG. This suggests 
that integrating multiple techniques can lead to enhanced image classification performance. Using the genetic 
algorithm for hyperparameter optimization tends to reduce the effort of model optimization and produce better 
results with less training.

Data availability
“The dataset used in this study is downloaded from https://eatradingacademy.com/, which can be made available 
from Wajahat Hussain upon reasonable request.”
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