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This study addresses computer-aided breast cancer diagnosis through a hybrid framework for 
breast tumor segmentation in ultrasound images. The core of the three-stage method is based on 
the autoencoder convolutional neural network. In the first stage, we prepare a hybrid pseudo-color 
image through multiple instances of fuzzy connectedness analysis with a novel distance-adapted 
fuzzy affinity. We produce different weight combinations to determine connectivity maps driven by 
particular image specifics. After the hybrid image is processed by the deep network, we adjust the 
segmentation outcome with the Chan-Vese active contour model. We find the idea of incorporating 
fuzzy connectedness into the input data preparation for deep-learning image analysis our main 
contribution to the study. The method is trained and validated using a combined dataset of 993 breast 
ultrasound images from three public collections frequently used in recent studies on breast tumor 
segmentation. The experiments address essential settings and hyperparameters of the method, e.g., 
the network architecture, input image size, and active contour setup. The tumor segmentation reaches 
a median Dice index of 0.86 (mean at 0.79) over the combined database. We refer our results to the 
most recent state-of-the-art from 2022–2023 using the same datasets, finding our model comparable 
in segmentation performance.
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Cancer is the leading cause of death in developed countries and the second leading cause in developing 
countries1, with breast cancer being one of the deadliest in women2. Among breast cancer types, invasive ductal 
carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most common3. Breast cancer can metastasize 
to other body parts by invading blood vessels or lymph nodes4. According to the American Cancer Society, 
approximately 288,000 cases of invasive breast cancer were diagnosed in women and 2710 in men in the United 
States in 2022 alone2. Over four million people live in the US with breast cancer diagnoses, with over 150,000 
cases with metastases to other organs. Thus, one in eight women is expected to develop breast cancer, and the 
risk increases with age. A similar relationship appears in mortality data: from less than 0.1% in young women 
(20–30 years old) to about 1% in women over 80. In Poland, breast cancer covered 23.8% of all female cancers in 
2020, while in men, it was just 0.2%5.

The key to successful breast cancer therapy is to detect the lesion early6, increasing the chance of complete 
recovery and breast-conserving surgery. The survival rate in small tumors and no metastases exceeds 90%7. 
Screening tests that detect lesions before they are palpable have become common in developed countries. 
The examinations most frequently used in Poland involve mammography or ultrasound (US)8. The latter 
has the highest diagnostic accuracy distinguishing between a solid tumor and a cyst, yet it does not detect 
microcalcifications typical in early-stage breast cancer9.

US imaging measures the emitted ultrasound wave echo after reflection from internal body structures and 
produces a so-called B-scan (brightness)10. Its main advantages lie in widespread availability, intraoperative 
real-time imaging capability, and lack of ionizing radiation11,12. On the other hand, US scans require experience 
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in acquisition and interpretation and are noisier than, e.g., computed tomography or magnetic resonance 
projections. A US-guided breast biopsy is a standard procedure in mammary gland diagnosis13. Since the biopsy 
needle is trackable in real-time, the tissue sample can be taken from a specific location near the tumor14,15.

Sample US images of breast tumors are presented in Fig. 1. Tumor appearance differs significantly in various 
types. Solid tumors are hyperechogenic, i.e., they reflect ultrasound waves strongly and appear as bright. On the 
other hand, cysts and soft tumors are hypoechogenic (darker than the surrounding tissues). Malignancy can also 
be assessed in US. Benign breast tumors tend to be regular in shape with soft edges, while malignant tumors 
have irregular contours and various forms. The tumor shape analysis in US often suffers from so-called acoustic 
shadows, i.e., areas hidden behind structures strongly reflecting the US waves. Diffraction blurs the edges of the 
acoustic shadow, making the tumor shape and size assessment challenging. The lower lesion boundary estimation 
relies on the expert’s experience in such cases. This is one of the reasons why computer-aided diagnosis (CAD) 
based on US images is a significant challenge. Artificial intelligence can help by learning to recognize textures 
and shapes with incomplete boundaries16. The latter statement certainly concerns image segmentation, often 
the first and crucial stage in CAD: dividing the image into semantically homogeneous areas based on selected 
criteria17. The recent decade brought a staggering development of deep learning methods18,19, also for image 
segmentation, and breast lesion analysis is no exception here. Deep neural networks contain many layers and 
neurons controlled by millions of trainable parameters. Whole images are inputted into the models for training 
and analysis through multiscale processing.

Before the expansion of deep learning approaches, breast tumors were extracted in US scans using various 
canonical methods based on thresholding, watersheds, graphs, clustering, active contours, region analysis, 
Markov random fields, and classical neural networks (valuable surveys can be found in21,22), but their efficiency 
was limited and ought to be addressed in high-noise images23. The current state-of-the-art segmentation methods 
are concentrated around deep networks24–31. Almajalid et al.24 employed a U-Net convolutional neural network 
(CNN) with some pre- and postprocessing and obtained a Dice similarity coefficient (Dice index) of 0.83 over 
a private set of 221 images. The attention-enriched U-Net model proposed by Vakanski et al.25 produced a Dice 
index of 0.90 over a private collection with 510 cases.

The studies described above mostly used their own breast US datasets, yet there are several public benchmark 
collections with hundreds of images each, willingly employed by recent research. Three of them have also been 
used in this study: BUSI20, Dataset B32, and OASBUD33 (they are described in detail in “Materials” Section). 
Shareef et al.26 prepared a U-Net-like STAN architecture dedicated to small tumors. They reported a Dice index 
at 0.78 over Dataset B and 0.91 in another BUSIS database34. Huang et al.27 combined fuzzy logic with the 
CNN. In their SCFURNet model, they equipped a U-Net architecture with spatial-wise and channel-wise fuzzy 
blocks for uncertainty reduction, yielding a Dice index of 0.81 in both BUSI and Dataset B (plus 0.93 in BUSIS 
database and 0.82 in a multiclass task over a private collection). The hybrid attentional guidance HAG-Net 
model from Lu et al.28 used a multiscale guidance block to extract low-resolution lesion location data and a short 
multi-head self-attention with convolutional block attention module to analyze global features and long-range 
dependencies. The Dice index reached 0.83 in BUSI and 0.78 in OASBUD. Chen29prepared a refinement residual 
convolutional network RRCNet. The SegNet model produced coarse saliency maps, refined later by missed-
detection and false-detection residual networks. The Dice index was 0.79 in BUSI and 0.80 in Dataset Yang et 
al.30 designed a transformer-type pyramid network CSwin-PNet with an attention mechanism. The encoder-
decoder architecture was supported by interactive channel attention modules, supplementary feature fusion 
modules, and additional boundary detectors. They obtained noticeable levels of the Dice index: 0.84 in BUSI 
and 0.87 in Dataset Ru et al.31 were the only team that employed all three public collections mentioned here, 
obtaining the Dice index of 0.77 in BUSI, 0.78 in Dataset B, and 0.60 in OASBUD (note that the Dice index over 
the other two datasets was 0.70 each). Their approach, Att-U-Node, was based on a U-Net architecture with 
neural ordinary differential equation blocks and attention modules.

In this paper, we propose a hybrid method for breast tumor segmentation in US based on an autoencoder 
convolutional neural network supported by fuzzy connectedness (FC) and active contour (AC). At the 
preprocessing stage, the input image is subjected to the FC analysis with a novel distance-related fuzzy affinity 
function with various settings. Two obtained fuzzy connectivity scenes are combined with the original scan in 
a hybrid pseudo-RGB image. The CNN performs its segmentation, and the result constitutes the initial contour 
in AC-based postprocessing. We employ three public databases20,32,33 to assess the methodology in multiple 
experiments on various settings and parameters and compare our performance to the state-of-the-art. The 

Fig. 1.  Sample ultrasound images with breast tumors20.
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novelty of the study can primarily be found in incorporating fuzzy connectedness into the data preparation for 
deep-learning semantic segmentation. We discuss the possible benefits of FC for deep medical image analysis in 
“Discussion” Section.

After the introduction in “Introduction” Section, we specify the materials and methods in “Materials and 
methods” Section: three reference US image databases and the entire three-stage segmentation methodology. 
“Results and discussion” Section addresses four experiments on our framework, a comparative analysis to the 
state-of-the-art, and a discussion of the study. The conclusion is given in “Conclusion” Section.

Materials and methods
Materials
Our experimental image data come from three sources: 

	1.	� The BUSI dataset, published by Cairo University in 2019, is public and available online https://doi.
org/10.1016/j.dib.2019.10486320. The images come from 600 patients aged 25–75, recorded in 2018 at Ba-
heya Hospital in Giza, Egypt, using the LOGIQ E9 US system and the LOGIQ E9 Agile US system with the 
ML6-15-D Matrix linear transducer (1–5 MHz). The database contains 780 images of approximately 500×
500 pixels in three classes: benign tumors (487), malignant tumors (210), and healthy tissue (133). The expert 
delineation is available for each image. In this study, we employ only images with a single benign or malig-
nant lesion, limiting the collection size to 630 images.

	2.	� Dataset B, resulting from an international collaboration of scientists from Great Britain, Sudan, and Spain32. 
Dataset B can be accessed for research at the request. It contains 163 images of various resolutions (average 
of 760×570 pixels) with 110 benign and 53 malignant tumors with expert delineations. The images were 
acquired using a Siemens ACUSON Sequoia C512 camera with a 17L5 HD linear transducer (frequency 8.5 
MHz).

	3.	� The OASBUD dataset, published by the Polish Academy of Sciences in 2017, available http://bluebox.ippt.
gov.pl/%7ehpiotrzk/download.html33. It includes 100 cases from 78 women (52 malignant and 48 benign 
tumors). Each lesion was imaged by two perpendicular US scans using an Ultrasonix SonixTouch Research 
scanner with an L14-5/38 linear transducer (10 MHz), yielding 200 images, each outlined by an expert with 
18 years of experience.

We selected these datasets due to their public accessibility and intensive use as reference data for breast tumor 
segmentation in recent years. This enables a quantitative comparison of our method to existing, up-to-date 
solutions. Combining three datasets gave us a collection of 993 images with significant diversity in terms of 
sources, research subjects, and acquisition equipment and parameters.

The experiments were performed in Matlab (R2021b version, Image Processing Toolbox, Deep Learning 
Toolbox, Computer Vision Toolbox) on a workstation with a 12-core AMD Ryzen 9 CPU 3.09 GHz, 32GB RAM, 
and an NVIDIA TITAN RTX 24GB GPU.

Methods
Figure 2 shows the three-stage breast tumor segmentation workflow proposed in this study. Its details are given 
in the following sections. The semi-automated method has two inputs: a US image containing a breast tumor 
and a seed point o located in the center of the lesion. The seed point can be indicated manually by an expert or 
result from any previous US image analysis.

Preprocessing using modified fuzzy connectedness
The segmentation starts with preparing a hybrid pseudo-color image using fuzzy connectedness analysis. Fuzzy 
connectedness is a method for determining the level of membership of a pixel or voxel to a selected class or 
object35,36. It relies on determining fuzzy connectivity scenes according to the fuzzy affinity µκ linking adjacent 
pixels. In image analysis, µκ considers, e.g., pixel intensity, local gradient, or location37. Determination of fuzzy 
connectivity scenes employs shortest-path graph search, e.g., dynamic programming or Dijkstra’s algorithm. The 
scene can be thresholded to produce binary segmentation, yet we use fuzzy connectivity directly in this study. 
To support the original image, we calculate two fuzzy connectivity scenes regarding seed point o using a matrix-
optimized Dijkstra’s search38. Then, we combine all three into a pseudo-RGB image with the original US scan 
placed in the red channel (Fig. 3).

Fig. 2.  General breast tumor segmentation workflow.
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Our fuzzy affinity function modifies the original proposed by Udupa et al.35:

	 µκ(c, d) = w1e

−0,5

(
(Ic+Id)

2 −m1

)2

s21 + w2e
−0,5(|Ic−Id|−m2)

2

s22 ,
� (1)

where Id, Ic are the image intensities of pixels c and d, respectively, m1,m2, s1, s2 are intensity-related affinity 
parameters reflecting the segmented object properties, and w1, w2 weigh the influence of the affinity components 
(w1 + w2 = 1). µκ is nonzero for topologically adjacent pixels c, d only (here, we use 4-connectivity). Still, such 
elementary relationships lead along multi-pixel paths to fuzzy connectivities between any point d in the image 
and a seed point o.

Our modification of fuzzy affinity considers that the segmented object is compact and occupies a relatively small 
part of the image in most cases. Thus, we introduce another factor to address the distance between pixel d and 
seed point o. We use Euclidean distance:

	 dist(o, d) =
√
(xo − xd)2 + (yo − yd)2,� (2)

where xo, xd are horizontal coordinates, and yo, yd – vertical coordinates of pixels o and d, respectively. The 
distance is then normalized to the maximum value:

	
distn(o, d) = 1− dist(o, d)

max
e

(dist(o, e))
.� (3)

We add the distance component to Eq. (1):

	 µ(c, d) = w1e

−0,5

(
(Ic+Id)

2 −m1

)2

s21 + w2e
−0,5(|Ic−Id|−m2)

2

s22 + w3distn(o, d).
� (4)

With a new weight w3, now we have to secure: w1 + w2 + w3 = 1.

Fig. 3.  Illustration of hybrid pseudo-color images. In each of the two cases, the hybrid image is shown on the 
left, and its components are on the right (left to right: the original US image and two fuzzy connectivity scenes 
(W1 and W2, respectively) as grayscale images above, and mapped to the appropriate chromatic channel 
below).
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The distance component should not dominate the others, and we found w3 = 0.1 appropriate for our experiments 
with relatively noisy US images. Furthermore, to highlight various image features, we proposed two weight 
vectors Wi = [w1, w2, w3] applied to Eq. (4) for determining two distinct fuzzy connectivity scenes:

	 W1 =[0.8, 0.1, 0.1], � (5)

	 W2 =[0.1, 0.8, 0.1]. � (6)

The W1 vector emphasizes mean intensity-related similarity, while W2 favors gradient similarity. The fuzzy 
scenes they produce carry different information. Both are combined with the original US scan to the pseudo-
RGB image (Fig. 3) and passed as an input to the CNN-based main segmentation stage.

CNN segmentation
For the main stage of the segmentation workflow, we designed an autoencoder CNN architecture (Fig.  4). 
The network is four levels deep. It is fed with the pseudo-color image, prepared with the modified FC scheme 
described in “Preprocessing using modified fuzzy connectedness” Section, resampled to a 128× 128 size. The 
experiments presented in “Results and discussion” Section justify our architecture and image size selections.

For training, we employed stochastic gradient descent with momentum (SGDM) with the initial learning rate 
of 0.1, learning rate drop factor of 0.7, momentum of 0.95, maximum number of epochs of 50, and a generalized 
Dice loss. The mini-batch size was set to 32. The CNN experiments used a 5-fold cross-validation scheme, so the 
image collection was randomly partitioned into five folds of 198–199 images each. In each training, four folds 
constituted a set of ca. 800 images for training and validation (split with a 15:1 ratio). We took care to distribute 
the data from three source datasets across folds. To avoid overfitting, we applied selected data augmentation 
procedures to the training set: random horizontal and vertical translation by max. ± 20 pixels, random rotation 
by max.  ± 5°, and a horizontal flip with a 50% probability.

The CNN outcome is subjected to a series of corrections using morphological operations: reconstruction 
using the starting point and 8-connectivity, filling of holes, and morphological closing with a small kernel to 
smooth the edges. A resulting binary mask is then passed to the active contour analysis in the postprocessing 
stage.

Active contour postprocessing
To adjust the CNN segmentation result, we prepared postprocessing procedures based mainly on the active 
contour evolution. With the main stage outcome determining the initial contour, we tested two models: 
geodesic active contour (GAC)39 and the Chan-Vese model40. The former involves edge detection to trace object 
boundaries, while the latter uses level sets to handle objects with discontinued or blurred edges. The contour 
energy minimization during evolution is controlled by two main parameters: contraction bias CB and smooth 

Fig. 4.  Autoencoder CNN architecture for breast tumor segmentation. CL – convolutional layer, TCL – 
transposed CL.
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factor SF. A detailed analysis of their influence on the segmentation performance, along with ultimate settings, 
is provided in “Active contour analysis” Section.

The binary mask resulting from the contour evolution is subjected to a sequence of morphological operations 
similar to those applied to the CNN outcome (morphological reconstruction, filling holes, morphological 
closing), yielding the final result of breast lesion segmentation.

Results and discussion
The Dice index DI was used to assess the segmentation performance in each image:

	
DI =

2 · TP
2 · TP + FP + FN

,� (7)

where TP, FP, and FN denote the number of true positive, false positive, and false negative pixels, respectively. 
The Dice similarity coefficient is a universal measure for validating segmentation algorithms due to its high 
reliability in estimating spatial overlap, especially in small objects.

The results of individual experiments were aggregated and presented in various forms. The following sections 
describe four experiments on the segmentation settings (both CNN and AC) and a comparative analysis 
regarding recent state-of-the-art solutions.

CNN architecture
We verified four variants of the autoencoder CNN architecture to justify the selection presented in “CNN 
segmentation” Section. The networks differed in depth and number of convolutional filters. Figure 5 illustrates and 
specifies the models. The number of trainable parameters approximately doubles in subsequent architectures. Note 
that the model presented in Fig. 4 refers to structure II.

Figure 6 presents the DI box plots of the main stage outcome, with selected statistical measures given in 
Table 1. While the shallow model I is clearly the least effective, the other three structures do not differ significantly 
in DI measures. Several factors point to structure II: the highest median and third quartile of the Dice index and 

Fig. 6.  Results of the CNN architecture analysis. Each box covers the interquartile range (IQR) with a median 
given and indicated by a central line. Whiskers refer to 1.5 · IQR. Outliers are shown with red points.

 

Fig. 5.  Illustration of various CNN architectures verified in the study.
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the smallest capacity, lowering memory and processing time requirements compared to structures III and IV. 
Thus, we incorporated structure II into the segmentation workflow.

Input image resolution
With the selected network structure, we investigated the impact of the input image resolution on the main-
stage segmentation results. Four image sizes were analyzed: 32× 32, 64× 64, 128× 128, and 256× 256 pixels. 
Figure 7 shows the DI box plots, and Table 2 contains selected DI statistical measures over the aggregated set. A 
zero DI median excludes the 32× 32 option, though high values were obtained in isolated cases even with such 
a small image. The 64× 64 size produces a median DI of 0.65 but with a relatively sizeable interquartile range. 
Top results are obtained with a resolution of 128× 128 pixels (the highest median at 0.79 and both quartiles, 
the smallest interquartile range). The value of Q1 is at the median level for 64× 64 and 256× 256. Thus, the 
image size of 128× 128 pixels is optimal for segmentation. Larger images only increase the computational power 
requirements without improved performance.

GradCAM evaluation
Apart from quantitative evaluation, we aimed to provide a qualitative assessment of the CNN segmentation 
results by employing the gradient-weighted class activation mapping (Grad-CAM) algorithm41,42. As an 
interpretable artificial intelligence (XAI) tool, its goal is to indicate image parts having the most significant 
impact on deep model inference. Such an analysis verifies whether irrational factors do not cause the network’s 
decision. Figure 8 shows the GradCAM mapping results for the network’s last layer in sample images from our 
dataset. In each case, pixels in the middle of the lesion (white&yellow) are most important for segmentation, 
while those at the edges (red) contribute less. The GradCAM maps indicate that the network focuses on lesion 
areas, which would likely attract the expert’s attention in clinical conditions.

Image size Q1 Median Q3 Mean ± std

32 × 32 0.000 0.000 0.638 0.271 ± 0.339

64 × 64 0.371 0.654 0.786 0.543 ± 0.309

128 × 128 0.654 0.787 0.862 0.724 ± 0.200

256 × 256 0.206 0.653 0.786 0.518 ± 0.326

Table 2.  Results of the input image resolution analysis. Q1, Q3 – first and third quartile, respectively.

 

Fig. 7.  Results of the input image resolution analysis. Each box covers the interquartile range (IQR) with a 
median given and indicated by a central line. Whiskers refer to 1.5 · IQR. Outliers are shown with red points.

 

Structure Q1 Median Q3 Mean ± std

I 0.559 0.748 0.842 0.661 ± 0.242

II 0.654 0.787 0.862 0.724 ± 0.200

III 0.655 0.771 0.848 0.718 ± 0.195

IV 0.659 0.780 0.856 0.729 ± 0.186

Table 1.  Results of the CNN architecture analysis. Q1, Q3 – first and third quartile, respectively.
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Active contour analysis
The experiments on the active contour part of the workflow involved investigating four settings: the Chan-Vese 
vs. GAC model selection, contraction bias CB, smooth factor SF, and the number of evolution iterations. We 
verified the evolution of the initial contour, as described in “Active contour postprocessing” Section.

Figure 9 shows the results of the grid-search evaluation with CB ranging from −1.0 to 1.0 and SF from 0.0 
to 4.0 in both Chan-Vese model (top row) and GAC (bottom row). The median surfaces correspond to the 

Fig. 9.  Median DI distribution in the 5th, 15th, and 50th iteration of the active contour evolution as a function 
of CB and SF. Left: Chan-Vese model, right: GAC model. The red marker indicates the DI maximum in each 
chart.

 

Fig. 8.  Illustration of GradCAM mapping (bottom row) in three cases from the dataset (top row).
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median DI in the 5th, 15th, and 50th iterations. The maximum median DIs with the argument values are given 
on each surface. With a small number of iterations, the surface resembles a plane. With the ongoing evolution, 
the impact of contour parameters becomes more meaningful. Both models perform best with a negative CB 
(outward expansion trend). The SF’s impact depends on the stage of evolution in the Chan-Vese model, while 
in the GAC, it should not exceed 1.0. The median Dice index is the highest (above 0.85) in the early Chan-Vese 
evolution stages and decreases significantly after the 15th iteration. On the contrary, in GAC, it slightly increases 
at the beginning and stabilizes at ca. 0.845. To confirm this observation, note Fig.  10, which shows the top 
median and mean Dice index in iterations 5–50.

Based on the above experiments, we selected the Chan-Vese model with CB = −0.6, SF = 4.0, and seven 
iterations, yielding a median DI of 0.856 and a mean DI of 0.786.

Comparison to the state-of-the-art
Table 3 shows our results compared to the existing solutions described in “Introduction” Section. For comparison, 
we selected only methods (1) described in the last two years (2022-2023) in recognized sources, (2) trained or 
tested using at least two of the three public US image databases used in this study27–31(only Ru et al.31 employed 
all three databases). All methods rely on deep neural networks with architectures usually deeper and more 
advanced than those proposed in this paper; all apply the testing strategy within single databases. Table  3 
presents all reported average DI measures.

In reference methods, the Dice index in individual databases ranges from 0.60 to 0.87. Among them, the 
model of Yang et al. published in March 202330 stands out, based on a transformer-type network (DI = 0.84 and 
0.87). However, Yang’s method was not tested using the OASBUD database. The analysis of Table 3 indicates that 
the results obtained in OASBUD are significantly worse than in other databases, suggesting it is more difficult 
in the analysis (DI = 0.6 in Ru et al.31 and 0.78 in Lu et al.28). Since we combine the databases in training and 
testing, the OASBUD cases can influence the performance of our method. Results from Ru et al.31 over all three 
datasets can be a fair benchmark; our average Dice index of 0.79 (median of 0.86) is better than Ru’s results, 
proving our method’s competitiveness.

Discussion
Apart from the experimental results already discussed in this section, we want to focus on several issues and 
limitations of our study.

Method Description Data

Average DI

BUSI Dataset B OASBUD

Huang et 
al.27. SCFURNet model 1830 images, 4 datasets incl. BUSI and Dataset B 0.81 0.81 –

Lu et al.28. HAG-Net model 980 images, 2 datasets: BUSI and OASBUD 0.83 – 0.78

Chen et al.29. RRCNet model 943 images, 2 datasets: BUSI and Dataset B 0.79 0.80 –

Yang et al.30. CSwin-PNet model 943 images, 2 datasets: BUSI and Dataset B 0.84 0.87 –

Ru et al.31. Att-U-Node model 1180 images, 5 datasets incl. BUSI, Dataset B, and 
OASBUD 0.77 0.78 0.60

Our model FC + CNN + AC 993 images, 3 datasets: BUSI, Dataset B, and OASBUD 0.79

Table 3.  Comparison of the proposed method and the state-of-the-art in breast tumor segmentation. The 
rightmost column shows only the results obtained over three public datasets used in this study.

 

Fig. 10.  Plots of mean and median DI over iterations of the active contour evolution in the Chan-Vese and 
GAC models.
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Although fuzzy connectedness is a relatively well-established tool in image segmentation, its incorporation 
into frameworks based on deep networks is not frequent. Available approaches place the FC module in different 
stages of the workflow, e.g., after the deep analysis43or next to it44. The general idea of combining multiple image 
representations or adjacent scans in a single, three-dimensional input structure is not new. However, to our 
knowledge, the FC analysis was not used to prepare input data for the deep model. As fuzzy connectivity brings 
valuable information on texture and semantics within the image topology, we find it a vital contribution to 
supporting the original data. Original works on fuzzy affinity42 featured a variety of opportunities to customize 
FC calculations. Since then, a lot of research has been done on this matter. We propose a distance-related fuzzy 
affinity component and produce different weight combinations to determine connectivity maps driven by 
particular image specifics. We placed the fuzzy connectivity scenes in chromatic channels of a pseudo-RGB 
image next to the original scan. In the experiments, we investigated constructing a 3D input matrix of more than 
three layers with even more FC scenes in various configurations. Still, the three-channel pseudo-RGB approach 
turned out to be sufficiently effective. Since there are no contradictions to applying this idea to different tasks or 
image modalities, we leave it for further consideration.

The autoencoder-type model we use is relatively shallow. However, the experiments in “CNN architecture” 
Section justify the architecture settings. Note that the mean Dice index of 0.79 obtained by the method falls 
within the range reported in individual benchmark collections (0.60–0.87) by most up-to-date studies from 
2022–202327–31. Our model was trained and validated over a combined database, making it more robust and 
insensitive to the variability of data sources, acquisition equipment and parameters, and expert delineation 
specifics. The above conclusion comes from a comparison to the study of Ru et al.31, the only one that used all 
three databases under consideration (our 0.79 vs. Ru’s 0.60–0.78). Thus, the simplicity of the network turns into 
an advantage due to a small number of parameters, limiting computational requirements.

We would like to mention the limitations of this study. The FC method is generally semi-automated as it 
requires providing seed points. In many applications, some basic level of interaction is required from the user. 
However, the seed points can result from initial processing, e.g., detection of a single pixel within the object or 
coarse presegmentation. Note that FC does not necessarily accept single seeds but can be supplied with sets of 
points without a problem for the mathematical apparatus. Therefore, any initial binary mask is acceptable. The 
method can be equipped with the initial detection of the lesion center to fully automate the algorithm. Consider 
also extending our 2D segmentation method into the third dimension, the time domain in US imaging. The US 
continuously records frames to be collected in a video stream, where successive projections are very similar. A 
single seed point can lead to segmenting the lesion in the first scan. In such a case, the seeds for consecutive 
frames can easily be determined automatically based on previous results. Even if the first seed point is required 
in such a framework, it is an acceptable level of interaction for the analysis of diagnostic video sequences. We 
can also mention the image database size. We are aware that deep networks generally learn better with more 
than a thousand images. In our study, the problem was addressed through data augmentation. However, note 
that the number of images is typical for this task24–31. No collections exist that would extend the amount of 
data to make a significant difference. Finally, the active contour procedure seems the most vulnerable to the 
challenging appearance of breast lesions in US. In some cases, the object edge discontinuities confuse the AC. We 
paid particular attention to adjusting the AC settings to the combined and diversified dataset and significantly 
improved the segmentation in postprocessing (“Active contour analysis” Section). Nevertheless, this stage 
deserves further analysis with every new reference data available.

At that point, the method is ready for further development, including the next stages of breast cancer CAD. 
For instance, robust segmentation provides a basis for texture analysis and possible malignancy assessment. With 
access to a time series of continuous US frames captured under the optical tracking system, we also consider 
employing our methodology to reconstruct and measure 3D tumor volume. Preliminary studies involving 
biopsy phantoms are promising for accurate navigation perspectives.

Conclusion
The hybrid workflow presented in this paper offers efficient breast tumor segmentation in ultrasound, validated 
over a diverse collection from public sources. We propose a modified fuzzy connectedness approach based on 
a novel distance-related fuzzy affinity component to prepare data for the autoencoder deep neural network and 
then adjust the segmentation with an active contour. We produce different weight combinations to determine 
fuzzy connectivity maps driven by particular image specifics. As fuzzy connectivity brings valuable information 
on texture and semantics within the image topology, we find it a vital contribution to supporting the original 
data. Apart from the specific scope and application in breast cancer diagnosis, we believe this study may spark a 
discussion on the benefits of fuzzy connectedness for deep analysis of biomedical images.

Data availibility 
Two datasets analyzed during the current study are available in the BUSI repository https://doi.org/10.1016/j.
dib.2019.104863 and the OASBUD http://bluebox.ippt.gov.pl/%7ehpiotrzk/download.html. The third dataset 
(Dataset B) used and analyzed during the current study is available from the corresponding author of the cited 
paper https://doi.org/10.1117/1.JMI.6.1.011007.

Received: 19 June 2024; Accepted: 14 October 2024

References
	 1.	 Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90. https://doi.org/10.3322/caac.20107 (2011).

Scientific Reports |        (2024) 14:25859 10| https://doi.org/10.1038/s41598-024-76308-x

www.nature.com/scientificreports/

https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863
http://bluebox.ippt.gov.pl/%7ehpiotrzk/download.html
https://doi.org/10.1117/1.JMI.6.1.011007
https://doi.org/10.3322/caac.20107
http://www.nature.com/scientificreports


	 2.	 American Cancer Society. Breast cancer facts and figures 2022-2024. https://www.cancer.org/research/cancer-facts-statistics/
breast-cancer-facts-figures.html (2022). [Online; accessed 02.08.2023].

	 3.	 Centers for Disease Control and Prevention (CDC). What Is Breast Cancer? https://www.cdc.gov/cancer/breast/basic_info/what-
is-breast-cancer.htm (2021). [Online; accessed 02.08.2023].

	 4.	 Scully, O. J., Bay, B.-H., Yip, G. & Yu, Y. Breast cancer metastasis. Cancer Genom. Proteom. 9, 311–320 (2012).
	 5.	 Wojciechowska, U. et al. Malignant cancers in Poland in 2020, (PL) Nowotwory złośliwe w Polsce w 2020 roku (National Cancer 

Registry, PL) Krajowy Rejestr Nowotworów, Warszawa, 2022).
	 6.	 Jassem, J. & Krzakowski, M. Rak piersi. Oncoly in Clinical Practice—Education, (PL) Onkologia w Praktyce Klinicznej—Edukacja 4, 

209–256 (2018).
	 7.	 Wesołowska, E. Fundamentals of Clinical Oncology, Screening for Early Detection of Breast Cancer, (PL) Podstawy onkologii 

klinicznej, Badania przesiewowe w zakresie wczesnego wykrywania raka piersi, chap. 2, 17–20 (Centrum Medyczne Ksztalcenia 
Podyplomowego w Warszawie,) (2011).

	 8.	 Bock, K. et al. Pathologic breast conditions in childhood and adolescence: evaluation by sonographic diagnosis. J. Ultrasound Med. 
24, 1347–1354. https://doi.org/10.7863/jum.2005.24.10.1347 (2005).

	 9.	 Ślubowski, T., Ślubowska, M. & Wojciechowski, A. Diagnostic techniques in breast cancer detection. part i: Imaging methods and 
their modifications. Ginekologia Polska 78 (2007).

	10.	 Chan, V. & Perlas, A. Basics of ultrasound imaging. In Atlas of ultrasound-guided procedures in interventional pain management, 
13–19, https://doi.org/10.1007/978-1-4419-1681-5_2 (Springer, 2011).

	11.	 Makuuchi, M., Torzilli, G. & Machi, J. History of intraoperative ultrasound. Ultrasound Med. Biol. 24, 1229–1242. https://doi.
org/10.1016/S0301-5629(98)00112-4 (1998).

	12.	 Colakovic, N. et al. Intraoperative ultrasound in breast cancer surgery from localization of non-palpable tumors to objectively 
measurable excision. World J. Surg. Oncol. 16, 1–7. https://doi.org/10.1186/s12957-018-1488-1 (2018).

	13.	 Helbich, T., Matzek, W. & Fuchsjäger, M. Stereotactic and ultrasound-guided breast biopsy. Eur. Radiol. 14, 383–393. https://doi.
org/10.1007/s00330-003-2141-z (2004).

	14.	 Pyciński, B. et  al. Image guided core needle biopsy of the breast. In International Conference on Information Technologies in 
Biomedicine, 160–171, https://doi.org/10.1007/978-3-319-91211-0_14 (Springer, 2018).

	15.	 Czajkowska, J., Pyciński, B., Juszczyk, J. & Pietka, E. Biopsy needle tracking technique in US images. Comput. Med. Imaging 
Graphics 65, 93–101. https://doi.org/10.1016/j.compmedimag.2017.07.001 (2018).

	16.	 Yadav, N., Dass, R. & Virmani, J. Objective assessment of segmentation models for thyroid ultrasound images. J. Ultrasound 26, 
673–685. https://doi.org/10.1007/s40477-022-00726-8 (2022).

	17.	 Pham, D. L., Xu, C. & Prince, J. L. Current methods in medical image segmentation. Ann. Rev. Biomed. Eng. 2, 315–337. https://
doi.org/10.1146/annurev.bioeng.2.1.315 (2000).

	18.	 Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88. https://doi.org/10.1016/j.
media.2017.07.005 (2017).

	19.	 Minaee, S. et al. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Machine Intell. 44, 3523–3542. 
https://doi.org/10.1109/TPAMI.2021.3059968 (2022).

	20.	 Al-Dhabyani, W., Goma, M., Khaled, H. & Fahmy, A. Dataset of breast ultrasound images. Data in Brief 28, https://doi.
org/10.1016/j.dib.2019.104863 (2020).

	21.	 Muhammad, M., Zeebaree, D., Brifcani, A. M. A., Saeed, J. & Zebari, D. A. Region of interest segmentation based on clustering 
techniques for breast cancer ultrasound images: A  review. J. Appl. Sci. Technol. Trends 1, 78–91, https://doi.org/10.38094/
jastt20201328 (2020).

	22.	 Huang, Q., Luo, Y. & Zhang, Q. Breast ultrasound image segmentation: a survey. Int. J. Comput. Assist. Radiol. Surg. 12, 493–507. 
https://doi.org/10.1007/s11548-016-1513-1 (2017).

	23.	 Kriti, Virmani, J. & Agarwal, R. Assessment of despeckle filtering algorithms for segmentation of breast tumours from ultrasound 
images. Biocybernetics Biomed. Eng. 39, 100–121, https://doi.org/10.1016/j.bbe.2018.10.002 (2019).

	24.	 Almajalid, R., Shan, J., Du, Y. & Zhang, M. Development of a  deep-learning-based method for breast ultrasound image 
segmentation. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 1103–1108, https://
doi.org/10.1109/ICMLA.2018.00179 (2018).

	25.	 Vakanski, A., Xian, M. & Freer, P. E. Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. 
Ultrasound Med. Biol. 46, 2819–2833. https://doi.org/10.1016/j.ultrasmedbio.2020.06.015 (2020).

	26.	 Shareef, B., Xian, M. & Vakanski, A. Stan: Small tumor-aware network for breast ultrasound image segmentation. In 2020 IEEE 
17th International Symposium on Biomedical Imaging (ISBI), 1–5, https://doi.org/10.1109/ISBI45749.2020.9098691 (2020).

	27.	 Huang, K., Zhang, Y., Cheng, H.-D. & Xing, P. Trustworthy breast ultrasound image semantic segmentation based on fuzzy 
uncertainty reduction. Healthcare 10, https://doi.org/10.3390/healthcare10122480 (2022).

	28.	 Lu, Y. et al. A hybrid attentional guidance network for tumors segmentation of breast ultrasound images. Int. J. Comput. Assist. 
Radiol. Surg.[SPACE]https://doi.org/10.1007/s11548-023-02849-7 (2023).

	29.	 Chen, G., Dai, Y. & Zhang, J. RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation. Eng. 
Appl. Artif. Intell. 117, 105601. https://doi.org/10.1016/j.engappai.2022.105601 (2023).

	30.	 Yang, H. & Yang, D. CSwin-PNet: A CNN-Swin transformer combined pyramid network for breast lesion segmentation in 
ultrasound images. Exp. Syst. Appl. 213, 119024. https://doi.org/10.1016/j.eswa.2022.119024 (2023).

	31.	 Ru, J. et al. Attention guided neural ODE network for breast tumor segmentation in medical images. Comput. Biol. Med. 159, 
106884. https://doi.org/10.1016/j.compbiomed.2023.106884 (2023).

	32.	 Yap, M. et  al. Breast ultrasound lesions recognition: end-to-end deep learning approaches. J. Med. Imaging 6, https://doi.
org/10.1117/1.JMI.6.1.011007 (2018).

	33.	 Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M. & Nowicki, A. Open access database of raw ultrasonic signals 
acquired from malignant and benign breast lesions. Med. Phys. 44, https://doi.org/10.1002/mp.12538 (2017).

	34.	 Zhang, Y. et al. BUSIS: A benchmark for breast ultrasound image segmentation. Healthcare 10, 729. https://doi.org/10.3390/
healthcare10040729 (2022).

	35.	 Udupa, J. K. & Samarasekera, S. Fuzzy connectedness and object definition: Theory, algorithms, and applications in image 
segmentation. Graph. Models Image Process. 58, 246–261. https://doi.org/10.1006/gmip.1996.0021 (1996).

	36.	 Udupa, J. & Saha, P. Fuzzy connectedness and image segmentation. Proc. IEEE 91, 1649–1669. https://doi.org/10.1109/
jproc.2003.817883 (2003).

	37.	 Saha, P. K., Udupa, J. K. & Odhner, D. Scale-based fuzzy connected image segmentation: Theory, algorithms, and validation. 
Comput. Vision Image Understand. 77, 145–174. https://doi.org/10.1006/cviu.1999.0813 (2000).

	38.	 Badura, P., Kawa, J., Czajkowska, J., Rudzki, M. & Pietka, E. Fuzzy connectedness in segmentation of medical images: A look at 
the pros and cons. In Rosa, A., Kacprzyk, J., Filipe, J. & Correia, A. (eds.) ECTA 2011 FCTA 2011 - Proceedings of the International 
Conference on Evolutionary Computation Theory and Applications and International Conference on Fuzzy Computation Theory and 
Applications, 486–492, https://doi.org/10.5220/0003670904860492 (2011).

	39.	 Caselles, V., Kimmel, R. & Sapiro, G. Geodesic active contours. Int. J. Comput. Vision 22, 61–79. https://doi.
org/10.1023/A:1007979827043 (1997).

	40.	 Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277. https://doi.org/10.1109/83.902291 
(2001).

Scientific Reports |        (2024) 14:25859 11| https://doi.org/10.1038/s41598-024-76308-x

www.nature.com/scientificreports/

https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html
https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html
https://www.cdc.gov/cancer/breast/basic_info/what-is-breast-cancer.htm
https://www.cdc.gov/cancer/breast/basic_info/what-is-breast-cancer.htm
https://doi.org/10.7863/jum.2005.24.10.1347
https://doi.org/10.1007/978-1-4419-1681-5_2
https://doi.org/10.1016/S0301-5629(98)00112-4
https://doi.org/10.1016/S0301-5629(98)00112-4
https://doi.org/10.1186/s12957-018-1488-1
https://doi.org/10.1007/s00330-003-2141-z
https://doi.org/10.1007/s00330-003-2141-z
https://doi.org/10.1007/978-3-319-91211-0_14
https://doi.org/10.1016/j.compmedimag.2017.07.001
https://doi.org/10.1007/s40477-022-00726-8
https://doi.org/10.1146/annurev.bioeng.2.1.315
https://doi.org/10.1146/annurev.bioeng.2.1.315
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.1016/j.dib.2019.104863
https://doi.org/10.38094/jastt20201328
https://doi.org/10.38094/jastt20201328
https://doi.org/10.1007/s11548-016-1513-1
https://doi.org/10.1016/j.bbe.2018.10.002
https://doi.org/10.1109/ICMLA.2018.00179
https://doi.org/10.1109/ICMLA.2018.00179
https://doi.org/10.1016/j.ultrasmedbio.2020.06.015
https://doi.org/10.1109/ISBI45749.2020.9098691
https://doi.org/10.3390/healthcare10122480
https://doi.org/10.1007/s11548-023-02849-7
https://doi.org/10.1016/j.engappai.2022.105601
https://doi.org/10.1016/j.eswa.2022.119024
https://doi.org/10.1016/j.compbiomed.2023.106884
https://doi.org/10.1117/1.JMI.6.1.011007
https://doi.org/10.1117/1.JMI.6.1.011007
https://doi.org/10.1002/mp.12538
https://doi.org/10.3390/healthcare10040729
https://doi.org/10.3390/healthcare10040729
https://doi.org/10.1006/gmip.1996.0021
https://doi.org/10.1109/jproc.2003.817883
https://doi.org/10.1109/jproc.2003.817883
https://doi.org/10.1006/cviu.1999.0813
https://doi.org/10.5220/0003670904860492
https://doi.org/10.1023/A:1007979827043
https://doi.org/10.1023/A:1007979827043
https://doi.org/10.1109/83.902291
http://www.nature.com/scientificreports


	41.	 Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 
IEEE International Conference on Computer Vision (ICCV), 618–626, https://doi.org/10.1007/s11263-019-01228-7 (2017).

	42.	 Vinogradova, K., Dibrov, A. & Myers, G. Towards interpretable semantic segmentation via gradient-weighted class activation 
mapping (student abstract). Proc. AAAI Conf. Artif. Intell. 34, 13943–13944. https://doi.org/10.1609/aaai.v34i10.7244 (2020).

	43.	 Czajkowska, J., Badura, P., Korzekwa, S. & Płatkowska-Szczerek, A. Automated segmentation of epidermis in high-frequency 
ultrasound of pathological skin using a cascade of DeepLab v3+ networks and fuzzy connectedness. Comput. Med. Imaging 
Graphics 95, 102023. https://doi.org/10.1016/j.compmedimag.2021.102023 (2022).

	44.	 Bai, P. et al. A novel framework for improving pulse-coupled neural networks with fuzzy connectedness for medical image 
segmentation. IEEE Access 8, 138129–138140. https://doi.org/10.1109/ACCESS.2020.3012160 (2020).

Acknowledgements
This research was supported partially by the European Funds for Silesia 2021–2027 Program co-financed by the 
Just Transition Fund Project “Development of the Silesian Biomedical Engineering Potential in the Face of the 
Challenges of the Digital and Green Economy (BioMeDiG)” under Grant FESL.10.25-IZ.01-07G5/23 and par-
tially by the Polish Ministry of Science and Education and Silesian University of Technology statutory financial 
support No. 07/010/BK_24/1034.

Author contributions
All authors are justifiably credited with authorship. The detailed contribution is as follows: M.B. – conceptual-
ization, methodology, software, validation, investigation, resources, data curation, writing—original draft, vis-
ualization; J.J. – conceptualization, formal analysis, writing—review & editing, project administration, funding 
acquisition; P.B. – conceptualization, validation, formal analysis, writing—original draft, visualization, supervi-
sion, funding acquisition.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:25859 12| https://doi.org/10.1038/s41598-024-76308-x

www.nature.com/scientificreports/

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1609/aaai.v34i10.7244
https://doi.org/10.1016/j.compmedimag.2021.102023
https://doi.org/10.1109/ACCESS.2020.3012160
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Breast tumor segmentation in ultrasound using distance-adapted fuzzy connectedness, convolutional neural network, and active contour
	﻿﻿Materials and methods
	﻿﻿Materials
	﻿Methods
	﻿﻿Preprocessing using modified fuzzy connectedness
	﻿﻿CNN segmentation
	﻿﻿Active contour postprocessing


	﻿﻿Results and discussion
	﻿﻿CNN architecture
	﻿Input image resolution
	﻿GradCAM evaluation
	﻿﻿Active contour analysis
	﻿Comparison to the state-of-the-art
	﻿﻿Discussion

	﻿﻿Conclusion
	﻿References


