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We introduce a purely geometric formulation for two different measures addressed to quantify 
the entanglement between different parts of a tripartite qubit system. Our approach considers the 
entanglement–polytope defined by the smallest eigenvalues of the reduced density matrices of the 
qubit-components. The measures identify global and genuine entanglement, and are respectively 
associated with the projection and rejection of a given point of the polytope on the corresponding 
biseparable segments. Solving the so called ‘inverse problem’, we also discuss a way to force the 
system to behave in a particular form, which opens the possibility of controlling and manipulating 
entanglement for practical purposes.

Entanglement is the most interesting nonclassical correlation of multipartite quantum systems. It represents an 
important resource in quantum computing, quantum information processing and quantum teleportation1–3. 
However, the characterization and quantification of multipartite entanglement is still an open question4,5. Even 
in the three-qubit system case it has been pointed out that different forms of entanglement may be present6–9. 
This can be seen from the fact that there is no unified notion of a maximally entangled state for more than 
two-qubits6. In fact, considering the most widely used measures10, different requirements comprise different 
characteristics of the nonlocal properties that a given system must satisfy to exhibit maximal entanglement.

In this sense, entanglement measures based on the geometry of the state space or the appropriate projective 
space are of particular interest. For example, the geometric measure of entanglement (GME) evaluates the 
distance from a target state to its closest separable state in a given Hilbert space11,12. Although its immediate 
geometric interpretation, the GME demands a non-trivial optimization so it becomes a nondeterministic 
polynomial (NP) problem13. Indeed, the amount of information that must be processed suggests that sooner 
or later it will be inevitable to resort to numerical methods12. Other examples include the entanglement of 
minimum bipartite entropy14, which quantifies the distance of a given state with its nearest state with no three-
way entanglement, and robustness15.

With respect to the geometry of projective spaces, for permutation invariant states, the Majorana 
representation leads to the identification of maximal symmetric n-qubit states16,17; it has also been reported an 
entanglement measure associated with the barycenter of the Majorana constellation16. More recently, the triangle 
whose edges correspond to the squared bipartite concurrence of a three-qubit system has been considered as a 
useful tool to quantify entanglement18. It has been shown that the genuinely multipartite concurrence defined 
in19 is exactly the square root of the shortest edge length of such a triangle, and that its perimeter is nothing else 
than the global entanglement measure considered in20,21. Remarkably, the concurrence triangle area, computed 
through the Heron’s formula, is associated with a genuine entanglement measure referred to as the concurrence 
fill18. Geometric simplices (tetrahedra) can be used to quantify GME22, a generalization of the Peres-Horodeckis 
criterion applies also for multiqubit, continuous-variable, and hybrid systems23, and even entropic measures 
derived from experimental correlations are useful to quantify tripartite entanglement24.

It is notable that the three qubit entanglement–polytope permits the introduction of some criteria for the 
characterization and detection of entanglement25–34. To deepen the understanding of entanglement classification, 
the relationship between the entanglement types introduced in7,8 and some subsets of the polytope27,28 has been 
analyzed. In this context, a relationship between the linear entropy of entanglement20,21 and the Euclidean 
distance to one of the vertices of the polytope has been observed26,35. However, most of the characterization of 
the entanglement–polytope studied so far has been done qualitatively.
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In this work, we study the entanglement between different parts of a tripartite qubit system from a purely 
geometric perspective. Our approach considers the entanglement polytope defined by the smallest eigenvalues 
of the reduced density matrices. We introduce a mapping from the state space to the polytope that leads to 
identifying some relationships between tripartite quantum states and points with clear geometric interpretation 
in the polytope. Then, fully separable, bi-separable and non-separable states are associated with concrete subsets 
(vertices, edges, facets, etc) of the polytope, providing a geometric identification of entanglement.

The most striking feature of our approach is to find that the projection of a given point of the polytope along 
the edges that represent biseparable states encodes a quantification of both, global and genuine entanglement.

As a byproduct, we look for a way to force the system to behave in a particular form. The cornerstone is 
provided by solutions to the inverse problem: given a point on the polytope in a region that characterizes very 
specific entanglement properties, the quantum state that satisfies such a profile must be found. We show that this 
approach offers interesting challenges and a much broader perspective on nonclassical correlations since it opens 
the possibility of controlling and manipulating entanglement for practical purposes.

In Section 2 we review the convex structure of the three-qubit polytope and some entanglement properties 
are characterized qualitatively. A quantitative description of the three-qubit entanglement is provided in Section 
3, where we propose two distance-based entanglement measures, one quantifying the global entanglement 
and the other characterizing the three-qubit genuine entanglement. Section 4 is addressed to solve the inverse 
problem. Some conclusions are given in Section 5.

Qualitative characterization of entanglement
Let H = H2 ⊗H2 ⊗H2 be the Hilbert space of a three-qubit system, with H2 the two-dimensional space of 
states for a single qubit. Given a pure state |ψ⟩ ∈ H, written in the standard form7,8,

	
|ψ⟩ = b0|000⟩ + b1e

iω|100⟩ + b2|101⟩ + b3|110⟩ + b4|111⟩, bℓ ≥ 0,
4∑

ℓ=0

b2ℓ = 1,� (1)

with 0 ≤ ω ≤ π, we will pay attention to the vector ⃗λψ = (λ1, λ2, λ3)
T , where λk is the smallest eigenvalue of the 

density matrix ρk associated to the kth qubit.

Looping through all allowed values of bℓ and ω in (1), vector ⃗λψ localizes the points of a convex polytope P ⊂ R3 
that encodes the degree of entanglement between the different parts of a tripartite qubit system26–28. Therefore, 
we consider the mapping

	

Λ : H → P ⊂ R3

|ψ⟩ → Λ (ψ) = λ⃗ψ,
� (2)

together with the inequalities29:

	 λi ≤ λj + λk, 0 ≤ λi ≤ 1
2, i, j, k = 1, 2, 3.� (3)

System (3) characterizes P  as the geometric scenario where the marginal problem defined by the pure state |ψ⟩ 
finds solutions with physical meaning26. That is, among all possible states of one-qubit, λk in (3) selects those 
that can be achieved as the reduced one-qubit density matrix ρk = Tri,j (|ψ⟩⟨ψ|), with k ̸= i ̸= j. No state of 
one-qubit that is not linked to |ψ⟩ in this way is included in P . Indeed, (3) is a system of triangle inequalities that 
completely characterize the possible reduced one-qubit states of |ψ⟩29.

Figure 1 shows the entanglement–polytope P  that we are dealing with. It is a body that resembles two tetrahedra, 
joined at their base, embedded in a cube with edges of length equal to 1/2, located at the first octant of R3. To be 
concrete, P  is defined by the convex combination of its vertices

	

S⃗ = (0, 0, 0)T , B⃗1 =
(
0, 12,

1
2

)T
, B⃗2 =

(
1
2, 0,

1
2

)T
,

B⃗3 =
(
1
2,

1
2, 0

)T
, G⃗ =

(
1
2,

1
2,

1
2

)T
.

� (4)

Characterizing multipartite entanglement in terms of entanglement–polytopes is very useful since only one-
particle information is required25,26, see also27 and30. Remarkably, this picture finds immediate application 
in detection processes of entanglement since its predictions do not require the measurement of correlations 
between the parts. For example, the experimental detection of entanglement–polytopes for three- and four-qubit 
genuine entanglement occurring in quantum optics has been reported in31,32, a fact that shows the practical 
usefulness of the method.

Considering the separability properties of |ψ⟩, as it is written in (1), and remembering that local-unitary 
transformations preserve entanglement properties36, one can identify different entangled pure states in terms of 
the coefficients bℓ ̸= 0, see details in Supplementary Information file. Our classification coincides with the results 
reported in7,8, and is summarized in Table 1.

For completeness, in Table 1 we have included a set of states that is not obtained directly from (1). These states 
are classified as type 4d and are represented by the linear combination37:
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|ψ4d⟩ = c0|001⟩ + c1|010⟩ + c2|100⟩ + c3|111⟩, ck ≥ 0,

3∑
k=0

c2k = 1.� (5)

Note that unlike |ψ⟩, these additional states embrace only four basis vectors. Their usefulness will become clear 
in the following sections.

Next, based on the results reported in27, we show that this classification results in the identification of concrete 
convex subsets of P  under the mapping Λ.

The simplest class, called type 1, refers to fully separable states, hereafter written |ψsep⟩ = |ϕ1⟩ |ϕ2⟩ |ϕ3⟩, with 
|ϕi⟩ ∈ H2. These states are generically represented by |000⟩ in Table 1, since they are local-unitary equivalent to 
such state. Furthermore, in this case the smallest eigenvalue λk of ρk is equal to zero for all i = 1, 2, 3. Thus, the 
entire set of vectors |ψsep⟩ is associated with the vertex S⃗ ∈ P , which is a 0-dimensional convex set.

Type Basis product states Subset ⊆ P
1 {|000⟩} S⃗

2a-1 {|101⟩, |110⟩} SB1

2a-2 {|000⟩, |101⟩} SB2

2a-3 {|000⟩, |110⟩} SB3

2b {|000⟩, |111⟩} SG

3a {|000⟩, |101⟩, |110⟩} Facets of SB1B2B3

3b-1 {|000⟩, |100⟩, |111⟩} SB1G

3b-2 {|000⟩, |101⟩, |111⟩} SB2G

3b-3 {|000⟩, |110⟩, |111⟩} SB3G

4a {|000⟩, |100⟩, |101⟩, |110⟩} SB1B2B3

4b-1 {|000⟩, |100⟩, |110⟩, |111⟩} ⊂ SB1B3G

4b-2 {|000⟩, |100⟩, |101⟩, |111⟩} ⊂ SB1B2G

4c {|000⟩, |101⟩, |110⟩, |111⟩} SB1B2B3 ∪ SB2B3G

4d {|001⟩, |010⟩, |100⟩, |111⟩} P
5 {|000⟩, |100⟩, |101⟩, |110⟩, |111⟩} ⊂ P

Table 1.  The number of basis elements of H = H2 ⊗H2 ⊗H2 that are included in the linear superposition 
(1) gives rise to a classification of three-qubit states7,8. Some of the representative states generated by such 
basis elements are associated with specific convex subspaces of the entanglement–polytope P ⊂ R3 shown in 
Figure 1, see27 and discussion in the main text. The class of fully separable states is represented by |000⟩ as a 
generic case, see details in Supplementary Information file. States of type 4d are represented by the vector |ψ4d⟩ 
defined in (5).

 

Fig. 1.  Entanglement–polytope P ⊂ R3 associated with the three-qubit states (1). It is a body that resembles 
two tetrahedra, joined at their base, embedded in a cube with edges of length equal to 1/2. The parameter λk 
(defining the corresponding axis) is the smallest eigenvalue of the density matrix associated with the kth qubit. 
Vertex S⃗ represents the entire set of fully separable states while G⃗ corresponds to the Greenberger–Horne–
Zeilinger state. The vertices B⃗i correspond to bi-separable states |ϕi⟩|ϕjk⟩, with |ϕi⟩ the state of the ith qubit 
and |ϕjk⟩ a Bell state in the bipartition i− jk.
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Type 2 includes linear superpositions (1) with two coefficients different from zero as well as any other state 
|ψ⟩ that can be transformed into any of these superpositions by means of local-unitary transformations, see 
Supplementary Information file for details. We identify two different subclasses, called 2a and 2b.

Type 2a is subdivided into three different categories, called 2a-1, 2a-2 and 2a-3, whose generic states are 
characterized by the pairs {b2, b3}, {b0, b2} and {b0, b3}, respectively. These states are bi-separable, written 
|ψbi⟩ = |ϕi⟩ |ϕjk⟩, with |ϕjk⟩ a non-separable state shared by the jth and kth qubits (the sub labels are cyclic). They 
correspond to the one-dimensional convex subsets of P  generated by the vertices S⃗ and B⃗i. That is, type 2a states 
are associated with the line-segments (edges) SB1, SB2 and SB3 of P . For instance, if |ψbi⟩ = b2 |101⟩ + b3 |110⟩
, then λ⃗ψbi = (1− 2λ)S⃗ + 2λB⃗1, where λ = (1−

√
1− 4b22b

2
3)/2. Similarly for types  2a-2 and 2a-3. Stellar 

members of type 2a are the bi-separable states linked to the vertices B⃗i ∈ P , for which |ϕjk⟩ is one of the Bell–
basis elements 

√
2|Φ±⟩ = |00⟩ ± |11⟩, 

√
2|Ψ±⟩ = |01⟩ ± |10⟩.

The generic type  2b state is characterized by the pair {b0, b4}. This class of states is associated with the 
one-dimensional convex subset generated by the extremal points S⃗ and G⃗ (the line-segment SG). Explicitly, 
λ⃗ψ2b = (1− 2λ)S⃗ + 2λG⃗, where λ = (1−

√
1− 4b20b

2
4)/2. The Greenberger–Horne–Zeilinger (GHZ) state

	
|GHZ⟩ = 1√

2
(|000⟩ + |111⟩)

corresponds to the extremal point G⃗.

Generic states of type 3 involve three coefficients different from zero in the linear superposition (1). They are 
associated with two-dimensional convex subsets of P , as we indicate below.

The type 3a refers to generic vectors that can be written in the form

	 |ψ3a⟩ =
√
γ|000⟩ +

√
α|101⟩ +

√
β|110⟩, 0 ≤ α, β ≤ 1, γ = 1− α− β.� (6)

Therefore, the components of ⃗λψ3a are as follows

	 λ1 =
1
2 −

∣∣γ − 1
2

∣∣ , λ2 =
1
2 −

∣∣β − 1
2

∣∣ , λ3 =
1
2 −

∣∣α− 1
2

∣∣ .

Figure 2 shows the convex set M ⊂ R2 that arises from the constraints on the parameters α and β in Eq. (6). It is 
a right triangle with legs of one unit. The extreme points, (α, β) = (0, 0), (0, 1) and (1, 0), define fully separable 
states that are mapped onto the vertex S⃗ of P . In turn, the middle points, (1/2, 1/2), (1/2, 0) and (0, 1/2), produce 
the bi-separable states that are mapped onto the vertices B⃗i of P . The data shown in Figure 2 is obtained from 
(6), after the appropriate local unitary transformation. The convex combinations of extreme and middle points 
yield four different convex subsets (regions) of M that permit a classification of entanglement for the state |ψ3a⟩.

Region I. The convex set α ∈ [1/2, 1], β ∈ [0, 1− α], represented in Figure 2 as the right triangle in blue, 
yields the parametrization

	 λ⃗ψ3a = κ1S⃗ + κ2B⃗1 + κ3B⃗2,� (7)

where κ1 = 2α− 1, κ2 = 2β, and κ3 = 1− κ1 − κ2. Vectors (7) localize the points on the triangle △SB1B2 ∈ P
, see Figure 3(a).

Fig. 2.  The parameters α and β completely define the state |ψ3a⟩ introduced in Eq. (6). The constraints on 
these parameters give rise to the convex set M, a right triangle with legs of one unit on the plane R2. The 
extreme points, (α, β) = (0, 0), (0, 1) and (1, 0), characterize |ψ3a⟩ as a fully separable state. The middle points, 
(1/2, 1/2), (1/2, 0) and (0, 1/2), produce the bi-separable states |0⟩i|Ψ+⟩jk, where |Ψ+⟩jk stands for the Bell 
state |Ψ+⟩ shared by the jth and kth qubits. The convex combinations of extreme and middle points yield four 
different convex subsets (regions) of M that permit a classification of entanglement for |ψ3a⟩.
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Region II. The right triangle in orange of Figure 2 corresponds to the convex set α ∈ [0, 1/2], β ∈ [0, 1/2− α]
, and gives

	 λ⃗ψ3a = κ1S⃗ + κ2B⃗2 + κ3B⃗3,� (8)

with κ2 = 2α, κ3 = 2β and κ1 = 1− κ2 − κ3. In this case, the vectors (8) localize the points on the triangle 
△SB2B3 ∈ P , see Figure 3(b).

Region III. The right triangle in pink of Figure 2 represents the convex set α ∈ [0, 1/2], β ∈ [1/2, 1− α]. This 
yields

	 λ⃗ψ3a = κ1S⃗ + κ2B⃗1 + κ3B⃗3,� (9)

with κ1 = 2α− 1, κ2 = 2β and κ3 = 1− κ1 − κ2. The points on the triangle △SB1B3 ∈ P  of Figure 3(c) are 
localized by the vectors (9).

Region IV. The right triangle in light-purple of Figure 2 stands for the convex set α ∈ [0, 1/2], β ∈ [1/2− α, 1/2]
. The corresponding vectors

	 λ⃗ψ3a = κ1B⃗1 + κ2B⃗2 + κ3B⃗3,� (10)

with κ2 = 1− 2β, κ3 = 1− 2α and κ1 = 1− κ2 − κ3, localize the points on the triangle △B1B2B3 ∈ P  shown 
in Figure 3(d).

The latter case is of particular relevance. Making α = β = 1/3 we have the state

	 |ψ3a⟩ = 1√
3
(|000⟩ + |101⟩ + |110⟩) ,

which is local unitary equivalent to the well-known W–state,

	 |W ⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩) .� (11)

Explicitly, |ψ3a⟩ = (σx ⊗ �⊗ �) |W ⟩, with σx the x–Pauli matrix and 
�

 the identity operator in H2. Since the 
smallest eigenvalues are local unitary invariant38,39 both, |ψ3a⟩ and |W ⟩, are mapped onto the same point 
λ⃗W = (1/3, 1/3, 1/3)T ∈ P , which is the geometric center of the triangle △B1B2B3 ⊂ P .

On the other hand, the type 3b includes three different families of generic vectors, given by the expressions

	

|ψ3b−1⟩ = b0|000⟩ + b1e
iω|100⟩ + b4|111⟩,

|ψ3b−2⟩ = b0|000⟩ + b2|101⟩ + b4|111⟩,

|ψ3b−3⟩ = b0|000⟩ + b3|110⟩ + b4|111⟩.

� (12)

They correspond respectively to the triangles △SB1G, △SB2G, and △SB3G, see Figure 4.

The generic type 4 states, referring to superpositions (1) that admit four non-zero coefficients, correspond to 
three-dimensional convex subsets of P  that are subdivided into four different classes.

Fig. 3.  The four different regions of the convex set M illustrated in Figure 2 are associated with the faces of 
the lower tetrahedron of the polytope P . The color-code corresponds to the colors of the right-triangles in 
Figure 2. (a) Region I. (b) Region II. (c) Region III. (d) Region IV.
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Type 4a, with b4 = 0, is restricted to the lower tetrahedron of P , written SB1B2B3, where λ1 + λ2 + λ3 ≤ 1
27. The identity in this inequality is saturated by the points on the triangle △B1B2B3.

Type 4b is subdivided into two different categories, called b-1 (with b2 = 0) and b-2 (with b3 = 0). They are 
respectively mapped into a subset of SB1B3G and SB1B2G, see Figure 5.

For states of type 4c (with b1 = 0), the image covers region SB1B2B3 ∪ SB2B3G. To identify states that are 
mapped to the faces of the upper tetrahedron of P  we fix b0 = 1/

√
2, and consider the linear superposition

	 |ψ4c−1⟩ = 1√
2
|000⟩ + b2 |101⟩ + b3 |110⟩ + b4 |111⟩ ,� (13)

where b22 + b23 + b24 = 1/2. In this case, the vector

	 λ⃗ψ4c−1 = κ1B⃗2 + κ2B⃗3 + κ3G⃗,� (14)

with

	 κ1 = 2
√

b22
(
1
2 − b23

)
, κ2 = 2

√
b23
(
1
2 − b22

)
, κ3 = 1− κ1 − κ2,� (15)

localizes the points on the triangle △B2B3G. The appropriate permutations transform (13) into a pair of additional 
states of type 4c. Namely,

	

|ψ4c−2⟩ = 1√
2
|000⟩ + b2 |110⟩ + b3 |011⟩ + b4 |111⟩ ,

|ψ4c−3⟩ = 1√
2
|000⟩ + b2 |011⟩ + b3 |101⟩ + b4 |111⟩ ,

� (16)

where 
∑

bi = 1/2. It is immediate to show that these states are mapped into the triangles △B1B3G and △B1B2G, 
respectively. That is, with type 4c-i states, i = 1, 2, 3, we cover the three faces of the upper tetrahedron in P , see 
Figure 6.

Fig. 5.  Type 4b states. Following28, the values of the Fourier coefficients have been discretized to identify the 
image of the states. (a) Type 4b-1. (b) Type 4b-2.

 

Fig. 4.  The type 3b-i states (12) are associated with the two-dimensional convex subsets that are different from 
the faces of the tetrahedra that form the polytope P . (a) Type 3b-1. (b) Type 3b-2. (c) Type 3b-3.
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The generic type  4d state is expressed in an alternative canonical form37, given in (5). This class of states is 
associated with points along the entire polytope P . The relationship between types 4b, 4c, 4d and the polytope 
has been numerically studied in28.

Quantitative characterization of entanglement
Consider two different points in the entanglement–polytope, λ⃗ψk ∈ P , k = 1, 2. We know that there is at least 
one state |ψk⟩ in H that is associated with each ⃗λψk  through the mapping Λ.

Assuming that |ψ1⟩ and |ψ2⟩ have a certain degree of entanglement, what it does mean to say that one of them 
is more entangled than the other?

The notion of entanglement measure gives diverse quantitative answers to such a question2–5,9,10,40. Most of 
them are based on the distance measures of quantum states, which quantify how close two states are (static case), 
or how well information has been preserved during a dynamic process (dynamic case)1. In any case, it is required 
a measure standard, a state (or set of states) for which the measure is equal to 1, and a state (or set of states) that 
provides a result equal to 0. For three-qubit entanglement, it is usual to associate |GHZ⟩ with measure 1, and 
the fully separable states with measure 0. Within this standard, any entanglement measure of the states included 
in Table 1 should range between 0 and 1.

How do the entanglement properties of |ψk⟩ affect point ⃗λψk?
Suppose |ψ1⟩ is the GHZ–state and that |ψ2⟩ is to be determined. Since |GHZ⟩ corresponds to the vertex 

G⃗ = λ⃗ψ1, if we wanted |ψ2⟩ to be as entangled as possible, we would look for the point ⃗λψ2 to be in the vicinity of 
G⃗. The closer ⃗λψ2 is to G⃗, the state |ψ2⟩ will be more ‘similar’ to |GHZ⟩.

The problem is to define the notion of proximity between two points in P  that corresponds to some 
entanglement measure in H.

Next, we provide two different options, one addressed to quantify global entanglement and the other 
characterizing genuine entanglement.

Global entanglement is usually quantified in terms of bipartite entanglement measures15,20,36. An example 
is the measure Q introduced in20, which is the sum of concurrences between a single qubit and the remaining 
qubits in the system. However, Q does not distinguish between fully inseparable states and entangled states that 
are separable according to some set of subsystems40. On the other hand, one says that a pure state is genuinely 
entangled if it cannot be written as the product of simpler entangled states19, the canonical examples are states 
|GHZ⟩ and |W ⟩. In general, a given measure quantifies genuine entanglement if (a) it returns the result zero 
for fully separable states as well as for bi-separable states and (2) it is positive for non-biseparable states18,19,22.

Let us project the vector ⃗λψ ∈ P  on the line segments SBi ⊂ P . In each case one has

	
λ⃗ψ = p⃗i + q⃗i, p⃗i =

(
λ⃗ψ · eBi

)
eBi

, eBi
=
√
2B⃗i, i = 1, 2, 3.� (17)

The above decomposition is illustrated in Figure 7. Vectors p⃗i and q⃗i are the projection of ⃗λψ on B⃗i and rejection 
of ⃗λψ from B⃗i, respectively. Their norms, written in terms of the components of ⃗λψ, read as follows

	 pi =
1√
2
(λj + λk) , qi =

√
λ2
i +

1
2 (λj − λk)

2, i, j, k = 1, 2, 3.� (18)

Clearly λ⃗ψ = S⃗ produces pi = qi = 0, since λi = 0 for all i = 1, 2, 3. Avoiding this simple case, the identity 
λ⃗ψ = B⃗i for some i = 1, 2, 3, provides null rejection qi = 0, and vice versa. We have seen already that these 
points, distributed along the line segment SBi, yield the bi-separable states |ψbi⟩ = |ϕi⟩ |ϕjk⟩.

On the other hand, if λi = λ for all i = 1, 2, 3, then pi =
√
2λ and qi = λ. Vectors ⃗λψ satisfying this condition 

localize points along the line-segment SG. In this case, the largest rejection qi = 1/2 and largest projection 
pi = 1/

√
2 are attributed to the vertex ⃗λψ = G⃗, see Figure 7.

Fig. 6.  The type 4c-i states, i = 1, 2, 3, are associated with the faces of the upper tetrahedron of the polytope P . 
(a) Type 4c-1. (b) Type 4c-2. (c) Type 4c-3.
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It is notable that the norm of the projection p⃗i is proportional to the average (arithmetic mean) of λj  and λk

, we write pi =
√
2Av(λj, λk). Although the eigenvalue λi seems to be missing here, it plays a significant role to 

define the decomposition (17). Indeed, λi determines the length of qi (and the length of pi as well).
If we make λi = 0, the inequalities (3) imply λj = λk ≡ λ (by necessity), so that qi = 0. That is, as noted 

above, λi = 0 produces the bi-separability of the three-qubit state by isolating the ith qubit. Moreover, if λi = 0 
then pi =

√
2λ. Therefore pi ∈ [0, 1/

√
2], as expected for the bi-separable states |ψbi⟩ = |ϕi⟩ |ϕjk⟩.

In addition, since λi = 1/2 means that ρi is maximally mixed, the corresponding three-qubit state (in the 
bipartition i− jk) is maximally entangled. This configuration imposes the number 1/(2

√
2) as a lower bound 

on the values of pi, for which we find maximally entangled states. As a consequence, the projection domain is 
restricted to the second half of the previous case, pi ∈ [1/(2

√
2), 1/

√
2].

The previous analysis shows that the norm of p⃗i encodes sensitive information about the entanglement of the 
three-qubit system.

Looking for a global treatment, where all the components of λ⃗ψ intervene at the same time, we propose the 
following arithmetic mean

	 ξ(ψ) =
√
2
3 (p1 + p2 + p3) =

2
3 (λ1 + λ2 + λ3) ,� (19)

which vanishes for fully separable states (λ1,2,3 = 0), and is normalized to 1 for the GHZ–state (λ1,2,3 = 1/2).

Figure 8(a) shows the distribution of points ⃗λψ according to ξ(ψ). Clearly, these points average better values ξ as 
they get closer to the vertex G⃗.

Fig. 8.  The arithmetic mean ξ(ψ) introduced in Eq. (19) vanishes for fully separable states and is normalized 
to 1 for the GHZ–state. (a) The points ⃗λψ ∈ P  average higher values ξ as they get closer to the vertex G⃗ ∈ P
. (b) Condition ξ(ψ) = ξ0, with ξ0 = constant, defines planes transverse to the line segment SG whose points 
represent states |ψ⟩ ∈ H with the same degree of entanglement. The ξ0–planes shown in the figure correspond 
to ξ0 = 1/3, 2/3, and 5/6.

 

Fig. 7.  Partial section of the entanglement–polytope P  along the plane Πi defined by the vertices S⃗, B⃗i and G⃗
. The orthogonal projection of ⃗λψ ∈ P  on the line-segment SBi ⊂ P  (written p⃗i), as well as the rejection of ⃗λψ 
from SBi (denoted q⃗i) are useful for introducing diverse entanglement measures (see discussion in the main 
text). If ⃗λψ is located in Πi (as shown in the figure), then q⃗i is also located in Πi. In general, both q⃗i and ⃗λψ 
localize the same (arbitrary) point of P , the former from p⃗i on the line-segment SBi, the latter from the vertex 
S⃗.
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Of particular interest, if λi = λ for all i = 1, 2, 3, then pi =
√
2λ, qi = λ, and ξ(ψ) = 2λ. In this case λ⃗ψ 

localizes points along the line-segment SG. Then the projection pi (= 1/
√
2), the rejection qi (= 1/2) and the 

measure ξ (= 1) reach their maximum when ⃗λψ = G⃗.
A very versatile property of the average (19) arises by imposing the condition ξ(ψ) = constant, since this 

defines a plane transverse to the line segment SG whose points represent states |ψ⟩ ∈ H with the same degree 
of entanglement. Indeed, assume that such a plane cuts the line segment SG at the point localized by λ⃗0. We 
write ⃗λ0 = ξ0G⃗, with ξ0 ∈ [0, 1]. If ⃗λ localizes another point on the plane, then ⃗λ− λ⃗0 must be orthogonal to the 
unitary vector n = ||G⃗||−1G⃗, so we arrive at the equation

	 n̂ · (λ⃗− λ⃗0) = 0.� (20)

The solution of (20) is easily found, it is given by ξ0 = ξ(ψ).

Figure 8(b) shows some ξ0–planes. Among them, the triangle △B1B2B3 coincides with the plane ξ0 = 2/3 and 
contains the W–state at its geometric center, as indicated above. That is, |W ⟩ is ξ = 1/3 distant from |GHZ⟩.

The decomposition (17) offers another possibility to quantify entanglement. As we have seen, the rejection 
q⃗i is very sensitive to the eigenvalue λi (its norm qi cancels if λi = 0), and vice versa. Then, we may use qi to 
quantify the ‘transverse distance’ between λ⃗ψ and SBi since vector λ⃗ψ is as ‘close’ to SBi as the rejection qi 
(equivalently, λi) approaches zero. In this context, we introduce the function

	 µ(ψ) = 2min(q1, q2, q3),� (21)

which quantifies the transverse–distance from ⃗λψ to the nearest line segment SBi.

Figure  9(a) shows the distribution of points λ⃗ψ according to the function µ. Similar to the previous case, 
condition µ(ψ) = µ0 = const provides a collection of points that represent pure states |ψ⟩ with the same degree 
of entanglement. Figure 9(b) shows the regions of P  associated with two different values of µ0.

The standard of µ(ψ) is as follows: it vanishes for separable states, attains its maximum value (= 1) for the 
GHZ–state, and carries out the value µ = 2/3 for the W–state. Incidentally, µ(ψ) gives the same value as ξ(ψ) 
for the W–state, reinforcing our previous statement that |W ⟩ is ξ = µ = 1/3 distant from |GHZ⟩, see Figure 10.

As qi = 0 is a condition for bi-separability, in contrast with ξ, the measure µ also gives the value 0 for bi-
separable states, see Figure 10. Indeed, µ is a measure of genuine multipartite entanglement since it satisfies the 
requirements reported in, for example,18.

Figure 10 shows the values provided by the measures ξ and µ for states |ψsep⟩, |ψbi⟩ = |0⟩i|ψ+⟩jk, |W ⟩ and 
|GHZ⟩. These results are compared with the values that can be obtained in terms of the concurrence–fill F123 
and the genuine multipartite concurrence CGME. The former measure is defined as18:

	
F123(ψ) =

[
8Q(ψ)

(
3

2
Q(ψ)− C2

1

)(
3

2
Q(ψ)− C2

2

)(
3

2
Q(ψ)− C2

3

)]1/4
,

where Q (ψ) = 1
3

∑3
i=1 C2

i (ψ). The I concurrence Ci is a measure of entanglement between the ith qubit and the 
subsystem composed of qubits j and k41. In turn, the measure CGME  is defined as19:

	 CGME(ψ) = min{C1, C2, C3}.

With exception of ξ, these measures give 0 for bi-separable states. That is, ξ does not discriminate bi-separability 
from genuine entanglement, so it is a measure of global entanglement. On the other hand, among these measures, 
µ averages the lowest results for the four states. In other words, µ defines a lower bound for measuring genuine 
entanglement.

Fig. 9.  (a) The transverse–distance measure µ(ψ) introduced in (21) gives 0 for separable states and 1 for the 
GHZ–state. In addition, this also gives 0 for bi-separable states, so it discriminates bi-separability from genuine 
entanglement. Notably, µ gives the same value as ξ for the W–state, which confirms that |W ⟩ is ξ = µ = 1/3 
distant from |GHZ⟩. (b) Regions of constant measure µ(ψ) = µ0 for µ0 = 4/5 (closest to vertex G) and 
µ0 = 1−

√
13/5 (closest to vertex S).
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To compare in more detail both the properties and the behavior of the measures ξ and µ, let us consider the 
type 3a state

	 |ψα⟩ = cosα|100⟩ + sinα|0⟩1|Ψ+⟩23, 0 ≤ α ≤ π
2 .� (22)

It is a matter of substitution to verify that |ψα=0⟩ = |100⟩ and |ψα=π/2⟩ = |0⟩1|Ψ+⟩23. That is, at the ends of 
the α-domain, the state |ψα⟩ becomes fully separable and bi-separable, respectively. Additionally, making 
α = α0 = arccos(1/

√
3), one gets |ψα0⟩ = |W ⟩.

Parameterized by α, the vector λ⃗ψα describes a path in the entanglement–polytope P  that follows a trajectory 
from S⃗ (at α = 0) to B⃗1 (at α = π/2), see Figure 11(a). Looping through values in the first half of the α-domain, 
λ⃗ψα draws a straight line on the triangle △SB2B3, from S⃗ to the midpoint of segment B2B3 (at α = π/4). From 
there, the vector continues in a straight line on triangle △B1B2B3 to vertex B⃗1. In this last journey, λ⃗ψα passes 
through the geometric center of △B1B2B3 (at α = α0), which houses state |W ⟩.

Remember that mesure ξ averages the constant value ξ0 = 2/3 for any point on the triangle △B1B2B3, see 
Figure 8(b). Then, the values averaged by ξ would indicate that the degree of entanglement of |ψα⟩ is conserved 
during the second part of the path described above, just as it is shown in Figure 11(b). In turn, µ gives 0 for both 
separable and bi-separable states, so it cancels at the ends of the α-domain. That is, with the values given by µ we 

Fig. 11.  (a) When the parameter α sweeps the domain [0, α∗∗] ≡ [0, π/2], the state |ψα⟩ introduced in (22) 
describes a path ⃗λψα on the lower tetrahedron of P . The trajectory goes first from the vertex S⃗ to the midpoint 
of B2B3 (at α = α∗ = π/4), and then to the vertex B⃗1 (at α = α∗∗) on the triangle △B1B2B3. In this last 
journey, ⃗λψα passes through the geometric center of △B1B2B3, at α = α0 = arccos(1/

√
3), which houses state 

|W ⟩. (b) Measures ξ and µ for state |ψα⟩, the former gives ξ0 = 2/3 for α ∈ [α∗, α∗∗] whereas the latter cancels 
at the ends of the α-domain. In contrast with ξ, the measure µ also distinguishes among the points living on 
△B1B2B3. That is, points ⃗λψα closer to the center of △B1B2B3 will correspond to more µ-entangled states |ψα⟩.

 

Fig. 10.  Entanglement measures ξ(ψ), µ(ψ), F123(ψ) and CGME(ψ) for states |ψsep⟩, |ψbi⟩ = |0⟩i|Ψ+⟩jk, |W ⟩ 
and |GHZ⟩. All the measures give 0 for fully separable states. Measure ξ does not discriminate bi-separability 
from genuine entanglement since it averages a value different from 0 for bi-separable states. Among these 
measures, µ gives the lowest results for the four states.
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find that |ψα⟩ increases its degree of entanglement during the first half of the journey, and decreases it during the 
second half to remain as at the beginning. According to µ, the maximum degree of entanglement is reached at 
α = α0, where |ψα⟩ coincides with |W ⟩. Indeed, µ averages two local maxima, the one at α = α0, and another at 
α = α∗ = π/4, see Figure 11(b). Between α∗ and α0 (the transit from B2B3 to the geometric center of △B1B2B3

) there is still an increase of µ that connects these maxima. This last result shows that, in contrast with ξ, the 
measure µ also distinguishes among the points living on △B1B2B3. The points ⃗λψα closer to the center of △B1B2B3 
will correspond to more µ-entangled states |ψα⟩.

Let us verify the universality of measure µ to quantify genuine multipartite entanglement. Consider the state

	
|ψθ⟩ = N(θ)

[
cos2

(
θ
2

)
|111⟩ + 1√

3
sin2

(
θ
2

)
|W ⟩

]
, θ ∈ [0, π],� (23)

where

	 N(θ) =
[
cos4

(
θ
2

)
+ 1

3 sin
4
(
θ
2

)]−1/2

stands for the normalization constant. It is immediate to verify the identities |ψθ=0⟩ = |111⟩, |ψθ=π⟩ = |W ⟩ and 
|ψθ=θ0⟩ = |φ⟩, with θ0 = 2π/3. The latter state is given in Eq. (31), which has been shown to be local unitary 
equivalent to the GHZ–state. The measures µ and F123 are respectively given by

	
µ(ψθ) = 1− 2

3

∣∣∣∣
3 + 5 cos θ + cos 2θ

3 + 2 cos θ + cos 2θ

∣∣∣∣,� (24)

and

	
F123(ψθ) =

8(16 cos θ + 5 cos 2θ + 15)

9(2 cos θ + cos 2θ + 3)
sin4

(
θ

2

)
.� (25)

In turn, the GME–concurrence reads CGME(ψθ) =
√
F123(ψθ).

The above functions are plotted in Figure 12. They range between 0 and 1, with µ defining the lower bound for 
any θ ̸= θ0. At θ0, the three measures give the result 1.

Note that µ defines a lower bound on the degree of entanglement that could be measured in the state |ψθ⟩, as 
it produces lower values than the results of the other two measures.

The inverse problem
One of the advantages of working with the geometric representation of quantum states is that the classification 
of entanglement becomes visual and simple. If a given three-qubit state |ψ⟩ ∈ H exhibits a certain amount of 
entanglement, this is linked to a very concrete point of the entanglement–polytope P  throughout the vector ⃗λψ.

The question in the opposite direction offers even more interesting challenges and a much broader perspective 
on entanglement.

Given a point ⃗λ ∈ P , what three-qubit state (or class of states) can be mapped from H to precisely ⃗λ?
This dilemma is an example of the inverse problem of quantum mechanics42, where one seeks to manipulate 

systems in order to force them to behave in a particular way (some applications can be found in43–48). In the 

Fig. 12.  Entanglement measures µ(ψ), F123(ψ) and CGME(ψ) for the state |ψθ⟩ given in Eq. (23). At θ = 0 the 
state becomes |111⟩, so it is fully separable. However, it is maximally entangled at θ = θ0 = 2π/3, since it is 
local unitary equivalent to the GHZ–state. At θ = π the state is equal to |W ⟩. Consistently, the measures range 
between 0 and 1, reaching their maximum (= 1) at θ0. Measure µ defines a lower bound, as it produces lower 
values than the results of the other two measures, except at θ = θ0.
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present case, it is about choosing a point of the polytope in a region that characterizes very specific entanglement 
properties, and searching for the quantum state that satisfies such a profile.

Some of the possibilities of the inverse problem for states of types 1 to 4a have been explored in27 (although 
the authors of such work do not use the terminology of the inverse problem nor exploit all the potential of the 
method). However, as a matter of fact, the solutions to the inverse problem for three-qubit systems are far from 
being exhausted. For example, to the best of our knowledge, the inverse problem for the facets B1B2G, B1B3G 
and B2B3G, remains unsolved.

To contribute to this topic, let us solve the problem of determining the states that can be associated with a 
given point ⃗λ on the triangle △B2B3G ∈ P .

The states that we are looking for belong to type 4c-1, so they are written in the form of Eq. (13). Since ⃗λψ4c−1 
must be provided in advance, we assume that we know every one of the coefficients of the convex combination 
(14). Then, we solve the parameter system (15) to fix the coefficients of |ψ4c−1⟩ in (13). The acceptable solutions 
are as follows

	

b22 =
1
4

(
1 + κ2

1 − κ2
2 −

√
(1− κ2

1 + κ2
2)

2 − 4κ2
2

)
,

b23 =
1
4

(
1− κ2

1 + κ2
2 −

√
(1− κ2

1 + κ2
2)

2 − 4κ2
2

)
,

b24 =
1
2

(
1−

√
(1− κ2

1 + κ2
2)

2 − 4κ2
2

)
.

� (26)

Thus, coefficients (26) are determined by the parametrization κ1, κ2 and 1− κ1 − κ2, which also defines the 
facet B2B3G.

The inverse problem for facets B1B3G and B1B2G finds a similar solution, this time using the states (16).
In a more general picture, any point ⃗λ ∈ P  can be written as a convex combination of the extremal points,

	
λ⃗ = κ0S⃗ + κ1B⃗1 + κ2B⃗2 + κ3B⃗3 + κ4G⃗, κq ≥ 0,

4∑
q=0

κq = 1.� (27)

This expression is universal for three-qubit systems in the sense that any of the states reported in Table 1 can be 
associated with ⃗λ.

For example, knowing that states of type 4d are mapped to points along the entire entanglement–polytope P , let 
us consider |ψ4d⟩ as it is given in Eq. (5). Making c2r = vr, the corresponding smallest eigenvalues are

	

λ1 =
1
2

[
1−

√
1− 4(v2 + v3) (1− v2 − v3)

]
,

λ2 =
1
2

[
1−

√
1− 4(v1 + v3) (1− v1 − v3)

]
,

λ3 =
1
2

[
1−

√
1− 4(v0 + v3) (1− v0 − v3)

]
.

� (28)

Since these eigenvalues define the vector λ⃗, from (27) and (28) we see that the coefficients of |ψ4d⟩ can be 
expressed in terms of κi, i = 0, 1, 2, 3, as follows

	

v0 =
1
2 [1− 2v3 ± (κ0 + κ3)] , v1 =

1
2 [1− 2v3 ± (κ0 + κ2)] ,

v2 =
1
2 [1− 2v3 ± (κ0 + κ1)] , v3 + v2 + v1 + v0 = 1.

� (29)

Only four of the set of solutions above are admissible for our purposes. In particular, the case ‘+’ yields

	 c20 =
1
2

(
κ3 +

κ4
2

)
, c21 =

1
2

(
κ2 +

κ4
2

)
, c22 =

1
2

(
κ1 +

κ4
2

)
, c23 =

1
2

(
1 + κ0 − κ4

2

)
.� (30)

The set (30) constitutes the solution to the inverse problem of the entanglement–polytope P  that we are dealing 
with. By providing purely geometric information, through the parameters κi, the state |ψ4d⟩ is completely 
determined, with very specific entanglement properties that can be defined on demand.

To verify the universality of the above solution, first consider the vertex S⃗. That is, κ0 = 1. Then c3 = 1 and 
c0 = c1 = c2 = 0. In this case we arrive at the fully separable state |111⟩. Another immediate example arises if 
κ4 = 1 (the vertex G⃗), then c0 = c1 = c2 = c3 = 1/2, and

	
|φ⟩ = 1

2

(√
3|W ⟩ + |111⟩

)
.� (31)

This state is local unitary equivalent to the GHZ state. Indeed,

	 |φ⟩ = (σxH ⊗ σxH ⊗ σxH) |GHZ⟩,
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with H the Hadamard operator.

More interesting configurations are obtained when two or more κ-parameters are different from zero. In the 
extreme case, where κi ̸= 0 for all i = 0, 1, 2, 3, 4, one can pay attention to the barycenter of the simplex △B1B2B3 
(where state |W ⟩ is located). The inverse problem solution leads to the state

	 |χ⟩ = 1√
2
(|W ⟩ + |111⟩) .� (32)

It is remarkable that |χ⟩ is not local unitary equivalent to |W ⟩, although these two states are mapped into the 
same point of the entanglement–polytope P . The difference is notable considering that the three-tangle of |W ⟩ 
is equal to zero49, while the three-tangle of |χ⟩ is equal to 4/(3

√
3).

The above case shows the generality that the inverse problem introduces in the determination of quantum states. 
In the conventional (direct) problem, every state |ψ⟩ ∈ H is mapped to one and only one point of P . However, 
the fact that two or more elements of H can be mapped to the same point of P  usually goes unnoticed because, 
in the direct problem, attention is paid to a specific state. The inverse problem considers all possibilities in H that 
can be associated with ⃗λ ∈ P  in a single move. The latter means that the solution to the inverse problem usually 
associates a family of states, rather than a single state, with such a point.

As we have seen, the solution (30) provides universality to the state |ψ4d⟩ in Eq. (5). Once the coefficients 
ck of |ψ4d⟩ are parametrized with purely geometric information, obtained from the entanglement–polytope P , 
the entanglement properties of such state become manipulable. Furthermore, the strength of set (30) lies in the 
fact that any other selection of solutions (29) is local unitary equivalent to (30). For example, taking the roots 
‘+,−,−’, from (29) we have

	 c20 =
1
2

(
1 + κ0 − κ4

2

)
, c21 =

1
2

(
κ1 +

κ4
2

)
, c22 =

1
2

(
κ2 +

κ4
2

)
, c23 =

1
2

(
κ3 +

κ4
2

)
.

The state |ψ̃4d⟩ that results from these coefficients is local unitary equivalent to |ψ4d⟩ through the transformation 
U1 = σx ⊗ σx ⊗ �. Similarly, the roots ‘−,+,−’ and ‘−,−,+’ provide states of type 4d that can be transformed 
into the form |ψ4d⟩ by using the unitary operators U2 = σx ⊗ �⊗ σx and U3 = �⊗ σx ⊗ σx, respectively.

We have chosen type 4d states to exemplify, in a more or less general way, the applicability and power of the 
inverse problem. Therefore, we must emphasize that this method is applicable to any point ⃗λψ ∈ P , in connection 
with the states included in Table 1.

We can also pose the inverse problem in another context. Suppose you are interested in determining a 
collection of points that describe a given path in P . Say, the path follows one of the surfaces determined by 
µ = µ0 = const. It can be shown that a particular solution is obtained after making bℓ = 1/

√
5, ℓ = 0, 1, 2, 3, 4, 

in (1). Looping through all the domain [0, π] of ω, we obtain the path shown in Figure 13(a). In a given interval 
of ω, the path overflows the µ0-region towards vertex S. That is, entanglement is constant for ω ∈ [ω0, π] and 
decreases as ω goes from ω0 to zero. Our assertion is verified in Figure 13(b), where we show the measures µ, ξ, 
F123 and CGME  for the ω-dependent solution we have found to the above inverse problem.

Fig. 13.  A particular solution to the inverse problem of finding a set of points in P  that follows a path with 
entanglement measure µ = µ0 = const, see Figure 9(b), is obtained after making bℓ = 1/

√
5 in (1). The pure 

state |ψ⟩ is parameterized by the phase 0 ≤ ω ≤ π and is projected onto the path ⃗λψ(ω) in P  . (a) ⃗λψ(ω) starts 
and finishes at (µ0/2, ε, ε) and (µ0/2, 2/5, 2/5), respectively. Here µ0 = 1−

√
13/5 and ε = 1

2

(
1−

√
17/5

)
. In the interval [0, ω0], with ω0 = π/3, the path overflows the µ0-region. (b) Measures µ, ξ, F123 and CGME  as 
functions of ω. Only µ and CGME  maintain constant in the interval [ω0, π], with values µ = 1−

√
13/5 and 
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In general, the versatility of the solutions of the inverse method could extend to the practical aspects of 
entanglement. For example, the creation and measurement of three-qubit entanglement associated with states of 
type  4c-2 have been reported in31. Since these results are parametrized by data obtained from the optical bench 
in the laboratory, information like this could be translated to the entanglement–polytope P  to give it measurable 
properties.

Conclusions
We have studied the degree of entanglement between the different parts of a tripartite qubit system from a purely 
geometric perspective. After constructing a convex polytope P ⊂ R3 formed by points λ⃗ = (λ1, λ2, λ3), where 
λk is the smallest eigenvalue of the reduced matrix associated with the kth qubit26–29, we have considered a map 
Λ : H → P  to identify some relationships between the tripartite quantum states |ψ⟩ ∈ H and the points of the 
projective space P .

In agreement with the conditions reported in27, we have shown that the classification of entangled states 
introduced in7,8 results in the identification of concrete subsets of P  under the mapping Λ. The emphasis in the 
present study has been on the states mapped into the facets of the polytope P .

Considering the geometric properties of the polytope P , we have introduced two different entanglement 
measures, denoted ξ and µ. They are respectively associated with the projection and rejection of the point λ⃗ 
on the biseparable segments of P ; the former quantifies global entanglement while the latter measures genuine 
entanglement. When compared with some previously reported measures of entanglement, it is found that ξ and 
µ establish a lower bound for the type of entanglement to which they refer (excluding the GHZ–state for which 
both measurements return the value 1, as would be expected).

The above results can be extended in several directions. For example, one may consider the projection of λ⃗ 
onto different subsets of P  in such a way that different entanglement information is provided. In general, the 
definition of ξ and µ can be directly extended to the multi-qubit case, since the points of the corresponding 
entanglement–polytope (the dimension of the space that contains it does not matter) can always be projected 
onto the appropriate subsets of biseparable points.

The advantages of working with the geometric representation of quantum states, as we have done here, 
become more evident when considering the possibility of controlling and manipulating entanglement.

As we have shown, by solving the inverse problem we can force the system to behave in a particular way. In 
particular, given a point of the polytope in a region that characterizes very specific entanglement properties, 
the quantum state that satisfies such a profile is sought. As a matter of fact, the solution to the inverse problem 
associates a family of states in H, rather than a single state, with such a point. The latter provides information of 
the space of states H that cannot be obtained by solving the conventional (direct) problem, where a given state 
in H is mapped to one and only one point of P .

Setting the value of ξ or µ identifies regions of the entanglement–polytope P  whose points represent states 
with exactly the same degree of entanglement. These regions allow us to presuppose various evolutions of the 
tripartite system, associated with trajectories on some hypersurface of P , which are characterized by leaving the 
degree of initial entanglement invariant. The inverse problem allows us to determine the type of operations that 
must be applied on the states of the system to induce said trajectories in P . Even better, it opens the possibility 
of inducing an increase in the degree of entanglement by identifying operations that correspond to transitions 
between the different hypersurfaces of P  that are characterized by the entanglement measures ξ and µ. Work in 
this direction is in progress and will be published elsewhere.

Data availability
All data generated and analyzed during this study is included in this published article.
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