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OPEN A geometric formulation to

measure global and genuine
entanglement in three-qubit
systems

Salvio Luna-Hernandez?, Marco Enriquez?*! & Oscar Rosas-Ortiz*

We introduce a purely geometric formulation for two different measures addressed to quantify

the entanglement between different parts of a tripartite qubit system. Our approach considers the
entanglement-polytope defined by the smallest eigenvalues of the reduced density matrices of the
qubit-components. The measures identify global and genuine entanglement, and are respectively
associated with the projection and rejection of a given point of the polytope on the corresponding
biseparable segments. Solving the so called ‘inverse problem’, we also discuss a way to force the
system to behave in a particular form, which opens the possibility of controlling and manipulating
entanglement for practical purposes.

Entanglement is the most interesting nonclassical correlation of multipartite quantum systems. It represents an
important resource in quantum computing, quantum information processing and quantum teleportation!=3.
However, the characterization and quantification of multipartite entanglement is still an open question*”. Even
in the three-qubit system case it has been pointed out that different forms of entanglement may be present®.
This can be seen from the fact that there is no unified notion of a maximally entangled state for more than
two-qubits®. In fact, considering the most widely used measures'’, different requirements comprise different
characteristics of the nonlocal properties that a given system must satisfy to exhibit maximal entanglement.

In this sense, entanglement measures based on the geometry of the state space or the appropriate projective
space are of particular interest. For example, the geometric measure of entanglement (GME) evaluates the
distance from a target state to its closest separable state in a given Hilbert space!"!2. Although its immediate
geometric interpretation, the GME demands a non-trivial optimization so it becomes a nondeterministic
polynomial (NP) problem!’. Indeed, the amount of information that must be processed suggests that sooner
or later it will be inevitable to resort to numerical methods!2. Other examples include the entanglement of
minimum bipartite entropy', which quantifies the distance of a given state with its nearest state with no three-
way entanglement, and robustness'>.

With respect to the geometry of projective spaces, for permutation invariant states, the Majorana
representation leads to the identification of maximal symmetric n-qubit states'®!”; it has also been reported an
entanglement measure associated with the barycenter of the Majorana constellation'. More recently, the triangle
whose edges correspond to the squared bipartite concurrence of a three-qubit system has been considered as a
useful tool to quantify entanglement!®. It has been shown that the genuinely multipartite concurrence defined
in'? is exactly the square root of the shortest edge length of such a triangle, and that its perimeter is nothing else
than the global entanglement measure considered in?*2!. Remarkably, the concurrence triangle area, computed
through the Heron’s formula, is associated with a genuine entanglement measure referred to as the concurrence
fill'®. Geometric simplices (tetrahedra) can be used to quantify GME?, a generalization of the Peres-Horodeckis
criterion applies also for multiqubit, continuous-variable, and hybrid systems?’, and even entropic measures
derived from experimental correlations are useful to quantify tripartite entanglement?.

It is notable that the three qubit entanglement-polytope permits the introduction of some criteria for the
characterization and detection of entanglement**~**. To deepen the understanding of entanglement classification,
the relationship between the entanglement types introduced in”® and some subsets of the polytope?”?® has been
analyzed. In this context, a relationship between the linear entropy of entanglement?*?! and the Euclidean
distance to one of the vertices of the polytope has been observed?®*. However, most of the characterization of
the entanglement-polytope studied so far has been done qualitatively.
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In this work, we study the entanglement between different parts of a tripartite qubit system from a purely
geometric perspective. Our approach considers the entanglement polytope defined by the smallest eigenvalues
of the reduced density matrices. We introduce a mapping from the state space to the polytope that leads to
identifying some relationships between tripartite quantum states and points with clear geometric interpretation
in the polytope. Then, fully separable, bi-separable and non-separable states are associated with concrete subsets
(vertices, edges, facets, etc) of the polytope, providing a geometric identification of entanglement.

The most striking feature of our approach is to find that the projection of a given point of the polytope along
the edges that represent biseparable states encodes a quantification of both, global and genuine entanglement.

As a byproduct, we look for a way to force the system to behave in a particular form. The cornerstone is
provided by solutions to the inverse problem: given a point on the polytope in a region that characterizes very
specific entanglement properties, the quantum state that satisfies such a profile must be found. We show that this
approach offers interesting challenges and a much broader perspective on nonclassical correlations since it opens
the possibility of controlling and manipulating entanglement for practical purposes.

In Section 2 we review the convex structure of the three-qubit polytope and some entanglement properties
are characterized qualitatively. A quantitative description of the three-qubit entanglement is provided in Section
3, where we propose two distance-based entanglement measures, one quantifying the global entanglement
and the other characterizing the three-qubit genuine entanglement. Section 4 is addressed to solve the inverse
problem. Some conclusions are given in Section 5.

Qualitative characterization of entanglement
Let H = Hs ® Ha ® Ho be the Hilbert space of a three-qubit system, with #; the two-dimensional space of
states for a single qubit. Given a pure state [1)) € H, written in the standard form”?,

) = bol000) + bye™[100) + by[101) + bs[110) + by[111), by >0, > b =1, (1)

with 0 < w < 7, we will pay attention to the vector XL = (A1, Ag, )\;;)T, where )\, is the smallest eigenvalue of the
density matrix p;, associated to the kth qubit.

Looping through all allowed values of b, and w in (1), vector X,b, localizes the points of a convex polytope P C R?
that encodes the degree of entanglement between the different parts of a tripartite qubit system?¢~28. Therefore,
we consider the mapping

A: H—-PCR 2
o) = A(®) = Xy,
together with the inequalities®:

System (3) characterizes P as the geometric scenario where the marginal problem defined by the pure state |¢))
finds solutions with physical meaning®®. That is, among all possible states of one-qubit, A, in (3) selects those
that can be achieved as the reduced one-qubit density matrix pj, = Tr; ; (|1)(]), with k # ¢ # j. No state of
one-qubit that is not linked to |+)) in this way is included in P. Indeed, (3) is a system of triangle inequalities that
completely characterize the possible reduced one-qubit states of [1/)%.

Figure 1 shows the entanglement-polytope P that we are dealing with. It is a body that resembles two tetrahedra,
joined at their base, embedded in a cube with edges of length equal to 1/2, located at the first octant of R®. To be
concrete, P is defined by the convex combination of its vertices
§=0,0,07, Bi=(0.49)", B=(01)" @
= T 75 T
Bom (W10, G (1"

ol L

Characterizing multipartite entanglement in terms of entanglement-polytopes is very useful since only one-
particle information is required®?°, see also?” and’. Remarkably, this picture finds immediate application
in detection processes of entanglement since its predictions do not require the measurement of correlations
between the parts. For example, the experimental detection of entanglement—polytopes for three- and four-qubit
genuine entanglement occurring in quantum optics has been reported in**2, a fact that shows the practical
usefulness of the method.

Considering the separability properties of |¢)), as it is written in (1), and remembering that local-unitary
transformations preserve entanglement properties>, one can identify different entangled pure states in terms of
the coefficients by # 0, see details in Supplementary Information file. Our classification coincides with the results
reported in”%, and is summarized in Table 1.

For completeness, in Table 1 we have included a set of states that is not obtained directly from (1). These states
are classified as type 4d and are represented by the linear combination®’:
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Fig. 1. Entanglement-polytope P C R? associated with the three-qubit states (1). It is a body that resembles
two tetrahedra, joined at their base, embedded in a cube with edges of length equal to 1/2. The parameter A
(defining the corresponding axis) is the smallest eigenvalue of the density matrix associated with the kth qubit.
Vertex S represents the entire set of fully separable states while G corresponds to the Greenberger-Horne-
Zeilinger state. The vertices B; correspond to bi-separable states |¢;)|¢;i), with |¢;) the state of the ith qubit
and |¢;;,) a Bell state in the bipartition ¢ — jk.

Type | Basis product states Subset C P

[ {Jooo) 3

2a1 | {]101), [110)} 5B,

2a-2 | {|000), |101) } SB,

2a-3 | {|000), [110)} SBs

2 | {]000Y, [111)} e

3 [{|000), ]101),]110)} Facets of S By By By
3b-1 [ {]000), [100), |111)} SB,G

3b-2 {|OOU>, |101>, |111>} SByG

3b-3 | {]000Y, [110), |111)} SBsG

| {]000), [100), [101), |110)} SB\B>B;

ab-1 | {]000), |100), [110), [111)} C SBBsG

ab-2 | {]000), |100), [101), [111)} C SBB,G

s [{]000), [101), [110), [111)} SB1ByB; U SByBsG
ad | {]001),]010), |100Y, [111)} P

5 [{|000Y, 100), 101}, [110), [111)} | ¢ P

Table 1. The number of basis elements of H = Hy ® Ha @ H, that are included in the linear superposition
(1) gives rise to a classification of three-qubit states”®. Some of the representative states generated by such
basis elements are associated with specific convex subspaces of the entanglement-polytope P C R? shown in
Figure 1, see?” and discussion in the main text. The class of fully separable states is represented by |000) as a
generic case, see details in Supplementary Information file. States of type 4d are represented by the vector |t)44)
defined in (5).

3
[10) = col001) + ¢1]010) + &[100) + e3[111), ¢, >0, > =1. (5)
k=0

Note that unlike |1), these additional states embrace only four basis vectors. Their usefulness will become clear
in the following sections.

Next, based on the results reported in%’, we show that this classification results in the identification of concrete
convex subsets of P under the mapping A.

The simplest class, called type 1, refers to fully separable states, hereafter written |1)se,) = |$1) |P2) |P3), with
|¢:) € Ho. These states are generically represented by |000) in Table 1, since they are local-unitary equivalent to
such state. Furthermore, in this case the smallest eigenvalue ), of p;. is equal to zero for all ¢ = 1,2, 3. Thus, the
entire set of vectors [t is associated with the vertex S € P, which is a 0-dimensional convex set.
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Fig. 2. The parameters o and /5 completely define the state [¢)3,) introduced in Eq. (6). The constraints on
these parameters give rise to the convex set M, a right triangle with legs of one unit on the plane R%. The
extreme points, (a, 8) = (0,0), (0, 1) and (1, 0), characterize |13,) as a fully separable state. The middle points,
(1/2,1/2), (1/2, 0) and (0, 1/2), produce the bi-separable states |0);| ¥ ") ., where |U'*) ;. stands for the Bell
state |U'™) shared by the jth and kth qubits. The convex combinations of extreme and middle points yield four
different convex subsets (regions) of M that permit a classification of entanglement for |)3,).

Type 2 includes linear superpositions (1) with two coefficients different from zero as well as any other state
|¢) that can be transformed into any of these superpositions by means of local-unitary transformations, see
Supplementary Information file for details. We identify two different subclasses, called 2a and 2b.

Type 2a is subdivided into three different categories, called 2a-1, 2a-2 and 2a-3, whose generic states are
characterized by the pairs {by, b3}, {bg, b2} and {by, b3}, respectively. These states are bi-separable, written
[Yni) = |@i) |@ji)» with |@;1.) a non-separable state shared by the jth and kth qubits (the sub labels are cyclic). They
correspond to the one-dimensional convex subsets of P generated by the vertices S and B;. That is, type 2a states
are associated with the line-segments (edges) SBy, SByand SBs of P. For instance, if [41,;) = by [101) + b3 |110)

, then )\Ul“ = (1 =2)\)S +2\B), where A = (1 — /1 — 402b2) /2. Similarly for types 2a-2 and 2a-3. Stellar
members of type 2a are the bi-separable states linked to the vertices B; € P, for which |¢;;.) is one of the Bell-
basis elements /2|®F) = |00) + |11), /2| T*) = |01) + |10).

The generic type 2b state is characterized by the pair {y, bs}. This class of states is associated with the
one-dimensional convex subset generated by the extremal points S and G (the line-segment SG). Explicitly,
Xy, = (1= 20)S + 2)\G, where A = (1 — /1 — -1b[2,b2) /2. The Greenberger-Horne-Zeilinger (GHZ) state

L

|GHZ) = (|ooo> +]111))

S\

corresponds to the extremal point .

Generic states of type 3 involve three coeflicients different from zero in the linear superposition (1). They are
associated with two-dimensional convex subsets of P, as we indicate below.
The type 3a refers to generic vectors that can be written in the form

th3a) = /7|000) + v/a]101) + /B[110), 0<a,f<1, y=1—a—}. (6)

Therefore, the components of Xw:m are as follows

Figure 2 shows the convex set M C [R? that arises from the constraints on the parameters o and 3 in Eq. (6). It is
a right triangle with legs of one unit. The extreme points, (., 3) = (0, 0), (0, 1) and (1, 0), define fully separable
states that are mapped onto the vertex S of P. In turn, the rgiddle points, (1/2, 1/2), (1/2, 0) and (0, 1/2), produce
the bi-separable states that are mapped onto the vertices B; of P. The data shown in Figure 2 is obtained from
(6), after the appropriate local unitary transformation. The convex combinations of extreme and middle points
yield four different convex subsets (regions) of M that permit a classification of entanglement for the state |1)3,).

Region I. The convex set o € [1/2,1], 8 € [0,1 — ], represented in Figure 2 as the right triangle in blue,
yields the parametrization

X'Lfyga = li1§+ Kggl + K;;EQ, (7)

where k1 = 200 — 1, kg = 2f3, and k3 = 1 — K1 — K. Vectors (7) localize the points on the triangle Agp, 5, € P
, see Figure 3(a).
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Fig. 3. The four different regions of the convex set M illustrated in Figure 2 are associated with the faces of
the lower tetrahedron of the polytope P. The color-code corresponds to the colors of the right-triangles in
Figure 2. (a) Region I. (b) Region II. (c) Region III. (d) Region IV.

Region II. The right triangle in orange of Figure 2 corresponds to the convex set o € [0,1/2], 5 € [0,1/2 —
, and gives

X@wga = Hl§+ /€2§2 + Hgé& (8)

with ko = 2q, k3 = 28 and k1 = 1 — Ky — k3. In this case, the vectors (8) localize the points on the triangle
Asp,B, € P, see Figure 3(b).

Region III. The right triangle in pink of Figure 2 represents the convex set o € [0,1/2], 8 € [1/2,1 — «]. This
yields

X = li1§+ l{ggl + Hgég, (9)

V3a

with k1 = 20 — 1, Ky = 23 and k3 = 1 — k1 — K. The points on the triangle Agp, 5, € P of Figure 3(c) are
localized by the vectors (9).

Region IV. The right triangle in light-purple of Figure 2 stands for the convexseta € [0,1/2], 8 € [1/2 — o, 1/2)]
. The corresponding vectors

Xw;;n = k1 By + ko By + i3 B3, (10)

with kg =1 —28, k3 =1 — 2cv and K1 = 1 — Ky — K3, localize the points on the triangle Ap p,5, € P shown
in Figure 3(d).

The latter case is of particular relevance. Making v = 3 = 1/3 we have the state

|32) = J (|000) + [101) + [110)) ,

which is local unitary equivalent to the well-known W-state,

W) = 7 (/001) +[010) +[100)). o

Explicitly, [¢3,) = (0, ® 1 ® 1) |W), with o, the x-Pauli matrix and 1 the identity operator in Hs. Since the
smallest eigenvalues are local unitary invariant®®* both, |1/3,) and |W), are mapped onto the same point
A = (1/3,1/3,1/3)" € P, which is the geometric center of the triangle Ap BBy CP.
On the other hand, the type 3b includes three different families of generic vectors, given by the expressions
[¥31,—1) = bp|000) + bye™[100) + by|111),
[th30—2) = b|000) + by|101) + by|111), (12)
[¥31,—3) = bp|000) + b3|110) + by|111).
They correspond respectively to the triangles Agp ¢, Agp,a, and Agp,a, see Figure 4.

The generic type 4 states, referring to superpositions (1) that admit four non-zero coefficients, correspond to
three-dimensional convex subsets of P that are subdivided into four different classes.
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Fig. 4. The type 3b-i states (12) are associated with the two-dimensional convex subsets that are different from
the faces of the tetrahedra that form the polytope P. (a) Type 3b-1. (b) Type 3b-2. (c) Type 3b-3.

Bs

(b)

Fig. 5. Type 4b states. Following®, the values of the Fourier coefficients have been discretized to identify the
image of the states. (a) Type 4b-1. (b) Type 4b-2.

Type 4a, with by = 0, is restricted to the lower tetrahedron of P, written S B By B3, where A\; + Mo+ A3 < 1
%7_The identity in this inequality is saturated by the points on the triangle Ag, g, 5,

Type 4b is subdivided into two different categories, called b-1 (with by = 0) and b-2 (with b3 = 0). They are
respectively mapped into a subset of SB; B;G and S B B2G, see Figure 5.

For states of type 4c (with b; = 0), the image covers region SB; By B3 U SByB3G. To identify states that are
mapped to the faces of the upper tetrahedron of P we fix by = 1/1/2, and consider the linear superposition

[4c-1) = 5 [000) + by [101) + b3 [110) + by [111) , (13)

where b3 + b2 + b3 = 1/2. In this case, the vector

—

)\@‘;40,1 = KIBQ + KQ§3 + K3év (14)

with

lﬁ:Q\/b%(%—bg), HQ:Q b%(%—b%), Iigil—lil—}ﬂz, (15)

localizes the points on the triangle A g, p, . The appropriate permutations transform (13) into a pair of additional
states of type 4c. Namely,

[$4-2) = 75 |000) + bz [110) + b3 [011) + by [111) ,
(16)

|Yac—3) = J5[000) + by [011) + b3 [101) + by [111),

where )" b; = 1/2. It is immediate to show that these states are mapped into the triangles Ap, g, and Ap, p,»
respectively. That is, with type 4c-i states, i = 1, 2, 3, we cover the three faces of the upper tetrahedron in P, see
Figure 6.
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(a) (b) ()

Fig. 6. The type 4c-i states, i = 1, 2, 3, are associated with the faces of the upper tetrahedron of the polytope P.
(a) Type 4c-1. (b) Type 4c-2. (c) Type 4c-3.

The generic type 4d state is expressed in an alternative canonical form*, given in (5). This class of states is
associated with points along the entire polytope P. The relationship between types 4b, 4c, 4d and the polytope
has been numerically studied in?®.

Quantitative characterization of entanglement _
Consider two different points in the entanglement-polytope, Ay, € P, k = 1,2. We know that there is at least
one state |¢);,) in 7 that is associated with each Ay, through the mapping A.

Assuming that [;) and |t)») have a certain degree of entanglement, what it does mean to say that one of them
is more entangled than the other?

The notion of entanglement measure gives diverse quantitative answers to such a question>~>>1%40, Most of
them are based on the distance measures of quantum states, which quantify how close two states are (static case),
or how well information has been preserved during a dynamic process (dynamic case)!. In any case, it is required
a measure standard, a state (or set of states) for which the measure is equal to 1, and a state (or set of states) that
provides a result equal to 0. For three-qubit entanglement, it is usual to associate |G H Z) with measure 1, and
the fully separable states with measure 0. Within this standard, any entanglement measure of the states included
in Table 1 should range between 0 and 1.

How do the entanglement properties of |1);,) affect point )\

_ Suppose |11) is the GHZ-state and that [¢);) is to be determlned Since |GH Z) corresponds to the vertex
G = \y,, if we wanted |12) to be as entangled as possible, we would look for the point Ay, to be in the vicinity of
G. The closer X, is to G, the state |¢/5) will be more ‘similar’ to |GH Z).

The problem is to define the notion of proximity between two points in P that corresponds to some
entanglement measure in #.

Next, we provide two different options, one addressed to quantify global entanglement and the other
characterizing genuine entanglement.

Global entanglement is usually quantified in terms of bipartite entanglement measures!>?**¢. An example
is the measure Q introduced in*, which is the sum of concurrences between a single qubit and the remaining
qubits in the system. However, Q does not distinguish between fully inseparable states and entangled states that
are separable according to some set of subsystems*’. On the other hand, one says that a pure state is genuinely
entangled if it cannot be written as the product of simpler entangled states'®, the canonical examples are states
|GHZ) and |WV). In general, a given measure quantifies genuine entanglement if (a) it returns the result zero
for fully separable states as well as for bi-separable states and (2) it is positive for non-biseparable states'®!*22,

Let us project the vector Ay, € P on the line segments SB; C P. In each case one has

-

Xu =pi+qG D= <)\u‘) : e,;i> ep;, €p, = V2B;, i=1,2,3. (17)

The above decomposition is illustrated in Figure 7. Vectors p; and g; are the projection of X, on B; and rejection
of Ay from B;, respectively. Their norms, written in terms of the components of A, read as follows

Clearly XL =5 produces p; = ¢; = 0, since A\; = 0 for all ¢ = 1,2, 3. Avoiding this simple case, the identity
Ay = B; for some i = 1,2, 3, provides null rejection ¢; = 0, and vice versa. We have seen already that these
points, distributed along the line segment S B;, yield the bi-separable states |1/1;) = |¢:) |¢1).

On the other hand, if \; = A foralli = 1,2, 3, then p; = v2X and ¢; = A. Vectors \,, satisfying this condition

locahze points along the line-segment SG. In this case, the largest rejection ¢; = 1 /2 and largest projection
= 1/+/2 are attributed to the vertex A, = =G, see Figure 7.
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Fig. 7. Partial section of the entanglement-polytope P along the plane II; defined by the vertices S, B, and g
. The orthogonal projection of A;, € P on the line-segment SB; C P (written p;), as well as the rejection of Ay,
from SB; (denoted ;) are useful for introducing diverse entanglement measures (see discussion in the main
text). If A is located in II; (as shown in the figure), then ¢; is also located in II;. In general, both ¢; and A\,
localize the same (arbitrary) point of P, the former from p; on the line-segment S'B;, the latter from the vertex
S.

Fig. 8. The arithmetic mean &(v) introduced in Eq. (19) vanishes for fully separable states and is normalized
to 1 for the GHZ-state. (a) The points /\ € P average higher values ¢ as they get closer to the vertex GepP

. (b) Condition £(v)) = &y, with & = (onstcmt defines planes transverse to the line segment SG whose points
represent states |¢)) € H with the same degree of entanglement. The &-planes shown in the figure correspond
to &y =1/3,2/3,and 5/6.

It is notable that the norm of the projection p; is proportional to the average (arithmetic mean) of \; and A
, we write p; = v/2Av();, \i). Although the eigenvalue )\; seems to be missing here, it plays a s1gn1ﬁcant role to
define the decomposition (17). Indeed, ); determines the length of ¢; (and the length of p; as well).

If we make ); = 0, the inequalities (3) imply A; = A, = A (by necessity), so that ¢; = 0. That is, as noted
above, \; =0 produces the bi-separability of the three qubit state by isolating the ith qubit. Moreover, if A; = 0
then p; = v/2\. Therefore p; € [0, 1/+/2], as expected for the bi-separable states [11;) = |¢;) |0;1)-

In addition, since \; = 1/2 means that p; is maximally mixed, the corresponding three-qubit state (in the
bipartition i — jk) is maximally entangled. This configuration imposes the number 1/(2/2) as a lower bound
on the values of p;, for which we find maximally entangled states. As a consequence, the projection domain is
restricted to the second half of the previous case, p; € [1/(2v/2), 1/v/2).

The previous analysis shows that the norm of p; encodes sensitive information about the entanglement of the
three-qubit system.

Looking for a global treatment, where all the components of X, intervene at the same time, we propose the
following arithmetic mean

5(1/)):?@14-132 +p3) =5 (M + X+ Ag), (19)
which vanishes for fully separable states (\; 23 = 0), and is normalized to 1 for the GHZ-state (A1 3 = 1/2).

Figure 8(a) shows the distribution of points X,;, according to £(1). Clearly, these points average better values & as
they get closer to the vertex G.
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Of particular interest, if \; = A for all i = 1,2,3, then p; = v/2), ¢; = )\, and £(¢) = 2. In this case Xw
localizes points along the line-segment SG. Then the projection p; (= 1/1/2), the rejection ¢; (= 1/2) and the
measure £ (= 1) reach their maximum when A, = G.

A very versatile property of the average (19) arises by imposing the condition &(¢) = constant, since this
defines a plane transverse to the line segment SG whose points represent states |¢/) € H with the same degree
of entanglement. Indeed, assume that such a plane cuts the line segment SG at the point localized by Ay. We
write Xy = &G, with & € [0 1]. If X localizes another point on the plane, then X — X must be orthogonal to the
unitary vector n = ||G/|| LG, so we arrive at the equation

- (A= Ag) = 0. (20)
The solution of (20) is easily found, it is given by &, = £(v).

Figure 8(b) shows some £;—planes. Among them, the triangle Ap, 5,5, coincides with the plane & = 2/3 and
contains the W-state at its geometric center, as indicated above. That is, |IV) is £ = 1/3 distant from |GH Z).

The decomposition (17) offers another possibility to quantify entanglement. As we have seen, the rejection
§; is very sensitive to the eigenvalue \; (its norm g; cancels if A; = 0), and vice versa. Then, we may use ¢; to
quantify the ‘transverse distance’ between A, and SDB; since vector )y is as ‘close’ to SB; as the rejection g;
(equivalently, \;) approaches zero. In this context, we introduce the function

() = 2min(qy, g2, g3), (21)

which quantifies the transverse-distance from Xﬁ, to the nearest line segment S B;.

Figure 9(a) shows the distribution of points Ao according to the function p. Similar to the previous case,
condition (1)) = p9 = const provides a collection of points that represent pure states [¢/) with the same degree
of entanglement. Figure 9(b) shows the regions of P associated with two different values of 1.

The standard of 1(¢)) is as follows: it vanishes for separable states, attains its maximum value (= 1) for the
GHZ-state, and carries out the value 1 = 2/3 for the W-state. Incidentally, (1)) gives the same value as £(1))
for the W-state, reinforcing our previous statement that |1V) is £ = p = 1/3 distant from |G H Z), see Figure 10.

As ¢; = 0 is a condition for bi-separability, in contrast with ¢, the measure p also gives the value 0 for bi-
separable states, see Figure 10. Indeed, ;. is a measure of genuine multipartite entanglement since it satisfies the
requirements reported in, for example,'®.

Figure 10 shows the values provided by the measures & and y for states [¢)sep)> [¢ni) = [0):|¢0F) 1, |W) and
|GHZ). These results are compared with the values that can be obtained in terms of the concurrence-fill Fjo;
and the genuine multipartite concurrence Cayg. The former measure is defined as'®:

Rt = [satw) (S - at) (e -t) (Bow -]

where Q (¢) = Z + 1 C? (). The I concurrence C; is a measure of entanglement between the ith qubit and the
subsystem composed of qublts jand k*.. In turn, the measure Ciy/p is defined as®®

CG \1E<¢> IIlin{Cl,CQ,Cg}.

With exception of &, these measures give 0 for bi-separable states. That is, £ does not discriminate bi-separability
from genuine entanglement, so it is a measure of global entanglement. On the other hand, among these measures,
(1 averages the lowest results for the four states. In other words, 1+ defines a lower bound for measuring genuine
entanglement.

(a) (b)

Fig. 9. (a) The transverse-distance measure /(1)) introduced in (21) gives 0 for separable states and 1 for the
GHZ-state. In addition, this also gives 0 for bi-separable states, so it discriminates bi-separability from genuine
entanglement. Notably, 11 gives the same value as £ for the W-state, which confirms that [W) is§ = u = 1/3
distant from |GH Z). (b) Regions of constant measure ji(1)) = p for pig = 4/5 (closest to vertex G) and

o =1 —+/13/5 (closest to vertex S).
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Fig. 10. Entanglement measures {(v), u(v), Fio3(¢) and Canrp(v) for states |tsep), [ni) = [0): 0 5, [W)
and |GH Z). All the measures give 0 for fully separable states. Measure £ does not discriminate bi-separability
from genuine entanglement since it averages a value different from 0 for bi-separable states. Among these
measures, (. gives the lowest results for the four states.

Fig. 11. (a) When the parameter a sweeps the domain [0, av..] = [0, 7/2], the state [¢),) introduced in (22)
describes a path A, on the lower tetrahedron of P. The trajectory goes first from the vertex S to the midpoint
of By B3 (at o = a, = m/4), and then to the vertex B; (at o = cv,,) on the triangle Ap p, 5,. In this last
journey, Ay, passes through the geometric center of Ap, g, ,, at @ = o = arccos(1/ \/3), which houses state
|[W). (b) Measures ¢ and . for state |¢),,), the former gives {y = 2/3 for o € [a,, @] whereas the latter cancels
at the ends of the a-domain. In contrast with £, the measure 1 also distinguishes among the points living on
Ap, ,B,- That is, points Ay, closer to the center of Ap, g, 5, will correspond to more yi-entangled states |¢),).

To compare in more detail both the properties and the behavior of the measures £ and p, let us consider the
type 3a state

[tha) = cos |100) + sin a|0)1|WH)es, 0< a <

ol

. (22)

It is a matter of substitution to verify that |)a—o) = [100) and |t,_r/2) = |0)1|W")23. That is, at the ends of
the a-domain, the state |¢),) becomes fully separable and bi-separable, respectively. Additionally, making
a = ay = arccos(1/+/3), one gets |10q,) = |[W).

Parameterized by «, the vector XU,“, describes a path in the entanglement-polytope P that follows a trajectory
from S (ata =0)to By (ata =7 /2), see Figure 11(a). Looping through values in the first half of the a-domain,
Ay, draws a straight line on the triangle Agp, p,, from S to the midpoint of segment B> B3 (at o = 7/4). From
there, the vector continues in a straight line on triangle Ap, p,p, to vertex B. In this last journey, Ay, passes
through the geometric center of Ap, p, 5, (at & = ay), which houses state |1V).

Remember that mesure & averages the constant value {, = 2/3 for any point on the triangle Ap p,p,, see
Figure 8(b). Then, the values averaged by £ would indicate that the degree of entanglement of |1, ) is conserved
during the second part of the path described above, just as it is shown in Figure 11(b). In turn, y gives 0 for both
separable and bi-separable states, so it cancels at the ends of the a-domain. That is, with the values given by 1 we
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find that ¢, ) increases its degree of entanglement during the first half of the journey, and decreases it during the
second half to remain as at the beginning. According to y, the maximum degree of entanglement is reached at
a = «, where |1, ) coincides with |IV). Indeed, 11 averages two local maxima, the one at & = «), and another at
a = oy, = /4, see Figure 11(b). Between v, and « (the transit from B, Bs to the geometric center of Ap, p,p,
) there is still an increase of 4 that connects these maxima. This last result sbows that, in contrast with &, the
measure £ also distinguishes among the points living on A g g, p,. The points A, closer to the center of Ap, p,p,
will correspond to more fi-entangled states [),).

Let us verify the universality of measure y to quantify genuine multipartite entanglement. Consider the state

[tg) = N(6) [0082 (%) 111y + %sinr‘) ) \VV}] . 0el0,n], (23)
where

N(O) = [eos* (§) + fsin’ (5)]
stands for the normalization constant. It is immediate to verify the identities |¢g_¢) = |111), [thp—r) = |W) and
[o—0,) = |), with 6y = 27 /3. The latter state is given in Eq. (31), which has been shown to be local unitary
equivalent to the GHZ-state. The measures 1, and Fjo; are respectively given by

2|3+ 5cosf + cos 26
H(e) =1 3 3-&—2(:059+(:0520‘7 @4)
and
8(16cosh +5cos20+15) ., (6
Fro = . Z
123(¢0) 9(2cos 8 + cos 20 + 3) 2 25)

In turn, the GME-concurrence reads Comg(¥y) = / Fias (1)

The above functions are plotted in Figure 12. They range between 0 and 1, with i defining the lower bound for
any 6 # 0. At 0, the three measures give the result 1.

Note that i defines a lower bound on the degree of entanglement that could be measured in the state |1/y), as
it produces lower values than the results of the other two measures.

The inverse problem
One of the advantages of working with the geometric representation of quantum states is that the classification
of entanglement becomes visual and simple. If a given three-qubit state |1)) € H exhibits a certain amount of
entanglement, this is linked to a very concrete point of the entanglement-polytope P throughout the vector A.

The question in the opposite direction offers even more interesting challenges and a much broader perspective
on entanglement. _ .

Given a point A € P, what three-qubit state (or class of states) can be mapped from 7 to precisely A?

This dilemma is an example of the inverse problem of quantum mechanics*?, where one seeks to manipulate
systems in order to force them to behave in a particular way (some applications can be found in**-*). In the

| ‘Vs_ep)

L e ; o)
0 90 JT

Fig. 12. Entanglement measures /(¢)), Fi23(¢)) and Comg(v) for the state |1)g) given in Eq. (23). At = 0 the
state becomes |111), so it is fully separable. However, it is maximally entangled at 0 = 6, = 27/3, since it is
local unitary equivalent to the GHZ-state. At § = 7 the state is equal to |IW). Consistently, the measures range
between 0 and 1, reaching their maximum (= 1) at §. Measure . defines a lower bound, as it produces lower
values than the results of the other two measures, except at § = 6.
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present case, it is about choosing a point of the polytope in a region that characterizes very specific entanglement
properties, and searching for the quantum state that satisfies such a profile.

Some of the possibilities of the inverse problem for states of types 1 to 4a have been explored in?’ (although
the authors of such work do not use the terminology of the inverse problem nor exploit all the potential of the
method). However, as a matter of fact, the solutions to the inverse problem for three-qubit systems are far from
being exhausted. For example, to the best of our knowledge, the inverse problem for the facets By BoG, B1 B3sG
and B, B3, remains unsolved.

To contribute to this topic, let us solve the problem of determining the states that can be associated with a
given point X on the triangle Apg,p,c € P.

The states that we are looking for belong to type 4c-1, so they are written in the form of Eq. (13). Since Xy aet
must be provided in advance, we assume that we know every one of the coefficients of the convex combination
(14). Then, we solve the parameter system (15) to fix the coeflicients of |14._1) in (13). The acceptable solutions

are as follows
b§:i<1+nf—m§— \/<1_n§+ﬁg>2_4ﬁg>,

b2 = ll<1fh1+l€2 \/(lfﬁerng)zlen%), (26)

bi:%<1f\/(17%%4*/{%)27414,%).

Thus, coefficients (26) are determined by the parametrization x4, k9 and 1 — k1 — Ko, which also defines the
facet By B3G.

The inverse problem for facets 31 B3G and B; B> finds a similar solution, this time using the states (16).
In a more general picture, any point A € P can be written as a convex combination of the extremal points,

X = l€0§+ k1B + lizég + liggg + /{463., kg 2 0, Z kg = 1. (27)
This expression is universal for three-qubit systems in the sense that any of the states reported in Table 1 can be
associated with A.

For example, knowing that states of type 4d are mapped to points along the entire entanglement-polytope P, let
us consider [t)44) as it is given in Eq. (5). Making c¢? = v,, the corresponding smallest eigenvalues are

—_

>~
]
M= B t\')\»ﬂ
—_
—

T
&

\/1 (v +v3) (1 — vy —v3)]
-l(U] + 1)3) (1 — UV — 2)3) s (28)

by
\

—4(vg +v3) (1 —wvo —v3)| -

Since these eigenvalues define the vector X, from (27) and (28) we see that the coefficients of |t)44) can be
expressed in terms of ;, 7 = 0, 1, 2, 3, as follows

*%[172’03:|:(/fg+n"3)], v =3[l —2v3 & (Ko + K2)],

29
2[1—2U3:|:(/€0+H1)], v3+ vy + v +vy = 1. (29)

Only four of the set of solutions above are admissible for our purposes. In particular, the case ‘+’ yields
G=ilm+®). d=iat®), d=lm+%). d=i0m-%. O

The set (30) constitutes the solution to the inverse problem of the entanglement—polytope P that we are dealing
with. By providing purely geometric information, through the parameters r;, the state |t)44) is completely
determined, with very specific entanglement properties that can be defined on demand.

To verify the universality of the above solution, first consider the vertex S. That is, ko = 1. Then c; = 1 and

¢y = c1 = ¢ = 0. In this case we arrive at the fully separable state |111). Another immediate example arises if
k4 = 1 (the vertex G) thency=c1 =co =c3=1/2,and

o) = % <\/§\W> n |111>) . (31)

This state is local unitary equivalent to the GHZ state. Indeed,

lp) = (0,H @ 0,H®0,H)|GHZ),
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with H the Hadamard operator.

More interesting configurations are obtained when two or more x-parameters are different from zero. In the
extreme case, where x; # Oforalli = 0, 1,2, 3,4, one can pay attention to the barycenter of the simplex A p, g, 5,
(where state |I¥) is located). The inverse problem solution leads to the state

) =75 (IW) +[111)). (32)

It is remarkable that |x) is not local unitary equivalent to |[WW), although these two states are mapped into the
same point of the entanglement-polytope P. The difference is notable considering that the three-tangle of [W')
is equal to zero®’, while the three-tangle of |x) is equal to 4/(3v/3).

The above case shows the generality that the inverse problem introduces in the determination of quantum states.
In the conventional (direct) problem, every state |¢)) € H is mapped to one and only one point of P. However,
the fact that two or more elements of 7. can be mapped to the same point of P usually goes unnoticed because,
in the direct problem, attention is paid to a specific state. The inverse problem considers all possibilities in # that
can be associated with A € P in a single move. The latter means that the solution to the inverse problem usually
associates a family of states, rather than a single state, with such a point.

As we have seen, the solution (30) provides universality to the state |¢44) in Eq. (5). Once the coefficients
¢ of |thyg) are parametrized with purely geometric information, obtained from the entanglement-polytope P,
the entanglement properties of such state become manipulable. Furthermore, the strength of set (30) lies in the
fact that any other selection of solutions (29) is local unitary equivalent to (30). For example, taking the roots
‘+, —, —, from (29) we have

G=b0rm-%). d=d(a+), d=i(a+y), d=ia+y).

The state |1/74d) that results from these coefficients is local unitary equivalent to |14} through the transformation
U, =0, ® 0, ® 1. Similarly, the roots ‘—, +, —” and ‘—, —, + provide states of type 4d that can be transformed
into the form |t)44) by using the unitary operators Uy = 0, ® 1 ® 0, and U3 = 1 ® 0, ® 0, respectively.

We have chosen type 4d states to exemplify, in a more or less general way, the applicability and power of the
inverse problem. Therefore, we must emphasize that this method is applicable to any point A, € P, in connection
with the states included in Table 1.

We can also pose the inverse problem in another context. Suppose you are interested in determining a
collection of points that describe a given path in P. Say, the path follows one of the surfaces determined by
{1t = g = const. It can be shown that a particular solution is obtained after making b, = 1/+/5, £ = 0,1,2,3, 4,
in (1). Looping through all the domain [0, 7] of w, we obtain the path shown in Figure 13(a). In a given interval
of w, the path overflows the -region towards vertex S. That is, entanglement is constant for w € [wp, 7] and
decreases as w goes from wy to zero. Our assertion is verified in Figure 13(b), where we show the measures s, £,
Fl93 and Cepy g for the w-dependent solution we have found to the above inverse problem.

(a) (b)

Fig. 13. A particular solution to the inverse problem of finding a set of points in P that follows a path with
entanglement measure ; = juy = const, see Figure 9(b), is obtained after making bi’ =1/ V5 in (ll. The pure
state [1)) is parameterized by the phase 0 < w < 7 and is projected onto the path Ay, in P . (a) Ay, starts
and finishes at (1/2, ,£) and (p10/2, 2/5,2/5), respectively. Here yuy = 1 — v/13/5and e = § (1 — V/17/5)

. In the interval [0, wo), with wy = 7/3, the path overflows the 1-region. (b) Measures 11, &, Fi23 and Cgp as
functions of w. Only p and C¢)/ maintain constant in the interval [wy, 7], with values u = 1 — V13 /5 and
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In general, the versatility of the solutions of the inverse method could extend to the practical aspects of
entanglement. For example, the creation and measurement of three-qubit entanglement associated with states of
type 4c-2 have been reported in’!. Since these results are parametrized by data obtained from the optical bench
in the laboratory, information like this could be translated to the entanglement—polytope P to give it measurable
properties.

Conclusions

We have studied the degree of entanglement between the different parts of a tripartite qubit system from a purely
geometric perspective. After constructing a convex polytope P C R® formed by points A = (A1, A2, A3), where
Ay, is the smallest eigenvalue of the reduced matrix associated with the kth qubit?*-2°, we have considered a map
A : H — P to identify some relationships between the tripartite quantum states [¢)) € H and the points of the
projective space P.

In agreement with the conditions reported in?’, we have shown that the classification of entangled states
introduced in”*® results in the identification of concrete subsets of P under the mapping A. The emphasis in the
present study has been on the states mapped into the facets of the polytope P.

Considering the geometric properties of the polytope P, we have introduced two different entanglement
measures, denoted ¢ and p. They are respectively associated with the projection and rejection of the point A
on the biseparable segments of P; the former quantifies global entanglement while the latter measures genuine
entanglement. When compared with some previously reported measures of entanglement, it is found that £ and
1 establish a lower bound for the type of entanglement to which they refer (excluding the GHZ-state for which
both measurements return the value 1, as would be expected). .

The above results can be extended in several directions. For example, one may consider the projection of A
onto different subsets of P in such a way that different entanglement information is provided. In general, the
definition of £ and v can be directly extended to the multi-qubit case, since the points of the corresponding
entanglement-polytope (the dimension of the space that contains it does not matter) can always be projected
onto the appropriate subsets of biseparable points.

The advantages of working with the geometric representation of quantum states, as we have done here,
become more evident when considering the possibility of controlling and manipulating entanglement.

As we have shown, by solving the inverse problem we can force the system to behave in a particular way. In
particular, given a point of the polytope in a region that characterizes very specific entanglement properties,
the quantum state that satisfies such a profile is sought. As a matter of fact, the solution to the inverse problem
associates a family of states in #, rather than a single state, with such a point. The latter provides information of
the space of states 7. that cannot be obtained by solving the conventional (direct) problem, where a given state
in #H is mapped to one and only one point of P.

Setting the value of € or y identifies regions of the entanglement—polytope P whose points represent states
with exactly the same degree of entanglement. These regions allow us to presuppose various evolutions of the
tripartite system, associated with trajectories on some hypersurface of P, which are characterized by leaving the
degree of initial entanglement invariant. The inverse problem allows us to determine the type of operations that
must be applied on the states of the system to induce said trajectories in P. Even better, it opens the possibility
of inducing an increase in the degree of entanglement by identifying operations that correspond to transitions
between the different hypersurfaces of P that are characterized by the entanglement measures £ and p. Work in
this direction is in progress and will be published elsewhere.
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