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This study explores the relationship between surface roughness and characteristic scale through 
theoretical analyses and experimental data. Considering the concavity and convexity of cycloidal gear 
tooth profile curvatures, a curved surface contact coefficient model suitable for both inner and outer 
contacts, with either equal or unequal curvatures, has been developed. Moreover, a fractal contact 
model is constructed for cycloidal pinwheels. This model considers scale correlation and analyzes 
the influence of microscopic parameters on the elastic-plastic critical grade and the behavior of the 
contact area. Additionally, the influence of the micro-convex body frequency index on surface contact 
performance is explored to provide theoretical insights for improving the elastic contact ratio and 
reducing wear on contact surfaces.
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Studies show that sliding friction between rough surfaces primarily occurs at micro-convex body, resulting in an 
actual contact area that is only a small fraction of the nominal or apparent area. Understanding the real contact 
characteristics of cycloidal pin gears, particularly concerning surface roughness, is essential for enhancing the 
performance of core robotic components. This study is crucial for examining their friction, wear, lubrication, 
and heat transfer performance.

Reviewing the literature demonstrates that numerous investigations have been carried out focusing on 
friction sliding. For instance, Xu1,2developed a dynamic model for the RV reducer that includes the effects of the 
crankshaft bearing, accurately predicting the engagement count of pin teeth with the cycloidal pinwheel while 
considering assembly clearance. Li3created a load-bearing contact analysis model for cycloidal gears, predicting 
the loads on each component under conditions of clearance and eccentricity errors. Zhang et al4. investigated 
the impact of progressive wear over time on the key performance aspects of the RV reducer, such as transmission 
effectiveness, accuracy in terms of transmission error, and torsional stiffness. Wang5determined the maximum 
meshing stiffness through optimization under the optimal modification. Yang et al6. used finite element software 
to analyze the torsional stiffness of cycloidal wheels, considering the effects of dynamic parameters, the number 
of engaging teeth, and material properties on torsional stiffness from a macroscopic perspective. Although 
remarkable achievements have been obtained, these models did not consider the influence of the micro-
morphology of the gear surface when analyzing the load-bearing meshing characteristics of the cycloidal gear.

Majumdar and Bhushan7–10 introduced an M-B contact model based on fractal geometry, which primarily 
analyzes contact between two rough planar surfaces without accounting for friction. This model, however, does 
not address contact issues between two rough curved surfaces.

Based on the M-B model, Wang et al11,12. developed a fractal contact model for rough surfaces that includes 
various deformation states of micro-convex body, including elastic, elastoplastic, and plastic, as well as the 
influence of friction at the contact interface. Ding13developed a fractal contact model for rough surfaces from a 
microscopic perspective, focusing on the length of the substrate. Wei et al14. proposed a sliding friction surface 
contact mechanics model based on fractal theory, which considers the characteristics of micro-convex body 
and the effect of friction. Yuan et al15,16. established a scale-related fractal rough surface elastoplastic contact 
mechanics model that takes the level of micro-convex body into account, analyzing the normal contact stiffness 
of the joint surface. Yu et al17. extended the principle of continuous length scales in micro-convex body features 
to create a normal contact stiffness model for curved surfaces, incorporating the influence of the friction factor.
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Zhao et al18,19. developed a fractal contact model for two cylindrical bodies, creating a curved surface 
contact coefficient to represent the contact between two curved surfaces. They also analyzed surface contact 
and calculated the contact stiffness of the joint surface between the cylinders. Chen et al20. designed a spherical 
contact model that includes the friction factor to accurately compute the normal contact stiffness. Ma et al21. 
established a fractal contact model for the sliding friction of arc gears. Han et al22,23. devised a curved surface 
contact coefficient that incorporates the micro-features of the contact tooth surface, establishing a fractal contact 
model for cycloidal gear teeth and pin teeth, and analyzed the impact of both macroscopic and microscopic 
parameters on the contact characteristics. Yang et al24. proposed a micro-morphology model of the cycloidal 
gear with parabolic modification, calculating the normal contact stiffness of the cycloidal gear meshing surface 
under elastic deformation.

This study incorporates theoretical predictions and experimental validations to determine the quantitative 
relationship among surface roughness, fractal dimension, and characteristic scale. Given the unique concave-
convex curve of the cycloidal gear tooth profile, a curved surface contact coefficient is established to address 
internal and external contacts with identical and varying curvatures. Considering the hierarchy of micro-
convex body, this paper develops a fractal contact model for micro-convex body and analyzes the influence of 
macroscopic and microscopic parameters on contact characteristics.

Determination of fractal dimension D and characteristic scale G
The rough surface obtained through experimental methods is accurate; however, the sampling results depend 
heavily on the precision of the equipment. Furthermore, a large sample size requires an extended preparation 
period. A mathematical model can effectively capture the morphological characteristics of actual machined 
surfaces and offers a high degree of model convergence. Accordingly, developing an accurate model is an 
appropriate scheme to analyze the contact and wear characteristics of joint surfaces.

Majumdar and Bushan10 employed the Weierstrass-Mandelbrot (WM) function to establish one of the first 
fractal contact models, hereinafter referred to as the MB model. In the MB model, the rough surface texture is 
based on a 2D multiscale surface profile z(x) generated by the WM function, in which the surface roughness is 
given by

	

z(x) = GD−1

nmax∑
n=nmin

γ(D−2)n cos (2πγnx)� (1)

Where x is the contour displacement coordinate, γn is the frequency spectrum of the rough surface (γ > 1), γ 
is generally taken as 1.5, D represents the fractal dimension, G is the characteristic scale, and n is the frequency 
index, reflecting the level of micro-convex body.

The influence of D and G on the distribution of micro-convex body
Equation (1) indicates that the distribution of z(x) is primarily influenced by the parameters D, G, and n, where 
n is mainly determined by the sampling length and the resolution of the instrument.

Figure 1 reveals that the value of the parameter D exhibits a positive correlation with the complexity of the 
curve. A larger D value signifies a more intricate profile structure and a richer level of detail. Meanwhile, as the 
fractal dimension D increases, the amplitude of the curve decreases.

Figure 2 shows that as the characteristic scale G increases, the amplitude of the distribution curve significantly 
increases. It is worth noting that the characteristic scale of the machined surface determines the amplitude of the 
surface roughness, which directly affects the contact performance of the contacting surfaces.

Fig. 1.  M-B fractal curves for different D values when G = 0.1, nmin = 0, nmax = 100.
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Determination of D and G suing the structural function method
Fractal dimension and characteristic scale are critical parameters for characterizing the fractal features of surface 
morphology. Due to its low computational error, this paper employs the structural function method to determine 
the fractal dimension D and characteristic scale G.

The structural function method9 considers a surface roughness profile as a time series zi(x), and a time series 
with fractal characteristics ensures that its sampled data satisfies the following expression:

Fig. 2.  M-B fractal curve at different G values.
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	 S(τ ) = [zi (x + τ )− zi (x)]
2 = cτ 4−2D� (2)

Where [zi (x + τ )− zi (x)]
2 represents the arithmetic mean of the differences, and τ  is an arbitrarily chosen 

value for the data interval. For various scales τ , the corresponding S(τ ) values of the contour curve’s discrete 
signal are calculated. Subsequently, a double logarithmic coordinate graph of Eq. (2) is constructed. In the double 
logarithmic coordinate graph, the slope α of the straight line corresponding to lg (S(τ ))− lg τ  is obtained. 
Subsequently, the fractal dimension D can be obtained using the following expression:

	
D = 2− α

2
� (3)

It is inferred that the intercept lg cand the characteristic scale G in the logarithmic coordinate diagram satisfy 
the following relationship:

	 G = 10
− lg c

2(D−1) � (4)

Cycloidal gears are typically produced through grinding. The fractal dimension D of the machined surface does 
not exhibit a linear correlation with roughness; instead, the fractal dimension increases as the surface roughness 
decreases. The characteristic scale G significantly affects the amplitude of the fractal roughness simulation. 
Therefore, accurately determining both the fractal dimension D and the characteristic scale G is crucial for 
performing a detailed fractal simulation and contact analysis of the cycloidal gear tooth surface.

Chen20 employed the structural function method to establish a direct relationship between roughness and 
the parameters D and G in the form below:

	 D = 1.528
/
R0.042

a � (5)

	 G = 10−5.26
/
R0.042

a � (6)

When various values of Raare assigned to roughness, the fractal dimension and characteristic scale obtained 
from the empirical formula are compared with those calculated using the structural function method. The 
comparative results are presented in Table 1.

Table 1 indicates that the fractal dimensions calculated using the empirical expression and the structural 
function method have a relative error consistently below 0.8%. This suggests that the empirical expression is 
reliable for determining fractal dimensions. However, the characteristic scale G, calculated using these methods, 
shows significant discrepancies. Given that the characteristic scale strongly depends on the surface roughness, it 
is necessary to re-establish the relationship between surface roughness and G. This process is crucial to accurately 
simulate the distribution of micro-asperities using the M-B fractal function.

Using a single-objective optimization algorithm for fitting and solving, a relationship between roughness Ra 
and the characteristic scale G is established through the following optimization steps:

	(1)	� Determine the basic parameters nmin and nmax according to the M-B fractal model.
	(2)	� Given random surface roughness values Ra, calculate the fractal dimension D using Eq. (5), and establish 

the initial value of the characteristic scale G employing Eq. (6).
	(3)	� Determine the surface roughness distribution according to Eq. (1).
	(4)	� Based on the surface topography curve theory, we calculate the simulated roughness value Ra1. Through an 

optimization solution, we determine the characteristic scale coefficient G, ensuring that the relative error 
between Ra1 and the actual roughness value Ra remains below 1%. Furthermore, we utilize the structural 
function algorithm to ascertain the fractal dimension D1 and the characteristic scale coefficient G1.

	(5)	� The relative error between the fractal dimension D, calculated using the empirical formula (4–5), and the 
fractal dimension D1, determined by the structural function method, has been found to be less than 1%. 
This level of accuracy makes the empirical formula directly applicable. However, there is a significant dis-
crepancy between the characteristic scale coefficient G and the coefficient G1 obtained through the struc-
tural function algorithm. This discrepancy necessitates a re-evaluation of the coefficient through fitting to 
determine its accurate value.

	(6)	� Repeat (2)∼(5) to obtain the fractal dimension D and the characteristic scale coefficient G corresponding 
to any Ra value, and the fractal dimension D1 and the characteristic scale coefficient G1 determined by the 
structural function method.

Ra (µm)
Empirical formulas
D and G

Structural function method
D and G Relative error /%

0.2 1.635,2.36× 10−6 1.648,2.42× 10−5 0.80, 928

0.4 1.588,3.42× 10−6 1.598,4.68× 10−5 0.66, 1210

0.6 1.561,4.23× 10−6 1.570,6.52× 10−5 0.59, 1440

0.8 1.542,4.90× 10−6 1.551,8.61× 10−5 0.54, 1660

Table 1.  The comparison of D and G obtained from the structural function method and empirical expression.
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	(7)	� Through polynomial fitting, we establish the relationship between Ra and the characteristic scale coefficient 
G, revise the structural function algorithm, and construct the accurate M-B fractal prediction model.

Experimental validation of the modified model
In the present study, five cylindrical GCr15 test specimens with varying roughness levels were prepared. These 
specimens were analyzed using a laser confocal scanning analyzer (LSM800, Car Zeiss, Germany) to measure 
their axial surface profiles. The sampling length was set to 1 mm, with 1000 discretized sampling points. Each 
specimen was measured three times in different directions to obtain accurate roughness values and contour 
morphology. Figures 3 and 4 display the measurement instrument and the resulting surface morphology.

The measured surface profile data were exported, and the fractal dimension and characteristic scale were 
calculated on the MATLAB platform.

Table 2 indicates that the characteristic scale coefficient G1, obtained using the modified structural function 
method, and G obtained from the modified empirical expression both had a relative error of less than 7.36%. 
This represents a significant improvement in accuracy compared to the values provided in Table  1. This 
observation demonstrates that a precise relationship between roughness Raand the characteristic scale G can be 
established by modifying the empirical expression, providing a solid foundation for accurately constructing the 
M-B function suitable for engineering applications.

Construction of cycloidal gear and pin tooth morphology model
Constructing a rough surface topography model involves introducing non-stationary, randomly distributed 
micro-protrusions onto a smooth surface. The smooth surface is represented by a vector function, while the 
height of the micro-protrusions is described by the M-B function. This study integrates the vector function with 
the M-B function to create the morphology model of cycloidal gear and pinion teeth.

According to differential geometry, the equation of a two-dimensional plane curve can be mathematically 
expressed in the form below22:

	 r (θ) = x (θ) i + y (θ) j, r (θ) ∈ C0� (7)

Where i and j are unit vectors along the coordinate axes, and x (θ) and y (θ) are continuous functions within 
their domain of definition.

Combining the M-B function with the equation of a two-dimensional plane curve, the two-dimensional 
section equation of an isotropic rough surface can be expressed as:

	 r∗ = r ± z (s) ·m� (8)

Where z (s) represents the height of the micro-convex body, m is the normal vector at a specific point on the 
curve, and the sign ± indicates the concavity or convexity of the curve: the positive sign corresponds to concave 
regions, while the negative sign applies to convex regions.

	
m =

(ṙ (θ)× r̈ (θ))× ṙ (θ)

|ṙ (θ)× r̈ (θ)| |ṙ (θ)| � (9)

The morphology model of the pin tooth
The shape of the pin tooth is a cylinder, and its vector function can be expressed as r (θ) = r cos (θ) i + r cos (θ) j
, where r denotes the cylinder radius. The unit normal vector at each point on the arc is (cos (θ) , sin (θ)).

According to the basic parameters listed in Table 4, D and G are 1.588 and 2.443× 10−6 mm, respectively. By 
integrating Eqs. (7) and (8), the model illustrating the tooth surface morphology of the pin tooth and the height 
distribution of the micro-protrusions is depicted in Fig. 5. It is observed that the surface of the pin tooth is no 
longer smooth due to the presence of micro-convex body. The maximum height of these micro-convex body is 
1.394µm, while the deepest depression measures 1.697µm.

Morphological model of cycloidal gear
The tooth profile of cycloidal gear, including equidistant modification and offset modification25, can be 
mathematically expressed as follows:

	

{
x2 = −(rp +∆rp) sinα− (rrp +∆rrp) sin (θ − α) + e sin (zp · α)
y2 = (rp +∆rp) cosα− (rrp +∆rrp) cos (θ − α) + e cos (zp · α)

� (10)

Where θc = tan−1 k1 sinφ1
1−k1 sinφ1

, k1 =
e·zp

rp+∆rp
, α is the tooth profile parameter of cycloidal gear, ∆rp represents the 

offset modification amount, and ∆rrp denotes equidistant modification.
The curvature radius of the cycloidal gear tooth profile25 is:

	
ρ2i = (rp +∆rp)

(
1 +K2

1 − 2K1 · cos (zcα)
)2

K1 (zp + 1) · cos (zcα)− (1 + zpK2
1)

+ rrp +∆rrp� (11)

It should be indicated that when ρ2i > 0, the curve is concave, otherwise, the curve is convex.
Combining Eqs. (7), (8), (9), (10), and (11), yields a single-tooth morphology model of the cycloidal gear.
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Figure 6 illustrates the fractal profile of a single cycloidal tooth, revealing that the cycloidal tooth profile 
encompasses segments with both concave and convex curvatures.

Figure 7 shows the height distribution of micro-convex body on the cycloidal tooth surface, revealing that 
the surface is, in fact, uneven.

Figure 8 is a physical diagram of the cycloid wheel in engineering practice, from which the actual tooth 
profile shape of the cycloid wheel can be directly seen.

Fig. 3.  Confocal laser scanning microscopy.
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Determination of curved surface contact coefficient between cycloidal gear teeth 
and pin teeth
Construction of curved surface contact coefficient between cylindrical surface and cylindrical 
surface
Existing fractal contact models typically calculate the contact area of micro-convex body based on interactions 
between rough and smooth flat surfaces. However, when the rough surface is curved, the contact area is 
significantly reduced, leading to substantial changes in the contact load. Thus, determining the curved surface 
contact coefficient after the surface has been curved becomes critically important.

Experimental data Revised structural function method Revised empirical formula Relative error (%)

Ra (µm) G1 G |G−G1|
G

0.16 1.97× 10−6 1.90× 10−6 3.55

0.39 2.58× 10−6 2.39× 10−6 7.36

0.58 2.91× 10−6 2.79× 10−6 4.12

0.80 3.47× 10−6 3.24× 10−6 6.63

1.01 3.85× 10−6 3.68× 10−6 4.42

Table 2.  Comparison of the G values obtained by the experimental method and the modified structural 
function method.

 

Fig. 4.  Surface topography of sample with roughness of 0.4 micron.
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Figure 9 illustrates the Hertz contact between two cylinders. Cylinders 1 and 2 have a radius of R1 and R2, 
respectively. Both cylinders share a width of B. Under the influence of the normal load F, the Hertz contact width 
between the two cylinders is represented by AB.

According to Hertz’s contact theory26, for two curved surfaces in contact, the Hertz contact width and the 
theoretical contact area can be determined using the following expressions:

	




ah = 4


F ′R

πE

1/2

Sh = 4B


F ′R

πE

1/2
� (12)

The comprehensive radius of curvature R is given by R = 1
/(

1
R1

± 1
R2

)
, when two curved surfaces are in 

external contact, a positive value is applied; conversely, for internal contact, a negative value is applied; F ′ = F
B  

denotes the load per unit linear length; E is the equivalent elastic modulus of two curved surfaces.
The curved surface contact coefficient of the contacting cylindrical surfaces19 is defined as follows:

	
λ =

[
Sh∑
S

]1/R
� (13)

Where Sh and 
∑

S are the theoretical contact area and the sum of the nominal contact areas of the two curved 
surfaces, respectively. Moreover, 

∑
S refers to the sum of the contact half-width and the developed area of the 

circular arc, resulting from the intersection of the two cylinders.

	
∑

S = S1 + S2� (14)

Where S1 = 2R1 · arcsin
(
0.5·ah
R1

)
· B, andS2 = 2R2 · arcsin

(
0.5·ah
R2

)
· B. It should be indicated that if the 

curvature radius of surface 2 tends to infinity, the sum of the nominal contact areas of the two surfaces is S1, 
which is equivalent to the contact between surface 1 and the plane. On the other hand, if the curvature radius of 
surface 2 tends to zero, it is equivalent to a surface contacting a point, which has no significance in engineering 
applications.

Combining Eqs. (12), (13) and (14) yields the surface contact coefficient of two cylindrical curved surfaces 
as follows:

	

λc =




2

F ′R
πE

0.5

R1 · arcsin

0.5·ah
R1


+R2 · arcsin


0.5·ah
R2




1/R

� (15)

Fig. 5.  Fractal topography of pin tooth flanks.
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Analysis of contact proportional coefficient
The radius of cylinder 1 is 10 mm; The radius range of the cylindrical surface 2 is (0,10); The cylinder width is 
10 mm; The normal load on two cylinders is 1000 N; The comprehensive elastic modulus isE = 206GPa; Fig. 10 
shows the λc −R2 curve.

Figure 10 demonstrates that whenR1is constant, the inner and outer contact widths λcincrease as R2increases. 
Initially, the surface contact coefficient grows rapidly before stabilizing. When the radii of the two cylindrical 
surfaces are equal, the internal surface contact coefficient is greater than the external surface contact coefficient. 
This indicates that the internal contact area is larger and the contact stress is lower during internal contact 
compared to external contact. This behavior aligns with Hertz’s contact theory, which states that when two 
cylindrical surfaces with the same curvature undergo internal contact, the coefficient λcequals 1. This signifies 
that the surfaces are completely enveloping each other and are in contact at every point. Table 3 shows that as 
the load increases, the surface contact coefficient remains constant, which provides a foundation for subsequent 
fractal contact analysis.

This analysis demonstrates that the surface contact coefficient constructed in this study is reasonable.

Analysis of curved surface contact coefficient of cycloidal pinwheel
Equation (11) reveals that the curvature radius of the cycloidal gear significantly influences the surface contact 
coefficient. Thus, analyzing the distribution of the cycloidal gear’s curvature radius is essential. Figure  11 
illustrates this distribution.

Figure 11 shows that the curvature of the cycloidal gear is less than 0, indicating that the curve is concave 
outward. In this state, the cycloidal gear engages in external meshing with the pin teeth. At the position (-0.2308, 
-0.3984), the curvature of the cycloidal gear matches that of the pin teeth, signifying external contact with 
the same curvature. At the position (0.0029, -0.0019), the curvature equals 0, indicating a transition from an 
outwardly convex to an inwardly concave shape for the cycloidal gear. At this point, the curvature radius of the 
cycloidal gear approaches infinity, equivalent to the pin teeth making contact with a plane. When the curvature 

Fig. 6.  Fractal topography of cycloidal gear tooth surface.
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of the cycloidal gear is greater than 0, the gear engages in internal meshing with the pin teeth, allowing for the 
possibility of internal contact with the same curvature. Equation (15) can also address this scenario.

Figure  12 illustrates the engagement process between the cycloidal gear and the pin tooth, revealing the 
variations of the contact coefficient from the tooth crest to the tooth root. It is observed that in the external 
meshing stage, the contact coefficient is 0.48. As the gear reaches the curvature equilibrium point, the contact 
coefficient rises to 0.75. It then continues to increase, reaching 0.92 during the internal meshing stage. Throughout 
the entire engagement interval, the contact coefficient in the internal meshing stage remains higher than that in 
the external meshing stage.

MB fractal contact model
Considering the scale characteristics of micro-convex body, a fractal contact model for the contact interface is 
established. For any the frequency index n:

	 l = 1/γn� (16)

Figure 13 schematically shows the contact deformation between micro-convex body and a rigid plane. In this 
diagram, l is the length of the micro-convex body base, lt is the truncated length of the micro-convex body, lr 
is the real contact length of the micro-convex body, Rn is the curvature radius of the top of the micro-convex 
body, δn is the height of the micro-convex body, and wn is the bearing deformation of the micro-convex body.

The asperities before deformation can be represented as:

	
z (lt) = GD-1l2-D cos

(
πlt
l

)
, − l

2
< lt <

l

2
� (17)

Based on this expression, the curvature radius at the top of the micro-convex body on the fractal surface is:

	
Rn =

∣∣∣∣1
/(

d2z (lt)

dl2t

)∣∣∣∣
lt=0

=
lD

π2GD-1 � (18)

The expressions for the deformation wn and height δn of the micro-convex body are:

	
wn = δn − z

(
lt
2

)
= δn

(
1− cos

(
πlt
l

))
� (19)

	 δn = GD-1l2-D� (20)

Fig. 7.  Height distribution diagram of micro-convex body on cycloidal gear tooth surface.
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Fig. 8.  Physical diagram of cycloidal wheel.
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Elastic deformation stage
Based on Hertz contact theory26, when elastic deformation occurs, the contact area and contact load of a single 
micro-convex body are given by:

	 ane = πRnwn� (21)

	
Pne (wn) =

4

3
ER0.5

n w3/2
n � (22)

The critical elastic deformation is:

	
wnec =

(
πKH

2E

)2

Rn� (23)

Where H is the hardness of the softer material, and K is the hardness coefficient K = 0.454 + 0.41µ.
Considering friction, the elastic critical contact area of the convex body can be obtained using the following 

expression:

	
anec = π

(
πKH

2E

)2

R2
n� (24)

Combining Eqs. (16), (18), (21), and (22) yields the relationship between the contact load and the contact area 
during elastic deformation.

Fig. 9.  Schematic diagram of Hertz contact between two cylinders.
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Pne (ae) =

4Eπ1/2GD-1

3(1/γn)D
a3/2ne � (25)

When the micro-convex body is elastically deformed, the relationship between the cross-sectional area of the 
micro-convex body and the real contact area is:

	 a′ne = 2ane� (26)

Combining Eqs.  (24) and (26) yields the relationship between the elastic critical cutting area and the elastic 
critical cross-sectional area. This can be expressed in the form below:

	
a′nec = 2anec=2π

(
πKH

2E

)2

R2
n� (27)

Normal load F/ N

10 100 1000

External contact Internal contact External contact Internal contact External contact Internal contact

0.001 0.001 0.001 0.001 0.001 0.001

0.030 0.035 0.030 0.035 0.030 0.035

0.095 0.109 0.095 0.109 0.095 0.109

0.168 0.193 0.168 0.193 0.168 0.193

0.236 0.272 0.237 0.272 0.237 0.272

0.297 0.341 0.297 0.342 0.297 0.342

0.350 0.402 0.350 0.402 0.350 0.402

0.396 0.454 0.396 0.455 0.396 0.455

… … … … … …

0.869 0.998 0.869 0.998 0.869 0.998

0.869 0.999 0.869 0.999 0.869 0.999

0.870 0.999 0.870 0.999 0.870 0.999

0.871 1.000 0.871 1.000 0.871 1.000

Table 3.  Surface contact coefficients for various loads.

 

Fig. 10.  The distribution of the surface contact coefficient for various curvature radii.
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Fig. 12.  Contact proportion coefficient distribution curve of meshing interval.

 

Fig. 11.  Curvature distribution diagram of meshing interval cycloidal gear.
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Similarly, the relationship between the elastic contact load and the elastic cutting area can be derived as:

	
Pne (ane) =

2Eπ1/2GD-1

3
√
2lD

a′3/2ne � (28)

Elastic-plastic deformation
Kogut and Etsion27,28 analyzed the elastic-plastic contact of spherical convex bodies. When the deformation 
magnitude wnec < wnep1 ⩽ 6wnec, the micro-convex body is in the first stage of elastoplastic deformation. 
During this stage, the contact area and the corresponding contact load are given by:

	
anep1 = anec · 0.93

(
wnep1

wnec

)1.136

� (29)

	
Pnep1 = Pnec · 1.03

(
wnep1

wnec

)1.425

� (30)

When the deformation magnitude exceeds6wnec < wnep2 ⩽ 110wnec, the micro-convex body enters the second 
stage of elastoplastic deformation. At this stage, the contact area and the respective contact load are characterized 
by:

	
anep2 = anec · 0.94

(
wnep2

wnec

)1.146

� (31)

	
pnep2 = Pnec · 1.40

(
wnep2

wnec

)1.263

� (32)

The first and the second elastic-plastic critical areas are denoted as anepc1 = 7.1197anec and anepc2 = 205.3827anec
, respectively.

When the contact is in the first and second elastic-plastic stage:

	 pnep1 = 0.7521KHa−0.2544
nec a1.2544� (33)

Fig. 13.  Schematic diagram of contact deformation of micro-convex body.
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	 pnep2 = 0.9992KHa−0.1021
nec a1.1021� (34)

It should be indicates that during the elastic-plastic deformation stage, the relationships between the sides of a 
right-angled triangle are utilized.

	 R2
n = (Rn − wn)

2 + l2t � (35)

The expression of the cut-off area is:

	 a′nep = πl2t = 2πRnwn� (36)

The deformation amplitude of a micro-convex body is significantly smaller than the curvature radius at its tip, 
so the truncated area can be expressed as:

	 a′nep = πl2t = 2πRnwn� (37)

The first and second-stage elastic-plastic cross-sectional area can be derived by combining Eqs. (29), (31), and 
(37).

	 anep1 = 0.4650a′−0.136
nec a′1.136nep1 � (38)

	 anep2 = 0.4700a′−0.146
nec a′1.146nep2 � (39)

The relationship between the first elastic-plastic critical truncated area, the second elastic-plastic critical 
truncated area, and the elastic critical truncated area are given by:

	 a′nepc1 = 6a′nec� (40)

	 a′nepc2 = 110a′nec� (41)

The relationship between the first elastic-plastic contact load and the truncated area is expressed as:

	 pnep1 = 0.3433KHa′−0.4250
nec a′1.4250nep1 � (42)

The relationship between the second elastic-plastic contact load and the truncated area is as follows:

	 pnep2 = 0.4667KHa′−0.2630
nec a′1.2630nep2 � (43)

Complete plastic deformation stage
Whenwnpc > 110wnec, the convex body exhibits a plastic deformation. At this stage, the contact area and contact 
load can be described as:

	 anpc = 2πRnwnpc� (44)

	 pnpc = Hanpc� (45)

According to Hertz’s theory, in the complete plastic deformation stage:

	 a′npc = anpc� (46)

Meanwhile, the correlation between complete plastic contact load and plastic sectional area can be expressed in 
the form below:

	 pnpc = Ha′npc� (47)

Determination of the deformation state of different grades of micro-convex bodies
The micro-convex body is elastically deformed, and if the maximum deformation of the micro-convex body is 
δn ⩽ wnec

	
δn ⩽

(
πKH

2E

)2

Rn� (48)

Bring formulas (16), (18), (20) and (23) into (48)

	
GD-1(1/γn)2-D ⩽

(
πKH

2E

)2
(1/γn)D

π2GD-1
� (49)

By solving Eq. 49, the critical grade nnecof elastic deformation of micro-convex body can be obtained15.
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nnec ⩽

ln
[(

KH
2E

)2( 1
G

)2D-2
]

2 (D − 1) ln γ
� (50)

The first and second elastic-plastic critical grades of the micro-convex body are

	
nepc1 ⩽

ln
[
6
(
KH
2E

)2( 1
G

)2D-2
]

2 (D − 1) ln γ
� (51)

	
nnepc2 ⩽

ln
[
110

(
KH
2E

)2( 1
G

)2D-2
]

2 (D − 1) ln γ
� (52)

The deformation behavior of a micro-asperity varies depending on its grade.
for nmin < n ⩽ nnec, the micro-asperity undergoes only elastic deformation.
for nnec < n ⩽ nepc1, the micro-asperity experiences elastic deformation and the first stage of elastic-plastic 

deformation.
for nnepc1 < n ⩽ nnepc2, the micro-asperity undergoes elastic deformation, the first and the second stages of 

elastic-plastic deformation.
for nnepc2 < n ⩽ nmax, the micro-asperity undergoes elastic deformation, the first and the second stages of 

elastic-plastic deformation.

Area distribution function of micro-convex body
According to fractal theory, when the contact plane becomes curved, the distribution function of the contact 
area for micro-convex body on a sliding friction surface can be expressed in the form below:

	
n(a′) = λc

D

2
ψ1−D/2a

′D/2
l a′−D/2−1� (53)

	
Ar =

D

2−D
ψ1−D/2a′l� (54)

Where ψ is the fractal region expansion coefficient; a′l is the maximum asperity cross-sectional area; Ar is the real 
contact area of the sliding friction surface.

The functional relationship between the regional expansion coefficient ψ and the fractal dimension D is given 
by:

	
ψ = 5.453 exp

(
− D

0.628

)
+ 1.499, 1 < D < 2� (55)

The real contact area for fractal interfaces related to scale depends on the maximum micro-convex body 
truncation area, determined by the micro- convex body level. The contact area distribution function for micro- 
convex body of different levels can be defined as nn(a

′) and nn(a
′) = Qnn(a

′), with the expression forQnprovided 
in reference15.

	

Qn=
a′l

n=nmax∑
n=nmin

a′nl
� (56)

Where a′l = max (a′nl) and nmin ⩽ n ⩽ nmax.

Real contact area and contact load
The real contact area is defined as:

	 Ar=Are + Arep1 + Arep2 + Arp� (57)

Where Are is the elastic contact area; Arep1 is the first elastic-plastic contact area; Arep2 is the second elastic-
plastic contact area; and Arp denotes the completely plastic contact area.

	

Are=
nnec

n=nmin

 a′nl

0

Qnn(a
′)a′da′ +

nmax
n=nnec+1

 a′nec

0

Qnn(a
′)a′da′

=λcg1 (D)




nnec
n=nmin

Qna
′
nl +

nmax
n=nnec+1

Qna
′0.5D
nl a′1−0.5D

nec




� (58)
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Arep1=
nnepc1

n=nnec+1

 a′nl

a′nec

Qnn(a
′)a′da′ +

nmax
n=nnepc1+1

 a′nepc1

a′nec

Qnn(a
′)a′da′

=λcg1 (D)




nnepc1
n=nnec+1

Qn
�
a′1−0.5D

nl − a′1−0.5D
nec


a′0.5Dnl +

nmax
n=nnepc+1

Qn
�
a′1−0.5D

nepc1 − a′1−0.5D
nec


a′0.5Dnl




� (59)

	

Arep2=
nnepc2

n=nnepc1+1

 a′nl

a′nepc1

Qnn(a
′)a′da′ +

nmax
n=nnepc2+1

 a′nepc2

a′nepc1

Qnn(a
′)a′da′

=λcg1 (D)




nnepc2
n=nnepc1+1

Qn
�
a′1−0.5D

nl − a′1−0.5D
nepc1


a′0.5Dnl +

nmax
n=nnepc2+1

Qn
�
a′1−0.5D

nepc2 − a′1−0.5D
nepc1


a′0.5Dnl




� (60)

	

Arp=
nmax

n=nnepc2+1

 a′nl

a′nepc2

Qnn(a
′)a′da′

=λcg1 (D)




nmax
n=nnepc2+1

Qn
�
a′1−0.5D

nl − a′1−0.5D
nepc2


a′0.5Dnl




� (61)

The total contact load is defined as:

	 Pr=Pre + Prep1 + Prep2 + Prp� (62)

Where Pre is the elastic contact load; Prep1 is the first elastic-plastic contact load; Prep2 is the second elastic-plastic 
contact load; and Prpis the complete plastic load.

	

Pre=
nnec

n=nmin

 a′nl

0

PneQnn(a
′)da′ +

nmax
n=nnec+1

 a′nec

0

PneQnn(a
′)da′

=λcg2 (D)




nnec
n=nmin

Qn(1/γ
n)Da′1.5nl +

nmax
n=nnec+1

Qn(1/γ
n)Da′0.5Dnl a′1.5−0.5D

nec




� (63)

	

Prep1=
nnepc1

n=nnec+1

 a′nl

a′nec

Pnep1Qnn(a
′)da′ +

nmax
n=nnepc1+1

 a′nepc1

a′nec

Pnep1Qnn(a
′)da′

=λcg3 (D)




nnepc1
n=nnec+1

Qn
�
a′1.425nl − a′1.425−0.5D

nec a′0.5Dnl

+

nmax
n=nnepc+1

Qn
�
a′1.425−0.5D

nepc1 − a′1.425−0.5D
nec


a′0.5Dnl




� (64)

	

Prep2=
nnepc2

n=nnepc1+1

 a′nl

a′nepc1

Pnep2Qnn(a
′)a′da′ +

nmax
n=nnepc2+1

 a′nepc2

a′nepc1

Pnep2Qnn(a
′)a′da′

=λcg4 (D)




nnepc2
n=nnepc1+1

Qn
�
a′1.2630nl − a′1.2630−0.5D

nepc1 a′0.5Dnl

+

nmax
n=nnepc1+1

Qn
�
a′1.2630−0.5D

nepc2 − a′1.2630−0.5D
nepc1


a′0.5Dnl




� (65)

	

Prp=
nmax

n=nnepc2+1

 a′nl

a′nepc2

pnpcQnn(a
′)a′da′

=Hλcg1 (D)




nmax
n=nnepc2+1

Qn
�
a′nl − a′1−0.5D

nepc2 a′0.5Dnl




� (66)

Where g1 (D) = D
2−Dψ

1-D/2 represents a constant related to fractal dimension;g2 (D) = 2Eπ0.5GD-1

3
√
2

D
3−Dψ

1-D/2

, g3 (D) = 00.3433KH D
2.85−Dψ

1-D/2 and g4 (D) = 00.4667KH D
2.5260−Dψ

1-D/2is a constant related to fractal 
dimension and material parameters.

Analysis of the contact characteristics of cycloidal pinwheels
The nominal contact area of a rough surface is denoted by Aa =

(
L
/
γnmin

)2

. The dimensionless real contact 

area is represented asA∗
r = Ar/Aa, and the dimensionless contact load is denoted by F ∗

r = Fr/(EAa). The basic 
parameters for the cycloidal pinwheel are presented in Table 4. Both the cycloidal pinwheel and pin teeth have a 
surface roughness of 0.4 µm, and the hardness of the tooth surface is measured at 750 MPa.
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Influence of microscopic characteristics on contact characteristics
Parameters D and G are the primary determinants in defining the shape and size of micro-protrusions on 
rough surfaces. These parameters exhibit a direct correlation with the surface roughness. The impact of surface 
roughness on the contact performance between two surfaces is illustrated in Fig. 14.

It is observed that as the surface roughness of the two contacting surfaces increases, the elastic critical load 
and the first and second elastoplastic critical loads gradually decrease, with the rate of decrease becoming 
progressively smaller.

Figure 15 reveals that an increase in roughness results in a gradual decline of the dimensionless real contact 
area. This observation may be attributed to the enhanced roughness causing micro-protrusions to become taller, 
subsequently decreasing the number of micro-protrusions that engage in actual contact. Consequently, the 
overall actual contact area reduces.

Influence of macroscopic parameters on contact characteristics
The cycloidal gear tooth profile is quite intricate, featuring a mix of concave and convex contour curves. During 
engagement with the pin tooth, the gear undergoes both external and internal meshing. Therefore, it is crucial 
to examine the effects of various macroscopic parameters on the contact performance of the engaging tooth 
surfaces.

Figure 16 illustrates a curve distribution diagram reflecting the influence of eccentricity on the load within 
the meshing interval. The diagram reveals that at eccentricities of 0.9 mm and 1.0 mm, the dimensionless load 
during meshing gradually decreases. This decrease aligns with the transition from external to internal meshing as 
the cycloidal pinwheel engages. However, at an eccentricity of 1.1 mm, the dimensionless load initially increases 
slightly before rapidly decreasing, resulting in more significant load fluctuations throughout the meshing interval 
and leading to unstable power transmission.

Figure 17 illustrates the influence of pin tooth radius on the load within the meshing interval. It is observed that 
as the pin tooth radius increases, the dimensionless contact load across the engagement zone decreases steadily. 

Fig. 14.  Influence of roughness on critical grade.

 

Basic parameter Values Basic parameter Values

Number of teeth of cycloidal gear zc 39 Shift modification ∆ rp/mm -0.037

Pin tooth number zp 40 Poisson’s ratio µ 1, µ 2 0.3

Radius of pin tooth distribution circle rp/mm 51.5 Modulus of elasticity E1,  E2/GPa 207

Pin tooth radius rrp/mm 2.5 Cycloidal gear tooth width b/mm 10

Equidistant modification ∆ rrp/mm -0.02 Eccentricity e/mm 1.0

Table 4.  Basic parameters of cycloidal pinwheel pair.
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This observation reflects the transition from external engagement at the tooth crest to internal engagement with 
the cycloidal gear. Notably, the loads during the external engagement phase are higher than those in the internal 
engagement phase, consistent with classical Hertz contact theory. When the pin tooth radius expands from 
1.5 mm to 2.5 mm, the dimensionless contact load decreases gradually but then rises rapidly between 2.5 mm 
and 3.5 mm. Throughout the engagement range, significant fluctuations in load amplitude occur, leading to 
unstable transmission. Therefore, a careful selection of the pin tooth radius can reduce the contact load between 
the pin tooth and the cycloidal gear, enhancing the system’s bearing capacity.

Figure  18 depicts the influence of the pin tooth distribution circle radius on the meshing interval load. 
The graph indicates that the dimensionless contact load decreases gradually as the radius of the pin tooth 
distribution circle increases. Under the same distribution circle radius, the dimensionless contact load along 

Fig. 16.  Influence of eccentricity on meshing interval load.

 

Fig. 15.  Influence of roughness on the dimensionless real contact area.
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the meshing interval also gradually decreases, suggesting that increasing the radius of the pin tooth distribution 
circle appropriately can reduce the load in the meshing area and improve bearing capacity.

Influence of micro-convex level on contact characteristics
Figure 19 shows that as the minimum frequency index of micro-protrusions increases, the proportion of the 
elastic contact area decreases gradually, while the proportions of both the first and second elastoplastic contact 
areas increase. When this index exceeds 15, the proportion of the elastic contact area decreases more rapidly. 

Fig. 18.  The influence of the pin tooth distribution circle radius on the load within the engagement zone.

 

Fig. 17.  The effect of pin tooth radius on the load in the engagement zone.
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Concurrently, the proportion of the first elastoplastic contact area increases quickly before stabilizing, and 
the proportion of the second elastoplastic contact area also rises rapidly. During the sliding wear process, the 
contact state between interacting surfaces significantly impacts wear. A larger proportion of elastic contact areas 
is more conducive to reducing wear. Thus, selecting an appropriate frequency index for the micro-protrusions is 
essential for minimizing wear on the contacting surfaces.

Conclusion
This paper integrates theoretical analysis and experimental methods to establish a clear relationship between 
surface roughness and characteristic scale. It introduces a surface contact coefficient model for evaluating 
complex surface contacts and investigates the effects of microscopic parameters, cycloidal pinwheel design 
parameters, and the hierarchy of micro-protrusions on the contact performance of cycloidal pinwheels. The 
main achievements of this article can be summarized as follows:

	(1)	� By integrating theoretical analysis with experimental validation, this study utilizes an optimization algo-
rithm to determine the characteristic scale. This method enhances the traditional structural function tech-
nique, establishing a definitive relationship between surface roughness and the scale of micro-features.

	(2)	� Considering the curvature variability of the cycloidal gear tooth profile, a surface contact coefficient model 
applicable to internal and external contacts with arbitrary curvature is developed. The study also examines 
the variation of the surface contact coefficient within the meshing interval of cycloidal pinwheels.

	(3)	� A fractal contact model based on the dimensions of micro-protrusions is created, allowing for the analysis 
of micro-scale parameters’ effects on elastoplastic critical loads and the real contact area. Additionally, the 
study analyzes the impact of macroscopic parameters of the cycloidal pinwheel on the load within the 
engagement zone. It also clarifies the influence of the minimum frequency index of micro-protrusions on 
surface contact performance.

The study paves the way for a detailed analysis of the actual contact characteristics at the meshing interface 
of cycloidal pinwheels. It provides a basis for enhancing the elastic contact ratio of the contact surface and 
diminishing tooth surface wear.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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