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OPEN A revised elastic-plastic contact

model of cycloidal pinwheel based
on length scale

Yonggiang Wang?, Bingyang Wei'?, Zhen Wang>* & Tianxing Li*

This study explores the relationship between surface roughness and characteristic scale through
theoretical analyses and experimental data. Considering the concavity and convexity of cycloidal gear
tooth profile curvatures, a curved surface contact coefficient model suitable for both inner and outer
contacts, with either equal or unequal curvatures, has been developed. Moreover, a fractal contact
model is constructed for cycloidal pinwheels. This model considers scale correlation and analyzes

the influence of microscopic parameters on the elastic-plastic critical grade and the behavior of the
contact area. Additionally, the influence of the micro-convex body frequency index on surface contact
performance is explored to provide theoretical insights for improving the elastic contact ratio and
reducing wear on contact surfaces.

Keywords Cycloidal pinwheel, Curvature concavity and convexity, Curved surface contact coefficient,
Micro-convex body frequency index

Studies show that sliding friction between rough surfaces primarily occurs at micro-convex body, resulting in an
actual contact area that is only a small fraction of the nominal or apparent area. Understanding the real contact
characteristics of cycloidal pin gears, particularly concerning surface roughness, is essential for enhancing the
performance of core robotic components. This study is crucial for examining their friction, wear, lubrication,
and heat transfer performance.

Reviewing the literature demonstrates that numerous investigations have been carried out focusing on
friction sliding. For instance, Xu'*developed a dynamic model for the RV reducer that includes the effects of the
crankshaft bearing, accurately predicting the engagement count of pin teeth with the cycloidal pinwheel while
considering assembly clearance. Li*created a load-bearing contact analysis model for cycloidal gears, predicting
the loads on each component under conditions of clearance and eccentricity errors. Zhang et al‘. investigated
the impact of progressive wear over time on the key performance aspects of the RV reducer, such as transmission
effectiveness, accuracy in terms of transmission error, and torsional stiffness. Wang>determined the maximum
meshing stiffness through optimization under the optimal modification. Yang et al®. used finite element software
to analyze the torsional stiffness of cycloidal wheels, considering the effects of dynamic parameters, the number
of engaging teeth, and material properties on torsional stiffness from a macroscopic perspective. Although
remarkable achievements have been obtained, these models did not consider the influence of the micro-
morphology of the gear surface when analyzing the load-bearing meshing characteristics of the cycloidal gear.

Majumdar and Bhushan’~'? introduced an M-B contact model based on fractal geometry, which primarily
analyzes contact between two rough planar surfaces without accounting for friction. This model, however, does
not address contact issues between two rough curved surfaces.

Based on the M-B model, Wang et al'""'. developed a fractal contact model for rough surfaces that includes
various deformation states of micro-convex body, including elastic, elastoplastic, and plastic, as well as the
influence of friction at the contact interface. Ding!*developed a fractal contact model for rough surfaces from a
microscopic perspective, focusing on the length of the substrate. Wei et al'*. proposed a sliding friction surface
contact mechanics model based on fractal theory, which considers the characteristics of micro-convex body
and the effect of friction. Yuan et al'>!®. established a scale-related fractal rough surface elastoplastic contact
mechanics model that takes the level of micro-convex body into account, analyzing the normal contact stiffness
of the joint surface. Yu et al'”. extended the principle of continuous length scales in micro-convex body features
to create a normal contact stiffness model for curved surfaces, incorporating the influence of the friction factor.
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Zhao et al'®!1°, developed a fractal contact model for two cylindrical bodies, creating a curved surface
contact coefficient to represent the contact between two curved surfaces. They also analyzed surface contact
and calculated the contact stiffness of the joint surface between the cylinders. Chen et al?. designed a spherical
contact model that includes the friction factor to accurately compute the normal contact stiffness. Ma et al?!.
established a fractal contact model for the sliding friction of arc gears. Han et al?>?. devised a curved surface
contact coeflicient that incorporates the micro-features of the contact tooth surface, establishing a fractal contact
model for cycloidal gear teeth and pin teeth, and analyzed the impact of both macroscopic and microscopic
parameters on the contact characteristics. Yang et al?*. proposed a micro-morphology model of the cycloidal
gear with parabolic modification, calculating the normal contact stiffness of the cycloidal gear meshing surface
under elastic deformation.

This study incorporates theoretical predictions and experimental validations to determine the quantitative
relationship among surface roughness, fractal dimension, and characteristic scale. Given the unique concave-
convex curve of the cycloidal gear tooth profile, a curved surface contact coefficient is established to address
internal and external contacts with identical and varying curvatures. Considering the hierarchy of micro-
convex body, this paper develops a fractal contact model for micro-convex body and analyzes the influence of
macroscopic and microscopic parameters on contact characteristics.

Determination of fractal dimension D and characteristic scale G
The rough surface obtained through experimental methods is accurate; however, the sampling results depend
heavily on the precision of the equipment. Furthermore, a large sample size requires an extended preparation
period. A mathematical model can effectively capture the morphological characteristics of actual machined
surfaces and offers a high degree of model convergence. Accordingly, developing an accurate model is an
appropriate scheme to analyze the contact and wear characteristics of joint surfaces.

Majumdar and Bushan!® employed the Weierstrass-Mandelbrot (WM) function to establish one of the first
fractal contact models, hereinafter referred to as the MB model. In the MB model, the rough surface texture is
based on a 2D multiscale surface profile z(x) generated by the WM function, in which the surface roughness is
given by

nmax

z(z) = GP! Z AP~ cos (27" ) (1)

"“"min

Where x is the contour displacement coordinate, 7" is the frequency spectrum of the rough surface (y > 1), v
is generally taken as 1.5, D represents the fractal dimension, G is the characteristic scale, and # is the frequency
index, reflecting the level of micro-convex body.

The influence of D and G on the distribution of micro-convex body
Equation (1) indicates that the distribution of z(x) is primarily influenced by the parameters D, G, and n, where
n is mainly determined by the sampling length and the resolution of the instrument.

Figure 1 reveals that the value of the parameter D exhibits a positive correlation with the complexity of the
curve. A larger D value signifies a more intricate profile structure and a richer level of detail. Meanwhile, as the
fractal dimension D increases, the amplitude of the curve decreases.

Figure 2 shows that as the characteristic scale G increases, the amplitude of the distribution curve significantly
increases. It is worth noting that the characteristic scale of the machined surface determines the amplitude of the
surface roughness, which directly affects the contact performance of the contacting surfaces.
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Fig. 1. M-B fractal curves for different D values when G = 0.1, ny;;, = 0, nmax = 100.
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Fig. 2. M-B fractal curve at different G values.

Determination of D and G suing the structural function method
Fractal dimension and characteristic scale are critical parameters for characterizing the fractal features of surface
morphology. Due to its low computational error, this paper employs the structural function method to determine
the fractal dimension D and characteristic scale G.

The structural function method® considers a surface roughness profile as a time series z;(), and a time series
with fractal characteristics ensures that its sampled data satisfies the following expression:
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Where [ ( + 7) — z; ()] represents the arithmetic mean of the differences, and 7 is an arbitrarily chosen
value for the data interval. For various scales 7, the corresponding S(7) values of the contour curve’s discrete
signal are calculated. Subsequently, a double logarithmic coordinate graph of Eq. (2) is constructed. In the double
logarithmic coordinate graph, the slope a of the straight line corresponding to lg (S(7)) — lg 7 is obtained.
Subsequently, the fractal dimension D can be obtained using the following expression:

o
D72—§ (3)

It is inferred that the intercept lg cand the characteristic scale G in the logarithmic coordinate diagram satisfy
the following relationship:

G = 1()“2<5’31> (4)

Cycloidal gears are typically produced through grinding. The fractal dimension D of the machined surface does
not exhibit a linear correlation with roughness; instead, the fractal dimension increases as the surface roughness
decreases. The characteristic scale G significantly affects the amplitude of the fractal roughness simulation.
Therefore, accurately determining both the fractal dimension D and the characteristic scale G is crucial for
performing a detailed fractal simulation and contact analysis of the cycloidal gear tooth surface.

Chen?® employed the structural function method to establish a direct relationship between roughness and
the parameters D and G in the form below:

D =1.528/ R)" (5)

G = 10—5.2(3/}:{2.0’12 (6)

When various values of R,are assigned to roughness, the fractal dimension and characteristic scale obtained
from the empirical formula are compared with those calculated using the structural function method. The
comparative results are presented in Table 1.

Table 1 indicates that the fractal dimensions calculated using the empirical expression and the structural
function method have a relative error consistently below 0.8%. This suggests that the empirical expression is
reliable for determining fractal dimensions. However, the characteristic scale G, calculated using these methods,
shows significant discrepancies. Given that the characteristic scale strongly depends on the surface roughness, it
is necessary to re-establish the relationship between surface roughness and G. This process is crucial to accurately
simulate the distribution of micro-asperities using the M-B fractal function.

Using a single-objective optimization algorithm for fitting and solving, a relationship between roughness R,
and the characteristic scale G is established through the following optimization steps:

1
2

3)
4

®)

(6)

Determine the basic parameters 7,,;,, and nimax according to the M-B fractal model.

Given random surface roughness values R , calculate the fractal dimension D using Eq. (5), and establish
the initial value of the characteristic scale G employing Eq. (6).

Determine the surface roughness distribution according to Eq. (1).

Based on the surface topography curve theory, we calculate the simulated roughness value R ;. Through an
optimization solution, we determine the characteristic scale coefficient G, ensuring that the relative error
between R, and the actual roughness value R, remains below 1%. Furthermore, we utilize the structural
function algorithm to ascertain the fractal dimension D, and the characteristic scale coefficient G,.

The relative error between the fractal dimension D, calculated using the empirical formula (4-5), and the
fractal dimension D, determined by the structural function method, has been found to be less than 1%.
This level of accuracy makes the empirical formula directly applicable. However, there is a significant dis-
crepancy between the characteristic scale coefficient G and the coefficient G, obtained through the struc-
tural function algorithm. This discrepancy necessitates a re-evaluation of the coefficient through fitting to
determine its accurate value.

Repeat (2)~(5) to obtain the fractal dimension D and the characteristic scale coeflicient G corresponding
to any R, value, and the fractal dimension D, and the characteristic scale coefficient G, determined by the
structural function method.

Empirical formulas | Structural function method
Ra (um) Dand G Dand G Relative error /%
0.2 1.6352.36 x 1070 | 1.648,2.42 x 10~° 0.80,928
0.4 1.588,3.42 x 1070 | 1.508,4.68 x 107° 0.66, 1210
0.6 1561,4.23 x 1076 | 1.570,6.52 x 107> 0.59, 1440
0.8 1.542,4.90 x 1070 | 1.551,8.61 x 10~° 0.54, 1660

Table 1. The comparison of D and G obtained from the structural function method and empirical expression.
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(7) Through polynomial fitting, we establish the relationship between R and the characteristic scale coefficient
G, revise the structural function algorithm, and construct the accurate M-B fractal prediction model.

Experimental validation of the modified model

In the present study, five cylindrical GCr15 test specimens with varying roughness levels were prepared. These
specimens were analyzed using a laser confocal scanning analyzer (LSM800, Car Zeiss, Germany) to measure
their axial surface profiles. The sampling length was set to 1 mm, with 1000 discretized sampling points. Each
specimen was measured three times in different directions to obtain accurate roughness values and contour
morphology. Figures 3 and 4 display the measurement instrument and the resulting surface morphology.

The measured surface profile data were exported, and the fractal dimension and characteristic scale were
calculated on the MATLAB platform.

Table 2 indicates that the characteristic scale coefficient G,, obtained using the modified structural function
method, and G obtained from the modified empirical expression both had a relative error of less than 7.36%.
This represents a significant improvement in accuracy compared to the values provided in Table 1. This
observation demonstrates that a precise relationship between roughness R,and the characteristic scale G can be
established by modifying the empirical expression, providing a solid foundation for accurately constructing the
M-B function suitable for engineering applications.

Construction of cycloidal gear and pin tooth morphology model
Constructing a rough surface topography model involves introducing non-stationary, randomly distributed
micro-protrusions onto a smooth surface. The smooth surface is represented by a vector function, while the
height of the micro-protrusions is described by the M-B function. This study integrates the vector function with
the M-B function to create the morphology model of cycloidal gear and pinion teeth.

According to differential geometry, the equation of a two-dimensional plane curve can be mathematically
expressed in the form below?*:

r(0)=x(0)i+y(0)j,r(0) e’ 7)

Where i and j are unit vectors along the coordinate axes, and x (¢) and y () are continuous functions within
their domain of definition.

Combining the M-B function with the equation of a two-dimensional plane curve, the two-dimensional
section equation of an isotropic rough surface can be expressed as:

rr=rtz(s)-m (8)

Where z (s) represents the height of the micro-convex body, m is the normal vector at a specific point on the
curve, and the sign + indicates the concavity or convexity of the curve: the positive sign corresponds to concave
regions, while the negative sign applies to convex regions.

) X (0) X7 (0)
IECEROIRC]

)

The morphology model of the pin tooth
The shape of the pin tooth is a cylinder, and its vector function can be expressed as v () = r cos (0) ¢ + r cos (6) j
, where r denotes the cylinder radius. The unit normal vector at each point on the arc is (cos (8) , sin (9)).
According to the basic parameters listed in Table 4, D and G are 1.588 and 2.443 x 10~% mm, respectively. By
integrating Egs. (7) and (8), the model illustrating the tooth surface morphology of the pin tooth and the height
distribution of the micro-protrusions is depicted in Fig. 5. It is observed that the surface of the pin tooth is no
longer smooth due to the presence of micro-convex body. The maximum height of these micro-convex body is
1.394pum, while the deepest depression measures 1.697pm.

Morphological model of cycloidal gear

The tooth profile of cycloidal gear, including equidistant modification and offset modification®, can be
mathematically expressed as follows:
Xy = —(rp + Arp)sina — (1 + Aryp) sin (0 — o) + esin (2, - @)
(10)
yo = (rp + Ary) cosa — (ryy + Ary,) cos (0 — a) + ecos (zp - @)

_ ot —1_kisingy _ &%
Where . = tan™ Zj 750, by = R

offset modification amount, and Ar,;, denotes equidistant modification.
The curvature radius of the cycloidal gear tooth profile® is:

, e is the tooth profile parameter of cycloidal gear, Ar,, represents the

(1+ K} — 2Ky - cos (zcoz))2
Ky (2,4 1) - cos (zer) — (1+ 2,K7)

pai = (rp + Aryp) + Ty + Ay (11)

It should be indicated that when py; > 0, the curve is concave, otherwise, the curve is convex.
Combining Egs. (7), (8), (9), (10), and (11), yields a single-tooth morphology model of the cycloidal gear.
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Fig. 3. Confocal laser scanning microscopy.

Figure 6 illustrates the fractal profile of a single cycloidal tooth, revealing that the cycloidal tooth profile
encompasses segments with both concave and convex curvatures.

Figure 7 shows the height distribution of micro-convex body on the cycloidal tooth surface, revealing that
the surface is, in fact, uneven.

Figure 8 is a physical diagram of the cycloid wheel in engineering practice, from which the actual tooth
profile shape of the cycloid wheel can be directly seen.
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Fig. 4. Surface topography of sample with roughness of 0.4 micron.

Ry (um) G, G le—a1)
0.16 1.97 x 1076 1.90 x 1079 3.55
0.39 2.58 x 1076 2.39 x 1076 7.36
0.58 2.91 x 1076 2.79 x 1076 412
0.80 3.47 x 1076 3.24 x 1076 6.63
1.01 3.85 x 1076 3.68 x 1076 442

Table 2. Comparison of the G values obtained by the experimental method and the modified structural
function method.

Determination of curved surface contact coefficient between cycloidal gear teeth
and pin teeth

Construction of curved surface contact coefficient between cylindrical surface and cylindrical
surface

Existing fractal contact models typically calculate the contact area of micro-convex body based on interactions
between rough and smooth flat surfaces. However, when the rough surface is curved, the contact area is
significantly reduced, leading to substantial changes in the contact load. Thus, determining the curved surface
contact coefficient after the surface has been curved becomes critically important.
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Fig. 5. Fractal topography of pin tooth flanks.

Figure 9 illustrates the Hertz contact between two cylinders. Cylinders 1 and 2 have a radius of R; and Ry,
respectively. Both cylinders share a width of B. Under the influence of the normal load F, the Hertz contact width
between the two cylinders is represented by AB.

According to Hertz’s contact theoryzs, for two curved surfaces in contact, the Hertz contact width and the
theoretical contact area can be determined using the following expressions:

o 1/2
(3
TE
1/ (12)
F/R /
=4B
son(z)

The comprehensive radius of curvature R is given by R = 1 / (1?% =+ R%), when two curved surfaces are in

external contact, a positive value is applied; conversely, for internal contact, a negative value is applied; F’ = %
denotes the load per unit linear length; E is the equivalent elastic modulus of two curved surfaces.
The curved surface contact coefficient of the contacting cylindrical surfaces' is defined as follows:

1/R
(2

Where S), and ) S are the theoretical contact area and the sum of the nominal contact areas of the two curved
surfaces, respectively. Moreover, S refers to the sum of the contact half-width and the developed area of the
circular arc, resulting from the intersection of the two cylinders.

> S=5+58 (14)

Where S| = 2R, - arcsin (U"““> B, andS; = 2R, - arcsin (O"“h> B. It should be indicated that if the

curvature radius of surface 2 tends to infinity, the sum of the nominal contact areas of the two surfaces is 5,
which is equivalent to the contact between surface 1 and the plane. On the other hand, if the curvature radius of
surface 2 tends to zero, it is equivalent to a surface contacting a point, which has no significance in engineering
applications.

Combining Eqgs. (12), (13) and (14) yields the surface contact coeflicient of two cylindrical curved surfaces

as follows:
2(58)” )

. (05 ).5-
Rl-arcsm< ah) Ry - arcsm( ah)

1/R

)\c =
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Fig. 6. Fractal topography of cycloidal gear tooth surface.

Analysis of contact proportional coefficient

The radius of cylinder 1 is 10 mm; The radius range of the cylindrical surface 2 is (0,10); The cylinder width is
10 mm; The normal load on two cylinders is 1000 N; The comprehensive elastic modulus isE = 206GPa; Fig. 10
shows the A\, — Ry curve.

Figure 10 demonstrates that when R, is constant, the inner and outer contact widths A.increase as Roincreases.
Initially, the surface contact coefficient grows rapidly before stabilizing. When the radii of the two cylindrical
surfaces are equal, the internal surface contact coeflicient is greater than the external surface contact coefficient.
This indicates that the internal contact area is larger and the contact stress is lower during internal contact
compared to external contact. This behavior aligns with Hertz’s contact theory, which states that when two
cylindrical surfaces with the same curvature undergo internal contact, the coefficient A.equals 1. This signifies
that the surfaces are completely enveloping each other and are in contact at every point. Table 3 shows that as
the load increases, the surface contact coefficient remains constant, which provides a foundation for subsequent
fractal contact analysis.

This analysis demonstrates that the surface contact coefficient constructed in this study is reasonable.

Analysis of curved surface contact coefficient of cycloidal pinwheel

Equation (11) reveals that the curvature radius of the cycloidal gear significantly influences the surface contact
coefficient. Thus, analyzing the distribution of the cycloidal gears curvature radius is essential. Figure 11
illustrates this distribution.

Figure 11 shows that the curvature of the cycloidal gear is less than 0, indicating that the curve is concave
outward. In this state, the cycloidal gear engages in external meshing with the pin teeth. At the position (-0.2308,
-0.3984), the curvature of the cycloidal gear matches that of the pin teeth, signifying external contact with
the same curvature. At the position (0.0029, -0.0019), the curvature equals 0, indicating a transition from an
outwardly convex to an inwardly concave shape for the cycloidal gear. At this point, the curvature radius of the
cycloidal gear approaches infinity, equivalent to the pin teeth making contact with a plane. When the curvature

Scientific Reports|  (2024) 14:27116 | https://doi.org/10.1038/s41598-024-76572-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

L5

| 1 1 | | 1

16 17 18 19 20 21 22

x/mm

Fig. 7. Height distribution diagram of micro-convex body on cycloidal gear tooth surface.

of the cycloidal gear is greater than 0, the gear engages in internal meshing with the pin teeth, allowing for the
possibility of internal contact with the same curvature. Equation (15) can also address this scenario.

Figure 12 illustrates the engagement process between the cycloidal gear and the pin tooth, revealing the
variations of the contact coefficient from the tooth crest to the tooth root. It is observed that in the external
meshing stage, the contact coefficient is 0.48. As the gear reaches the curvature equilibrium point, the contact
coeflicient rises to 0.75. It then continues to increase, reaching 0.92 during the internal meshing stage. Throughout
the entire engagement interval, the contact coefficient in the internal meshing stage remains higher than that in
the external meshing stage.

MB fractal contact model
Considering the scale characteristics of micro-convex body, a fractal contact model for the contact interface is
established. For any the frequency index n:

I=1/9" (16)
Figure 13 schematically shows the contact deformation between micro-convex body and a rigid plane. In this
diagram, [ is the length of the micro-convex body base, [ is the truncated length of the micro-convex body, I,
is the real contact length of the micro-convex body, R, is the curvature radius of the top of the micro-convex

body, 9, is the height of the micro-convex body, and w,, is the bearing deformation of the micro-convex body.
The asperities before deformation can be represented as:

. [ l [
2 (ly) = GPLZP cos (%) T3 << 5 (17)

Based on this expression, the curvature radius at the top of the micro-convex body on the fractal surface is:

e/ (550)

The expressions for the deformation w,, and height §,, of the micro-convex body are:

Wy =0, — 2 (%) =4, (1 — cos (%)) (19)

5, = GP12P (20)

lD

Lo 72GD1

(18)
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Fig. 8. Physical diagram of cycloidal wheel.

Scientific Reports |  (2024) 14:27116 | https://doi.org/10.1038/s41598-024-76572-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Fig. 9. Schematic diagram of Hertz contact between two cylinders.

Elastic deformation stage
Based on Hertz contact theory26, when elastic deformation occurs, the contact area and contact load of a single
micro-convex body are given by:

Qape = 7len’wn (21)
4005 3/
Pne <wn) = gERn Wy, (22)
The critical elastic deformation is:
KH\?
Whpee = (71—27) Rn (23)

Where H is the hardness of the softer material, and K is the hardness coefficient K = 0.454 + 0.41p.
Considering friction, the elastic critical contact area of the convex body can be obtained using the following
expression:

KH\?
Qpec = T (W2E ) RZ (24)

Combining Egs. (16), (18), (21), and (22) yields the relationship between the contact load and the contact area
during elastic deformation.
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Fig. 10. The distribution of the surface contact coefficient for various curvature radii.

Normal load F/ N

10 100 1000

External contact | Internal contact | External contact | Internal contact | External contact | Internal contact
0.001 0.001 0.001 0.001 0.001 0.001
0.030 0.035 0.030 0.035 0.030 0.035
0.095 0.109 0.095 0.109 0.095 0.109
0.168 0.193 0.168 0.193 0.168 0.193
0.236 0.272 0.237 0.272 0.237 0.272
0.297 0.341 0.297 0.342 0.297 0.342
0.350 0.402 0.350 0.402 0.350 0.402
0.396 0.454 0.396 0.455 0.396 0.455
0.869 0.998 0.869 0.998 0.869 0.998
0.869 0.999 0.869 0.999 0.869 0.999
0.870 0.999 0.870 0.999 0.870 0.999
0.871 1.000 0.871 1.000 0.871 1.000

Table 3. Surface contact coefficients for various loads.

B 4E7T1/2GD—1 32

Rle (ae) - 3(1/’}/“)]) Aye (25)

When the micro-convex body is elastically deformed, the relationship between the cross-sectional area of the
micro-convex body and the real contact area is:
a’;e = 20ye (26)

Combining Egs. (24) and (26) yields the relationship between the elastic critical cutting area and the elastic
critical cross-sectional area. This can be expressed in the form below:

KH\?
Ao = 20pec=2T (WQT) R? (27)
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Fig. 11. Curvature distribution diagram of meshing interval cycloidal gear.
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Similarly, the relationship between the elastic contact load and the elastic cutting area can be derived as:

_2BE7'2GP L,

-Pu(‘, (an(:> - Wane (28)

Elastic-plastic deformation

Kogut and Etsion?”?® analyzed the elastic-plastic contact of spherical convex bodies. When the deformation
magnitude Wyee < Wnept < 6Wnee, the micro-convex body is in the first stage of elastoplastic deformation.
During this stage, the contact area and the corresponding contact load are given by:

Wyen1 1.136

Qpepl = Opec * 0.93 <&> (29)
wll(‘,(:
Wen1 1.425

Pncpl = Pec - 1-03< — > (30)
wn(‘,(‘,

When the deformation magnitude exceeds6wnee < Wnep2 < 110wy, the micro-convex body enters the second
stage of elastoplastic deformation. At this stage, the contact area and the respective contact load are characterized
by:

Waen 1.146

Anep2 = Anec - 0.94 <ﬂ> (31)
Wnec
Woeno 1.263

Prep2 = Rlec -1.40 <&> (32)
wn(‘,c

The first and the second elastic-plastic critical areas are denoted as ayeper = 7.1197anec and ayepez = 205.3827apec
, respectively.
When the contact is in the first and second elastic-plastic stage:

Puept = 0.7521K Hag ! 24 (33)
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Puep2 = 0.9992K Hay %' a' 102! (34)

It should be indicates that during the elastic-plastic deformation stage, the relationships between the sides of a
right-angled triangle are utilized.

Bi = (Rn - u’u)z + l? (35)
The expression of the cut-off area is:

a;ep =7l? = 2n Ryw, (36)

The deformation amplitude of a micro-convex body is significantly smaller than the curvature radius at its tip,
so the truncated area can be expressed as:

aiwp = 7Tlr2 = 2r Rywy -

The first and second-stage elastic-plastic cross-sectional area can be derived by combining Egs. (29), (31), and
37).

gt = 046501, a0 o

g = 04Tl 1 @

The relationship between the first elastic-plastic critical truncated area, the second elastic-plastic critical
truncated area, and the elastic critical truncated area are given by:

’ - 6d’

amtpcl = Dlyee (40)

a’ilepc2 = 1100’21% (41)

The relationship between the first elastic-plastic contact load and the truncated area is expressed as:

Puept = (J.3433KHa/’“'42‘-’“(1/1'4%5“ (42)

nec nep

The relationship between the second elastic-plastic contact load and the truncated area is as follows:

Puep2 = 0.4667K Hay, > a) 255 (43)

Complete plastic deformation stage
Whenw,,e > 110wy, the convex body exhibits a plastic deformation. At this stage, the contact area and contact
load can be described as:

Appe = QFRnwan (44)
Pnpe = Hanp(: (45)

According to Hertz’s theory, in the complete plastic deformation stage:

a‘{lp(‘, = aﬂPC (46)

Meanwhile, the correlation between complete plastic contact load and plastic sectional area can be expressed in
the form below:

Pnpe = Hailpc (47)

Determination of the deformation state of different grades of micro-convex bodies
The micro-convex body is elastically deformed, and if the maximum deformation of the micro-convex body is

5n < Whec
s 2K "

Bring formulas (16), (18), (20) and (23) into (48)

g omen _ (TKHN(1/4")"
GO 1/ < < 5 ) GnT (49)

By solving Eq. 49, the critical grade n,.of elastic deformation of micro-convex body can be obtained'®.
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i [(58)" ()™ 50)
2(D—1)lny

nnec <

The first and second elastic-plastic critical grades of the micro-convex body are

_ In [G(%) (6)2]) 2} &Y
Nepel X 2 (D — 1) In Y
In [110(2’5)2(%)2[}2] (52)

Npenes <
Mnepe2 2(D—-1)lny

The deformation behavior of a micro-asperity varies depending on its grade.

for nyi; < M < Nyee> the micro-asperity undergoes only elastic deformation.

for nyec < 1 < Neper, the micro-asperity experiences elastic deformation and the first stage of elastic-plastic
deformation.

for Npeper < M K Nyepe2» the micro-asperity undergoes elastic deformation, the first and the second stages of
elastic-plastic deformation.

for npepez < 1 < Nmax, the micro-asperity undergoes elastic deformation, the first and the second stages of
elastic-plastic deformation.

Area distribution function of micro-convex body
According to fractal theory, when the contact plane becomes curved, the distribution function of the contact
area for micro-convex body on a sliding friction surface can be expressed in the form below:

D ’ ’
n(a) = AP Pa P (53)

D
A= mwlil)/zai (54)

Where 1 is the fractal region expansion coefficient; a] is the maximum asperity cross-sectional area; A, is the real
contact area of the sliding friction surface.
The functional relationship between the regional expansion coefficient 1) and the fractal dimension D is given

by:

1 = 5.453 exp < ) +1499, 1<D<2 (55)

0.628

The real contact area for fractal interfaces related to scale depends on the maximum micro-convex body
truncation area, determined by the micro- convex body level. The contact area distribution function for micro-
convex body of different levels can be defined as n,,(a') and ny (a') = Qun(a’), with the expression for@,provided
in reference'®

!
a
Qn:n*n !
=rmax
56
> ay (56)
"="min
Where a = max (a};) and npi, < 7 < nmax.
Real contact area and contact load
The real contact area is defined as:
Ar:Am + Ar(‘,pl + Arcp? + Ar]) (57)

Where A, is the elastic contact area; A, is the first elastic-plastic contact area; A, is the second elastic-
plastic contact area; and A,;, denotes the completely plastic contact area.

"ner Nmax am(
/ Qun(a’)a'da’ + E / Qun(a’)a'dd’

n= ”Inln n=npec+1

(58)
Tnec nmax
0.5D /11—-0.5D
:)\(‘gl (D) Z C211 nl+ Z Qn 1110 ;w( 7
nannin n=npec+1
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Nnepel

TMmax

ag m,p(l N
Avepr— E Qun(a’)d'dd’ + E Qun(a’)d'da
n=npec+1 Thec n=Tnepe1+1 ee
Tmepel nmax (59)
11-0.5D 11—0.51) /0 5D /11-0.5D 11-0.5D\ ,10.5D
)\(‘gl (D) E QH (anl — Qe + E Qll n(pcl — Qpec ) Ay
n=nnec+1 n=nnepc+1
Tnepc2 a:] Timax nech
Arepo E Qun(a’)a'da’ + g Qun(a')d'dd
n=npepc1+1 nepcl n=npepc2+1 nepcl
Tepe2 nmax (60)
o n1-0.5D _ /1 0.5D /0 5D 11-0.5D 11-0.5D 10.5D
7>‘Cgl (D) E QH (anl nep(l ) + E : QH nepc? - anepcl ) Q)
n=npepc1+1 n=npepc2+1
nmax a;ll
n ./ !
Ap— E Qun(a’)d'da
n=npepc2+1 pepe2
nmax (61)
o 11-0.5D 11-0.5D 10.5D
*Ar:gl (D) E Q!l (aul — Gpepe2 ) nl
n=Npepc2+1
The total contact load is defined as:

R':R'e + Plepl + Prep2 + R‘p (62)

Where P, is the elastic contact load; P,p is the first elastic-plastic contact load; Pyps is the second elastic-plastic
contact load; and P,is the complete plastic load.

Nnec 1 Tmax a;]ec
A ! / !
Pe ) PoQun(d)dd' + ) Pre@Qun(a’)da
_ . _ 0
777”1I1111 n=npec+1 (63)
Ninec nmax
. E 11 D ns5 E 11 D _10.5D 11.5—0.5D
*)\(:QQ (D) Qn 1/7 Ay + Qn ]-/P‘/ Q) Qpec
n=nin n=nnec+1
Npepe ;
Pr(\pl § Pncplan(a )d(L + § Pncplan(a )d(L
/ /
n=npec+1 ¥ tnec n=npepc1+1 nec
64
Mnepel nmax (64)
o 71.425 /1 425-0.5D /0 )D 11.425—-0.5D 11.425—0.5D 10.5D
*)‘(293 (D) E Qn Qy) — Oyee E Qn nepcl — Qyec ) Ay
n=npec+1 n=nnepc+1
Nnepc2 'a;ﬂ ~ , Nmax a;mch . ,
PropQ* § RmpZan(a )(L da” + § Rmean(a )(l da
/
n=npepc1+1 ¥ “nepcl n=npepca+1 " *nepcl
Nnepc2 nmax (65)
. § : /1.2630 _ ll 2630—0.5D /0 5D § 11.2630—0.5D /1.2630—0.5DY /0.5D
Acg*l (D) Qn Qy) nep(l Qy) ) + QD (arlept;2 — Ynepel ) Qy)
n=nepe1 +1 n=pepe1 +1
nmax a;ﬂ
APREY
P)rp: § pnchnn(a )(l da
n=nnepc2+1 nepc2
nmax (66)
2 : ’ 1-0.5D 10.5D
H)‘C.ql <D> Qll (anl - an(‘,p(‘Z nl )
n=nnepc2+1

ZE-r” )GD ! D wl D/2

Where gy (D) = 525¢!"P/2 represents a constant related to fractal dimension;g, (D) =

h.gg (D) = 0()d?>433tKHl2 - wlt’D'Q and gy (D) = 00.4667K H ;—=—71'"/%is a constant related to fractal
imension and material parameters.

Analysis of the contact characteristics of cycloidal pinwheels
. 2
= (L / ’y“mm> . The dimensionless real contact

area is represented asA¥ = A,/ A,, and the dimensionless contact load is denoted by F* = F,/(E A,). The basic
parameters for the cycloidal pinwheel are presented in Table 4. Both the cycloidal pinwheel and pin teeth have a
surface roughness of 0.4 i, and the hardness of the tooth surface is measured at 750 MPa.

The nominal contact area of a rough surface is denoted by A,
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Micro-convex level / 11
N N
= N

[R—
N

Basic parameter Values | Basic parameter Values
Number of teeth of cycloidal gear z 39 Shift modification A T'p/mm -0.037
Pin tooth number z, 40 Poisson’s ratio f4 1, [b o 0.3
Radius of pin tooth distribution circle rp/mm 51.5 Modulus of elasticity E,, E,/GPa | 207
Pin tooth radius r, /mm 2.5 Cycloidal gear tooth width b/mm | 10
Equidistant modification A Tpp/mm -0.02 | Eccentricity e/mm 1.0

Table 4. Basic parameters of cycloidal pinwheel pair.

~Elastic critical grade
~+The first elastic-plastic critical grade
--The second elastic-plastic critical grade
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Fig. 14. Influence of roughness on critical grade.

Influence of microscopic characteristics on contact characteristics

Parameters D and G are the primary determinants in defining the shape and size of micro-protrusions on
rough surfaces. These parameters exhibit a direct correlation with the surface roughness. The impact of surface
roughness on the contact performance between two surfaces is illustrated in Fig. 14.

It is observed that as the surface roughness of the two contacting surfaces increases, the elastic critical load
and the first and second elastoplastic critical loads gradually decrease, with the rate of decrease becoming
progressively smaller.

Figure 15 reveals that an increase in roughness results in a gradual decline of the dimensionless real contact
area. This observation may be attributed to the enhanced roughness causing micro-protrusions to become taller,
subsequently decreasing the number of micro-protrusions that engage in actual contact. Consequently, the
overall actual contact area reduces.

Influence of macroscopic parameters on contact characteristics

The cycloidal gear tooth profile is quite intricate, featuring a mix of concave and convex contour curves. During
engagement with the pin tooth, the gear undergoes both external and internal meshing. Therefore, it is crucial
to examine the effects of various macroscopic parameters on the contact performance of the engaging tooth
surfaces.

Figure 16 illustrates a curve distribution diagram reflecting the influence of eccentricity on the load within
the meshing interval. The diagram reveals that at eccentricities of 0.9 mm and 1.0 mm, the dimensionless load
during meshing gradually decreases. This decrease aligns with the transition from external to internal meshing as
the cycloidal pinwheel engages. However, at an eccentricity of 1.1 mm, the dimensionless load initially increases
slightly before rapidly decreasing, resulting in more significant load fluctuations throughout the meshing interval
and leading to unstable power transmission.

Figure 17 illustrates the influence of pin tooth radius on the load within the meshing interval. It is observed that
as the pin tooth radius increases, the dimensionless contact load across the engagement zone decreases steadily.
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Fig. 15. Influence of roughness on the dimensionless real contact area.
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Fig. 16. Influence of eccentricity on meshing interval load.

This observation reflects the transition from external engagement at the tooth crest to internal engagement with
the cycloidal gear. Notably, the loads during the external engagement phase are higher than those in the internal
engagement phase, consistent with classical Hertz contact theory. When the pin tooth radius expands from
1.5 mm to 2.5 mm, the dimensionless contact load decreases gradually but then rises rapidly between 2.5 mm
and 3.5 mm. Throughout the engagement range, significant fluctuations in load amplitude occur, leading to
unstable transmission. Therefore, a careful selection of the pin tooth radius can reduce the contact load between
the pin tooth and the cycloidal gear, enhancing the system’s bearing capacity.

Figure 18 depicts the influence of the pin tooth distribution circle radius on the meshing interval load.
The graph indicates that the dimensionless contact load decreases gradually as the radius of the pin tooth
distribution circle increases. Under the same distribution circle radius, the dimensionless contact load along
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Fig. 17. The effect of pin tooth radius on the load in the engagement zone.
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Fig. 18. The influence of the pin tooth distribution circle radius on the load within the engagement zone.

the meshing interval also gradually decreases, suggesting that increasing the radius of the pin tooth distribution
circle appropriately can reduce the load in the meshing area and improve bearing capacity.

Influence of micro-convex level on contact characteristics

Figure 19 shows that as the minimum frequency index of micro-protrusions increases, the proportion of the
elastic contact area decreases gradually, while the proportions of both the first and second elastoplastic contact
areas increase. When this index exceeds 15, the proportion of the elastic contact area decreases more rapidly.
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Fig. 19. The impact of the smallest micro-protrusion level on contact performance.

Concurrently, the proportion of the first elastoplastic contact area increases quickly before stabilizing, and
the proportion of the second elastoplastic contact area also rises rapidly. During the sliding wear process, the
contact state between interacting surfaces significantly impacts wear. A larger proportion of elastic contact areas
is more conducive to reducing wear. Thus, selecting an appropriate frequency index for the micro-protrusions is
essential for minimizing wear on the contacting surfaces.

Conclusion

This paper integrates theoretical analysis and experimental methods to establish a clear relationship between
surface roughness and characteristic scale. It introduces a surface contact coefficient model for evaluating
complex surface contacts and investigates the effects of microscopic parameters, cycloidal pinwheel design
parameters, and the hierarchy of micro-protrusions on the contact performance of cycloidal pinwheels. The
main achievements of this article can be summarized as follows:

(1) By integrating theoretical analysis with experimental validation, this study utilizes an optimization algo-
rithm to determine the characteristic scale. This method enhances the traditional structural function tech-
nique, establishing a definitive relationship between surface roughness and the scale of micro-features.

(2) Considering the curvature variability of the cycloidal gear tooth profile, a surface contact coefficient model
applicable to internal and external contacts with arbitrary curvature is developed. The study also examines
the variation of the surface contact coefficient within the meshing interval of cycloidal pinwheels.

(3) A fractal contact model based on the dimensions of micro-protrusions is created, allowing for the analysis
of micro-scale parameters’ effects on elastoplastic critical loads and the real contact area. Additionally, the
study analyzes the impact of macroscopic parameters of the cycloidal pinwheel on the load within the
engagement zone. It also clarifies the influence of the minimum frequency index of micro-protrusions on
surface contact performance.

The study paves the way for a detailed analysis of the actual contact characteristics at the meshing interface
of cycloidal pinwheels. It provides a basis for enhancing the elastic contact ratio of the contact surface and
diminishing tooth surface wear.
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The datasets used and analyzed during the current study are available from the corresponding author upon
reasonable request.
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