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In consideration of ongoing climate changes, it has been necessary to provide new tools capable 
of mitigating hydrogeological risks. These effects will be more marked in small catchments, where 
the geological and environmental contexts do not require long warning times to implement risk 
mitigation measures. In this context, deep learning models can be an effective tool for local authorities 
to have solid forecasts of outflows and to make correct choices during the alarm phase. In this 
study, we investigate the use of deep learning models able to forecast hydrometric height in very 
fast hydrographic basins. The errors of the models are very small and about a few centimetres, with 
several forecasting hours. The models allow a prediction of extreme events with also 4–6 h (RMSE of 
about 10–30 cm, with a forecasting time of 6 h) in hydrographic basins characterized by rapid changes 
in the river flow rates. However, to reduce the uncertainties of the predictions with the increase in 
forecasting time, the system performs better when using a machine learning model able to provide 
a confidence interval of the prediction based on the last observed river flow rate. By testing models 
based on different input datasets, the results indicate that a combination of models can provide a 
set of predictions allowing for a more comprehensive description of the possible future evolutions 
of river flows. Once the deep learning models have been trained, their application is purely objective 
and very rapid, permitting the development of simple software that can be used even by lower skilled 
individuals.
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Climate changes due to anthropogenic activities are causing significant alterations in the hydrogeological 
cycle1–3. The Mediterranean is a hotspot for current global warming4–6, exhibiting variations in river discharge 
and precipitation across various areas7–11. Future projections for hydrogeological regimes indicate a general 
decrease in annual precipitation with an increased risk of drought12–18, but also an intensification of extreme and 
fast events8,19–21. The effects of climate evolution in the Mediterranean will be enhanced by the characteristics 
of medium and small catchments22. The management of small catchments is challenging on account of their 
hydrogeological features, which often provide insufficient time for effective emergency intervention. These 
drawbacks also depend on the current lack of suitable meteorological forecasts at this scale23.

Italy is no exception to this reality, and it is one of the Mediterranean countries in Europe with the highest 
annual expenditure for damages caused by hydrogeological events24–27. Italian territorial entities responsible 
for river risk management currently lack efficient predictive models allowing for timely interventions in small 
catchments, which are those characterizing a significant part of the peninsula. Strict requirements in terms 
of knowledge of the territory and of hydrogeological parameters are necessary to build an efficient river flow 
modelling system based on a physical approach. The definition of several parameters, the often-missing 
information, and the difficulty in simulating the real natural system may produce strong model uncertainties, 
which play a predominant role in error quantification28–30. For these reasons, very few tools have so far been able 
to provide rapid alerts for flood risk mitigation, in particular for these types of catchments. Machine learning 
models have proven to be a valuable tool for runoff modelling31–37, thanks to the use of neural networks that 
enable to handle the noise and chaotic nature of time series in prediction problems38. In this respect, some 
recent works have focused on the development of models in small catchments39–41, which currently represent 
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a challenge in the research and application of flood risk mitigation. Several authors have applied different deep 
learning techniques to predict river flows, with promising results42–46. Long short-term memory (LSTM) is 
one of the most popular, efficient and deeply used learning techniques47, widely applied in flood prediction 
studies48–50.

The study area, located in central Italy (Fig. 1), is particularly vulnerable to climate changes, owing to the 
presence of the cyclonic area of the Gulf of Genoa51 and of the steep reliefs orthogonal to the direction of 
prevailing winds52–54. The area is characterized by the presence of the Apuan Alps, a mountain range with large 
slopes and a complex karstic system53,55 (Fig. 1). The region features a complex river network, a coastal lake (Lake 
Massaciuccoli), and wetland areas. The plain area is subject to regulations designed to maintain the water table 
below ground level. The area experiences high annual precipitations (even more than 3000 mm56–58), among the 
highest in the Mediterranean, and sometimes very intense. Furthermore, owing to the presence of the Apuan 
Alps, hydrogeological events such as floods, debris flows, and landslides often occur52,57,59–61.

The intricate karstic systems in this area make it difficult to provide efficient tools for predicting river 
dynamics30,55,62. The steep slopes of the mountains induce rapid runoff times, but their estimation is complicated 
by the poorly understood karstic systems. The plains are characterized by a significant human presence, with 
over 300,000 inhabitants, and more than3 million individuals during the summer, presenting a high population 
density. In this context, for the future effects of climate change, enhanced by the environmental characteristics 
of the territory and the substantial presence of human activities, we have developed a group of models based 
on deep learning approaches that can predict river discharge in a regulated lake and in small watercourses. The 
set of constructed models diverges from the input data matrix employed for training. We chose to create this 
ensemble primarily for two purposes: (i) to understand the pros and cons associated with incorporating diverse 
input data types; and (ii) to have models that react variably (or not) from identical initial conditions, thereby 
yielding a broader spectrum of scenarios and varying levels of prediction certainty.

Different territorial entities have collaborated to the design and implementation of a computer system 
providing real-time predictions of watercourses up to 6  h in advance for 8 monitoring points (see stars in 
Fig. 1). Table 1 shows the main hydraulic characteristics of the water system investigated. Prediction models 
are limited by the inability to understand how the conditions may evolve in the future. As for the hydraulic 
models, the primary predictive limitation is rainfall, which is the main time-related input variable. Therefore, 
machine learning models tend to underestimate flows during the forecasting time, due to data uncertainties and 

Fig. 1.  Study area (a) Input and output gauges; (b) Spatial location of the study area; (c) Morphology of the 
study area where green indicates an elevation lower than 10 m and red an elevation higher than 1200 m. 
OpenStreetMap provides basemap.
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potential biases63. In this work, we experimented an error analysis of the results of predictive models through 
a combination with additional machine learning models that allow an increase in the lead time for alarms 
regarding the hydraulic systems studied.

Results and discussion
Figure 2 summarizes the Root Mean Square Errors (RMSE) for the 25 steps of forecasting, for each model and for 
each output station. The deep learning models developed in this work have small errors for the entire test dataset, 

Fig. 2.  Root Mean Square Errors (RMSE) of the deep learning models for forecasting time from 0 h to 6 h with 
a step of 15 min: the lines with ● marker indicate the Standard Model (SM); the lines with ▲ marker indicate 
the Normalized Model (NM); the lines with ▼marker indicate the Only Rainfall Model (ORM); the lines 
with ■ marker indicate the Only Output Model (OOM). The contours indicate a confidential interval of 90%. 
The blue lines indicate the RMSE using the entire test dataset, while the orange lines indicate the RMSE by 
analysing the hydrometric height higher than the 95th percentile.

 

Hydraulic system Station Median (m) Average (m) 25th (m) 75th (m) 95th (m)

Carrione River Avenza 1.17 1.09 0.91 1.29 1.49

Carrione River Carrara 0.42 0.29 -0.12 0.51 0.94

Massaciuccoli Lake Torre del Lago 0.01 -0.01 -0.11 0.12 0.26

Massaciuccoli Lake Viareggio 1 0.04 0.02 -0.07 0.15 0.29

Freddana Torrent Mutigliano 0.43 0.48 0.29 0.64 0.84

Contesora Torrent Ponte Guido 0.14 0.17 0.09 0.21 0.43

Versilia River Seravezza 1 1.05 0.87 0.54 1.18 1.38

Versilia River Ponte Tavole 0.7 0.63 0.29 0.95 1.23

Table 1.  Main characteristics of hydrometric time series used as output of the models.
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and they focus on events higher than the 95th percentile. We will refer to observations exceeding the 95th 
percentile as extreme events64 by recording errors of only a few centimetres compared to those found in other 
works32,35,63–66. The results of this work are in agreement with those of other works which used sub-daily river 
flow data in catchments with a comparable size41,67. However, a direct comparison with other works is not always 
simple owing to the different measures simulated (hydrometric height or flow rate) and to the different hydraulic 
condition and behaviour of the rivers. For the Avenza and Carrara (Carriore River), and for the Ponte Tavole 
and Seravezza (Versilia River) stations the OOM model is the worst, with a clear increase of the performances 
following the introduction of other gauges. As already said, for the Mutigliano and Ponte Guido stations, the 
difference between the OOM and the other models is not relevant. However, the NM and the ORM are the 
best models with the lowest RMSE. For Massaciuccoli and Viareggio (Massaciuccoli Lake system), the OOM 
model performs similarly to the other ones, highlighting an unclear importance of the introduction of rain and 
hydrometric gauges as input data. These results indicate the differences in behaviour between the four hydraulic 
systems studied in this work. For the Carrione and Versilia Rivers, which are characterized by the highest 
hydraulic ranges, the introduction of more gauges as input to the model increase the possibility of creating 
accurate models. With the decrease in variability of the system’s simulated hydraulic regimes, the importance of 
the other input gauges decreases. Such behaviour may be observed in the Freddana and Contesora torrents as 
well as in the Massaciuccoli Lake system, where the difference between the minimum and the maximum regimes 
is lower than 50 cm(Table 1).

It is worth noting that for step t = 0 of each station, and in some cases also for some steps below, the OOM has 
performances analogous to those of other models. This is an important point because, in the last years, several 
works (e.g36,46,68,69). have yielded positive results with regard to deep learning and machine learning models 
for the prediction of river flows. Complex data input matrices have been used but the role of the time series 
output on the models has not been understood. The complexity of the neural networks and the high number of 
parameters estimated during the training phase make it difficult to well understand the input influence on the 
deep learning models. However, this study underlines the importance of investigating in further detail the real 
effect of the inputs on the results in these types of models. If the aim of this study had been the construction of 
models for the analysis of t = 0 (making a simple reconstruction of the river flow time series with the river flow 
data up to step t-1), the use of a network of stations would have resulted useless.

Figures 3 and 4 show some selected applications for each station. These selections derive from an analysis of 
the 10 highest events in the test dataset (see Supplementary Material for all events). In Fig. 3, we report a case 
for each station when the models have great performances while, in Fig. 4, we report the cases in which the 
models have lower performances. No model performs better than the others. The models sometimes produce 
similar results (see in particular Fig. 3), so that there is a small variability in the predictions; other times there are 
differences between the predictions (see in particular Fig. 4). This suggests that the combination of models can 
provide a more exhaustive forecast during the decision-making processes. The hydrological cases of Fig. 4 are 
affected by a fast variation of the river levels characterized by an increase in river flow in a few tens of minutes. 
This makes it difficult for the models to provide an efficient prediction, especially with the increase in forecasting 
time, which induces an underestimation of the real river flow observed. However, for the cases shown in Figs. 3 
and 4, the models generally have excellent performances until 2–4 h of forecasting, although in some cases even 
up to 6 h (see also the Supplementary Material).

The analysis of the Mean Errors (ME; Fig. 5) shows that with the increase of forecasting time, the models 
present negative errors. In other words, with the increase of the forecasting time, the models always underestimate 
the flow, and this induces a possible systematic missing alarm, in particular for extreme events (higher than the 
95th percentile), as observed during the analysis of Fig. 4. The main factor that can cause an underestimation 
of the predictions in the highest forecasting times can be the lack of information on the evolution of weather 
conditions over time. The models can provide a prediction if they know the progressive amount of precipitation 
falling into the basin and, once the rainfall has started, the models do not know what will be the total amount 
of precipitation in the future. For this reason, we observe a progressive decrease in the underestimation of the 
river flows, so that the forecasting time is reduced. In the small hydrographic catchments, we think that the 
weather predictions cannot solve this limit completely on account of the current small resolution of the weather 
prediction, with grids greater than 30 km. However, we think that an analysis of the uncertainties can be more 
efficient to mitigate the likelihood of missing the alarms. The probability of taking wrong decisions is partly 
linked to the knowledge of the phenomenon, which may result in potentially dubious predictions.

For this reason, the choice of introducing the use of Gradient Boosting Regression (GBR) in this work is 
key. An example of application of the GBR models to estimate the confidence intervals of the errors on the 
predictions appears in Fig. 6. The GBR models allow to quantify the uncertainties of the LSTM models on the 
basis of the last observed hydrometric measures of the output station. The effects of the introduction of the GBR 
models are crucial. Figures 7 and 8 show the capacity of the models to forecast the alarms for cases higher than 
the 95th percentile (extreme events). The metrics observable in the figure are True Positive Rate (TPR; Fig. 7) 
and False Positive Rate (FPR; Fig. 8), which are defined as follows:

	
TPR =

TP

P

	
FPR =

FP

N

where P  in the number of real cases higher than the 95th percentile in the test dataset; N  is the number of 
real cases lower than the 95th percentile in the test dataset; TP  is the number of simulated data that correctly 
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Fig. 3.  Selected examples when the models allow good predictions of extreme events. Each row corresponds to 
a specific station, respectivelyAvenza, Carrara, Mutigliano, Ponte Guido, Seravezza, Versilia, Massaciuccoli and 
Viareggio. Each column corresponds to a specific model, respectively: Only Output Model (OOM), Standard 
Model (SM), Normalized Model (NM), and Only Rainfall Model (ORM). The grey line indicates the observed 
data, the black line indicates the prediction at 0 h; the violet line indicates the prediction at 2 h; the orange line 
indicates the prediction at 4 h; and the yellow line indicates the prediction at 6 h.
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Fig. 4.  Selected examples where models do not allow very good predictions of extreme events. Each 
rowcorresponds to a specific station, respectively Avenza, Carrara, Mutigliano, Ponte Guido, Seravezza, 
Versilia, Massaciuccoli and Viareggio. Each column corresponds to a specific model, respectively Only Output 
Model (OOM), Standard Model (SM), Normalized Model (NM), and Only Rainfall Model (ORM). The grey 
line indicates the observed data, the black line indicates the prediction at 0 h; the violet line indicates the 
prediction at 2 h; the orange line indicates the prediction at 4 h; and the yellow line indicates the prediction at 
6 h.
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indicates cases higher than the 95th percentile; and FP  is the number of simulated data which wrongly indicates 
cases higher than the 95th percentile (false alarms). The application of the GBR models must increase the TPR, 
maintaining the FPR acceptable (Fig. 8). Otherwise, the possibility of predicting real alarms may be hindered 
by the creation of additional false alarms. The estimation of the uncertainties of the LSTM models can increase 
the capacity of the models to forecast an alarm (Fig. 7). By analysing the errors of the LSTM models (Figs. 3 
and 4), the GBR models provide confidence intervals of only a few centimetres. For example, for the Avenza 
station, we applied the GBR models by adding an average value of the upper limits of the 50% confidence interval 
of about 0.01 cm and of the 90% confidence interval of about 0.04 cm. The values for Ponte Guido are about 
0.02 cm and 0.04 cm, respectively. These values are very small, but thanks to the nature of the rivers investigated, 
these very low uncertainties can make the difference between a correct and a missing alarm. Such effects are 
greater for the smaller hydraulic systems investigated in this work (for example, Mutigliano, Ponte Guido, and 
Massaciuccoli; Fig. 7). Probably, these hydraulic systems are also affected by the uncertain measurements that 
are not estimated by the territorial authorities responsible for monitoring the weather network. It is plausible 
to think that for small channels, lakes, and rivers, the simple error and the instrumental uncertainties used to 
acquire the data can induce more effects on the results than the hydraulic systems, which are characterized by 
greater flow rate, and variation from the lower and higher levels. It is thus important to introduce a study of 
the uncertainties of the deep learning models, so as to provide more efficient forecasting systems like the GBR 
models proposed in this work. The data-driven characteristics of the deep learning models require an efficient 
sample and archive of the data, as demonstrated by several authors who found the highest errors in presence of 
wrong or anomalous data70,71.

The dataset used to train the machine learning models contains, in general, a part of missing values, anomalous 
data, and redundancy with one or more attributes, which must be eliminated to build a trained generic 

Fig. 5.  Mean Errors (ME) of the deep learning models for forecasting time from 0 h to 6 h with a step of 
15 min: the lines with ● marker indicate the Standard Model (SM); the lines with ▲ marker indicate the 
Normalized Model (NM); the lines with ▼marker indicate the Only Rainfall Model (ORM); the lines with 
■ marker indicate the Only Output Model (OOM). The contours indicate a confidential interval of 90%. The 
blue lines indicate the ME using the entire test dataset, while the orange lines indicate the ME analysing the 
hydrometric height higher than the 95th percentile.
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model71,72. However, the automatization of the procedure aimed at solving these issues is very complicated 
because it depends on several factors such as anomalous or missing data resulting from instrumental anomalies, 
and their persistence in the time series. Furthermore, several techniques used to solve these types of problems 
require computational resources and time71, which in the field of early warning is pressing. In a real application 
of these models, we cannot exclude the anomalous or missing data provided by a single or a group of stations. 
For this reason, we need to understand the robustness of these methodologies and the number of anomalous or 
erroneous data. Figure 9 shows the results obtained when simulating a variable number of not working stations 
(5-10-20-30%) and comparing the RMSE to the models, without missing data for events higher than the 95th 
percentile (extreme events). For each percentage, we select a group of stations and we change their input data 
with a value of 0, simulating missing values from these stations. The selection of the not-working station was 
applied using a pseudo-random method and the library Random of Python Language. This procedure was 
replicated using the 10 duplications of the same model and repeating it for five times, by simulating a total of 50 
cases for each step of prediction and for each model. The results were encouraging because the variation of also 
a large number of stations induced a small variation in the results, demonstrating a good capacity of the models 
to manage the missing values, as demonstrated by63 for a bigger catchment but using an analogous architecture 
of the neural networks.

After the models have been trained, machine learning techniques do not require any specific parameters, 
and this simplifies the procedure considerably for the application of these methods by users with poor skills in 
programming languages or in mathematics or statistics. The machine learning algorithm can be implemented 
in web and desktop software, which allow the application of the models. In this way, the user requirements 
are minimal and completely objective, making it possible to obtain the same predictions from different 
individuals. These possibilities are very important for civil protection and for mitigation of the hydraulic risk, 
when users need to receive rapid replies for important decisions. The deep learning models are perfect for these 
aims because the prediction of an event requires very few seconds when using a server machine without great 
computing capacity. For example, in this work we tested a server machine with 8 Gb of RAM and 6 CPU with 
a computational capacity of 2.2 GHz, which allowed us to obtain the response of a model (25 t step) in about 
20–30 s. Using physical models, this capacity to reply promptly is very rare and in several cases the application of 
the models needs to determine the specific parameters. This requires further time, slowing down the predictions 
and then the decisions of the territorial authorities. If these concepts are valid for large river basins, they become 
even more important in small basins, where response timeliness is in constant struggle with the short flow times 
characterizing these basins.

Conclusions
The availability of efficient instruments for risk mitigation is crucial also in relation to current global warming 
and to change in the rainfall regimes, as demonstrated by several authors from different countries. In the field 

Fig. 6.  An example of the applied regression using the Gradient Boosting Regressor (GBR) for the estimation 
of uncertain predictions. The GBR model is used to estimate the confidential intervals of 50% and 90% based 
on the observed hydrometric height.
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of hydraulic risk mitigation, we need to solve several challenges to the different geological and environmental 
characteristics of the catchments. A fundamental characteristic is the size of the catchment that can induce 
great difficulty in providing instruments able to predict the river flows also amplified by specific geological and 
climatic conditions. In this work, the study area possesses all these properties since it is characterized by small 

Fig. 7.  Sensitivity analysis of the models for events higher than the 95th percentile: True Positive Rate (TPR). 
The lines with ● marker indicate the Standard Model (SM); the lines with ▲ marker indicate the Normalized 
Model (NM); the lines with ▼marker indicate the Only Rainfall Model (ORM); the lines with ■ marker 
indicate the Only Output Model (OOM).
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Fig. 8.  Sensitivity analysis of the models for events higher than the 95th percentile: False Positive Rate (FPR). 
The lines with ● marker indicate the Standard Model (SM); the lines with ▲ marker indicate the Normalized 
Model (NM); the lines with ▼marker indicate the Only Rainfall Model (ORM); the lines with ■ marker 
indicate the Only Output Model (OOM).
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Fig. 9.  Susceptibility analysis of the models to the missing values for events higher than the 95th percentile. 
Blue, green, orange, red bands and markers indicate the results obtained simulating 5%, 10%, 20 and 30%, 
respectively of the input station as missing values. The lines with ● marker indicate the Standard Model (SM); 
the lines with ▲ marker indicate the Normalized Model (NM); the lines with ▼marker indicate the Only 
Rainfall Model (ORM); the lines with ■ marker indicate the Only Output Model (OOM).
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catchments, by a complex karst system, and by high steep mountains. Our work presents an instrument that is 
able to mitigate hydraulic risk in the study area. We can summarize the main results in the following points:

	1.	� The errors of the models consist in only a few centimetres for the different forecasting times.
	2.	� By using the previous river flow data up to step t-1, a regression only of the output time series can be suffi-

cient for reconstruction of the hydrometric time series (forecasting time of 0 h), but also for some forecasting 
steps.

	3.	� The models tend to underestimate the river flow with an increase of the forecasting time resulting in a sys-
tematic possibility of missing the alarms.

	4.	� A blend of various models enables a spectrum of scenarios, enhancing the reliability and certainty of fore-
casts during critical decision-making.

	5.	� The uncertainty of the models (also due to the sensor measures that are often not estimated) has an impor-
tant influence on the results for small rivers.

	6.	� The introduction of a statistical method able to estimate uncertainty (in GBR models) allows to increase the 
capacity of the models to provide alarms on the basis of objective methodologies.

	7.	� The models are sturdy to the presence of the missing values that can affect the results during the real applica-
tion of these systems.

	8.	� The objective and rapid employment of these systems makes it possible to provide informatic applications 
that the territorial authorities can use for risk mitigation.

In conclusion, deep learning models can be used to provide instruments for hydraulic mitigation. This will 
become increasingly important with the development of the Internet of Things (IoT) in the field of weather 
sensors, which will provide additional data in terms of length of time sensors and of spatial density. Furthermore, 
the deep learning methodology can be applied to different catchments, with very few modifications. In the 
future, for a more efficient application of these models in small catchments, researchers will need to further 
investigate the issue of uncertainty management, try to introduce weather prediction providing different models 
(using or not artificial intelligence), and try to create different strategies for common and extreme events, which 
can improve forecasting time.

Methods
In this section, we describe the methodology used in this work. Figure 10 shows the main workflow we employed 
and that will be described in more detail in the next sections. Step 1 is the analysis and selection of the rainfall 
and river flow rate time series; Step 2 is the definition of four different input matrices to the deep learning 
models; Step 3 is the training of the deep learning models based on Long-Short Term Memory; Step 4 is the 
training of Gradient Boosting Models for estimation of the confidence intervals of the predictions derived from 
Step 3.

Data and pre-processing
The dataset used in this work is provided by the Servizio Idrologico Regionale (SIR) of the Tuscany Region, the 
public authority that manages the weather and climatic monitoring system. We selected the best hydrometric 
and rainfall gauges for this area by identifying 8 hydrometers as output of the DL models (from north to south): 
Carrara and Avenza (Carrione River): Seravezza 1 and Ponte Tavole (Versilia River); Viareggio 1 and Torre 
del Lago (Massaciuccoli Lake system); Ponte Guido (Contesora Torrent); and Mutigliano (Freddana Torrent). 

Fig. 10.  Workflow of the methodology applied. Step 1: management of the hydrological time series (rainfall 
and river flow rates). Step 2: definition of four input matrices (Only Output Model; Standard Model; 
Normalized Model and Only Rainfall Model). Step 3: training of the Long-Short Term Memory Models. Step 
4: Application of Gradient Boosting Models for quantification of the confidence intervals of the predictions 
derived from Step 3.
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Figure 1 shows the output gauges (yellow stars), the hydrometric gauges (red points), and the rainfall gauges 
(blue points) selected and used in this work. The time series used has had a sample frequency of 15 min and a 
temporal range since 2002. The data, which are sourced from the SIR, lack validation, and undergo no automatic 
nor manual quality control. Nevertheless, the inherent data-driven nature of machine learning models prompts 
efforts to address and mitigate issues related to data quality70,71. Consequently, we conducted both manual and 
graphical checks on the time series utilized. Additionally, the territorial authority employs semi-automatic 
procedures to validate daily data. Leveraging this process, we excluded sampled data from days in which these 
procedures had not validated the measurements.

We developed an individual deep learning model for every output hydrometer in order to forecast its 
15-minute measurements ( Ht). The mathematical representation of the model, applicable to all the sub-basins 
examined, can be articulated as follows:

	 Ĥ = f (Xt) = f (Ht−1, Ht−2, . . . , Ht−n, Rt−1, Rt−2, . . . , Rt−n

where Ĥ  stands for the predicted hydrometric height at time t; Ht−1, Ht−2, . . . , Ht−n are the antecedent 
hydrometric heights (up to t–1, t–2,…, t–n time steps); Rt−1, Rt−2, . . . , Rt−n are the antecedent rainfall (t–1, 
t–2, …, t–n time steps). To mitigate the noise inherent in numerous steps and closely spaced measurements, we 
supplied timestamps for each hour of the preceding period and, subsequently, one timestamp every 4 steps (e.g., 
t-0, t-1, t-2, t-3, t-4, t-8, t-12, t-16,…, t-96) up to the 24th hour.

We composed four different input matrices for each station:

•	 Only Output Model (OOM): this model exploits only the output station by performing a regression, using 
this time series alone;

•	 Standard Model (SM): this model is developed using the best rainfall and hydrometric historical series useful 
for each output station;

•	 Normalized Model (NM): this model is based on SM. Furthermore, the input data are normalized in a 0–1 
range using the maximum and minimum values recorded for each time series;

•	 Only Rainfall Model (ORM): this model only uses inlet rain gauges.

In theory, each input matrix has advantages (but also disadvantages) that allow a more flexible system for the real 
application. OOM is the simplest model which makes it scientifically possible to distinguish the next models from 
a simple regression of the output time series. This is very important because several works have demonstrated 
the efficiency of complex models without a baseline. Therefore, we can understand the real effect of introducing 
several data and different datasets. On the other hand, in the application of this system, we need to bear in mind 
that some gauges cannot work correctly during a flood event. For a nearby area with a similar monitoring system, 
Luppichini et al. (2022) found that DL models can perform quite well with even a high percentage of missing 
data (also higher than 25%). In theory, OOM is the model that we can simulate and that in any case always 
provides us with a prediction model. At the outset, SM is the reference model which, in ideal conditions, should 
be the best one. The studied hydraulic systems sometimes present a very small range of values if compared to the 
possible rainfall measurements. In this case, normalization of the values in fixed ranges (for example 0–1) can be 
useful to train the models and this is represented by NM. The hydrometric data are occasionally influenced by 
several factors which can produce faulty measurements. For example, in rivers characterized by pebble beds, it 
is easy to observe that the mainstream of the river is not below the sensor or, in the case of bridges with pillars, 
the measure can be distorted as a result of the accumulation of wood and of similar materials. In these cases, 
ORM allows the user to have a model based only on rainfall data. The real strength of this work is the creation 
of a system based on diverse approaches which can, in principle, perform differently and provide valid tools for 
prediction under various conditions of use. A summary of the input matrices used in this work is reported in 
Table 2. For the station of Seravezza1, the SM model coincides with ORM on account of the absence of other 
significant hydrometers in the catchment of this station.

LSTM regression models
To develop the deep learning models in this study, we primarily utilized the open-source framework Tensorflow73 
and the libraries Numpy, Pandas, Scikit-Learn, and Keras74 in the Python language v3.9. The architecture of the 
developed models is based on an encoder-decoder LSTM (LSTM-ED), consisting of two pairs of LSTM nodes. 
This architecture permits the use of an LSTM able to read the input sequence, one step at a time, and to obtain a 
fixed-size vector representation in a data structure that occupies a large amount of memory. We then introduced 
another LSTM to extract the output sequence from that vector75. The encoder is composed of two sequential 
layers (LSTM) of 32 and 16 units, respectively, followed by a repeat vector node. The repeat vector layer repeats 
the incoming inputs for a specific number of times. The decoder is composed of two LSTM layers of 16 and 32 
units respectively, followed by a time-distributed dense node as output of our model.

To evaluate the discrepancy between the predicted and the measured values, we used a loss function for 
each observation, which allowed us to calculate the cost function. We needed to minimize the cost function 
by identifying the optimized values for each weight. Through multiple iterations, the optimization algorithm 
computes the weights that minimize the cost function. In our implementation, we used the Adam optimizer76, 
which is an adaptive learning speed method that computes individual learning rates for several parameters76. To 
halt the training, we employed the specific API of Keras and, specifically, the early stopping method by which 
the training procedure can be stopped when the monitored metric (namely the value of the cost function) ceases 
to improve.
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We divided the dataset into three parts with a partition of 60% − 20% − 20% for training, validation, and test 
dataset respectively. This division of the dataset has been tested in previous studies35,66,77,78 and ensures sufficient 
data for both training and evaluating the model.

The cost function used was the mean square error (MSE) calculated on the validation dataset. This 
partitioning of the entire dataset helped to minimize the overfitting effect on the training set.

We built a model for each hydrometric station, for each input matrix, and for 25 forecasting steps 
(from 0 to 6 h every 15 min), totalling 775 models. We repeated the entire procedure ten times, managing 
to analyse statistically the uncertainty linked to the training procedure based on a study of 7,750 models.

GBR models
The model errors can be analysed using other algorithms that allow to apply prediction uncertainty more 
efficiently than a simple error metric based on the entire dataset (such as Mean Squared Error or Mean 
Absolute Error). The combination with a second algorithm able to analyse the residuals obtained from the 
LSTM-ED model is an innovative approach that can improve the ability to predict a flood event. In this 
work, we used a Gradient Boosting Regressor (GBR), which is a machine learning algorithm belonging to a 
group of boosting algorithms that build a predictive model, combing different versions of weaker models79. 
The main idea of Gradient Boosting is to iteratively train models sequentially, where each new model 
attempts to correct residual errors made by previous models. In other words, each new model focuses 
on cases that previous models have failed to predict correctly. GBR uses the last observed hydrometric 
data with the aim of estimating the confidence intervals (50% and 90%) of absolute errors relative to the 
predictions extracted by the test dataset. The algorithm GBR works with the Scikit-learn library developed 
in Python language.

Data availability
The authors are available to fully share the raw data which can be requested from the corresponding author.

# Hydraulic system Station name Input matrix N. hydrometric gauges N. rain gauges

1 Carrione River Avenza SM 1 5

2 Carrione River Avenza ORM 0 5

3 Carrione River Avenza OOM 0 0

4 Carrione River Avenza NM 1 5

5 Carrione River Carrara SM 1 5

6 Carrione River Carrara ORM 0 5

7 Carrione River Carrara OOM 0 0

8 Carrione River Carrara NM 1 5

9 Freddana Torrent Mutigliano SM 2 5

10 Freddana Torrent Mutigliano ORM 0 5

11 Freddana Torrent Mutigliano OOM 0 0

12 Freddana Torrent Mutigliano NM 2 5

13 Contesora Torrent Ponte Guido SM 2 5

14 Contesora Torrent Ponte Guido ORM 0 5

15 Contesora Torrent Ponte Guido OOM 0 0

16 Contesora Torrent Ponte Guido NM 2 5

17 Versilia River Ponte Tavole SM 1 13

18 Versilia River Ponte Tavole ORM 0 13

19 Versilia River Ponte Tavole OOM 0 0

20 Versilia River Ponte Tavole NM 1 13

21 Versilia River Seravezza 1 SM 0 13

22 Versilia River Seravezza 1 OOM 0 0

23 Versilia River Seravezza 1 NM 0 13

24 Massaciuccoli Lake Torre del Lago SM 6 10

25 Massaciuccoli Lake Torre del Lago ORM 0 10

26 Massaciuccoli Lake Torre del Lago OOM 0 0

27 Massaciuccoli Lake Torre del Lago NM 6 10

28 Massaciuccoli Lake Viareggio 1 SM 6 10

29 Massaciuccoli Lake Viareggio 1 ORM 0 10

30 Massaciuccoli Lake Viareggio 1 OOM 0 0

31 Massaciuccoli Lake Viareggio 1 NM 6 10

Table 2.  Characteristics of the input matrices for each station.
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