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Identification of sentinel lymph
node macrometastasis in breast
cancer by deep learning based on
clinicopathological characteristics

Daqu Zhang?, Miriam Svensson?, Patrik Edén® & Looket Dihge?3™*

The axillary lymph node status remains an important prognostic factor in breast cancer, and nodal
staging using sentinel lymph node biopsy (SLNB) is routine. Randomized clinical trials provide evidence
supporting de-escalation of axillary surgery and omission of SLNB in patients at low risk. However,
identifying sentinel lymph node macrometastases (macro-SLNMs) is crucial for planning treatment
tailored to the individual patient. This study is the first to explore the capacity of deep learning (DL)
models to identify macro-SLNMs based on preoperative clinicopathological characteristics. We trained
and validated five multivariable models using a population-based cohort of 18,185 patients. DL models
outperform logistic regression, with Transformer showing the strongest results, under the constraint
that the sensitivity is no less than 90%, reflecting the sensitivity of SLNB. This highlights the feasibility
of noninvasive macro-SLNM prediction using DL. Feature importance analysis revealed that patients
with similar characteristics exhibited different nodal status predictions, indicating the need for
additional predictors for further improvement.
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Breast cancer is the most common cancer worldwide and one of the leading causes of cancer-related death
in women'. Along with tumor size and histological grade, axillary lymph node status is one of the strongest
prognostic factors for breast cancer’™. Sentinel lymph nodes (SLNs) are the first axillary lymph nodes to
receive drainage from a breast tumor; therefore, they are most likely to exhibit metastatic deposits. SLN biopsy
(SLNB) remains the gold standard approach for staging the axillary nodal status in patients with clinically node-
negative (cNO) breast cancer and also in ¢N + patients undergoing neoadjuvant chemotherapy with complete
pathological response at axillary level>”. In particular, the presence of SLN macrometastasis (macro-SLNM, a
metastasis > 2 mm) is clinically significant and affects decision-making in systemic and locoregional therapy®®.
In patients with macro-SLNM undergoing mastectomy and immediate breast reconstruction (IBR), post-
mastectomy radiotherapy (PMRT) is associated with a high risk of postoperative complications, including
implant failure!®.

While SLNB reduces postoperative arm morbidity and maintains oncological safety comparable to axillary
lymph node dissection (ALND)!!2, a risk of postoperative complications still remains. When assessing the
outcomes of patients with cNO breast cancer randomized to SLNB or no axillary intervention, SLNB was associated
with significantly increased arm and breast morbidity'>. Considering the low incidence of clinically relevant
macro-SLNMs in contemporary breast cancer populations!*-!°, the utility of routine SLNB in all patients with
primary invasive breast cancer has been questioned, and there is a current trend toward de-escalation of axillary
surgery'’. Axillary ultrasonography (AUS) enables noninvasive axillary staging and is currently included in the
diagnostic work-up for primary breast cancer. When utilizing radiomics and advanced adjunctive modalities,
AUS has demonstrated good performance!®!®. However, AUS is highly operator-dependent, resulting in a wide
range of reported accuracy?®?!. To date, no reliable non-invasive method has been clinically implemented to
replace SLNB for staging the axillary nodal status in patients with cNO breast cancer.
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Multiple studies have attempted to noninvasively predict the axillary nodal status in patients with breast
cancer using prediction models based on clinicopathological characteristics®>~2°. Although the results are
promising, these studies predominantly rely on linear models such as logistic regression (LR), with few studies
exploring decision trees and multilayer perceptron (MLP). These traditional machine learning (ML) techniques
have limited ability for feature extraction, leaving potential complex feature interactions unexplored. Conversely,
deep learning (DL) algorithms harness artificial neural networks with sophisticated architectures and have the
advantages of nonlinear modeling and advanced feature engineering. This makes DL invaluable for risk estimation
in clinical practice, as it has the potential to capture complex data interactions that other algorithms may miss.
Previous studies have shown the immense potential of DL in predicting lymph node metastasis using radiomics
data!®?7-2, However, owing to the restricted accessibility of these data, the usefulness of these prediction tools
is limited. By contrast, routinely collected health data often include clinicopathological characteristics, and this
wealth of tabular data presents an extraordinary opportunity for DL models. Many encouraging attempts have
been made to adapt DL for tabular data®*-32 In particular, Transformer?, which is based on a self-attention
mechanism, is effective in capturing global correlations among predictors. A recent benchmarking study on
diverse tabular tasks revealed that ResNet** is an effective baseline and that Transformer outperforms other DL
solutions on most tasks*, although Transformer’s superiority over gradient-boosted decision trees on tabular
data is still under debate®®. Nevertheless, there has been no reported research investigating DL for predicting
nodal status in breast cancer based solely on clinicopathological characteristics.

In this study, we aimed to fill the following knowledge gap: what is the full potential of DL for predicting
macro-SLNM in cNO primary invasive breast cancer using solely clinicopathological variables that are easily
accessible in a preoperative setting? To this end, we used a large contemporary population-based dataset of
18,185 patients from the Swedish National Quality Registry for Breast Cancer (NKBC)¥. For the models,
we implemented ResNet and Transformer, as well as LR, MLP, and CatBoost*® as benchmarks. To take full
advantage of these models, we tested several powerful DL strategies on our data, including feature tokenizers®
for efficient feature embedding; weighted binary cross-entropy loss, focal loss*, and triplet loss*® to address the
imbalanced distribution of macro-SLNM; and Bayesian optimization of the hyperparameter search. Last, to
better visualize and interpret the clinical importance of the included predictors, we utilized Shapley Additive
exPlanations (SHAP)*! to estimate feature importance.

Results

Development and test cohorts show trivial differences in clinical characteristics

A total 0f 23,264 patients diagnosed with breast cancer between 2014 and 2017 who underwent surgical treatment
were identified within the NKBC (Supplementary Fig. S1). Of these, 18,185 were included in the study cohort,
with an overall macro-SLNM prevalence of 13%, and the mean number of sentinel nodes harvested was 1.90,
with a median of 2.00. In the overall study cohort, 2,185 patients underwent completion ALND. The mean age at
diagnosis was 63 years, and most patients had Luminal A-like (LumA) tumors, grade II carcinoma of no special
type (NST) with a median tumor size of 16.3 mm. Patients diagnosed between 2014 and 2016 (n=13,656) were
used for model development (training and internal validation), and those diagnosed in 2017 were assigned to the
test set (n=4529). Thirteen clinical features previously recognized as predictive of the axillary nodal status?>*}
were used to train the prediction models. A comparison of these features and the outcome (macro-SLNM)
between the training and test sets is presented in Table 1. The observed significance could be influenced by the
large sample size, which tends to result in high confidence (small P values) while not providing direct information
about the magnitude of the detected differences. To address this issue, the effect size (V or d) was also analyzed.
In the test set, tumors were more often detected by mammography screening (61 vs 58%; P=0.003, V=0.022),
there was a slightly lower frequency of invasive lobular carcinoma (ILC) (12 vs 13%; P<0.001, V=0.018), and
the progesterone receptor (PgR) expression was lower (58.0 vs 59.9%; P=0.007, d=-0.047). However, there was
a higher frequency of the LumA molecular subtype in the test set (59% vs 55%; P <0.001, V=0.020). The test set
also exhibited a slightly lower prevalence of macro-SLNM (12 vs 14%; P=0.030, V=0.016). It is worth noting
that none of the cohort differences exhibited non-trivial effect sizes (defined as |V|>0.30,>0.21, and > 0.17 for
1,2, and 3 degrees of freedom, respectively*!), indicating that the observed variations between the development
and test sets were small.

Tumor size and number of invasive foci are significant clinical predictors for macro-SLNM

A comparison of patient and tumor characteristics between patients with and without macro-SLNM in the overall
study cohort is presented in Table 2. Patients with macro-SLNM were younger, more frequently premenopausal,
and had a higher prevalence of symptomatically presented breast tumors. Furthermore, they exhibited more
invasive foci, larger tumor size, higher histological grade, higher expression of Ki67, and a higher rate of the
Luminal B-like (LumB) molecular subtype. Although a wide range of variables showed significant differences,
only a limited number exhibited nontrivial effect sizes. Significant differences with non-trivial effect sizes were
observed for tumor size (21.7 mm vs 15.4 mm; P<0.001; d=0.707). Additionally, marginal non-trivial effects
were observed for number of invasive foci (1.5 vs 1.2; P < 0.001; d = 0.333), Ki67 expression (28.0 vs 25.5%;
P<0.001; d=0.129) and T stage> T1 (45% vs 21%; P<0.001; V=0.191).

LR and MLP exhibit weak advantages over Transformer and outperform the remaining
models on overall performance

To investigate the added value of DL models in predicting macro-SLNM using only preoperatively accessible
variables, we first benchmarked a univariable model (called T-size), using only tumor size, as it was previously
verified as one of the most important predictors of axillary nodal status.® We then compared the overall
performance of the five multivariable models trained on the 13 clinical features (Supplementary Table S1).
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All Development set | Test set
Characteristics (n=18,185) | (n=13,656) (n=4,529) | Pvalue | Effect size
Age, y, mean (SD) 62.8 (+12.0) | 62.7 (+12.0) 632 (£11.9) | 0.020 | 0.040
Menstrual status, No. (%)
Premenopausal 3280 (19) 2468 (19) 812 (19) 0.574 0.004
Postmenopausal 13,857 (81) | 10,361 (81) 3496 (81)
Mode of detection, No. (%)
Symptomatic presentation 7502 (41) 5717 (42) 1785 (39) 0.003 0.022
Mammographic screening 10,643 (59) | 7904 (58) 2739 (61)
No. Invasive foci, mean (SD) | 1.3 (+0.7) 1.3(x0.7) 1.3(x0.7) 0.439 0.013
T-stage, No. (%)
T1 13,793 (76) 10,306 (75) 3487 (77) 0.038 0.015
T2 4392 (24) 3350 (25) 1042 (23)
Tumor size, mm, mean (SD) 16.3 (+8.8) |[16.3(+8.9) 16.1 (+8.6) | 0.066 -0.031
Histological type, No. (%)
NST 13,979 (77) 10,511 (77) 3468 (77)
ILC 2320(13) | 1779 (13) 541 (12) <0001 10018
Others 1315 (7) 977 (7) 338 (7)
Histological grade, No. (%)
I 4068 (23) 3081 (23) 987 (22)
II 9447 (53) 7118 (53) 2329 (52) 0081 0.012
111 4467 (25) 3298 (24) 1169 (26)
ER, %, mean (SD) 86.2 (£29.7) | 86.3 (+29.4) 85,9 (£30,4) | 0.549 | -0.011
PgR, %, mean (SD) 59.4 (+39.4) |59.9 (+39.2) 58.0 (+39.9) | 0.007 -0.047
Ki67, %, mean (SD) 25.8 (+19.8) | 25.8 (+19.9) 25.9 (+19.3) | 0.789 0.005
HER? status, No. (%)
Negative 15,917 (89) | 11,939 (89) 3978 (89) 0.631 | 0.004
Positive 2009 (11) 1497 (11) 512 (11)
St Gallen surrogate molecular
subtype, No. (%)
LumA 9589 (56) 7010 (55) 2579 (59)
LumB 4380 (26) | 3362 (26) 1018 (23) | <0001 | 0.020
HER2 + 2009 (12) 1497 (12) 512 (12)
TNBC 1131 (7) 842 (7) 289 (7)
# Harvested SLNs, mean (SD) | 1.9 (£1.1) 1.9 (x1.1) 2.0 (+£1.2) <0.001 |0.14
Macro-SLNM, No. (%)
Negative 15,776 (87) 11,804 (86) 3972 (88) 0.030 0.016
Positive 2409 (13) 1852 (14) 557 (12)

Table 1. Development and test sets show trivial differences in clinical characteristics. P values and effect sizes
were calculated for the development vs test sets. The significance level was set at P=0.05, and a non-trivial
effect size was defined as |V|>0.30,>0.21, and > 0.17 for 1, 2, and 3 degrees of freedom, respectively. NST

No special type; ILC Invasive lobular carcinoma; ER Estrogen receptor; PgR Progesterone receptor; HER2
Human epidermal growth factor receptor 2; LumA luminal A-like; LumB Luminal B-like; HER2 + HER2-
positive; TNBC Triple-negative breast cancer; SLN Sentinel lymph node; macro-SLNM Sentinel lymph node
macrometastasis.

The detailed DL workflow is illustrated in Fig. 1. The models were evaluated using the area under the receiver
operating characteristic (ROC) curve (AUC). We also used precision-recall (PR) AUC, which is recommended
for data with imbalanced classes. Figure 2(A) and (B) demonstrate the predictive ability of the five multivariable
ML models and the univariable T-size model on the test set. With regard to the ROC AUC, Transformer, LR,
and MLP exhibited similar performances and did not show substantial differences (range 0.711-0.712). These
models slightly outperformed ResNet and CatBoost (range 0.704-0.708). For the PR AUC, LR had the highest
performance (0.273+0.001), albeit with a marginal advantage <0.010 compared to MLP and Transformer.
Surprisingly, the improvement observed across all the developed ML models was minimal compared to the
univariable T-size model, with only slight increases of 2.0% in the ROC AUC and 3.4% in the PR AUC.

DL models outperform LR under the constraint that the sensitivity is no less than 90%
The procedural accuracy of SLNB is assessed by calculating the false-negative rate (FNR), with a generally
accepted value of 10%%. Therefore, we also optimized the decision thresholds for each developed model by
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All Macro-SLNM
Characteristics (n=18,185) | Negative (n=15,776) | Positive (n=2,409) | P value | Effect size
Age, y, mean (SD) 62.8 (+12.0) | 62.9 (+11.8) 62.3 (+13.0) 0.035 | -0.049
Menstrual status, No. (%)
Premenopausal 3280 (19) 2757 (19) 523 (23) <0.001 | 0.038
Postmenopausal 13,857 (81) | 12,104 (81) 1753 (77)
Mode of detection, No. (%)
Symptomatic presentation 7502 (41) 6254 (40) 1,248 (52) <0.001 | 0.084
Mammographic screening 10,643 (59) | 9485 (60) 1,158 (48)
No. Invasive foci, mean (SD) | 1.3 (+0.7) 1.2 (+0.6) 1.5 (£0.9) <0.001 |0.333
T-stage, No. (%)
T1 13,793 (76) 12,469 (79) 1324 (55) <0.001 |0.191
T2 4392 (24) 3307 (21) 1085 (45)
Tumor size, mm, mean (SD) | 16.3 (+8.8) | 15.4 (+8.3) 21.7 (+£9.9) <0.001 |0.707
Histological type, No. (%)
NST 13,979 (77) 12,108 (77) 1871 (78)
ILC 2320 (13) | 1962 (12) 358 (15) <0001 0:056
Others 1315 (7) 1232 (8) 83 (3)
Histological grade, No. (%)
I 4068 (23) 3760 (24) 308 (13)
II 9447 (53) 8109 (52) 1338 (56) <0.001 ) 0.068
111 4467 (25) 3726 (24) 741 (31)
ER, %, mean (SD) 86.2 (+29.7) | 86.2 (+29.7) 85.8 (+29.5) 0.481 -0.016
PgR, %, mean (SD) 59.4 (+39.4) | 59.5 (+£39.5) 59.1 (+38.7) 0.674 -0.009
Ki67, %, mean (SD) 25.8 (+£19.8) | 25.5(+19.8) 28.0 (+19.3) <0.001 |0.129
HER? status, No. (%)
Negative 15,917 (89) | 13,810 (89) 2107 (89) 0.801 | 0.002
Positive 2009 (11) 1739 (11) 270 (11)
St Gallen surrogate
molecular subtype, No. (%)
LumA 9589 (56) 8518 (57) 1071 (47)
LumB 4380 (26) 3588 (24) 792 (35) <0.001 | 0.049
HER2+ 2009 (12) 1739 (12) 270 (12)
TNBC 1131 (7) 989 (7) 142 (6)

Table 2. Tumor size and number of invasive foci are significant clinical predictors of sentinel lymph node
macrometastasis (macro-SLNM). P values and effect sizes were calculated for negative vs positive macro-
SLNM. The significance level was set at P=0.05, and a non-trivial effect size was defined as | V|>0.30,>0.21,
and >0.17 for 1, 2, and 3 degrees of freedom, respectively. NST No special type; ILC Invasive lobular
carcinoma; ER Estrogen receptor; PgR Progesterone receptor; HER2 Human epidermal growth factor receptor
2; LumA luminal A-like; LumB Luminal B-like; HER2 + HER2-positive; TNBC Triple-negative breast cancer.

maximizing the specificity while ensuring a sensitivity of at least 90%. Table 3 summarizes the corresponding
performance metrics for the specified thresholds. The mean and standard deviations were calculated across the
fivefold prediction models tested on the test set. Transformer had the highest specificity (34.6 +0.6%), precision
(16.2+0.1%), negative predictive value (NPV) (96.2+0.1%), and accuracy (41.5+0.5%). MLP also showed
competitive performance. Interestingly, although LR had a better overall performance in terms of the PR AUC,
all other ML models outperformed LR at 90% sensitivity and had higher specificity, precision, NPV, and accuracy.
For further details, the distribution of individual predictions by Transformer are shown in Supplementary Fig.
S2.

Tumor size shows a significant lead over the other predictors
Finally, we employed the SHAP explainer to estimate the feature importance of the multivariable models*!. In
Fig. 3, the predictors are ranked by importance across all models, with decreasing average importance from top
to bottom. Tumor size was the single most important factor in all predictive models, and in three of the models,
the number of invasive foci was the second most important factor. Notably, tumor size exhibited a significant
lead over the second-ranked variable in all predictive models (P<0.001), highlighting its prominent role in
predicting macro-SLNM, which is in line with the previous findings*>. The reliability of the SHAP explainer was
verified to be highly consistent with the LR model coefficients (Supplementary Fig. S3).

Among the models, LR demonstrated a distinctive distribution of feature importance. More specifically,
LR attributed a substantial importance value (0.72) to the histological type predictor, whereas other models
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Fig. 1. Deep learning workflow. The overall study cohort was divided into a development set (patients
diagnosed between 2014 and 2016) and a test set (patients diagnosed in 2017). Five multivariable machine
learning (ML) algorithms (logistic regression [LR], multilayer perceptron [MLP], ResNet, Transformer, and
CatBoost) were trained on the development set to predict sentinel lymph node macrometastasis (macro-
SLNM, a metastasis >2 mm). Several powerful deep learning (DL) strategies were employed to take full
advantage of the prediction models, including feature tokenizers for efficient feature embedding; weighted
binary cross-entropy loss, focal loss, and triplet loss to address the imbalanced distribution of macro-SLNM:s;
and Bayesian optimization of the hyperparameter search. Internal validation was performed using fivefold
cross validation. The trained fivefold models of each multivariable algorithm and the univariable model
using only tumor size (T-size) were evaluated on the test set to estimate predictive performance. Performance
metrics, including the area under the receiver operating characteristic (ROC) curve (AUC) and the precision
recall (PR) AUC, were calculated. In addition, when the sensitivity was set to at least 90%, the specificity,
negative predictive value, and positive predictive value were calculated based on the average performance
across all five folds. Finally, Shapley Additive exPlanations was applied to evaluate the feature importance for
each of the five multivariable algorithms and for individual patients.

displayed only limited importance for this feature. In addition, LR attributed considerable importance to
the human epidermal growth factor 2 (HER2) predictor, ranking it much higher than the other algorithms.
Furthermore, when examining the correlation between the values of feature importance assigned by each model
and the effect sizes, LR exhibited a large discrepancy, with a correlation coefficient of 0.670, whereas Transformer
exhibited the highest consistency, with a correlation of 0.965, closely followed by ResNet and CatBoost.

Individual interpretations indicate data limitation

Based on Transformer’s prediction, we randomly selected true-positive, false-positive, true-negative, and false-
negative predictions from the test set (Fig. 4(A-D)) and examined their individual SHAP explanations. For
two patients with model-predicted macro-SLNM, both the true-positive prediction (Fig. 4(A)) and the false-
positive prediction (Fig. 4(B)) had a large tumor size (45 and 35 mm, respectively) and multifocality (4 and 2
invasive foci, respectively). These two key predictors significantly contributed to positive predictions in these
two patients. In contrast, for two patients with model-predicted absence of macro-SLNM, the true-negative
prediction (Fig. 4(C)) and the false-negative prediction (Fig. 4(D)) both had a small tumor size (7 and 9 mm,
respectively) and unifocality along with a histological type other than NST or ILC. The other models yielded
similar results. In summary, some patients with similar features obtained close model predictions although they
had different SLNB outcomes, indicating the intricate nature of nodal status prediction and the data limitations
of only routine clinicopathological predictors.

Advanced losses and hyperparameter optimization do not improve the predictive
performance

Various strategies, including feature tokenizers, advanced losses, and hyperparameter searches, were explored
to enhance the performance of the DL models. Interestingly, the results indicated that, except for the tokenizer,
which was found to be essential for Transformer, none of the explored strategies significantly improved the
predictive ability in the internal validation (details are shown in Supplementary Figs. S4, S5, S6). Based on
these observations, the multivariable models presented above were trained using default hyperparameters (see
Supplementary Section B) and optimized for binary cross-entropy loss.
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Fig. 2. Logistic regression (LR) and multilayer perceptron (MLP) exhibit weak advantages over Transformer
and outperform the remaining models on overall performance. (A) Receiver operating characteristic (ROC)
and (B) precision recall (PR) curves for fivefold models of all multivariable algorithms on the test set. The
ROC/PR curves of the univariable model based on only tumor size (T-size) serve as a shared benchmark
(dashed line in black). Presented at the top is the mean area under the curve (AUC) and standard deviation
across all 5 folds.

Multivariable models
T-size | LR MLP Resnet Transformer | CatBoost

ROC AUC 0.692 | 0.711 (+0.002) | 0.712 (+0.002) | 0.708 (+0.003) | 0.711 (+0.004) | 0.704 (+0.004)
PR AUC 0.239 | 0.273 (£0.001) | 0.263 (+0.004) | 0.253 (+0.012) | 0.267 (+0.010) | 0.258 (+0.008)
%i,‘;;fiov/jty (recall 1901 | 90.1 90.1 90.1 90.1 90.1

Specificity (TNR), % | 31.8 | 32.6 (+0.5) 34.2 (+0.9) 33.0 (+0.7) 34.6 (£0.6) 328 (+1.3)
PPV (precision), % | 15.6 | 15.8 (+0.1) 16.1 (+0.2) 15.9 (+0.1) 16.2 (£0.1) 15.8 (+0.2)
NPV, % 958 | 95.9 (+0.1) 96.1 (+0.1) 96.0 (+0.1) 96.2 (£0.1) 95.9 (+0.2)
Accuracy, % 39.0 39.7 (+0.4) 41.0 (+0.8) 40.0 (+0.6) 41.5 (£0.5) 39.9 (+1.1)

Table 3. Deep learning models outperform logistic regression (LR) under the constraint that sensitivity is

no less than 90%. The performance metrics of the multivariable models were evaluated using the test set by
calculating the mean and standard deviation across the fivefold models. The specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy at a sensitivity threshold of no less than 90% were
presented. The best results for each metric are indicated in bold. T-size Tumor size; MLP Multilayer perceptron;
ROC Receiver operating characteristic; AUC Area under the curve; PR Precision recall; TPR True positive rate;
TNR True negative rate.

Discussion
This study extensively explored the capacity of DL models to predict macro-SLNM using 13 clinicopathological
features in a contemporary cohort of > 18,000 women with cNO T1-T2 breast cancer. Compared to traditional ML
models, DL did not show significant advantages in terms of overall performance. However, when the tolerance
of the FNR was set to 10%, which is the generally accepted FNR of SLNB*S, Transformer showed superiority,
with a specificity of 34.6% (+0.6%) and an NPV of 96.2% (+0.1%). The results highlight the feasibility of non-
invasive prediction of clinically significant macro-SLNM using DL models but underline that individual-level
interpretation has irreducible data uncertainties, which suggests the need for inclusion of additional variables in
prediction models to improve their accuracy in further studies.

Artificial intelligence, particularly DL, has recently gained popularity in risk stratification owing to its

outstanding performance?’. Cutting-edge DL techniques have revolutionized the way mammography*s->1,
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Number of invasive foci

LR MLP Resnet Transformer CatBoost

Tumor size

Histological type 0.72 0.16 0.11 0.1 0.1
St Gallen subtype 0.09 0.16 0.13
Ki67 0.16 0.22 0.08 0.12

Histological grade 0.17 0.12 0.08 0.12
T-stage 0.04 0.21 0.17 0.21 0512

PgR 0.14 0.20 0.14 0.11 0.10

Mode of detection 0% 0.18 0.11 0.14 0.05
Age 0.14 0.16 0.12 0.06 0.12

ER 0.16 0.08 0.10 0.03 0.11

HER2 0.22 0.01 0.04 0.02 0.02

Menstrual status 0.06 0.01 0.05 0.05 0.06

Fig. 3. Tumor size shows a significant lead over the other predictors. A heat map of the feature importance
assessed by Shapley Additive exPlanations (SHAP) is presented for each of the five multivariable models. The
predictors are ranked by average importance across all models, with decreasing values from top to bottom.
LR, logistic regression; MLP, multilayer perceptron; PgR, progesterone receptor; ER, estrogen receptor; HER2,
human epidermal growth factor receptor 2.

histopathological slides®->, and gene expression data® are analyzed and interpreted, leading to transformative

outcomes in breast cancer. Wang et al.** and Yala et al.*! proved that DL models trained on mammography were
superior to standard methods for risk discrimination in breast cancer. For the analysis of histopathological slides,
DL has demonstrated significant improvement in identifying metastasis in lymph node biopsies®>>3, as well as
in classifying different types of breast cancer.>* Moreover, pioneering research has suggested the potential of DL
for detecting breast cancer from gene expression data and identifying high-risk genes®. In terms of predicting
lymph node metastasis, DL models exploiting radiomics, such as magnetic resonance imaging?, shear wave
elastography,'® contrast-enhanced ultrasonography®®, and positron emission tomography?’, have demonstrated
excellent performance, with ROC AUCs between 0.82 and 0.94. However, these imaging features are not always
available in routine breast cancer work-ups.

To the best of our knowledge, this is the first contemporary population-based study to evaluate the
discriminative ability of advanced DL models for the prediction of axillary lymph node status in patients with cNO
breast cancer using only clinicopathological variables. Five ML models with increasing complexity and novelty,
ranging from LR to Transformer, were compared. Advanced DL models, including ResNet and Transformer,
demonstrated no significant improvement in overall performance compared with LR, and CatBoost and MLP
also showed no improvement. Moreover, the improvement observed across all ML models compared to the
univariable T-size model was minimal. These unconventional observations suggest that there is no clear nonlinear
interaction among the 13 included clinical features, rendering them unsuitable for exploitation using nonlinear
models. Consequently, the advantages of the DL architectures and their strategies are limited. However, with a
predefined FNR of 10%, the DL models outperformed LR. This threshold was defined to address the estimated
FNR of SLNB, which is the gold standard for evaluating the axillary nodal status.

The presented models demonstrated ROC AUCs of 0.704-0.712 and PR AUC:s of 0.253-0.273 in the test set
(Table 3), which were generally in accordance with the results of previous studies using only clinicopathological
data but based on traditional ML techniques??~>42657, LR, MLP and CatBoost were used as benchmarks to offer
a comparison between the proposed DL models and the traditional ML methods, since a direct comparison
with existing research is challenging due to differences in study populations and predictive variables. First,
lymphovascular invasion (LVI), which is difficult to evaluate accurately in a preoperative setting, was included
in the prediction models®®. Although LVI has been established as a critical factor in assessing the risk of nodal
involvement, its microfocal nature presents challenges for accurate interpretation in the preoperative setting. This
study focuses exclusively on clinicopathological variables that could be obtained preoperatively, either through
imaging modalities for tumor size or core needle biopsy for tumor grade, biomarkers, and surrogate molecular
subtypes. LVI was therefore excluded. Second, the study cohorts were older (1996-2012). Third, patients with
more advanced tumors (T3) were included, and higher incidences of nodal metastasis (28-38%) related to
larger primary tumors were observed. Importantly, unlike these studies, our prediction models were specifically
designed to handle only clinicopathological variables that are readily accessible in a preoperative setting;
therefore, LVI was not included, although it has previously been recognized as one of the strongest predictors
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a True positive prediction

b False positive prediction
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Fig. 4. Individual interpretations indicate data limitations. Shown here are the individual Shapley Additive
exPlanations (SHAP) of four different patients for the prediction of sentinel lymph node macrometastasis
(macro-SLNM) based on the Transformer model. (A) True-positive, (B) false-positive, (C) true-negative, and
(D) false-negative predictions were randomly selected from the test set. Here, f(x) is the predicted probability
of macro-SLNM for the selected patient based on the transformer model, and E[f(x)] is the expectation
(mean value) of predictions across the entire test set (0.145), as well as the threshold for positive and negative
predictions. For each individual, the prediction starts from E[f(x)], and each predictor contributes positively
(red) or negatively (blue) to the final prediction f(x). The predictors are sorted according to the absolute
feature importance (contribution) of each predictor. The 26 redundant predictors are shown directly because
there may be both negative and positive values within one redundant group (see Supplementary Table S1).
LumA, luminal A-like; PgR, progesterone receptor; ILC, invasive lobular carcinoma; NST, no special type; C1,
classification 1 [NST, ILC, others]; C2, classification 2 [NST, ILC, other or mixed]; C3, classification 3 [NST or
ILC, others].

of axillary nodal metastasis*®. This approach enhances the practicality and versatility of our models, enabling
their deployment in various settings and scenarios. Moreover, unlike most previously presented models for the
prediction of nodal metastasis, which reported on the collection of micro- and macrometastases in sentinel and
non-sentinel lymph nodes, our models were specifically trained to predict the presence of macro-SLNM. This is
important since pure micro-SLNM (< 2.0 mm) is considered to be of minor clinical significance®®, whereas for
many patients with macro-SLNM, completion ALND and/or locoregional radiotherapy is still reccommended®®.

For all multivariable models, tumor size was the single most important predictor and showed a significant
lead over the remaining predictors according to a post-hoc analysis of feature importance. Histological data and
molecular profiles, including estrogen receptor (ER), PgR, HER2, and Ki67 expression, did not substantially
enhance the accuracy of macro-SLNM prediction. This result explains the observation that the univariable T-size
model exhibited competitive performance with the multivariable models trained on all features. This outcome
is in accordance with previous findings recognizing tumor size as one of the most important clinicopathological
predictors of axillary nodal status*.

To improve the model development, the five ML models were trained with 100 different hyperparameter
settings (except for LR, which had 20 settings) and evaluated by fivefold cross-validation. Consequently, 2,100
models were evaluated (Supplementary Fig. S6). Despite the vast explored function space, the internal validation
demonstrated low variance between the different models, suggesting that the uncertainty associated with the
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models and parameters was minimal®. Moreover, other popular DL strategies were employed to achieve efficient
feature embedding and address imbalanced classification (Supplementary Figs. S4, S5). None of these attempts
significantly boosted the performance except for the tokenizer for Transformer. This suggests that the primary
source of prediction uncertainty stems from the data itself rather than the model or parameters. This argument
is further supported by the individual interpretation based on the SHAP values, where patients with similar
features exhibited close predictions, although they had divergent outcomes on SLNB. This implies the existence
of unobserved key variables, rendering the target variable to appear random and unpredictable and points to
data uncertainty encoded by the clinicopathological features. It is important to note that data uncertainty is
inherently irreducible unless the input dimensionality is increased by incorporating additional variables with
novel information into existing clinicopathological features.®!

Accurate noninvasive prediction of macrometastatic lymph node status is important for improving the
axillary management of patients with breast cancer. Detection at an earlier stage has decreased the node-positivity
rate in newly diagnosed breast cancer®, and most patients do not benefit therapeutically from surgical axillary
nodal staging. Because of its lack of effect on locoregional recurrence and breast-cancer-specific mortality®>64,
the Choosing Wisely initiative®® has already declared that SLNB should no longer be routinely required for
women > 70 years of age with early-stage hormone receptor positive, HER2-negative cNO invasive breast cancer.
Accordingly, the American Society of Clinical Oncology guidelines on axillary management in breast cancer
have been revised, endorsing the omission of SLNB for these patients after a case-by-case evaluation and patient-
centered decision making66. Furthermore, the first results from the SOUND (Sentinel Node vs Observation
After Axillary Ultra-Sound) trial recently showed that omission of axillary surgery is non-inferior with regard
to 5-year distant disease-free survival in patients with T1 tumors and negative AUS results who are treated
with breast-conserving surgery and radiotherapy, suggesting that selected patients can be safely spared routine
SLNB*%. In addition, ongoing randomized trials, e.g., INSEMA (Intergroup Sentinel Mamma)®’ and BOOG
2013-08 (Dutch Breast Cancer Research Group)®® are currently evaluating the oncological safety of omitting
routine SLNB in patients with cNO early stage breast cancer and disease-free axillae on AUS. Although these trials
are confined to breast-conserving surgery, they encompass patients across different age groups and molecular
subtypes. Importantly, despite the widespread availability of genomic testing, chemotherapy remains a critical
consideration, particularly for premenopausal women with ER+disease and nodal involvement, alongside
endocrine therapy. Moreover, in patients with HER2-positive and triple-negative breast cancer undergoing
upfront surgery, accurate nodal assessment is essential for tailoring adjuvant treatment regimens appropriately.
Consequently, accurate noninvasive tools are needed to identify patients with cNO breast cancer who are unlikely
to benefit from surgical axillary nodal staging owing to the low risk of clinically relevant macro-SLNM.

Moreover, for patients with breast cancer undergoing mastectomy, preoperative noninvasive evaluation of
the axillary nodal status is of particular interest. To improve postoperative quality of life®, patients undergoing
mastectomy should be counselled about breast reconstruction options, and IBR should be offered to the vast
majority, according to current guidelines®®. Given that tumor size has a high predictive value for macro-SLNM,
it is important to recognize that tumors tend to be larger in mastectomy cases compared to breast-conserving
surgery. This may inherently increase the risk of nodal metastasis, leading to a greater likelihood of ALND or
the need for radiotherapy in these patients. For patients with macro-SLNM, PMRT after IBR is associated with
an increased risk of postoperative complications and reconstruction failure!®. Assessing the need for PMRT is
crucial for facilitating informed decision-making between patients and surgeons, particularly when considering
breast reconstruction options, including the type and timing of the procedure.

Though this study indicates that a lack of nonlinear interaction among the clinicopathological variables
limits the power of DL for detecting macro-SLNM, leveraging flexible feature engineering and advancements in
computer vision and natural language processing (NLP), DL can demonstrate superior performance in clinical
applications where heterogeneous tabular data and other modalities are available’’. Recent research on diagnosis
data comprising 172 features showed that Transformer and ResNet provided a definitive advantage over baseline
models for various prediction tasks including hypertensive diseases, ischematic heart disease, diabetes, alcohol
dependence and others’. In future studies, the integration of readily accessible preoperative imaging data with
advanced DL techniques can be used to further enhance the performance of the prediction models. Studies
combining clinicopathological characteristics with conventional ultrasonography’? or mammography”?, utilizing
radiomics—particularly deep radiomics'®7>—have shown promising results in predicting axillary nodal status,
despite the limited size of the study cohorts. Furthermore, hematoxylin and eosin-stained tissue sections of
the primary breast tumor could be used, along with clinical data, to predict the risk of clinically important
nodal metastasis. The first attempt to utilize this type of data with DL models was made based on the INSEMA
cohort’. Although none of the presented image analysis algorithms showed better than random performance,
the INSEMA cohort almost exclusively included low- to moderate-risk patients with hormone receptor-positive,
HER2-negative luminal breast cancer, making it difficult to identify distinguishing image features. Finally,
genomic data offer numerous opportunities to investigate gene signatures that could be included in prediction
models to further improve the prediction of SLN metastasis”.

Limitations of the study

This study has several limitations in addition to its retrospective nature. The study was conducted using
registered data with a risk of misclassification. However, the NKBC database is a nationwide register recognized
to have high coverage, with a < 5% proportion of missing values for most variables’®. When cross-linked to the
Swedish Cancer Register, the comparability was high, and excellent agreement with re-extraction of medical
data was shown’®. In our study, the average missing rate of all included predictors was approximately 2.3% (see
Methods). Although missing data generally present challenges in the verification of a model, this is compensated
for by the large sample size, which minimizes the effect of such errors, and meticulous data curation. Moreover,
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preprocessing steps, including missing value imputation, categorical embedding, and normalization, were
conducted after separating the development and test sets. Therefore, information leakage from the test set is
prevented. The possible variation in the prevalence of macro-SLNM between different patient populations may
reduce the generalizability of the results for populations with markedly different proportions of node-positive
breast cancer. However, procedures for adjusting the model predictions to a shifted a priori probability have
been proposed”’. Although the models were developed to predict the risk for macro-SLNM preoperatively and
only variables that were feasible to obtain in a preoperative setting were included, the histopathological variables
in the present study were collected from the final pathological evaluation. Even though histological grade,
histopathological type and molecular profile can be readily assessed with high accuracy in the preoperative
setting from routine core needle biopsy™®, the tumor size and the presence of multifocality require thorough
measurements across multiple imaging modalities to be accurately estimated’®-%°. Consequently, caution is
warranted regarding potential differences between pre- and postoperative values. Therefore, further studies
applying only preoperative variables should be conducted to validate these results.

In conclusion, this study extensively explored the capacity of DL models to predict macro-SLNM in patients
with ¢NO breast cancer using only clinicopathological characteristics. Under the constraint that the FNR is no
more than 10%, which reflects the generally accepted FNR of SLNB*, Transformer was superior to the other
models. This suggests that DL models hold promise for providing better noninvasive prediction of clinically
important macrometastatic nodal status. Furthermore, the results in terms of AUCs, as well as feature analyses,
suggest that inclusion of additional predictors would be essential for further improvement.

Methods

Ethical declaration and regulations

The research study and data usage agreements were reviewed and approved by the Swedish Ethical Review
Authority (2019-02,139). The study was conducted using only data from the Swedish National Quality Register
for Breast Cancer (NKBC). The need for informed consent was waived by the Swedish Ethical Review Authority
for this register-based study in accordance with the national legislation. Construction and reporting of the
prediction models followed the guidelines of Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD)3!.

Study cohort

Data from all women diagnosed with breast cancer in Sweden between 2014 and 2017 who underwent surgery
as primary treatment were retrospectively collected from the NKBC database. The exclusion criteria were as
follows: bilateral breast cancer, neoadjuvant chemotherapy, ductal carcinoma in situ, tumor size>50 mm or
unknown, stage IV breast cancer, palpable axillary lymphadenopathy, incongruent or missing axillary nodal
status data, and omission of SLNB. Patients diagnosed between 2014 and 2016 were allocated to the model
development set (training and validation), whereas those diagnosed in 2017 were assigned to the temporal test
set (test). To establish the internal training and validation sets, a fivefold cross-validation approach was applied
to the development set.

Outcome

The outcome of interest was the prediction of macro-SLNM, which was defined as the presence of>1
macrometastases in the SLNs. The identification of sentinel lymph nodes typically involves the use of tracers
such as a radioactive isotope combined with blue dye or superparamagnetic iron oxide (SPIO). According to the
American Joint Committee on Cancer classification criteria, nodal metastases were classified as macrometastatic
if>2 mm in diameter.®> Consequently, the ground-truth values of macro-SLNM were used to supervise the
learning of prediction models.

Predictor variables

Predictive variables were selected according to previous literature*>**> and previous results from our research
group!*?*. Information on lymph node status, patient characteristics, and tumor characteristics were retrieved
from the NKBC. The features of interest were age, menstrual status, mode of detection (mammography
screening or symptomatic presentation), number of invasive foci, invasive tumor stage, tumor size, Nottingham
histological grade, histopathological type, and molecular profile (ER, PgR, HER2, Ki67, and St. Gallen surrogate
molecular subtype). All histopathological variables (number of invasive foci, tumor size, histological grade,
histopathological type and molecular profile) were assessed during the final pathological examination of the
primary breast tumor and evaluated according to the Swedish Society of Pathology criteria®.

Histological types were categorized into three groups: NST, ILC, and other types of invasive carcinoma. The
expressions of ER, PgR, and Ki67 were assessed by immunohistochemistry (IHC). Low, intermediate, and high
expression of Ki67 was determined according to local cutoft values based on the lab-specific thresholds that
were in use in Sweden during that time. To evaluate HER2 status, IHC and in situ hybridization (ISH) were
performed, and tumors were classified as HER2-positive if they had IHC 3 + scoring and/or a positive ISH test.
The classification of surrogate molecular subtypes—Luminal A-like, Luminal B-like, HER2-positive, and triple-
negative breast cancer—was based on a modification of the St. Gallen 2019 guidelines and the classification
proposed by Maisonneuve et al. (utilizing markers including ER, PR, HER2, Ki-67, and NHG), as previously
reported (Supplementary Table S2).8 Invasive tumor stage was classified into T1 (< 20 mm), T2 (>20 mm
but<50 mm) and T3 (> 50 mm), with only T1-T2 included in this study. A total of 26 variables derived from
the 13 clinical features were used in the prediction models (Supplementary Table S1). ML models, especially DL
models, have a good capacity for handling input redundancy, which allowed us to utilize redundant variables
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directly during model development and testing. However, when reporting statistical and feature importance
analyses, we chose not to present redundant variables that could be derived from other variables.

Univariable model

To investigate the predictive ability of the available variables, we first benchmarked a univariable model based
solely on tumor size, as it was previously determined to be one of the most important predictors of nodal status.*
Tumor size was normalized to zero mean and unit variance. Subsequently, a sigmoid function was applied to
generate scores ranging from 0 to 1, such that tumors with larger diameters were predicted to have a higher risk
of macro-SLNM.

Multivariable models
To enhance predictive ability, all preoperative variables were employed when training the five ML models: LR,
MLP, ResNet, Transformer, and CatBoost. LR, linearly combining predictive variables, is a straightforward yet
effective and robust approach. MLP comprises multiple layers of non-linear activation nodes, enabling it to
handle non-linearly separable data. CatBoost was included as it is rapidly gaining popularity among gradient-
boosted decision tree models because of its intrinsic support for categorical features and the ordered boosting
technique, which helps overcome overfitting. These distinct characteristics have made LR, MLP and decision
tree models widely employed in the medical domain, including for predicting axillary status?>-%. On the other
hand, ResNet, a fundamental component of contemporary DL networks, has achieved success in computer
vision and NLP. The Transformer model, which relies on attention mechanisms, represents the cutting-edge
architecture for large language models.

The model development and validation were conducted using Python (v3.8.8). The package dependencies
were Scikit-learn (0.24.1) for LR and XGBoost (1.3.3) for CatBoost, whereas the DL models (MLP, ResNet, and
Transformer) were built using PyTorch (1.13.1).

Preprocessing

Categorical variables containing ordinal information were encoded as numbers to preserve their original
relationships. Non-ordinal categorical variables were one-hot labeled. CatBoost employs ordered target
statistic encoding for built-in categorical support®. Continuous features were normalized using the quantile
transformation provided by the scikit-learn library. This approach effectively reduced the impact of outliers. In
addition, tokenization, a common technique in NLP for learning meaningful word embeddings, was adapted
for Transformer models applied to tabular data®®. Therefore, to investigate its impact on performance, an
embedding tokenizer module was implemented on top of the DL models. Missing numerical variables were
imputed using the mean value, whereas missing categorical variables were imputed using the mode. In the
overall study cohort, 14.5% of the patients had at least one missing value, and the average missing rate of all
predictors was approximately 2.3%. All preprocessing steps, including missing-value imputation, categorical
embedding, and normalization, were conducted separately for the development and test sets after splitting the
data. Thus, information leakage from the test set was prevented.

Imbalanced classification
To address the challenge of imbalanced distribution in macro-SLNM, advanced loss functions were implemented
using the following strategies:

(1) Weighted binary cross-entropy was achieved by introducing compensation weights to the macro-SLNM
samples to alleviate the effect of being in the minority class.

(2) Focal loss was employed to dynamically emphasize misclassified samples, thereby emphasizing more chal-
lenging cases.

(3) Triplet loss was used to create balanced training samples by constructing triplet sets (anchor, positive, and
negative samples based on their similarity or dissimilarity), thereby enhancing the ability of the model to
discriminate between different classes.

Hyperparameter optimization

To evaluate the searched models, the PR and ROC AUCs were calculated on the internal validation sets, and
the best hyperparameters were selected based on a composite score combining the two metrics. The budget for
tuning was set to 100 trials for all algorithms except LR, which used 20 trials to optimize a single parameter.
The search space encompassed model parameters (such as embedding size, depth and width of neural networks,
and dropout rates) and training parameters (such as learning rates and weight decay). Detailed descriptions
of the default and hyperparameter search space can be found in Supplementary Section B. Hyperparameters
were tuned using Bayesian optimization (the Tree-Structured Parzen Estimator algorithm) through the Optuna
library (2.6.0),% which has been shown to outperform random search.

Evaluation

After determining the best hyperparameters or utilizing the default hyperparameters, the five multivariable
models were trained on fivefold cross-validation splits. The performance of the models was evaluated using the
test set by calculating the mean and standard deviation of the ROC and PR AUCs across the fivefold models.
PR AUCs were calculated to reflect the imbalanced classification problem. Furthermore, the specificity, positive
predictive value (or precision), NPV, and accuracy were reported at thresholds optimized for a sensitivity of 90%.
This approach was adopted to minimize false-negative predictions.

Scientific Reports |

(2024) 14:26970 | https://doi.org/10.1038/s41598-024-78040-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Feature importance

The feature importance of the developed models was estimated using the SHAP explainer®!. For the logistic
models, absolute model coefficients were used to approximate relative feature importance. The consistency
between the two approaches was examined to ensure reliable and interpretable results. Based on the model
that performed best under the constraint of sensitivity > 90%, further SHAP explanations were applied at an
individual level by random selection of true-positive, false-positive, true-negative, and false-negative predictions
from the test set.

Statistical analysis

Significant differences in patient and tumor characteristics were reported between the development and test
sets, as well as between patients with and without macro-SLNM in the overall study cohort. Student’s ¢ test
was utilized to analyze differences in continuous variables, and the y* test was used for categorical variables.
All statistical tests were two-tailed, and the significance level was set at P=0.05. It is important to note that a
statistically significant difference only indicates a difference at a certain level of confidence. It does not provide
information on the magnitude or degree of the effect size. Therefore, we conducted an effect size analysis to
address this issue. For continuous variables, the effect size was evaluated by the difference in means relative to
the standard deviation, referred to as Cohen’s d%. A non-trivial effect size for continuous variables was defined
as |d|>0.50%”. The effect size for categorical variables was evaluated using Cramer’s V8. Although the odds
ratio is frequently employed to estimate effect size, it is limited to 22 confusion matrices. In our case, we
have larger matrices, making Cramer’s V a more appropriate measure. A non-trivial effect size was defined as
|V]>0.30,>0.21, and > 0.17 for 1, 2, and 3 degrees of freedom, respectively44. Data were analyzed between April
2023 and May 2023. All statistical analyses were performed using Python (v3.8.8).

Data availability

The data used in this study cannot be deposited in a public repository because of ethical prohibitions but are
available from the lead contact upon reasonable request. An overview of NKBC data can be found at https://sta
tistik.incanet.se/brostcancer/. All codes used for modeling are available at https://github.com/yandex-research/
tabular-dl-revisiting-models.
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