
Identification of sentinel lymph 
node macrometastasis in breast 
cancer by deep learning based on 
clinicopathological characteristics
Daqu Zhang1, Miriam Svensson2, Patrik Edén1 & Looket Dihge2,3

The axillary lymph node status remains an important prognostic factor in breast cancer, and nodal 
staging using sentinel lymph node biopsy (SLNB) is routine. Randomized clinical trials provide evidence 
supporting de-escalation of axillary surgery and omission of SLNB in patients at low risk. However, 
identifying sentinel lymph node macrometastases (macro-SLNMs) is crucial for planning treatment 
tailored to the individual patient. This study is the first to explore the capacity of deep learning (DL) 
models to identify macro-SLNMs based on preoperative clinicopathological characteristics. We trained 
and validated five multivariable models using a population-based cohort of 18,185 patients. DL models 
outperform logistic regression, with Transformer showing the strongest results, under the constraint 
that the sensitivity is no less than 90%, reflecting the sensitivity of SLNB. This highlights the feasibility 
of noninvasive macro-SLNM prediction using DL. Feature importance analysis revealed that patients 
with similar characteristics exhibited different nodal status predictions, indicating the need for 
additional predictors for further improvement.
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Breast cancer is the most common cancer worldwide and one of the leading causes of cancer-related death 
in women1. Along with tumor size and histological grade, axillary lymph node status is one of the strongest 
prognostic factors for breast cancer2–4. Sentinel lymph nodes (SLNs) are the first axillary lymph nodes to 
receive drainage from a breast tumor; therefore, they are most likely to exhibit metastatic deposits. SLN biopsy 
(SLNB) remains the gold standard approach for staging the axillary nodal status in patients with clinically node-
negative (cN0) breast cancer and also in cN + patients undergoing neoadjuvant chemotherapy with complete 
pathological response at axillary level5–7. In particular, the presence of SLN macrometastasis (macro-SLNM, a 
metastasis > 2 mm) is clinically significant and affects decision-making in systemic and locoregional therapy8,9. 
In patients with macro-SLNM undergoing mastectomy and immediate breast reconstruction (IBR), post-
mastectomy radiotherapy (PMRT) is associated with a high risk of postoperative complications, including 
implant failure10.

While SLNB reduces postoperative arm morbidity and maintains oncological safety comparable to axillary 
lymph node dissection (ALND)11,12, a risk of postoperative complications still remains. When assessing the 
outcomes of patients with cN0 breast cancer randomized to SLNB or no axillary intervention, SLNB was associated 
with significantly increased arm and breast morbidity13. Considering the low incidence of clinically relevant 
macro-SLNMs in contemporary breast cancer populations14–16, the utility of routine SLNB in all patients with 
primary invasive breast cancer has been questioned, and there is a current trend toward de-escalation of axillary 
surgery17. Axillary ultrasonography (AUS) enables noninvasive axillary staging and is currently included in the 
diagnostic work-up for primary breast cancer. When utilizing radiomics and advanced adjunctive modalities, 
AUS has demonstrated good performance18,19. However, AUS is highly operator-dependent, resulting in a wide 
range of reported accuracy20,21. To date, no reliable non-invasive method has been clinically implemented to 
replace SLNB for staging the axillary nodal status in patients with cN0 breast cancer.
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Multiple studies have attempted to noninvasively predict the axillary nodal status in patients with breast 
cancer using prediction models based on clinicopathological characteristics22–26. Although the results are 
promising, these studies predominantly rely on linear models such as logistic regression (LR), with few studies 
exploring decision trees and multilayer perceptron (MLP). These traditional machine learning (ML) techniques 
have limited ability for feature extraction, leaving potential complex feature interactions unexplored. Conversely, 
deep learning (DL) algorithms harness artificial neural networks with sophisticated architectures and have the 
advantages of nonlinear modeling and advanced feature engineering. This makes DL invaluable for risk estimation 
in clinical practice, as it has the potential to capture complex data interactions that other algorithms may miss. 
Previous studies have shown the immense potential of DL in predicting lymph node metastasis using radiomics 
data18,27–29. However, owing to the restricted accessibility of these data, the usefulness of these prediction tools 
is limited. By contrast, routinely collected health data often include clinicopathological characteristics, and this 
wealth of tabular data presents an extraordinary opportunity for DL models. Many encouraging attempts have 
been made to adapt DL for tabular data30–32. In particular, Transformer33, which is based on a self-attention 
mechanism, is effective in capturing global correlations among predictors. A recent benchmarking study on 
diverse tabular tasks revealed that ResNet34 is an effective baseline and that Transformer outperforms other DL 
solutions on most tasks35, although Transformer’s superiority over gradient-boosted decision trees on tabular 
data is still under debate36. Nevertheless, there has been no reported research investigating DL for predicting 
nodal status in breast cancer based solely on clinicopathological characteristics.

In this study, we aimed to fill the following knowledge gap: what is the full potential of DL for predicting 
macro-SLNM in cN0 primary invasive breast cancer using solely clinicopathological variables that are easily 
accessible in a preoperative setting? To this end, we used a large contemporary population-based dataset of 
18,185 patients from the Swedish National Quality Registry for Breast Cancer (NKBC)37. For the models, 
we implemented ResNet and Transformer, as well as LR, MLP, and CatBoost38 as benchmarks. To take full 
advantage of these models, we tested several powerful DL strategies on our data, including feature tokenizers33 
for efficient feature embedding; weighted binary cross-entropy loss, focal loss39, and triplet loss40 to address the 
imbalanced distribution of macro-SLNM; and Bayesian optimization of the hyperparameter search. Last, to 
better visualize and interpret the clinical importance of the included predictors, we utilized Shapley Additive 
exPlanations (SHAP)41 to estimate feature importance.

Results
Development and test cohorts show trivial differences in clinical characteristics
A total of 23,264 patients diagnosed with breast cancer between 2014 and 2017 who underwent surgical treatment 
were identified within the NKBC (Supplementary Fig. S1). Of these, 18,185 were included in the study cohort, 
with an overall macro-SLNM prevalence of 13%, and the mean number of sentinel nodes harvested was 1.90, 
with a median of 2.00. In the overall study cohort, 2,185 patients underwent completion ALND. The mean age at 
diagnosis was 63 years, and most patients had Luminal A-like (LumA) tumors, grade II carcinoma of no special 
type (NST) with a median tumor size of 16.3 mm. Patients diagnosed between 2014 and 2016 (n = 13,656) were 
used for model development (training and internal validation), and those diagnosed in 2017 were assigned to the 
test set (n = 4529). Thirteen clinical features previously recognized as predictive of the axillary nodal status42,43 
were used to train the prediction models. A comparison of these features and the outcome (macro-SLNM) 
between the training and test sets is presented in Table 1. The observed significance could be influenced by the 
large sample size, which tends to result in high confidence (small P values) while not providing direct information 
about the magnitude of the detected differences. To address this issue, the effect size (V or d) was also analyzed. 
In the test set, tumors were more often detected by mammography screening (61 vs 58%; P = 0.003, V = 0.022), 
there was a slightly lower frequency of invasive lobular carcinoma (ILC) (12 vs 13%; P < 0.001, V = 0.018), and 
the progesterone receptor (PgR) expression was lower (58.0 vs 59.9%; P = 0.007, d = -0.047). However, there was 
a higher frequency of the LumA molecular subtype in the test set (59% vs 55%; P < 0.001, V = 0.020). The test set 
also exhibited a slightly lower prevalence of macro-SLNM (12 vs 14%; P = 0.030, V = 0.016). It is worth noting 
that none of the cohort differences exhibited non-trivial effect sizes (defined as |V|≥ 0.30, ≥ 0.21, and ≥ 0.17 for 
1, 2, and 3 degrees of freedom, respectively44), indicating that the observed variations between the development 
and test sets were small.

Tumor size and number of invasive foci are significant clinical predictors for macro-SLNM
A comparison of patient and tumor characteristics between patients with and without macro-SLNM in the overall 
study cohort is presented in Table 2. Patients with macro-SLNM were younger, more frequently premenopausal, 
and had a higher prevalence of symptomatically presented breast tumors. Furthermore, they exhibited more 
invasive foci, larger tumor size, higher histological grade, higher expression of Ki67, and a higher rate of the 
Luminal B-like (LumB) molecular subtype. Although a wide range of variables showed significant differences, 
only a limited number exhibited nontrivial effect sizes. Significant differences with non-trivial effect sizes were 
observed for tumor size (21.7 mm vs 15.4 mm; P < 0.001; d = 0.707). Additionally, marginal non-trivial effects 
were observed for number of invasive foci (1.5 vs 1.2; P < 0.001; d = 0.333), Ki67 expression (28.0 vs 25.5%; 
P < 0.001; d = 0.129) and T stage > T1 (45% vs 21%; P < 0.001; V = 0.191).

LR and MLP exhibit weak advantages over Transformer and outperform the remaining 
models on overall performance
To investigate the added value of DL models in predicting macro-SLNM using only preoperatively accessible 
variables, we first benchmarked a univariable model (called T-size), using only tumor size, as it was previously 
verified as one of the most important predictors of axillary nodal status.45 We then compared the overall 
performance of the five multivariable models trained on the 13 clinical features (Supplementary Table S1). 
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The detailed DL workflow is illustrated in Fig. 1. The models were evaluated using the area under the receiver 
operating characteristic (ROC) curve (AUC). We also used precision-recall (PR) AUC, which is recommended 
for data with imbalanced classes. Figure 2(A) and (B) demonstrate the predictive ability of the five multivariable 
ML models and the univariable T-size model on the test set. With regard to the ROC AUC, Transformer, LR, 
and MLP exhibited similar performances and did not show substantial differences (range 0.711–0.712). These 
models slightly outperformed ResNet and CatBoost (range 0.704–0.708). For the PR AUC, LR had the highest 
performance (0.273 ± 0.001), albeit with a marginal advantage < 0.010 compared to MLP and Transformer. 
Surprisingly, the improvement observed across all the developed ML models was minimal compared to the 
univariable T-size model, with only slight increases of 2.0% in the ROC AUC and 3.4% in the PR AUC.

DL models outperform LR under the constraint that the sensitivity is no less than 90%
The procedural accuracy of SLNB is assessed by calculating the false-negative rate (FNR), with a generally 
accepted value of 10%46. Therefore, we also optimized the decision thresholds for each developed model by 

Characteristics

All Development set Test set

P value Effect size(n = 18,185) (n = 13,656) (n = 4,529)

Age, y, mean (SD) 62.8 (± 12.0) 62.7 (± 12.0) 63.2 (± 11.9) 0.020 0.040

Menstrual status, No. (%)

0.574 0.004 Premenopausal 3280 (19) 2468 (19) 812 (19)

 Postmenopausal 13,857 (81) 10,361 (81) 3496 (81)

Mode of detection, No. (%)

0.003 0.022 Symptomatic presentation 7502 (41) 5717 (42) 1785 (39)

 Mammographic screening 10,643 (59) 7904 (58) 2739 (61)

 No. Invasive foci, mean (SD) 1.3 (± 0.7) 1.3 (± 0.7) 1.3 (± 0.7) 0.439 0.013

T-stage, No. (%)

0.038 0.015 T1 13,793 (76) 10,306 (75) 3487 (77)

 T2 4392 (24) 3350 (25) 1042 (23)

 Tumor size, mm, mean (SD) 16.3 (± 8.8) 16.3 (± 8.9) 16.1 (± 8.6) 0.066 -0.031

Histological type, No. (%)

 < 0.001 0.018
 NST 13,979 (77) 10,511 (77) 3468 (77)

 ILC 2320 (13) 1779 (13) 541 (12)

 Others 1315 (7) 977 (7) 338 (7)

Histological grade, No. (%)

0.081 0.012
 I 4068 (23) 3081 (23) 987 (22)

 II 9447 (53) 7118 (53) 2329 (52)

 III 4467 (25) 3298 (24) 1169 (26)

 ER, %, mean (SD) 86.2 (± 29.7) 86.3 (± 29.4) 85,9 (± 30,4) 0.549 -0.011

 PgR, %, mean (SD) 59.4 (± 39.4) 59.9 (± 39.2) 58.0 (± 39.9) 0.007 -0.047

 Ki67, %, mean (SD) 25.8 (± 19.8) 25.8 (± 19.9) 25.9 (± 19.3) 0.789 0.005

HER2 status, No. (%)

0.631 0.004Negative 15,917 (89) 11,939 (89) 3978 (89)

 Positive 2009 (11) 1497 (11) 512 (11)

St Gallen surrogate molecular 
subtype, No. (%)

 < 0.001 0.020
 LumA 9589 (56) 7010 (55) 2579 (59)

 LumB 4380 (26) 3362 (26) 1018 (23)

 HER2 +  2009 (12) 1497 (12) 512 (12)

 TNBC 1131 (7) 842 (7) 289 (7)

 # Harvested SLNs, mean (SD) 1.9 (± 1.1) 1.9 (± 1.1) 2.0 (± 1.2)  < 0.001 0.14

Macro-SLNM, No. (%)

0.030 0.016 Negative 15,776 (87) 11,804 (86) 3972 (88)

 Positive 2409 (13) 1852 (14) 557 (12)

Table 1.  Development and test sets show trivial differences in clinical characteristics. P values and effect sizes 
were calculated for the development vs test sets. The significance level was set at P = 0.05, and a non-trivial 
effect size was defined as |V|≥ 0.30, ≥ 0.21, and ≥ 0.17 for 1, 2, and 3 degrees of freedom, respectively. NST 
No special type; ILC Invasive lobular carcinoma; ER Estrogen receptor; PgR Progesterone receptor; HER2 
Human epidermal growth factor receptor 2; LumA luminal A-like; LumB Luminal B-like; HER2 +  HER2-
positive; TNBC Triple-negative breast cancer; SLN Sentinel lymph node; macro-SLNM Sentinel lymph node 
macrometastasis.
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maximizing the specificity while ensuring a sensitivity of at least 90%. Table 3 summarizes the corresponding 
performance metrics for the specified thresholds. The mean and standard deviations were calculated across the 
fivefold prediction models tested on the test set. Transformer had the highest specificity (34.6 ± 0.6%), precision 
(16.2 ± 0.1%), negative predictive value (NPV) (96.2 ± 0.1%), and accuracy (41.5 ± 0.5%). MLP also showed 
competitive performance. Interestingly, although LR had a better overall performance in terms of the PR AUC, 
all other ML models outperformed LR at 90% sensitivity and had higher specificity, precision, NPV, and accuracy. 
For further details, the distribution of individual predictions by Transformer are shown in Supplementary Fig. 
S2.

Tumor size shows a significant lead over the other predictors
Finally, we employed the SHAP explainer to estimate the feature importance of the multivariable models41. In 
Fig. 3, the predictors are ranked by importance across all models, with decreasing average importance from top 
to bottom. Tumor size was the single most important factor in all predictive models, and in three of the models, 
the number of invasive foci was the second most important factor. Notably, tumor size exhibited a significant 
lead over the second-ranked variable in all predictive models (P < 0.001), highlighting its prominent role in 
predicting macro-SLNM, which is in line with the previous findings45. The reliability of the SHAP explainer was 
verified to be highly consistent with the LR model coefficients (Supplementary Fig. S3).

Among the models, LR demonstrated a distinctive distribution of feature importance. More specifically, 
LR attributed a substantial importance value (0.72) to the histological type predictor, whereas other models 

Characteristics

All Macro-SLNM

P value Effect size(n = 18,185) Negative (n = 15,776) Positive (n = 2,409)

Age, y, mean (SD) 62.8 (± 12.0) 62.9 (± 11.8) 62.3 (± 13.0) 0.035 -0.049

Menstrual status, No. (%)

 < 0.001 0.038 Premenopausal 3280 (19) 2757 (19) 523 (23)

 Postmenopausal 13,857 (81) 12,104 (81) 1753 (77)

Mode of detection, No. (%)

 < 0.001 0.084 Symptomatic presentation 7502 (41) 6254 (40) 1,248 (52)

 Mammographic screening 10,643 (59) 9485 (60) 1,158 (48)

No. Invasive foci, mean (SD) 1.3 (± 0.7) 1.2 (± 0.6) 1.5 (± 0.9)  < 0.001 0.333

T-stage, No. (%)

 < 0.001 0.191 T1 13,793 (76) 12,469 (79) 1324 (55)

 T2 4392 (24) 3307 (21) 1085 (45)

 Tumor size, mm, mean (SD) 16.3 (± 8.8) 15.4 (± 8.3) 21.7 (± 9.9)  < 0.001 0.707

Histological type, No. (%)

 < 0.001 0.036
 NST 13,979 (77) 12,108 (77) 1871 (78)

 ILC 2320 (13) 1962 (12) 358 (15)

 Others 1315 (7) 1232 (8) 83 (3)

Histological grade, No. (%)

 < 0.001 0.068
 I 4068 (23) 3760 (24) 308 (13)

 II 9447 (53) 8109 (52) 1338 (56)

 III 4467 (25) 3726 (24) 741 (31)

 ER, %, mean (SD) 86.2 (± 29.7) 86.2 (± 29.7) 85.8 (± 29.5) 0.481 -0.016

 PgR, %, mean (SD) 59.4 (± 39.4) 59.5 (± 39.5) 59.1 (± 38.7) 0.674 -0.009

 Ki67, %, mean (SD) 25.8 (± 19.8) 25.5 (± 19.8) 28.0 (± 19.3)  < 0.001 0.129

HER2 status, No. (%)

0.801 0.002 Negative 15,917 (89) 13,810 (89) 2107 (89)

 Positive 2009 (11) 1739 (11) 270 (11)

St Gallen surrogate 
molecular subtype, No. (%)

 < 0.001 0.049
 LumA 9589 (56) 8518 (57) 1071 (47)

 LumB 4380 (26) 3588 (24) 792 (35)

 HER2 +  2009 (12) 1739 (12) 270 (12)

 TNBC 1131 (7) 989 (7) 142 (6)

Table 2.  Tumor size and number of invasive foci are significant clinical predictors of sentinel lymph node 
macrometastasis (macro-SLNM). P values and effect sizes were calculated for negative vs positive macro-
SLNM. The significance level was set at P = 0.05, and a non-trivial effect size was defined as |V|≥ 0.30, ≥ 0.21, 
and ≥ 0.17 for 1, 2, and 3 degrees of freedom, respectively. NST No special type; ILC Invasive lobular 
carcinoma; ER Estrogen receptor; PgR Progesterone receptor; HER2 Human epidermal growth factor receptor 
2; LumA luminal A-like; LumB Luminal B-like; HER2 +  HER2-positive; TNBC Triple-negative breast cancer.
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displayed only limited importance for this feature. In addition, LR attributed considerable importance to 
the human epidermal growth factor 2 (HER2) predictor, ranking it much higher than the other algorithms. 
Furthermore, when examining the correlation between the values of feature importance assigned by each model 
and the effect sizes, LR exhibited a large discrepancy, with a correlation coefficient of 0.670, whereas Transformer 
exhibited the highest consistency, with a correlation of 0.965, closely followed by ResNet and CatBoost.

Individual interpretations indicate data limitation
Based on Transformer’s prediction, we randomly selected true-positive, false-positive, true-negative, and false-
negative predictions from the test set (Fig.  4(A–D)) and examined their individual SHAP explanations. For 
two patients with model-predicted macro-SLNM, both the true-positive prediction (Fig. 4(A)) and the false-
positive prediction (Fig. 4(B)) had a large tumor size (45 and 35 mm, respectively) and multifocality (4 and 2 
invasive foci, respectively). These two key predictors significantly contributed to positive predictions in these 
two patients. In contrast, for two patients with model-predicted absence of macro-SLNM, the true-negative 
prediction (Fig. 4(C)) and the false-negative prediction (Fig. 4(D)) both had a small tumor size (7 and 9 mm, 
respectively) and unifocality along with a histological type other than NST or ILC. The other models yielded 
similar results. In summary, some patients with similar features obtained close model predictions although they 
had different SLNB outcomes, indicating the intricate nature of nodal status prediction and the data limitations 
of only routine clinicopathological predictors.

Advanced losses and hyperparameter optimization do not improve the predictive 
performance
Various strategies, including feature tokenizers, advanced losses, and hyperparameter searches, were explored 
to enhance the performance of the DL models. Interestingly, the results indicated that, except for the tokenizer, 
which was found to be essential for Transformer, none of the explored strategies significantly improved the 
predictive ability in the internal validation (details are shown in Supplementary Figs. S4, S5, S6). Based on 
these observations, the multivariable models presented above were trained using default hyperparameters (see 
Supplementary Section B) and optimized for binary cross-entropy loss.

Fig. 1.  Deep learning workflow. The overall study cohort was divided into a development set (patients 
diagnosed between 2014 and 2016) and a test set (patients diagnosed in 2017). Five multivariable machine 
learning (ML) algorithms (logistic regression [LR], multilayer perceptron [MLP], ResNet, Transformer, and 
CatBoost) were trained on the development set to predict sentinel lymph node macrometastasis (macro-
SLNM, a metastasis > 2 mm). Several powerful deep learning (DL) strategies were employed to take full 
advantage of the prediction models, including feature tokenizers for efficient feature embedding; weighted 
binary cross-entropy loss, focal loss, and triplet loss to address the imbalanced distribution of macro-SLNMs; 
and Bayesian optimization of the hyperparameter search. Internal validation was performed using fivefold 
cross validation. The trained fivefold models of each multivariable algorithm and the univariable model 
using only tumor size (T-size) were evaluated on the test set to estimate predictive performance. Performance 
metrics, including the area under the receiver operating characteristic (ROC) curve (AUC) and the precision 
recall (PR) AUC, were calculated. In addition, when the sensitivity was set to at least 90%, the specificity, 
negative predictive value, and positive predictive value were calculated based on the average performance 
across all five folds. Finally, Shapley Additive exPlanations was applied to evaluate the feature importance for 
each of the five multivariable algorithms and for individual patients.
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Discussion
This study extensively explored the capacity of DL models to predict macro-SLNM using 13 clinicopathological 
features in a contemporary cohort of > 18,000 women with cN0 T1-T2 breast cancer. Compared to traditional ML 
models, DL did not show significant advantages in terms of overall performance. However, when the tolerance 
of the FNR was set to 10%, which is the generally accepted FNR of SLNB46, Transformer showed superiority, 
with a specificity of 34.6% (± 0.6%) and an NPV of 96.2% (± 0.1%). The results highlight the feasibility of non-
invasive prediction of clinically significant macro-SLNM using DL models but underline that individual-level 
interpretation has irreducible data uncertainties, which suggests the need for inclusion of additional variables in 
prediction models to improve their accuracy in further studies.

Artificial intelligence, particularly DL, has recently gained popularity in risk stratification owing to its 
outstanding performance47. Cutting-edge DL techniques have revolutionized the way mammography48–51, 

T-size

Multivariable models

LR MLP Resnet Transformer CatBoost

ROC AUC 0.692 0.711 (± 0.002) 0.712 (± 0.002) 0.708 (± 0.003) 0.711 (± 0.004) 0.704 (± 0.004)

PR AUC 0.239 0.273 (± 0.001) 0.263 (± 0.004) 0.253 (± 0.012) 0.267 (± 0.010) 0.258 (± 0.008)

Sensitivity (recall 
TPR), % 90.1 90.1 90.1 90.1 90.1 90.1

Specificity (TNR), % 31.8 32.6 (± 0.5) 34.2 (± 0.9) 33.0 (± 0.7) 34.6 (± 0.6) 32.8 (± 1.3)

PPV (precision), % 15.6 15.8 (± 0.1) 16.1 (± 0.2) 15.9 (± 0.1) 16.2 (± 0.1) 15.8 (± 0.2)

NPV, % 95.8 95.9 (± 0.1) 96.1 (± 0.1) 96.0 (± 0.1) 96.2 (± 0.1) 95.9 (± 0.2)

Accuracy, % 39.0 39.7 (± 0.4) 41.0 (± 0.8) 40.0 (± 0.6) 41.5 (± 0.5) 39.9 (± 1.1)

Table 3.  Deep learning models outperform logistic regression (LR) under the constraint that sensitivity is 
no less than 90%. The performance metrics of the multivariable models were evaluated using the test set by 
calculating the mean and standard deviation across the fivefold models. The specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy at a sensitivity threshold of no less than 90% were 
presented. The best results for each metric are indicated in bold. T-size Tumor size; MLP Multilayer perceptron; 
ROC Receiver operating characteristic; AUC Area under the curve; PR Precision recall; TPR True positive rate; 
TNR True negative rate.

 

Fig. 2.  Logistic regression (LR) and multilayer perceptron (MLP) exhibit weak advantages over Transformer 
and outperform the remaining models on overall performance. (A) Receiver operating characteristic (ROC) 
and (B) precision recall (PR) curves for fivefold models of all multivariable algorithms on the test set. The 
ROC/PR curves of the univariable model based on only tumor size (T-size) serve as a shared benchmark 
(dashed line in black). Presented at the top is the mean area under the curve (AUC) and standard deviation 
across all 5 folds.
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histopathological slides52–54, and gene expression data55 are analyzed and interpreted, leading to transformative 
outcomes in breast cancer. Wang et al.50 and Yala et al.51 proved that DL models trained on mammography were 
superior to standard methods for risk discrimination in breast cancer. For the analysis of histopathological slides, 
DL has demonstrated significant improvement in identifying metastasis in lymph node biopsies52,53, as well as 
in classifying different types of breast cancer.54 Moreover, pioneering research has suggested the potential of DL 
for detecting breast cancer from gene expression data and identifying high-risk genes55. In terms of predicting 
lymph node metastasis, DL models exploiting radiomics, such as magnetic resonance imaging28, shear wave 
elastography,18 contrast-enhanced ultrasonography56, and positron emission tomography29, have demonstrated 
excellent performance, with ROC AUCs between 0.82 and 0.94. However, these imaging features are not always 
available in routine breast cancer work-ups.

To the best of our knowledge, this is the first contemporary population-based study to evaluate the 
discriminative ability of advanced DL models for the prediction of axillary lymph node status in patients with cN0 
breast cancer using only clinicopathological variables. Five ML models with increasing complexity and novelty, 
ranging from LR to Transformer, were compared. Advanced DL models, including ResNet and Transformer, 
demonstrated no significant improvement in overall performance compared with LR, and CatBoost and MLP 
also showed no improvement. Moreover, the improvement observed across all ML models compared to the 
univariable T-size model was minimal. These unconventional observations suggest that there is no clear nonlinear 
interaction among the 13 included clinical features, rendering them unsuitable for exploitation using nonlinear 
models. Consequently, the advantages of the DL architectures and their strategies are limited. However, with a 
predefined FNR of 10%, the DL models outperformed LR. This threshold was defined to address the estimated 
FNR of SLNB, which is the gold standard for evaluating the axillary nodal status.

The presented models demonstrated ROC AUCs of 0.704–0.712 and PR AUCs of 0.253–0.273 in the test set 
(Table 3), which were generally in accordance with the results of previous studies using only clinicopathological 
data but based on traditional ML techniques22–24,26,57. LR, MLP and CatBoost were used as benchmarks to offer 
a comparison between the proposed DL models and the traditional ML methods, since a direct comparison 
with existing research is challenging due to differences in study populations and predictive variables. First, 
lymphovascular invasion (LVI), which is difficult to evaluate accurately in a preoperative setting, was included 
in the prediction models58. Although LVI has been established as a critical factor in assessing the risk of nodal 
involvement, its microfocal nature presents challenges for accurate interpretation in the preoperative setting. This 
study focuses exclusively on clinicopathological variables that could be obtained preoperatively, either through 
imaging modalities for tumor size or core needle biopsy for tumor grade, biomarkers, and surrogate molecular 
subtypes. LVI was therefore excluded. Second, the study cohorts were older (1996–2012). Third, patients with 
more advanced tumors (T3) were included, and higher incidences of nodal metastasis (28–38%) related to 
larger primary tumors were observed. Importantly, unlike these studies, our prediction models were specifically 
designed to handle only clinicopathological variables that are readily accessible in a preoperative setting; 
therefore, LVI was not included, although it has previously been recognized as one of the strongest predictors 

Fig. 3.  Tumor size shows a significant lead over the other predictors. A heat map of the feature importance 
assessed by Shapley Additive exPlanations (SHAP) is presented for each of the five multivariable models. The 
predictors are ranked by average importance across all models, with decreasing values from top to bottom. 
LR, logistic regression; MLP, multilayer perceptron; PgR, progesterone receptor; ER, estrogen receptor; HER2, 
human epidermal growth factor receptor 2.
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of axillary nodal metastasis45. This approach enhances the practicality and versatility of our models, enabling 
their deployment in various settings and scenarios. Moreover, unlike most previously presented models for the 
prediction of nodal metastasis, which reported on the collection of micro- and macrometastases in sentinel and 
non-sentinel lymph nodes, our models were specifically trained to predict the presence of macro-SLNM. This is 
important since pure micro-SLNM (≤ 2.0 mm) is considered to be of minor clinical significance59, whereas for 
many patients with macro-SLNM, completion ALND and/or locoregional radiotherapy is still recommended8,9.

For all multivariable models, tumor size was the single most important predictor and showed a significant 
lead over the remaining predictors according to a post-hoc analysis of feature importance. Histological data and 
molecular profiles, including estrogen receptor (ER), PgR, HER2, and Ki67 expression, did not substantially 
enhance the accuracy of macro-SLNM prediction. This result explains the observation that the univariable T-size 
model exhibited competitive performance with the multivariable models trained on all features. This outcome 
is in accordance with previous findings recognizing tumor size as one of the most important clinicopathological 
predictors of axillary nodal status45.

To improve the model development, the five ML models were trained with 100 different hyperparameter 
settings (except for LR, which had 20 settings) and evaluated by fivefold cross-validation. Consequently, 2,100 
models were evaluated (Supplementary Fig. S6). Despite the vast explored function space, the internal validation 
demonstrated low variance between the different models, suggesting that the uncertainty associated with the 

Fig. 4.  Individual interpretations indicate data limitations. Shown here are the individual Shapley Additive 
exPlanations (SHAP) of four different patients for the prediction of sentinel lymph node macrometastasis 
(macro-SLNM) based on the Transformer model. (A) True-positive, (B) false-positive, (C) true-negative, and 
(D) false-negative predictions were randomly selected from the test set. Here, f(x) is the predicted probability 
of macro-SLNM for the selected patient based on the transformer model, and E[f(x)] is the expectation 
(mean value) of predictions across the entire test set (0.145), as well as the threshold for positive and negative 
predictions. For each individual, the prediction starts from E[f(x)], and each predictor contributes positively 
(red) or negatively (blue) to the final prediction f(x). The predictors are sorted according to the absolute 
feature importance (contribution) of each predictor. The 26 redundant predictors are shown directly because 
there may be both negative and positive values within one redundant group (see Supplementary Table S1). 
LumA, luminal A-like; PgR, progesterone receptor; ILC, invasive lobular carcinoma; NST, no special type; C1, 
classification 1 [NST, ILC, others]; C2, classification 2 [NST, ILC, other or mixed]; C3, classification 3 [NST or 
ILC, others].
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models and parameters was minimal60. Moreover, other popular DL strategies were employed to achieve efficient 
feature embedding and address imbalanced classification (Supplementary Figs. S4, S5). None of these attempts 
significantly boosted the performance except for the tokenizer for Transformer. This suggests that the primary 
source of prediction uncertainty stems from the data itself rather than the model or parameters. This argument 
is further supported by the individual interpretation based on the SHAP values, where patients with similar 
features exhibited close predictions, although they had divergent outcomes on SLNB. This implies the existence 
of unobserved key variables, rendering the target variable to appear random and unpredictable and points to 
data uncertainty encoded by the clinicopathological features. It is important to note that data uncertainty is 
inherently irreducible unless the input dimensionality is increased by incorporating additional variables with 
novel information into existing clinicopathological features.61

Accurate noninvasive prediction of macrometastatic lymph node status is important for improving the 
axillary management of patients with breast cancer. Detection at an earlier stage has decreased the node-positivity 
rate in newly diagnosed breast cancer62, and most patients do not benefit therapeutically from surgical axillary 
nodal staging. Because of its lack of effect on locoregional recurrence and breast-cancer-specific mortality63,64, 
the Choosing Wisely initiative65 has already declared that SLNB should no longer be routinely required for 
women ≥ 70 years of age with early-stage hormone receptor positive, HER2-negative cN0 invasive breast cancer. 
Accordingly, the American Society of Clinical Oncology guidelines on axillary management in breast cancer 
have been revised, endorsing the omission of SLNB for these patients after a case-by-case evaluation and patient-
centered decision making66. Furthermore, the first results from the SOUND (Sentinel Node vs Observation 
After Axillary Ultra-Sound) trial recently showed that omission of axillary surgery is non-inferior with regard 
to 5-year distant disease-free survival in patients with T1 tumors and negative AUS results who are treated 
with breast-conserving surgery and radiotherapy, suggesting that selected patients can be safely spared routine 
SLNB54. In addition, ongoing randomized trials, e.g., INSEMA (Intergroup Sentinel Mamma)67 and BOOG 
2013–08 (Dutch Breast Cancer Research Group)68 are currently evaluating the oncological safety of omitting 
routine SLNB in patients with cN0 early stage breast cancer and disease-free axillae on AUS. Although these trials 
are confined to breast-conserving surgery, they encompass patients across different age groups and molecular 
subtypes. Importantly, despite the widespread availability of genomic testing, chemotherapy remains a critical 
consideration, particularly for premenopausal women with ER + disease and nodal involvement, alongside 
endocrine therapy. Moreover, in patients with HER2-positive and triple-negative breast cancer undergoing 
upfront surgery, accurate nodal assessment is essential for tailoring adjuvant treatment regimens appropriately. 
Consequently, accurate noninvasive tools are needed to identify patients with cN0 breast cancer who are unlikely 
to benefit from surgical axillary nodal staging owing to the low risk of clinically relevant macro-SLNM.

Moreover, for patients with breast cancer undergoing mastectomy, preoperative noninvasive evaluation of 
the axillary nodal status is of particular interest. To improve postoperative quality of life69, patients undergoing 
mastectomy should be counselled about breast reconstruction options, and IBR should be offered to the vast 
majority, according to current guidelines8,9. Given that tumor size has a high predictive value for macro-SLNM, 
it is important to recognize that tumors tend to be larger in mastectomy cases compared to breast-conserving 
surgery. This may inherently increase the risk of nodal metastasis, leading to a greater likelihood of ALND or 
the need for radiotherapy in these patients. For patients with macro-SLNM, PMRT after IBR is associated with 
an increased risk of postoperative complications and reconstruction failure10. Assessing the need for PMRT is 
crucial for facilitating informed decision-making between patients and surgeons, particularly when considering 
breast reconstruction options, including the type and timing of the procedure.

Though this study indicates that a lack of nonlinear interaction among the clinicopathological variables 
limits the power of DL for detecting macro-SLNM, leveraging flexible feature engineering and advancements in 
computer vision and natural language processing (NLP), DL can demonstrate superior performance in clinical 
applications where heterogeneous tabular data and other modalities are available70. Recent research on diagnosis 
data comprising 172 features showed that Transformer and ResNet provided a definitive advantage over baseline 
models for various prediction tasks including hypertensive diseases, ischematic heart disease, diabetes, alcohol 
dependence and others71. In future studies, the integration of readily accessible preoperative imaging data with 
advanced DL techniques can be used to further enhance the performance of the prediction models. Studies 
combining clinicopathological characteristics with conventional ultrasonography72 or mammography73, utilizing 
radiomics—particularly deep radiomics18,72—have shown promising results in predicting axillary nodal status, 
despite the limited size of the study cohorts. Furthermore, hematoxylin and eosin-stained tissue sections of 
the primary breast tumor could be used, along with clinical data, to predict the risk of clinically important 
nodal metastasis. The first attempt to utilize this type of data with DL models was made based on the INSEMA 
cohort74. Although none of the presented image analysis algorithms showed better than random performance, 
the INSEMA cohort almost exclusively included low- to moderate-risk patients with hormone receptor-positive, 
HER2-negative luminal breast cancer, making it difficult to identify distinguishing image features. Finally, 
genomic data offer numerous opportunities to investigate gene signatures that could be included in prediction 
models to further improve the prediction of SLN metastasis75.

Limitations of the study
This study has several limitations in addition to its retrospective nature. The study was conducted using 
registered data with a risk of misclassification. However, the NKBC database is a nationwide register recognized 
to have high coverage, with a < 5% proportion of missing values for most variables76. When cross-linked to the 
Swedish Cancer Register, the comparability was high, and excellent agreement with re-extraction of medical 
data was shown76. In our study, the average missing rate of all included predictors was approximately 2.3% (see 
Methods). Although missing data generally present challenges in the verification of a model, this is compensated 
for by the large sample size, which minimizes the effect of such errors, and meticulous data curation. Moreover, 
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preprocessing steps, including missing value imputation, categorical embedding, and normalization, were 
conducted after separating the development and test sets. Therefore, information leakage from the test set is 
prevented. The possible variation in the prevalence of macro-SLNM between different patient populations may 
reduce the generalizability of the results for populations with markedly different proportions of node-positive 
breast cancer. However, procedures for adjusting the model predictions to a shifted a priori probability have 
been proposed77. Although the models were developed to predict the risk for macro-SLNM preoperatively and 
only variables that were feasible to obtain in a preoperative setting were included, the histopathological variables 
in the present study were collected from the final pathological evaluation. Even though histological grade, 
histopathological type and molecular profile can be readily assessed with high accuracy in the preoperative 
setting from routine core needle biopsy58, the tumor size and the presence of multifocality require thorough 
measurements across multiple imaging modalities to be accurately estimated78–80. Consequently, caution is 
warranted regarding potential differences between pre- and postoperative values. Therefore, further studies 
applying only preoperative variables should be conducted to validate these results.

In conclusion, this study extensively explored the capacity of DL models to predict macro-SLNM in patients 
with cN0 breast cancer using only clinicopathological characteristics. Under the constraint that the FNR is no 
more than 10%, which reflects the generally accepted FNR of SLNB46, Transformer was superior to the other 
models. This suggests that DL models hold promise for providing better noninvasive prediction of clinically 
important macrometastatic nodal status. Furthermore, the results in terms of AUCs, as well as feature analyses, 
suggest that inclusion of additional predictors would be essential for further improvement.

Methods
Ethical declaration and regulations
The research study and data usage agreements were reviewed and approved by the Swedish Ethical Review 
Authority (2019-02,139). The study was conducted using only data from the Swedish National Quality Register 
for Breast Cancer (NKBC). The need for informed consent was waived by the Swedish Ethical Review Authority 
for this register-based study in accordance with the national legislation. Construction and reporting of the 
prediction models followed the guidelines of Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD)81.

Study cohort
Data from all women diagnosed with breast cancer in Sweden between 2014 and 2017 who underwent surgery 
as primary treatment were retrospectively collected from the NKBC database. The exclusion criteria were as 
follows: bilateral breast cancer, neoadjuvant chemotherapy, ductal carcinoma in situ, tumor size > 50 mm or 
unknown, stage IV breast cancer, palpable axillary lymphadenopathy, incongruent or missing axillary nodal 
status data, and omission of SLNB. Patients diagnosed between 2014 and 2016 were allocated to the model 
development set (training and validation), whereas those diagnosed in 2017 were assigned to the temporal test 
set (test). To establish the internal training and validation sets, a fivefold cross-validation approach was applied 
to the development set.

Outcome
The outcome of interest was the prediction of macro-SLNM, which was defined as the presence of ≥ 1 
macrometastases in the SLNs. The identification of sentinel lymph nodes typically involves the use of tracers 
such as a radioactive isotope combined with blue dye or superparamagnetic iron oxide (SPIO). According to the 
American Joint Committee on Cancer classification criteria, nodal metastases were classified as macrometastatic 
if > 2 mm in diameter.82 Consequently, the ground-truth values of macro-SLNM were used to supervise the 
learning of prediction models.

Predictor variables
Predictive variables were selected according to previous literature42,43 and previous results from our research 
group14,24. Information on lymph node status, patient characteristics, and tumor characteristics were retrieved 
from the NKBC. The features of interest were age, menstrual status, mode of detection (mammography 
screening or symptomatic presentation), number of invasive foci, invasive tumor stage, tumor size, Nottingham 
histological grade, histopathological type, and molecular profile (ER, PgR, HER2, Ki67, and St. Gallen surrogate 
molecular subtype). All histopathological variables (number of invasive foci, tumor size, histological grade, 
histopathological type and molecular profile) were assessed during the final pathological examination of the 
primary breast tumor and evaluated according to the Swedish Society of Pathology criteria83.

Histological types were categorized into three groups: NST, ILC, and other types of invasive carcinoma. The 
expressions of ER, PgR, and Ki67 were assessed by immunohistochemistry (IHC). Low, intermediate, and high 
expression of Ki67 was determined according to local cutoff values based on the lab-specific thresholds that 
were in use in Sweden during that time. To evaluate HER2 status, IHC and in situ hybridization (ISH) were 
performed, and tumors were classified as HER2-positive if they had IHC 3 + scoring and/or a positive ISH test. 
The classification of surrogate molecular subtypes—Luminal A-like, Luminal B-like, HER2-positive, and triple-
negative breast cancer—was based on a modification of the St. Gallen 2019 guidelines and the classification 
proposed by Maisonneuve et al. (utilizing markers including ER, PR, HER2, Ki-67, and NHG), as previously 
reported (Supplementary Table S2).84 Invasive tumor stage was classified into T1 (≤ 20 mm), T2 (> 20 mm 
but ≤ 50 mm) and T3 (> 50 mm), with only T1-T2 included in this study. A total of 26 variables derived from 
the 13 clinical features were used in the prediction models (Supplementary Table S1). ML models, especially DL 
models, have a good capacity for handling input redundancy, which allowed us to utilize redundant variables 
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directly during model development and testing. However, when reporting statistical and feature importance 
analyses, we chose not to present redundant variables that could be derived from other variables.

Univariable model
To investigate the predictive ability of the available variables, we first benchmarked a univariable model based 
solely on tumor size, as it was previously determined to be one of the most important predictors of nodal status.45 
Tumor size was normalized to zero mean and unit variance. Subsequently, a sigmoid function was applied to 
generate scores ranging from 0 to 1, such that tumors with larger diameters were predicted to have a higher risk 
of macro-SLNM.

Multivariable models
To enhance predictive ability, all preoperative variables were employed when training the five ML models: LR, 
MLP, ResNet, Transformer, and CatBoost. LR, linearly combining predictive variables, is a straightforward yet 
effective and robust approach. MLP comprises multiple layers of non-linear activation nodes, enabling it to 
handle non-linearly separable data. CatBoost was included as it is rapidly gaining popularity among gradient-
boosted decision tree models because of its intrinsic support for categorical features and the ordered boosting 
technique, which helps overcome overfitting. These distinct characteristics have made LR, MLP and decision 
tree models widely employed in the medical domain, including for predicting axillary status22–26. On the other 
hand, ResNet, a fundamental component of contemporary DL networks, has achieved success in computer 
vision and NLP. The Transformer model, which relies on attention mechanisms, represents the cutting-edge 
architecture for large language models.

The model development and validation were conducted using Python (v3.8.8). The package dependencies 
were Scikit-learn (0.24.1) for LR and XGBoost (1.3.3) for CatBoost, whereas the DL models (MLP, ResNet, and 
Transformer) were built using PyTorch (1.13.1).

Preprocessing
Categorical variables containing ordinal information were encoded as numbers to preserve their original 
relationships. Non-ordinal categorical variables were one-hot labeled. CatBoost employs ordered target 
statistic encoding for built-in categorical support38. Continuous features were normalized using the quantile 
transformation provided by the scikit-learn library. This approach effectively reduced the impact of outliers. In 
addition, tokenization, a common technique in NLP for learning meaningful word embeddings, was adapted 
for Transformer models applied to tabular data35. Therefore, to investigate its impact on performance, an 
embedding tokenizer module was implemented on top of the DL models. Missing numerical variables were 
imputed using the mean value, whereas missing categorical variables were imputed using the mode. In the 
overall study cohort, 14.5% of the patients had at least one missing value, and the average missing rate of all 
predictors was approximately 2.3%. All preprocessing steps, including missing-value imputation, categorical 
embedding, and normalization, were conducted separately for the development and test sets after splitting the 
data. Thus, information leakage from the test set was prevented.

Imbalanced classification
To address the challenge of imbalanced distribution in macro-SLNM, advanced loss functions were implemented 
using the following strategies:

	(1)	� Weighted binary cross-entropy was achieved by introducing compensation weights to the macro-SLNM 
samples to alleviate the effect of being in the minority class.

	(2)	� Focal loss was employed to dynamically emphasize misclassified samples, thereby emphasizing more chal-
lenging cases.

	(3)	� Triplet loss was used to create balanced training samples by constructing triplet sets (anchor, positive, and 
negative samples based on their similarity or dissimilarity), thereby enhancing the ability of the model to 
discriminate between different classes.

Hyperparameter optimization
To evaluate the searched models, the PR and ROC AUCs were calculated on the internal validation sets, and 
the best hyperparameters were selected based on a composite score combining the two metrics. The budget for 
tuning was set to 100 trials for all algorithms except LR, which used 20 trials to optimize a single parameter. 
The search space encompassed model parameters (such as embedding size, depth and width of neural networks, 
and dropout rates) and training parameters (such as learning rates and weight decay). Detailed descriptions 
of the default and hyperparameter search space can be found in Supplementary Section B. Hyperparameters 
were tuned using Bayesian optimization (the Tree-Structured Parzen Estimator algorithm) through the Optuna 
library (2.6.0),85 which has been shown to outperform random search.

Evaluation
After determining the best hyperparameters or utilizing the default hyperparameters, the five multivariable 
models were trained on fivefold cross-validation splits. The performance of the models was evaluated using the 
test set by calculating the mean and standard deviation of the ROC and PR AUCs across the fivefold models. 
PR AUCs were calculated to reflect the imbalanced classification problem. Furthermore, the specificity, positive 
predictive value (or precision), NPV, and accuracy were reported at thresholds optimized for a sensitivity of 90%. 
This approach was adopted to minimize false-negative predictions.
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Feature importance
The feature importance of the developed models was estimated using the SHAP explainer41. For the logistic 
models, absolute model coefficients were used to approximate relative feature importance. The consistency 
between the two approaches was examined to ensure reliable and interpretable results. Based on the model 
that performed best under the constraint of sensitivity ≥ 90%, further SHAP explanations were applied at an 
individual level by random selection of true-positive, false-positive, true-negative, and false-negative predictions 
from the test set.

Statistical analysis
Significant differences in patient and tumor characteristics were reported between the development and test 
sets, as well as between patients with and without macro-SLNM in the overall study cohort. Student’s t test 
was utilized to analyze differences in continuous variables, and the χ2 test was used for categorical variables. 
All statistical tests were two-tailed, and the significance level was set at P = 0.05. It is important to note that a 
statistically significant difference only indicates a difference at a certain level of confidence. It does not provide 
information on the magnitude or degree of the effect size. Therefore, we conducted an effect size analysis to 
address this issue. For continuous variables, the effect size was evaluated by the difference in means relative to 
the standard deviation, referred to as Cohen’s d86. A non-trivial effect size for continuous variables was defined 
as  |d|≥ 0.5087. The effect size for categorical variables was evaluated using Cramer’s V88. Although the odds 
ratio is frequently employed to estimate effect size, it is limited to 2 × 2 confusion matrices. In our case, we 
have larger matrices, making Cramer’s V a more appropriate measure. A non-trivial effect size was defined as 
|V|≥ 0.30, ≥ 0.21, and ≥ 0.17 for 1, 2, and 3 degrees of freedom, respectively44. Data were analyzed between April 
2023 and May 2023. All statistical analyses were performed using Python (v3.8.8).

Data availability
The data used in this study cannot be deposited in a public repository because of ethical prohibitions but are 
available from the lead contact upon reasonable request. An overview of NKBC data can be found at ​h​t​t​p​s​:​/​/​s​t​a​
t​i​s​t​i​k​.​i​n​c​a​n​e​t​.​s​e​/​b​r​o​s​t​c​a​n​c​e​r​/​​​​​. All codes used for modeling are available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​y​a​n​d​​e​x​-​r​e​s​e​a​r​c​h​/​
t​a​b​u​l​a​r​-​d​l​-​r​e​v​i​s​i​t​i​n​g​-​m​o​d​e​l​s​​​​​.​​
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