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Identifying individuals with tuberculosis (TB) with a high risk of onward transmission can guide 
disease prevention and public health strategies. Here, we train classification models to predict the first 
sampled isolates in Mycobacterium tuberculosis transmission clusters from demographic and disease 
data. We find that supervised learning, in particular balanced random forests, can be used to develop 
predictive models to identify people with TB that are more likely associated with TB cluster growth, 
with good model performance and AUCs of ≥ 0.75. We also identified the most important patient and 
disease characteristics in the best performing classification model, including host demographics, site of 
infection, TB lineage, and age at diagnosis. This framework can be used to develop predictive tools for 
the early assessment of potential cluster growth to prioritise individuals for enhanced follow-up with 
the aim of reducing transmission chains.

Tuberculosis (TB) remains a major global health concern, causing around 1.3 million deaths in 20221. The World 
Health Organization’s “End TB Strategy” set out to eradicate the global TB epidemic by 20352; unfortunately, 
many countries are currently falling behind targets. The early diagnosis of people with infectious TB disease one 
core component of reducing TB incidence3. Prioritizing interventions for individuals and groups with a high risk 
of onward transmission can maximise the impact and cost-effectiveness of public health strategies, such as active 
case finding and TB preventive therapy, to reduce the spread of TB disease and prevent outbreaks.

Transmission of TB from one individual to another can be complex, and depends on the host, pathogen, and 
environment. Factors associated with the bacteria itself, such as the MTBC lineage, antimicrobial resistance, 
and the presence of mutations associated with virulence and transmissibility can all contribute to the increased 
transmission of certain strains4–6. Additionally, environmental and socio-economic conditions can increase the 
risk of exposure to TB and play a role in transmission7, particularly in low-burden settings where the likelihood 
of incidental contact with infectious individuals is low.

Identifying host and pathogen characteristics that are associated with the growth of transmission clusters 
within a population can guide efforts to interrupt the spread of TB. Supervised learning methods can find 
patterns in complex datasets and build models to accurately predict outcomes in new data. This represents an 
opportunity to use these approaches in combination with retrospective analysis of past outbreaks to develop 
predictive models of TB cluster growth from patient demographic and clinical characteristics. A previous study 
explored the use of machine learning approaches to predict the excess growth of TB transmission clusters in 
the USA8, finding that cluster characteristics prior to growth (e.g., a shorter timing between cases) were more 
important model predictors than patient or disease characteristics. Further developing tools that stratify risk 
of cluster growth soon after TB diagnosis using clinical information would help prioritize timely public health 
action for high-risk networks, such as more intensive contact tracing or mass screening.

Here, we develop predictive models to distinguish between people with TB that are associated with cluster 
growth versus people not associated with cluster growth using patient demographic and disease characteristics. 
We tested multiple supervised learning models using a real-world dataset of Mycobacterium tuberculosis (Mtb) 
whole genome sequence (WGS) data from British Columbia, Canada, a low incidence region of ~ 6/100,000 
population9. We assess machine learning, deep learning, and logistic regression approaches to classify the first 
two isolates collected from transmission clusters using patient demographic and disease characteristics. In 

1Department of Mathematics, Simon Fraser University, Burnaby, Canada. 2Division of Respiratory Medicine, 
University of British Columbia, Vancouver, Canada. 3British Columbia Centre for Disease Control, Vancouver, 
Canada. 4Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, 
Canada. 5Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA. 
6Department of Infection, Immunity and Inflammation, University College London, London, UK. 7These authors 
contributed equally: James C. Johnston and Benjamin Sobkowiak. email: b.sobkowiak.12@ucl.ac.uk

OPEN

Scientific Reports |        (2024) 14:27652 1| https://doi.org/10.1038/s41598-024-78247-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-78247-z&domain=pdf&date_stamp=2024-11-11


addition, we assess the performance of these models when trained to discriminate between the first people 
associated with larger TB clusters (here defined as clusters of ≥ 3 individuals) and those associated with smaller 
clusters (here defined as clusters of < 3 individuals) to identify potential characteristics associated with TB 
cluster growth.

Results
Mycobacterium tuberculosis transmission clusters from British Columbia
A total of 2588 persons with culture-positive TB were identified in British Columbia, Canada between 2005 and 
2015 for whom demographic, clinical and bacterial isolate data were available. Mtb whole genome sequence data 
were obtained for 1329/1337 isolates collected between 2005 and 2014 that shared a MIRU-VNTR genotyping 
pattern with at least one other isolate; all isolates with a unique MIRU-VNTR pattern (N = 1010) in this period 
were not sent for further sequencing and were coded as non-clustered in this study. WGS data were available for 
236/241 TB culture-positive individuals in 2015.

We found that 656/2575 (25.5%) of isolates clustered with at least one other isolate using a 12 SNP threshold. 
This was lower than previous estimates in BC when calculated using lower resolution genotyping methods 
(MIRU-VNTR)10. There were 112 transmission clusters overall ranging in size between 2 and 82 isolates; of 
these 65/112 (58%) clusters contained two isolates and 17 clusters were of size ≥ 5. Varying the pairwise SNP 
distance threshold to link isolates did not change the size or composition of clusters significantly. At a 5 SNP 
threshold, 107 clusters were identified with 598/2575 (23.2%) of isolates in clusters and at a 20 SNP threshold 
there were 127 clusters with 703/2575 (27.3%) of isolates in clusters; both thresholds identified the same largest 
cluster comprising the same 82 isolates.

Classification models
The performance of six supervised learning models (balanced random forest, balanced bagging, balanced logistic 
regression, LightGBM, TabNet, and a neural network) was evaluated in four classification tasks. The tasks were: 
(A) discriminating between the first two isolates by collection date in transmission clusters against non-clustered 
isolates, (B) discriminating between the first two isolates by collection date in transmission clusters and all 
other collected isolates (both non-clustered isolates and clustered isolates that were collected after the first two 
isolates), (C) discriminating between the first two isolates by collection date in larger clusters, and both smaller 
clusters and non-clusters, and D) discriminating between the first two isolates by collection date in larger clusters 
and isolates in smaller clusters. Mtb isolates collected between 2005 and 2011 were included as training data and 
isolates collected in 2012 and 2013 as the test dataset.

Figure 1 shows ROC curves and AUC values for each tested approach in four classification tasks. We found 
that most models were able to predict the earliest two isolates in transmission clusters in the test data against 
non-clustered isolates (task A) with good performance (AUC > 0.7). The best performing model for this task, 
balanced random forest had an AUC of 0.82, showing strong discrimination, followed by LightGBM, balanced 
logistic regression, and the neural network (AUC 0.79) (Fig. 1A). However, this strong model performance may 
have been driven by the models correctly distinguishing between people belonging to a transmission cluster and 
those that were non-clustered. Therefore, we next assessed the accuracy in distinguishing between the earliest 
two isolates in transmission clusters in a dataset that included both non-clustered isolates and all other clustered 
isolates with collection dates later than the first two isolates (task B). Again, the balanced random forest model 
achieved a good performance with an AUC of 0.75. (Fig. 1B).

We next aimed to classify the earliest isolates in larger clusters (n ≥ 3) against smaller clusters (n = 2) and 
non-clustered isolates to determine if there were characteristics that predicted larger clusters (task C). We 
found that LightGBM achieved the best performance (AUC = 0.86), followed by balanced logistic regression 
(AUC = 0.85) and balance random forest (AUC = 0.84) (Fig.  1C). Unfortunately, none of the tested models 
achieved good discrimination when predicting growth to larger clusters when compared with smaller clusters 
(task D) (Fig. 1D). In this task, the training and test datasets were significantly smaller than tasks A–C, with the 
test data containing only 34 isolates compared to 471 (33 positive class) in task A, 391 (33 positive class) in task 
B, and 391 (9 positive class) in task C, and a training dataset of 164 isolates compared to 1640 (163 positive class) 
in task A, 1339 (163 positive class) in task B, and 1339 (78 positive class) in task C.

We identified the patient-level demographic and disease characteristics that contributed most towards the 
classification in the best performing model overall, balanced random forest, using feature selection for tasks 
A to C. We found that patient demographic (origin) and site of infection were the features that were the most 
important to the classification models in predicting the earliest two isolates in transmission clusters, and this was 
consistent across tasks A to C. The major TB lineage of the infection was also found to be an important feature in 
these tasks. The full rankings of feature importance for tasks A to C are shown in Supplementary fig. S1. Partial 
dependence plots were calculated to determine whether specific features had a positive or negative impact on 
the prediction of the positive response variable (Fig. 2). We found that Canadian-born individuals were more 
likely to represent the earliest two isolates in transmission clusters in all tasks. Individuals with pulmonary TB 
were also more likely to be the earliest isolates in clusters in these tasks. Conversely, those aged over 60 were 
negatively associated with a positive response variable and thus were less likely to represent the earliest isolates 
in clusters in tasks A–C.

Sensitivity analysis
Finally, we found that the good performance of the random forest models in the main analysis was maintained 
in a sensitivity analysis. Supplementary fig. S2 shows the results of the balanced random forest model for 
classification tasks A, B, and C, with 100 random partitions of the complete 2005 to 2013 dataset using a ratio 
of 80:20 training to test data. This model performed similarly when trained on these data compared to the 
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original analysis using the 2005–2011 training data and 2012–2013 test data (AUC 0.75–0.81 vs. median AUCs 
0.73–0.90), showing that the choice of partitioning the training and test data by collection date did not influence 
model performance. We also tested the balanced random forest model on tasks A, B, and C when the response 
variable was randomly assigned (permuted); in this case we would expect models not to perform well as there 
is no signal to be found. Indeed, the model achieved poor discrimination in all tasks (median AUCs 0.49–0.51, 
Supplementary fig. S3, supporting our results that we can predict the earliest two isolates in transmission clusters 
using specific characteristics in these individuals as shown by the main analysis.

Discussion
Here, we have used the demographic and disease characteristics of people with TB to predict those likely to be 
associated with larger TB (n ≥ 3) clusters. Using samples collected between 2005 and 2011, we were able to train 
classification models to predict which people are associated with larger clusters in 2012 and 2013 and those that 
would likely not be associated with larger clusters. Recently, machine learning has been used in TB research to 
improve disease diagnosis, for example the automated detection of lesions on chest x-rays11 and the bacteriologic 
confirmation of TB in children12. Here, we have shown that classification models, including machine learning 

Fig. 1.  ROC curves and AUC scores for the four classification tasks. (A) distinguishing between the earliest 
two clustered isolates and non-clustered isolates, (B) distinguishing between the earliest two clustered isolates 
and all other isolates, (C) distinguishing between the earliest two isolates in clusters of size ≥ 3 and both non-
clustered isolates and isolates in clusters of two individuals, and (D) distinguishing between the earliest two 
isolates in clusters of size ≥ 3 vs. isolates in clusters size = 2.
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approaches, can be used to classify individuals with TB that represent a higher or lower risk of belonging to a 
large transmission cluster through shared demographic and disease characteristics. Our study demonstrates the 
utility of supervised learning models, coupled with whole genome sequencing data, for developing clinically 
informative tools for the early detection of growing transmission clusters that can be scaled to incorporate large, 
complex datasets that include many individuals and associated metadata.

Previous work found that the timing between infections was an important predictor for excess growth in TB 
transmission clusters from the USA8, though they did not find clinical and patient demographic information 
to be strong predictors of cluster growth in this setting. In contrast, we found that specific patient demographic 
and disease characteristics were informative in our models for predicting which individuals were associated 
with cluster growth beyond the first two people identified and did not find that timing between diagnoses was 
an important feature. These differences may be due to the higher resolution WGS transmission clusters used in 
our study compared with the genotypically-derived clusters (through spoligotyping and MIRU-VNTR analysis) 
in the previous work, or through epidemiological differences between the countries. Further work using the 
framework demonstrated here that includes transmission clusters from multiple locales can assess whether these 
models can be generalizable or if explicit models are required to be built in each setting.

We found that the balanced random forest model was able to distinguish between the first two people detected 
in a TB clusters of all sizes compared to unclustered individuals with good discriminatory power from patient-
level characteristics (tasks A and B). We could also classify isolates that would form larger clusters (with three 
or more isolates) against non-clustered isolates and isolates in smaller clusters of just two individuals (task C), 
suggesting that it is possible to identify clusters that will expand further after the second individual is detected. 
While most clusters beginning in 2012 and 2013 contained just two people, there was evidence of cluster growth 
from 2012 to 2015 from 27% of these clusters. The individuals representing the earliest TB diagnoses in the 
transmission clusters could have been prioritised for investigation using the models presented here to reduce the 
probability of cluster growth. The modelling framework presented here can be used to help direct resources for 
epidemiological investigations, which can be costly and labour intensive, and highlight individuals to prioritise 
for follow-up that may have a higher risk of initiating secondary infections and larger transmission clusters.

There were differences in the model performance of the tested approaches, and we found that the balanced 
random forest model obtained the best performance overall. The AUC values of the classification models reported 
here, and the models themselves, are likely to be specific to our TB population, which is in a low-incidence region 
with high active case finding and TB preventive therapy13. Further limitations include the absence of data in our 
analysis on sputum smear microscopy, drug use disorder, and other potential social determinants that may 
impact transmission such as membership of congregate housing or large households, along with limited follow-
up time to fully characterize transmission. These factors have previously been reported to increase the risk of TB 
transmission7,10 and inclusion of these factors would likely impact the performance of the tested classification 
models. Additionally, the transmission clusters used here were somewhat simple in their construction, with 
collection dates used to identify individuals that represented the first two hosts in transmission clusters and 
equal probability of onward transmission from these individuals. The models presented here may be refined by 
using well-characterized symptom onset times to characterize the people that would have become infectious first 
and reconstructing full transmission networks to infer which individuals likely led to secondary infections later 
in the transmission cluster.

Fig. 2.  Partial dependence plots of the patient and disease characteristics with the highest feature importance 
in the balanced random forest model for tasks A–C. Positive lines represents an increased effect of the named 
feature on the positive response variable (X axis 0–1) for each task.
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In task D we were not able to discriminate between the earliest two isolates in larger clusters and those 
in smaller clusters of only two isolates that did not appear to grow. Both the test and training datasets in this 
task contained very few individuals and further work would be required to determine whether it is possible to 
use these models to identify the earliest individuals with TB specifically in growing clusters. This may involve 
training classification models on larger datasets with more transmission clusters or by including the pairwise 
covariates between isolates, used previously to predict clustering of un-sequenced individuals with TB using 
demographic and clinical data14, to increase the information available to train these models.

Nevertheless, key characteristics were identified that were important features used by the classification 
models to discriminate between the earliest isolates in clusters and both isolates appearing later in clusters and 
non-clustered isolates. Previous work has identified disease characteristics correlated with Mtb transmission in 
multiple settings (e.g6,15), as well as developed complex multilevel models of individual risk prediction for TB16. 
These studies found evidence of patient and pathogen characteristics that were significantly associated with 
recent transmission, including TB lineage and age at diagnosis. In our analysis, the most important feature was 
found to be the patient demographic, with Canadian-born individuals more likely than foreign-born individuals 
to represent the earliest diagnosed hosts in transmission clusters. Pulmonary TB, previously reported to be 
associated with an increased TB transmission risk17,18, was also a key feature in tasks A–C of our analysis.

TB lineage was found to be an important feature and though balanced random forest models inherently 
evaluate the importance of variables independently by averaging across multiple decision trees built from subsets 
of the features, a much higher proportion of Canadian-born individuals harbored Euro-American lineage TB 
strains than foreign-born individuals (82% vs. 21%) and thus these features were likely to be correlated. Finally, 
we found patient age to have an impact on classification and patients over the age of 60 had a reduced likelihood 
of being the earliest isolates in cluster. While the prevalence of TB disease can be high in the elderly through 
reactivation of latent TB19, the decreased risk of onward transmission shown here in this group may be due to 
population-specific factors such as social mixing patterns.

In conclusion, we have used classification models to predict early TB isolates in clusters of recent transmission 
with respect to both host and disease characteristics. This work establishes a method to link patient-level 
correlates with predictive models to identify persons with TB that may have an increased risk of contributing to 
transmission cluster growth.

Methods
TB culture-positive individuals diagnosed in BC by the Public Health Laboratory (PHL) of the BC Centre 
for Disease Control (BCCDC) between 2005 and 2015 were included in this study, for which demographic 
and clinical data were collected as part of routine clinical investigation. Culture-positive individuals represent 
approximately 80% of all TB diagnoses in the province10. Sample preparation and DNA extraction was carried 
out at the British Columbia Public Health Laboratory (BCCDC PHL), as described previously10. WGS data was 
obtained from culture-positive individuals sampled between 2005 and 2014 whose TB isolate shared a MIRU-
VNTR pattern with at least one other isolate, as per the PHL strategy during these years. In 2015, the strategy was 
changed to whole genome sequence isolates from all culture-positive individuals. Sequencing and bioinformatic 
analysis has been described elsewhere20.

Putative clusters representing recent transmission were identified by linking isolates with a maximum pairwise 
distance of 12 SNPs21. For the classification models, we partitioned the data into a training dataset of isolates 
collected between 2005 and 2011 and a test dataset of isolates collected between 2012 and 2013. Isolates collected 
in the last two years of the study were not included in the classification tasks as onward transmission may have 
occurred after the study period. However, isolates collected between 2005 and 2013 that clustered only with 
isolates collected in 2014 and 2015 were coded as clustered. Predictor variables were one-hot encoded, which 
represents categories as binary vectors22, and included demographic data (e.g., sex, age group, and demographics 
by country of birth) and clinical information (e.g., site of infection and antimicrobial susceptibility) (Table S1).

We trained models to carry out four different classification tasks using the 2005 to 2011 training dataset and 
tested model performance on the 2012 and 2013 test data, with a binary response variable in all instances. In the 
four classification tasks, the response variable coded as follows: (A) a value of 1 for the earliest two isolates in 
any transmission cluster and 0 for all non-clustered isolates, (B) a value of 1 for the earliest two isolates in any 
transmission cluster and 0 for all other isolates (all non-clustered isolates and all isolates with later collection 
dates in clusters), (C) a value of 1 for the earliest two isolates in transmission clusters of size greater than two and 
0 for all non-clustered isolates and isolates in clusters of two, and (D) a value of 1 for the earliest two isolates in 
transmission clusters of size greater than two and 0 for isolates only in clusters of size two.

We tested the performance of multiple classification models, including machine learning (LightGBM, 
balanced random forest, and balanced bagging), deep learning (TabNet) models and balanced logistic regression, 
along with designing a neural network. For the best performing model, the feature importance and effect of the 
feature on the response variable was calculated to show whether each predictor variable has a positive or negative 
relationship. All models were run in Python 3.0.

Finally, we carried out two sensitivity analyses using the best performing model overall. Firstly, the training 
and test data were combined and randomly partitioned into new training and test datasets with an 80:20 ratio 
to determine whether the classification tasks were influenced by the partitioning of the data by date rather than 
the predictor variables, as well as controlling for any potential changes in demographics or treatment during the 
study period. Secondly, the response variable in the training data was randomly assigned to isolates, keeping 
the same proportion of 1s and 0s as in the real data, and all classification tasks re-run on the test dataset. This 
was to compare our results to the models when trained on training data with a randomly assigned response. All 
sensitivity analyses were repeated 100 times.
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Data availability
The whole genome sequence data analyzed in the current study are available from the European Nucleotide Ar-
chive (ENA) Project number PRJNA413593. The code to run the analysis can be found on GitHub (github.com/
bensobkowiak/TBclusterClassification).
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