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Identifying individuals with tuberculosis (TB) with a high risk of onward transmission can guide

disease prevention and public health strategies. Here, we train classification models to predict the first
sampled isolates in Mycobacterium tuberculosis transmission clusters from demographic and disease
data. We find that supervised learning, in particular balanced random forests, can be used to develop
predictive models to identify people with TB that are more likely associated with TB cluster growth,
with good model performance and AUCs of > 0.75. We also identified the most important patient and
disease characteristics in the best performing classification model, including host demographics, site of
infection, TB lineage, and age at diagnosis. This framework can be used to develop predictive tools for
the early assessment of potential cluster growth to prioritise individuals for enhanced follow-up with
the aim of reducing transmission chains.

Tuberculosis (TB) remains a major global health concern, causing around 1.3 million deaths in 2022'. The World
Health Organizations “End TB Strategy” set out to eradicate the global TB epidemic by 2035% unfortunately,
many countries are currently falling behind targets. The early diagnosis of people with infectious TB disease one
core component of reducing TB incidence?. Prioritizing interventions for individuals and groups with a high risk
of onward transmission can maximise the impact and cost-effectiveness of public health strategies, such as active
case finding and TB preventive therapy, to reduce the spread of TB disease and prevent outbreaks.

Transmission of TB from one individual to another can be complex, and depends on the host, pathogen, and
environment. Factors associated with the bacteria itself, such as the MTBC lineage, antimicrobial resistance,
and the presence of mutations associated with virulence and transmissibility can all contribute to the increased
transmission of certain strains*-®. Additionally, environmental and socio-economic conditions can increase the
risk of exposure to TB and play a role in transmission’, particularly in low-burden settings where the likelihood
of incidental contact with infectious individuals is low.

Identifying host and pathogen characteristics that are associated with the growth of transmission clusters
within a population can guide efforts to interrupt the spread of TB. Supervised learning methods can find
patterns in complex datasets and build models to accurately predict outcomes in new data. This represents an
opportunity to use these approaches in combination with retrospective analysis of past outbreaks to develop
predictive models of TB cluster growth from patient demographic and clinical characteristics. A previous study
explored the use of machine learning approaches to predict the excess growth of TB transmission clusters in
the USAS, finding that cluster characteristics prior to growth (e.g., a shorter timing between cases) were more
important model predictors than patient or disease characteristics. Further developing tools that stratify risk
of cluster growth soon after TB diagnosis using clinical information would help prioritize timely public health
action for high-risk networks, such as more intensive contact tracing or mass screening.

Here, we develop predictive models to distinguish between people with TB that are associated with cluster
growth versus people not associated with cluster growth using patient demographic and disease characteristics.
We tested multiple supervised learning models using a real-world dataset of Mycobacterium tuberculosis (Mtb)
whole genome sequence (WGS) data from British Columbia, Canada, a low incidence region of ~6/100,000
population®. We assess machine learning, deep learning, and logistic regression approaches to classify the first
two isolates collected from transmission clusters using patient demographic and disease characteristics. In
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addition, we assess the performance of these models when trained to discriminate between the first people
associated with larger TB clusters (here defined as clusters of > 3 individuals) and those associated with smaller
clusters (here defined as clusters of <3 individuals) to identify potential characteristics associated with TB
cluster growth.

Results

Mycobacterium tuberculosis transmission clusters from British Columbia

A total of 2588 persons with culture-positive TB were identified in British Columbia, Canada between 2005 and
2015 for whom demographic, clinical and bacterial isolate data were available. Mtb whole genome sequence data
were obtained for 1329/1337 isolates collected between 2005 and 2014 that shared a MIRU-VNTR genotyping
pattern with at least one other isolate; all isolates with a unique MIRU-VNTR pattern (N=1010) in this period
were not sent for further sequencing and were coded as non-clustered in this study. WGS data were available for
236/241 TB culture-positive individuals in 2015.

We found that 656/2575 (25.5%) of isolates clustered with at least one other isolate using a 12 SNP threshold.
This was lower than previous estimates in BC when calculated using lower resolution genotyping methods
(MIRU-VNTR)!. There were 112 transmission clusters overall ranging in size between 2 and 82 isolates; of
these 65/112 (58%) clusters contained two isolates and 17 clusters were of size >5. Varying the pairwise SNP
distance threshold to link isolates did not change the size or composition of clusters significantly. At a 5 SNP
threshold, 107 clusters were identified with 598/2575 (23.2%) of isolates in clusters and at a 20 SNP threshold
there were 127 clusters with 703/2575 (27.3%) of isolates in clusters; both thresholds identified the same largest
cluster comprising the same 82 isolates.

Classification models

The performance of six supervised learning models (balanced random forest, balanced bagging, balanced logistic
regression, LightGBM, TabNet, and a neural network) was evaluated in four classification tasks. The tasks were:
(A) discriminating between the first two isolates by collection date in transmission clusters against non-clustered
isolates, (B) discriminating between the first two isolates by collection date in transmission clusters and all
other collected isolates (both non-clustered isolates and clustered isolates that were collected after the first two
isolates), (C) discriminating between the first two isolates by collection date in larger clusters, and both smaller
clusters and non-clusters, and D) discriminating between the first two isolates by collection date in larger clusters
and isolates in smaller clusters. Mtb isolates collected between 2005 and 2011 were included as training data and
isolates collected in 2012 and 2013 as the test dataset.

Figure 1 shows ROC curves and AUC values for each tested approach in four classification tasks. We found
that most models were able to predict the earliest two isolates in transmission clusters in the test data against
non-clustered isolates (task A) with good performance (AUC > 0.7). The best performing model for this task,
balanced random forest had an AUC of 0.82, showing strong discrimination, followed by LightGBM, balanced
logistic regression, and the neural network (AUC 0.79) (Fig. 1A). However, this strong model performance may
have been driven by the models correctly distinguishing between people belonging to a transmission cluster and
those that were non-clustered. Therefore, we next assessed the accuracy in distinguishing between the earliest
two isolates in transmission clusters in a dataset that included both non-clustered isolates and all other clustered
isolates with collection dates later than the first two isolates (task B). Again, the balanced random forest model
achieved a good performance with an AUC of 0.75. (Fig. 1B).

We next aimed to classify the earliest isolates in larger clusters (n>3) against smaller clusters (n=2) and
non-clustered isolates to determine if there were characteristics that predicted larger clusters (task C). We
found that LightGBM achieved the best performance (AUC=0.86), followed by balanced logistic regression
(AUC=0.85) and balance random forest (AUC=0.84) (Fig. 1C). Unfortunately, none of the tested models
achieved good discrimination when predicting growth to larger clusters when compared with smaller clusters
(task D) (Fig. 1D). In this task, the training and test datasets were significantly smaller than tasks A-C, with the
test data containing only 34 isolates compared to 471 (33 positive class) in task A, 391 (33 positive class) in task
B, and 391 (9 positive class) in task C, and a training dataset of 164 isolates compared to 1640 (163 positive class)
in task A, 1339 (163 positive class) in task B, and 1339 (78 positive class) in task C.

We identified the patient-level demographic and disease characteristics that contributed most towards the
classification in the best performing model overall, balanced random forest, using feature selection for tasks
A to C. We found that patient demographic (origin) and site of infection were the features that were the most
important to the classification models in predicting the earliest two isolates in transmission clusters, and this was
consistent across tasks A to C. The major TB lineage of the infection was also found to be an important feature in
these tasks. The full rankings of feature importance for tasks A to C are shown in Supplementary fig. S1. Partial
dependence plots were calculated to determine whether specific features had a positive or negative impact on
the prediction of the positive response variable (Fig. 2). We found that Canadian-born individuals were more
likely to represent the earliest two isolates in transmission clusters in all tasks. Individuals with pulmonary TB
were also more likely to be the earliest isolates in clusters in these tasks. Conversely, those aged over 60 were
negatively associated with a positive response variable and thus were less likely to represent the earliest isolates
in clusters in tasks A-C.

Sensitivity analysis

Finally, we found that the good performance of the random forest models in the main analysis was maintained
in a sensitivity analysis. Supplementary fig. S2 shows the results of the balanced random forest model for
classification tasks A, B, and C, with 100 random partitions of the complete 2005 to 2013 dataset using a ratio
of 80:20 training to test data. This model performed similarly when trained on these data compared to the
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Fig. 1. ROC curves and AUC scores for the four classification tasks. (A) distinguishing between the earliest
two clustered isolates and non-clustered isolates, (B) distinguishing between the earliest two clustered isolates
and all other isolates, (C) distinguishing between the earliest two isolates in clusters of size >3 and both non-
clustered isolates and isolates in clusters of two individuals, and (D) distinguishing between the earliest two
isolates in clusters of size > 3 vs. isolates in clusters size=2.

original analysis using the 2005-2011 training data and 2012-2013 test data (AUC 0.75-0.81 vs. median AUCs
0.73-0.90), showing that the choice of partitioning the training and test data by collection date did not influence
model performance. We also tested the balanced random forest model on tasks A, B, and C when the response
variable was randomly assigned (permuted); in this case we would expect models not to perform well as there
is no signal to be found. Indeed, the model achieved poor discrimination in all tasks (median AUCs 0.49-0.51,
Supplementary fig. S3, supporting our results that we can predict the earliest two isolates in transmission clusters
using specific characteristics in these individuals as shown by the main analysis.

Discussion

Here, we have used the demographic and disease characteristics of people with TB to predict those likely to be
associated with larger TB (n > 3) clusters. Using samples collected between 2005 and 2011, we were able to train
classification models to predict which people are associated with larger clusters in 2012 and 2013 and those that
would likely not be associated with larger clusters. Recently, machine learning has been used in TB research to
improve disease diagnosis, for example the automated detection of lesions on chest x-rays!! and the bacteriologic
confirmation of TB in children!2. Here, we have shown that classification models, including machine learning
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Fig. 2. Partial dependence plots of the patient and disease characteristics with the highest feature importance
in the balanced random forest model for tasks A-C. Positive lines represents an increased effect of the named
feature on the positive response variable (X axis 0-1) for each task.

approaches, can be used to classify individuals with TB that represent a higher or lower risk of belonging to a
large transmission cluster through shared demographic and disease characteristics. Our study demonstrates the
utility of supervised learning models, coupled with whole genome sequencing data, for developing clinically
informative tools for the early detection of growing transmission clusters that can be scaled to incorporate large,
complex datasets that include many individuals and associated metadata.

Previous work found that the timing between infections was an important predictor for excess growth in TB
transmission clusters from the USA®, though they did not find clinical and patient demographic information
to be strong predictors of cluster growth in this setting. In contrast, we found that specific patient demographic
and disease characteristics were informative in our models for predicting which individuals were associated
with cluster growth beyond the first two people identified and did not find that timing between diagnoses was
an important feature. These differences may be due to the higher resolution WGS transmission clusters used in
our study compared with the genotypically-derived clusters (through spoligotyping and MIRU-VNTR analysis)
in the previous work, or through epidemiological differences between the countries. Further work using the
framework demonstrated here that includes transmission clusters from multiple locales can assess whether these
models can be generalizable or if explicit models are required to be built in each setting.

We found that the balanced random forest model was able to distinguish between the first two people detected
in a TB clusters of all sizes compared to unclustered individuals with good discriminatory power from patient-
level characteristics (tasks A and B). We could also classify isolates that would form larger clusters (with three
or more isolates) against non-clustered isolates and isolates in smaller clusters of just two individuals (task C),
suggesting that it is possible to identify clusters that will expand further after the second individual is detected.
While most clusters beginning in 2012 and 2013 contained just two people, there was evidence of cluster growth
from 2012 to 2015 from 27% of these clusters. The individuals representing the earliest TB diagnoses in the
transmission clusters could have been prioritised for investigation using the models presented here to reduce the
probability of cluster growth. The modelling framework presented here can be used to help direct resources for
epidemiological investigations, which can be costly and labour intensive, and highlight individuals to prioritise
for follow-up that may have a higher risk of initiating secondary infections and larger transmission clusters.

There were differences in the model performance of the tested approaches, and we found that the balanced
random forest model obtained the best performance overall. The AUC values of the classification models reported
here, and the models themselves, are likely to be specific to our TB population, which is in a low-incidence region
with high active case finding and TB preventive therapy'’. Further limitations include the absence of data in our
analysis on sputum smear microscopy, drug use disorder, and other potential social determinants that may
impact transmission such as membership of congregate housing or large households, along with limited follow-
up time to fully characterize transmission. These factors have previously been reported to increase the risk of TB
transmission”!* and inclusion of these factors would likely impact the performance of the tested classification
models. Additionally, the transmission clusters used here were somewhat simple in their construction, with
collection dates used to identify individuals that represented the first two hosts in transmission clusters and
equal probability of onward transmission from these individuals. The models presented here may be refined by
using well-characterized symptom onset times to characterize the people that would have become infectious first
and reconstructing full transmission networks to infer which individuals likely led to secondary infections later
in the transmission cluster.
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In task D we were not able to discriminate between the earliest two isolates in larger clusters and those
in smaller clusters of only two isolates that did not appear to grow. Both the test and training datasets in this
task contained very few individuals and further work would be required to determine whether it is possible to
use these models to identify the earliest individuals with TB specifically in growing clusters. This may involve
training classification models on larger datasets with more transmission clusters or by including the pairwise
covariates between isolates, used previously to predict clustering of un-sequenced individuals with TB using
demographic and clinical data'4, to increase the information available to train these models.

Nevertheless, key characteristics were identified that were important features used by the classification
models to discriminate between the earliest isolates in clusters and both isolates appearing later in clusters and
non-clustered isolates. Previous work has identified disease characteristics correlated with Mtb transmission in
multiple settings (e.g®!%), as well as developed complex multilevel models of individual risk prediction for TB®.
These studies found evidence of patient and pathogen characteristics that were significantly associated with
recent transmission, including TB lineage and age at diagnosis. In our analysis, the most important feature was
found to be the patient demographic, with Canadian-born individuals more likely than foreign-born individuals
to represent the earliest diagnosed hosts in transmission clusters. Pulmonary TB, previously reported to be
associated with an increased TB transmission risk!”!8, was also a key feature in tasks A-C of our analysis.

TB lineage was found to be an important feature and though balanced random forest models inherently
evaluate the importance of variables independently by averaging across multiple decision trees built from subsets
of the features, a much higher proportion of Canadian-born individuals harbored Euro-American lineage TB
strains than foreign-born individuals (82% vs. 21%) and thus these features were likely to be correlated. Finally,
we found patient age to have an impact on classification and patients over the age of 60 had a reduced likelihood
of being the earliest isolates in cluster. While the prevalence of TB disease can be high in the elderly through
reactivation of latent TB!Y, the decreased risk of onward transmission shown here in this group may be due to
population-specific factors such as social mixing patterns.

In conclusion, we have used classification models to predict early TB isolates in clusters of recent transmission
with respect to both host and disease characteristics. This work establishes a method to link patient-level
correlates with predictive models to identify persons with TB that may have an increased risk of contributing to
transmission cluster growth.

Methods

TB culture-positive individuals diagnosed in BC by the Public Health Laboratory (PHL) of the BC Centre
for Disease Control (BCCDC) between 2005 and 2015 were included in this study, for which demographic
and clinical data were collected as part of routine clinical investigation. Culture-positive individuals represent
approximately 80% of all TB diagnoses in the province!?. Sample preparation and DNA extraction was carried
out at the British Columbia Public Health Laboratory (BCCDC PHL), as described previously!®. WGS data was
obtained from culture-positive individuals sampled between 2005 and 2014 whose TB isolate shared a MIRU-
VNTR pattern with at least one other isolate, as per the PHL strategy during these years. In 2015, the strategy was
changed to whole genome sequence isolates from all culture-positive individuals. Sequencing and bioinformatic
analysis has been described elsewhere®.

Putative clusters representing recent transmission were identified by linking isolates with a maximum pairwise
distance of 12 SNPs?!. For the classification models, we partitioned the data into a training dataset of isolates
collected between 2005 and 2011 and a test dataset of isolates collected between 2012 and 2013. Isolates collected
in the last two years of the study were not included in the classification tasks as onward transmission may have
occurred after the study period. However, isolates collected between 2005 and 2013 that clustered only with
isolates collected in 2014 and 2015 were coded as clustered. Predictor variables were one-hot encoded, which
represents categories as binary vectors??, and included demographic data (e.g., sex, age group, and demographics
by country of birth) and clinical information (e.g., site of infection and antimicrobial susceptibility) (Table SI).

We trained models to carry out four different classification tasks using the 2005 to 2011 training dataset and
tested model performance on the 2012 and 2013 test data, with a binary response variable in all instances. In the
four classification tasks, the response variable coded as follows: (A) a value of 1 for the earliest two isolates in
any transmission cluster and 0 for all non-clustered isolates, (B) a value of 1 for the earliest two isolates in any
transmission cluster and 0 for all other isolates (all non-clustered isolates and all isolates with later collection
dates in clusters), (C) a value of 1 for the earliest two isolates in transmission clusters of size greater than two and
0 for all non-clustered isolates and isolates in clusters of two, and (D) a value of 1 for the earliest two isolates in
transmission clusters of size greater than two and 0 for isolates only in clusters of size two.

We tested the performance of multiple classification models, including machine learning (LightGBM,
balanced random forest, and balanced bagging), deep learning (TabNet) models and balanced logistic regression,
along with designing a neural network. For the best performing model, the feature importance and effect of the
feature on the response variable was calculated to show whether each predictor variable has a positive or negative
relationship. All models were run in Python 3.0.

Finally, we carried out two sensitivity analyses using the best performing model overall. Firstly, the training
and test data were combined and randomly partitioned into new training and test datasets with an 80:20 ratio
to determine whether the classification tasks were influenced by the partitioning of the data by date rather than
the predictor variables, as well as controlling for any potential changes in demographics or treatment during the
study period. Secondly, the response variable in the training data was randomly assigned to isolates, keeping
the same proportion of 1s and Os as in the real data, and all classification tasks re-run on the test dataset. This
was to compare our results to the models when trained on training data with a randomly assigned response. All
sensitivity analyses were repeated 100 times.
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Data availability

The whole genome sequence data analyzed in the current study are available from the European Nucleotide Ar-
chive (ENA) Project number PRINA413593. The code to run the analysis can be found on GitHub (github.com/
bensobkowiak/TBclusterClassification).
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