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Non-fungible tokens (NFTs), which are immutable and transferable tokens on blockchain networks, 
have been used to certify the ownership of digital images often grouped in collections. Depending 
on individual interests, wallets explore and purchase NFTs in one or more image collections. Among 
many potential factors of shaping purchase trajectories, this paper specifically examines how visual 
similarities between collections affect wallets’ explorations. Our model characterizes each wallet’s 
explorations with a Lévy flight and shows that wallets tend to favor collections having similar visual 
features to their previous purchases while their behaviors vary widely. The model also predicts the 
extent to which the next collection is close to the most recent collection of purchases with respect to 
visual features. These results are expected to enhance and support recommendation systems for the 
NFT market.

Non-fungible tokens (NFTs) are immutable and traceable objects on blockchain networks so that can be used to 
prove the ownership of digital assets, including artwork, photo, audio, and video. Nowadays, most NFTs are in 
collections sharing similar concepts and traits, such as hat, glass, and background color. For example, a famous 
collection ‘Bored Ape Yacht Club’ is made of NFTs of cartoon apes. Artists creating collections sell NFTs to 
wallets, and these wallets sell NFTs to other wallets through marketplaces referred to as the NFT market in this 
paper.

The prices of NFTs are associated with visual features (e.g., pixel, color)1,2. The extent to which traits and their 
combinations are rare affects NFTs’ market values3. New NFT collections inspired by the visual design of existing 
collections tend to have similar financial performance to the existing collections4. Considering that the price of 
an NFT is determined by its demand, visual features may also influence demand and individual wallet’s purchase 
decisions, specifically whether to purchase NFTs having similar or different visual features.

Wallets face diverse options at the moments of purchase. The uncertainty of choices leads different purchase 
trajectories by wallet. Some wallets possess only one NFT collection, while others purchase various collections. 
These two cases can be mapped to ‘Exploitation’ and ‘Exploration’, respectively, where exploitation is a behavior 
maximizing the current utility by re-using known options and exploration is a behavior taking risk for higher 
returns by searching uncertain environments5,6.

Decisions whether to choose exploration or exploitation are made based on environmental, social, individual 
factors7. The belief constructed from the previous environment does not hold in the new environment and in 
turn would change the decisions8. Competition is another environmental factor. If competitions exist, the risk 
of exploration increases because there is a possibility that competitors already exploited the environment. Under 
competition, expected returns would decrease and lead to a tendency leaning toward exploitation9. The risk of 
exploration can decrease if social information is available in decision-making10. If a person identifies the major 
decision in a system through social information, this person is more likely to follow the major decision11. It is 
because of network effects that increasing population which chooses the major decision is expected to receive 
higher returns compared to others choosing non-major decisions. Prior experience also affects decisions in the 
future. When customers of an online food delivery service explore new cuisines, they tend to choose cuisines 
similar to the foods they ordered12.

Environmental and social factors are surely important in the NFT market, but they are difficult to measure 
as the NFT market has evolved fast and does not reveal personal identities and their connections. Therefore 
in this paper, we focus on individual wallets and analyze how they exploit an NFT collection and explore new 
collections based on a visual similarity. We set the research questions as: 

	RQ1:	� How do exploration and exploitation occur in the NFT market?
	RQ2:	� Do wallets explore new NFTs in collections having visual features similar to their previous collections of 

purchases?
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Researchers found that behavioral trajectories in nature and social systems consist of many short movements 
and a few long jumps to distant areas with low probabilities. Honey bees13, desert ants14, sharks15, deers16, and 
elephants17 search resources by following this pattern. Humans are not an exception. They make long non-local 
jumps occasionally in physical spaces18–20 and virtual spaces21.

Lévy flight22 is a random walk model explaining this pattern with a probability distribution d−α where d 
is a distance between two points in a trajectory and α is a positive value between 1 and 3 in many real-world 
systems21,23. This distribution generates frequent short movements and rare long jumps because of its fat tail. 
Borrowing the functional form of Lévy flight, we aim to examine whether wallets explore the NFT market with 
the same pattern. In other words, if estimated α values for wallets are between 1 and 3, we would argue that wallet 
owners’ behave similarly with agents in many real-world systems. To analyze visual similarities between NFT 
collections, we projected NFTs to an embedding space by using ResNet1824, a deep neural network specialized 
for image classification task, and used (1 − the cosine similarity between two embedding vectors) as d (see 
“Methods” for details). 

	RQ3:	� Do wallets explore NFT collections similarly to agents in physical systems with the pattern of frequent 
short but rare long movements?

Models
Wallets would have distinct purchase trajectories depending on their owners’ preferences and personal 
characteristics. We developed three models generating synthetic purchase trajectories and compared them with 
the data to explain potential factors shaping the real purchase trajectories (Fig. 1). The following notations are 
used for explaining our models. Each wallet has a trajectory T, which is a sequence of collections of NFTs that 
its owner purchased. Ti is the trajectory of a wallet i, and ti,j  is the jth collection in Ti. Trajectories have different 
length and starting collection, so for a wallet i, we fix both |Ti| and ti,1 in simulations to compare synthetic 
trajectories with the data fairly. Details for constructing purchase trajectories are provided in Methods.

Fig. 1.  A schematic diagram of the models. The figure of NFTs are from ‘NotOkayBears’. Tables in the figure 
show probabilities that a collection is chosen as the next collection. Model 1 (M1) selects the next collection 
randomly. This model is the baseline for comparison with other models. Model 2 (M2) introduces an 
exploration parameter p, which decides the frequency of exploration. In this model, an agent explores a new 
collection with a probability p. In case of exploration, the next collection is selected randomly. Model 3 (M3) is 
similar to Model 2 but the next collection is sampled from a function following Lévy flight with an exponent α.
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Model 1
The first model is a completely random model. For each wallet, after fixing the starting collection, we sampled 
collections randomly from the list of all collections C with equal probabilities. The probability that a collection 
is chosen as the next collection is 1/|C|. This model is simple but allows us to understand the NFT collection 
embedding space with the step length distribution, a distribution for jump distances within trajectories. 
For example, if a wallet has a sequence [C1, C1, C2, C3], then a set of step lengths for this sequence becomes 
{d(C1, C1), d(C1, C2), d(C2, C3)} where d(X, Y) is the cosine distance between the collection embedding vectors 
of X and Y. Note that d(X, X) is zero. Since this model generates random sequences, the aggregated step length 
distribution from all wallets fnull(d) represents probabilities to sample collections reachable at a distance d 
(Fig. 2). This distribution is not biased by other external factors and represents the inherent topology of the 
embedding space.

Model 2
However, wallet owners’ would not purchase NFTs randomly. They are likely to have different preferences 
on exploring and exploiting collections. To measure the preferences, for a wallet i, we calculated pi which is 
the proportion of choosing a different collection from the most recent purchase. For example, a wallet i of 
which purchase trajectory is {C1, C1, C2, C3} changes collections twice, C1 → C2 and C2 → C3, while the total 
number of changes is three. Then, pi becomes 2/3. We assume that pi estimated from the data represents i’s 
unique characteristics so fix the values in modeling.

The second model adds the effect of pi to the first model. It generates a sequence as follows. A wallet owner i 
decides whether to buy an NFT in the same collection of the previous purchase or not. i explores a new collection 
with a probability pi or exploits the collection of the most recent purchase with a probability 1− pi. In case of 
exploration, a collection is randomly chosen as the next collection with a probability 1/(|C| − 1). Comparing 
the first and the second models, we can better understand the impact of pi.

Model 3
Lastly, we incorporated personal characteristics about selecting a new collection. Some wallet owners tend to 
choose a collection similar to the previous collection, while others tend to choose a collection different from the 
previous collection. We adopt a Lévy flight function to implement this mechanism because Lévy flights explain 
exploration behaviors well in many social systems25,26.

In the third model, the next collection is chosen with a probability proportional to 1/dαi, where d is the 
cosine distance between two collections’ embedding vectors and αi represents wallet i’s preference of choosing 
collections similar to the previous collection. If α is positive, a wallet tends to choose similar collections. If α 
is negative, a wallet tends to choose collections distant from the most recent collection. We name α as ‘visual 
affinity exponent’.

Fig. 2.  Two exemplar prior distributions and the null distribution. The null distribution represents the 
topology of the embedding space. If a wallet randomly selects the next collection for purchase, then the 
probability to choose a collection follows the null distribution. f (d|α = 2) and f (d|α = −2) are prior 
distributions for the maximum likelihood method. If the visual affinity exponent α of a wallet is positive (blue 
curve), the wallet prefers to select similar collections. If α is negative (red curve), a wallet tends to choose 
different collections compared with the previous one.
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The likelihood of a trajectory Ti is calculated from a prior distribution for a given α. It is the multiplication 
of probabilities for distances between collections, based on a prior distribution f (d|α). In our previous example 
{d(C1, C2), d(C2, C3)}, its likelihood is f (d(C1, C2)|α)× f (d(C2, C3)|α) where f (d|α) is defined as:

	

f (d|α) = 1

C
× fnull(d)

dα
,

C =
∑
d

fnull(d)

dα

� (1)

fnull(d) and two exemplar f (d|α) distributions are shown in Fig.  2. The f (d|α = 2) is shifted to the left 
compared to the null distribution, which means that wallets following this distribution prefer to purchase NFTs 
in collections similar to the previous collections. Note that fnull(d) is identical to f (d|α = 0).

For each wallet, we estimate α maximizing the likelihood of obtaining its purchase trajectory and set it as the 
wallet’s visual affinity exponent. Unfortunately, we can’t calculate α values analytically because the collections are 
already distributed on the embedding space and their distributions are not represented with general functions. 
To make our estimation feasible, we change values from -6 to 6 with a step size of 0.1 and determine the value of 
the highest likelihood as αi for a wallet i.

	
αi = argmax

α

∑
d∈Ti

log f (d|α) � (2)

Results
Model comparisons
We generated 100 synthetic purchase trajectories for each wallet and compared them with its real purchase 
trajectory by calculating a distance error DE, which is the normalized average difference between the total 
distance of the real purchase trajectory and the total distance of a synthetic purchase trajectory. This value for a 
wallet i is represented as

	
DEi =

1

|Ti| − 1

1

100

100∑
s=1

(

|Ti|∑
j=2

(d(Ci,j, Ci,j−1)− d(Cs
i,j, C

s
i,j−1))),� (3)

where |Ti| is the length of i’s purchase trajectory, j is the order of purchase in the trajectory, s is the index of a 
synthetic trajectory, and Cs

i,j is the jth collection in the sth synthetic trajectory.

Figure 3 shows how DE values are distributed by model. Model 1, which creates random trajectories, has the 
highest error. Adding the exploration probability p increases model performance significantly (Model 2). It 
suggests that exploitation with a probability of 1− p shapes purchase trajectories to a large extent. In addition to 
p, Model 3 incorporates a Lévy flight function with the visual affinity exponent α, which quantifies the tendency 
of purchase an NFT in a collection similar to the previous collections. We confirmed that Model 3 performs 
best with both the exploration probability p and the visual affinity exponent α. In the next section, we examine 
detailed properties and behaviors of wallets in the NFT market, especially focusing on estimated p and α values.

Interpreting wallet behaviors with estimated parameters
Tendency to explore collections
The estimated p values suggest that there are mainly two groups of wallets (Fig. 4a). The first group consists 
of wallets exploiting only one collection (p = 0). We would like to reiterate that the wallets which purchased 
more than 10 NFTs were analyzed, so this peak is not an artifact by low numbers of purchases. The other group 
comprises wallets exploring at least one collection (p > 0). Estimated p values are broadly distributed in this 
group. It indicates that the tendency to explore collections varies by wallet but not converges. Interestingly, there 
are more wallets of which p value is lower than 0.5. The distribution implies that wallets in the NFT market tend 
to exploit a collection or explore relatively less.

Visual affinity to collections
The visual affinity exponent α represents the extent to which a wallet favors new collections similar to the 
previous collections in its purchase trajectory. The distribution for α from the data is left-skewed (skewness 
= − 0.6) and has a single peak at 0.7 with the median of 0.4 (Fig. 4b; The distribution colored in gray green). 
This pattern cannot be generated from random sequences. α values estimated from random sequences by Model 
2 are distributed around 0 (Fig. 4b; The distribution colored in blue). The distribution implies that the NFT 
market consists of wallets having diverse preferences, but there are more wallets favoring collections similar to 
previous purchases (positive α) compared to others exploring dissimilar collections (negative α). On average, 
wallets behave in a conservative way in exploring collections while no physical risk and constraints exist in the 
embedding space.

Application for a recommendation system
We built a simple recommendation model predicting the last collection of a purchase trajectory with p and 
α estimated from the collections in the trajectory except the last collection. For example, in a trajectory 
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[C1, C1, C2, C3], we exclude the last collection C3 and estimate p and α from [C1, C1, C2]. We sampled the 
collection after C2 10 times (X1, . . . , X10) from Model 3, calculated d(C2, X1), . . . , d(C2, X10), and compared 
the average distance of d(C2, X1), . . . , d(C2, X10) with the true value d(C2, C3). Figure 5 shows test results for 
the wallets of which last and second-to-last collections are different. Model 3 performs better than a null model 
that randomly predicting a collection even for the wallets having same last and second-to-last collections (SI 
Section 4). The average distances from predictions are highly similar to the actual data, resulting in the trend 
close to y = x (Fig. 5). This result supports that p and α are effective parameters describing wallet behaviors and 
can be used to build recommendation systems for NFT collections.

Fig. 4.  The distributions for the model parameters p and α. (A) p is the exploration probability, which is equal 
to the proportion of inter-collection jumps. (B) α is the visual affinity exponent estimated from a Lévy flight 
function. High α means the tendency to choose a similar collection for the next purchase. The distribution in 
gray shows estimated α values from 100 random sequences generated by Model 2.

 

Fig. 3.  The distributions for distance errors of Model 1 (completely random), Model 2 (explore with a 
probability p and choose next collections randomly), and Model 3 (explore with a probability p and choose 
next collections by following a Lévy flight function d−α). The closer a distribution is to the dashed line (DE=0), 
the better its associated model performs.
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Discussion
Our results confirm that the exploration probability p and the visual affinity exponent α characterize wallets’ 
behaviors in selecting NFT collections well. The estimated parameters answer our research questions as below.

For the first research question about how exploitation and exploration occur in the NFT market, we 
examined estimated p values from the data. At the NFT collection level, exploitation and exploration correspond 
to the cases of p = 0 and p > 0, respectively. The proportion of exploitation is 10%, which is not neglectable but 
indicates exploration is more popular in the NFT market. The broad p distribution also shows that the extent of 
exploration varies by wallet (Fig. 4a).

Our second research question is whether visual similarity affects exploration across NFT collections. We 
observed a large portion of the non-zero α values. It suggests visual similarity does matter in making exploration 
decisions (Fig. 4b). Specifically, as the mode and median of the α distribution are positive, we argue that wallets 
prefer similar collections when exploring the NFT market overall.

The α distribution answers our third research question “Do wallets in the NFT market explore similarly with 
agents in real-world physical systems?”. Literature about Lévy flight reports that the exponent is between 1 and 
3 in many physical systems27. Our result shows that there are indeed many wallets in this range but interestingly 
more wallets have an exponent below 1. Low exponents lead wallets to explore even less similar or dissimilar 
collections in the embedding space.

This difference may be understood with the structure and characteristics of spaces and agents. Physical 
systems have limited reachable areas from a point, while our embedding space does not. Wallet owners can 
obtain any information about collections. Some wallets purchasing NFTs in collections distant in the embedding 
space can have negative α. In addition, wallet owners may have diverse motivations in the NFT market. Some 
owners purchased NFTs for investment, while others did it for artistic collection purpose28. In the latter case, 
wallets having a preference to specific visual components would show positive α values while the degree of the 
preference varies.

In summary, our model effectively captures the individual behaviors of wallets through the visual affinity 
exponent α, which characterizes the level that each wallet favors collections visually similar with its previous 
purchases. The key strength of our approach is to directly compute exploration parameters for individuals from 
empirical data and to construct the distribution of exploration patterns with the estimated parameters.

Our approach is not without limitations. First, it assumes that a wallet’s next decision is affected solely by its 
most recent purchase, identical to a Markov process. This assumption prevents us from accounting for long-
range correlations in a purchase sequence. Second, the model does not consider other plausible factors, such as 
the popularity of a collection and its creator, the launch date of a collection, and NFT’s price, so its explanatory 
power is not substantially high. Lastly, exploration behaviors may vary over time and by market events. For 
instance, the release of a popular collection could change exploration behaviors (SI Section 5). Therefore, our 
results primarily reflect the current decision-making processes of individual wallets.

Advanced models addressing these limitations will enhance our understanding of exploration and exploitation 
behaviors in the NFT market. Especially, considering NFT promotion activities on social media29, analyzing the 
impact of social networking services on exploration behaviors in the NFT market would be an interesting topic 
for future studies. Our contribution showing the importance of visual features in the NFT market can also be 

Fig. 5.  Performance of Model 3 as a recommendation system. Model 3 predicts the distance between the 
last collection and the second last collection in a trajectory. The predictions are close to the data as many 
incidences overlap with the y = x line.
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extended further to examine whether specific visual components (e.g., patterns, colors) are more influential than 
others in NFT purchase decisions.

Methods
NFT transfer data
It is challenging to identify individual buyers for many physical artworks. For example, Picasso’s La Dormeuse 
was sold for 57.8 million US dollars, but we don’t know who owns it30. In contrast, the NFT market is governed 
by smart contracts which record transactions in blockchain networks, so we can examine when a new NFT was 
minted to a wallet and which wallets purchased NFTs. Details of transactions such as fees and asset values are 
also available on blockchain networks. This property allows us to reconstruct each wallet’s purchase trajectory 
while maintaining individual privacy, since each wallet address is a hashed string that cannot be connected to 
real-world personal identities.

We specifically focused on the top 1000 NFT collections with respect to volume in the Etherium network, 
according to the OpenSea ranking statistics on June 27, 2024. We estimated that these collections would cover 
78% of the total volume. Detailed information about data processing, estimation, and validation can be found 
in SI Section 1. We excluded some NFT collections based on the following criteria (Fig. 6 - Step 1). First, we 
removed collections that consist of nearly identical images. For instance, ‘Opepen Edition’, ‘Checks—VV Edition’, 
and ‘Damien Hirst—The Currency’ that have simple features, such as random dots with only color variations, 
were excluded. Second, we removed NFT collections that have factors beyond image itself. For example, NFT 
collections about soccer players incorporate players’ game performance in price so that were excluded not to 
confound our analysis. These steps yield a list of 598 NFT collections (See SI for the full list of NFT collections 
used in this paper)

Two different token standards—ERC-20 and ERC-721—are used for the selected collections. ERC-20 
generates a new currency unit with its own standards in the network. Tokens associated with a system built 
on ERC-20 are interchangeable. In an ERC-20 system, 10 tokens of a wallet are worth as same as 10 tokens of 
another wallet. However, a token in an ERC-20 system can’t be traded with a token in another ERC-20 system. 
Regarding our research, CryptoPunk is the only collection using ERC-20. Each digital artwork in CryptoPunk 
acts as an independent currency unit with a maximum supply of 1. This characteristic makes artworks not 
replicated and not interchangeable as they are different ERC-20 tokens. On the other hand, tokens with ERC-
721 are not fungible and exist uniquely. Therefore, they represent the ownership of digital artworks. Most NFT 
collections are hosted with the ERC-721 standard.

We leveraged the Ethereum ETL project built upon Google BigQuery31 to collect NFT transactions 
associated with ERC-20 and ERC-721 (Fig. 6 - Step 2). The raw data were then refined further to have direct 
transfers between individual wallets. This dataset includes information about sellers (from) and buyers (to) 

Fig. 6.  A schematic diagram of data collection and cleaning. First, we selected 198 NFT collections and 
gathered transfer data from the Ethereum ETL project in Google BigQuery. After collecting transfer data, we 
grouped rows by buyer (‘To’ columns in the table) and transformed them into purchase trajectories at the NFT 
level. Then, the purchase trajectories at the NFT level is converted to the trajectories at the collection level after 
removing duplicated NFT purchases.
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with timestamps for NFT transfers (Fig. 6 - Step 3). From this dataset, we generated every individual’s purchase 
trajectory by grouping transfers by buyer in the ascending order of time (Fig. 6 - Step 4).

Constructing purchase trajectories
The main goal of this paper is to understand exploring behaviors in the NFT market, so we focused on unique 
NFTs in purchase trajectories (Fig. 6 - Step 5). For example, the trajectory of Wallet 2 (W2) in Fig. 6 is [N1, N1], 
which means a re-purchase of N1, and we reduced the trajectory to [N1]. We also converted trajectories at the 
NFT level to those at the collection level (Fig. 6 - Step 5). The trajectory of Wallet 3 (W3) in Fig. 6 becomes 
[C1, C1, C2]. In our study, [C1, C1] is an intra-collection jump corresponding exploitation and [C1, C2] is an 
inter-collection jump corresponding exploration.

Finally, we filtered out wallets of which collection-level trajectory having less than 5 or more than 1000 
transactions. It is because that the trajectories having less than 5 transactions are not good enough for analysis 
and the trajectories having more than 1000 transactions are more likely to be made by bots, contract accounts, 
and marketplaces, which are beyond our scope. 539,542 distinct wallets remain for further analyses (see a 
detailed validation of this limit range in SI Section 1).

NFT and collection embeddings
Image embedding is a technique projecting an image to a low-dimensional vector while preserving its features 
with a little loss. Similar images are positioned close on a vector space. We collected NFT images through the 
links provided by the OpenSea API and used a pre-trained ResNet1824, a deep neural network specialized for 
image classification task, to calculate NFT embeddings in 512 dimensions. We evaluated and confirmed the 
robustness of our result with the VGG16 embedding method32 (SI Section 3).

NFT embeddings allow us to characterize collections as well. We obtained the centroid of NFT embeddings 
of a collection and define it as collection embedding. An advantage of having collection embeddings is that we are 
able to quantify similarities between collections. In this paper, we used the cosine similarity between collection 
embeddings as a similarity measure. Using Euclidean distances on the embedding space yielded consistent 
results (SI Section 2). Suppose a wallet purchased an NFT in Collection A and then another in Collection B. This 
wallet’s purchasing history can be described as a jump from A’s embedding to B’s embedding. If these collections 
are similar with respect to visual features, the jump distance from A to B is relatively short. However, if this wallet 
purchased an NFT in Collection C, which is significantly different from A and B, the jump distance from B to C 
is longer than the distance from A to B.

We validated the embedding space by randomly choosing three collections and comparing each collection 
with its five closest collections with respect to the cosine distance (1-cosine similarity; Table  1). ‘3Landers’ 
has pastel colors, and its NFTs have a round cartoon design. ‘Dippies’ is the most closest collection on the 
NFT embedding space to ‘3Landers’ and shares similar colors and a round cartoon design. ‘Chain Runners’ is 
composed with pixel arts, and its five closest collections have similar pixel designs. The closest neighbor of the 
final example ‘NotOkayBears’ is ‘Okay Bears Yacht Club’. As the collection name implies, they are similar in 
many aspects, including character design. Other collections close to ‘NotOkayBears’ on the embedding space 
also share a similar design with a famous NFT collection ‘Bored Ape Yacht Club’4. These observations validate 
our NFT embedding space.

Data availibility
The data used in this manuscript is open source, and the sources are referenced in the manuscript. Codes will be 
available upon request to the corresponding author, Hyunuk Kim.
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