

OPEN

Robust diabetic prediction using ensemble machine learning models with synthetic minority over-sampling technique

Pradeepa Sampath¹, Gurupriya Elangovan², Kaaveya Ravichandran², Vimal Shanmuganathan³✉, Subbulakshmi Pasupathi⁴, Tulika Chakrabarti⁵, Prasun Chakrabarti⁵ & Martin Margala⁶✉

This paper addresses the pressing issue of diabetes, which is a widespread condition affecting a huge population worldwide. As cells become less responsive to insulin or fail to produce it adequately, blood sugar levels rise. This has the potential to cause severe health complications including kidney disease, vision impairment and heart conditions. Early diagnosis is paramount in mitigating the risk and severity of diabetes-related complications. To tackle this, we proposed a robust framework for diabetes prediction using Synthetic Minority Over-sampling Technique (SMOTE) with ensemble machine learning techniques. Our approach incorporates strategies such as imputation of missing values, outlier rejection, feature selection using correlation analysis and class distribution balancing using SMOTE. The extensive experimentation shows that the proposed combination of AdaBoost and XGBoost shows exceptional performance, with an impressive AUC of 0.968+/-0.015. This outperforms not only alternative methodologies presented in our study but also surpasses current state-of-the-art results. We anticipate that our model will significantly improve diabetes prediction, offering a promising avenue for improved healthcare outcomes in diabetes management.

Keywords Diabetic, Outlier detection, Machine learning, AdaBoost, XGBoost, SMOTE

Millions of individuals throughout the world suffer from the chronic condition diabetes. It is characterized by elevated blood sugar levels due to inadequate insulin production or utilization. Insulin plays a vital role in supplying energy to cells and regulating glucose levels. Diabetes is often undiagnosed in developing countries, which makes it a challenge to manage¹. According to the 10th edition of the International Diabetes Federation (IDF) Diabetes Atlas, more than 10% of adults will have diabetes worldwide in 2021, and by 2045, there will be 700 million people living with the disease². Diabetes patients are at a higher risk of having health complications such as heart attack, stroke, kidney failure and also it can cause permanent damage to blood vessels in the heart, eyes, kidneys, and nerves³. Even though there is no permanent cure for diabetes, early detection and prediction of diabetes may reduce the complications of the disease. Early detection increases the potential for effective changes early on, which can prevent or delay the onset of complications. Predicting diabetes is challenging because the relationship between the attributes and the outcome is not straightforward and cannot be easily distinguished by a linear boundary⁴. This work introduces a novel pipeline for diabetes prediction, encompassing preprocessing steps such as SMOTE(Synthetic Minority Oversampling Technique) for class imbalance handling, missing value imputation, outlier rejection, K-Fold cross-validation, and feature selection. SMOTE is a method of oversampling in which the data points of the minority classes are oversampled to balance the dataset⁵. SMOTE is implemented to address the class imbalance in datasets. It improves the accuracy of the model on the minority class and reduces the bias towards the majority class. By outlier rejection, the accuracy of the classifiers can be improved significantly as those data points are not good representatives of underlying distributions. In the proposed work, the missing values have been imputed by mean, so that mean of the data can be

¹Department of Information Technology, School of Computing, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India. ²Department of Computer Science with specialization in Artificial Intelligence and Data Science, School of Computing, SASTRA Deemed University, Thanjavur, Tamilnadu, India. ³Centre of Excellence in Data Science, Department of Artificial Intelligence and Data Science, Sri Eshwar College of Engineering, Coimbatore, Tamilnadu, India. ⁴School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India. ⁵Sir Padampat Singhania University, Udaipur, Rajasthan, India. ⁶School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, USA. ✉email: svimalphd@gmail.com; martin.margala@louisiana.edu

preserved. If data are missing completely at random, the estimate of the mean remains unbiased. Feature selection techniques are employed to reduce the number of input variables by eliminating irrelevant features and narrowing down the focus to the most important features. K-Fold cross-validation ensures that every datum is used in testing the model, thus giving a fair evaluation of the model's performance. It is typically used to remove the bias in the dataset⁶. Grid search technique is employed to optimize the hyperparameters, it allows for a systematic approach to hyperparameter optimization, which can further improve the performance of the model and reduce the chance of overfitting. We conducted extensive experiments using various combinations of preprocessing techniques and machine learning classifiers, including k-Nearest Neighbors (k-NN), Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), AdaBoost (AB), and XGBoost (XB), to maximize the Area Under the ROC Curve (AUC) for diabetes prediction. Instead of accuracy, we utilized AUC as the weighing metric for model selection in ensembling approach, as it remains unbiased to class distribution. Through rigorous experimentation, we sought to identify the optimal ensemble classifier by combining the best-performing preprocessing methods determined in earlier experiments with various machine-learning models.

The related works and literature survey have been presented in Sect. 2. The proposed approach, dataset description, and assessment metrics are presented in Sect. 3. The experimental findings and their interpretations are provided in Sect. 4. The paper is finished with the conclusion in Sect. 5.

Related work

Developing an accurate diabetes prediction model has been a subject of interest for several researchers. Numerous techniques have been put out in recent years for predicting diabetes. In⁷, the author has studied various machine learning classification algorithms: Genetic Algorithm, Decision Tree, Random Forest, Logistic Regression, SVM, and Naive Bayes. A supervised k-Nearest Neighbor machine learning algorithm was proposed in⁸. An ensemble approach was proposed in⁹ where AdaBoost, Bagging, and Random Forest were implemented. A weighted ensemble of Decision Tree, Random Forest, XGBoost, and LightGBM (LGB) was proposed in¹⁰, where they were able to attain a maximum AUC of 0.832. In⁴, machine learning classifiers such as AdaBoost, Decision Trees, k-nearest Neighbor, Naive Bayes, Random Forest, XGBoost, and Multilayer Perceptron were implemented. They also combine these ML models and create an ensembling classifier and they were able to achieve a maximum AUC of 0.950. In¹¹, missing value imputation (MVI) was focused and it is incorporated in various ML-based pipelines. Nonetheless, this area of research still faces significant challenges due to the unavailability of suitable data-sets and prediction methods. Classification algorithms were used to predict diabetes in¹², the result showed that Naive Bayes outperformed other algorithms with the highest accuracy of 76.30%. In^{13,14}, results show that Random Forest with feature selection and classification obtains an AUC value of 0.93. In¹⁵, Random Forest achieved the highest accuracy of 85.558%. In^{16,17}, the J48 Decision tree algorithm achieved 94.44% accuracy, Random Forest achieved 94% accuracy and Naive Bayes achieved 91% accuracy. Table 1 shows the literature survey of the proposed model.

Proposed framework

The dataset is gathered and subjected to preprocessing to remove any discrepancies, such as imbalanced class issues and null instances, followed by imputation of mean values to replace them. The dependent variable in the dataset is a binary classification of whether diabetes is present or not, specifically indicated as "Diabetes: Yes or No." The proposed framework is illustrated in Fig. 1.

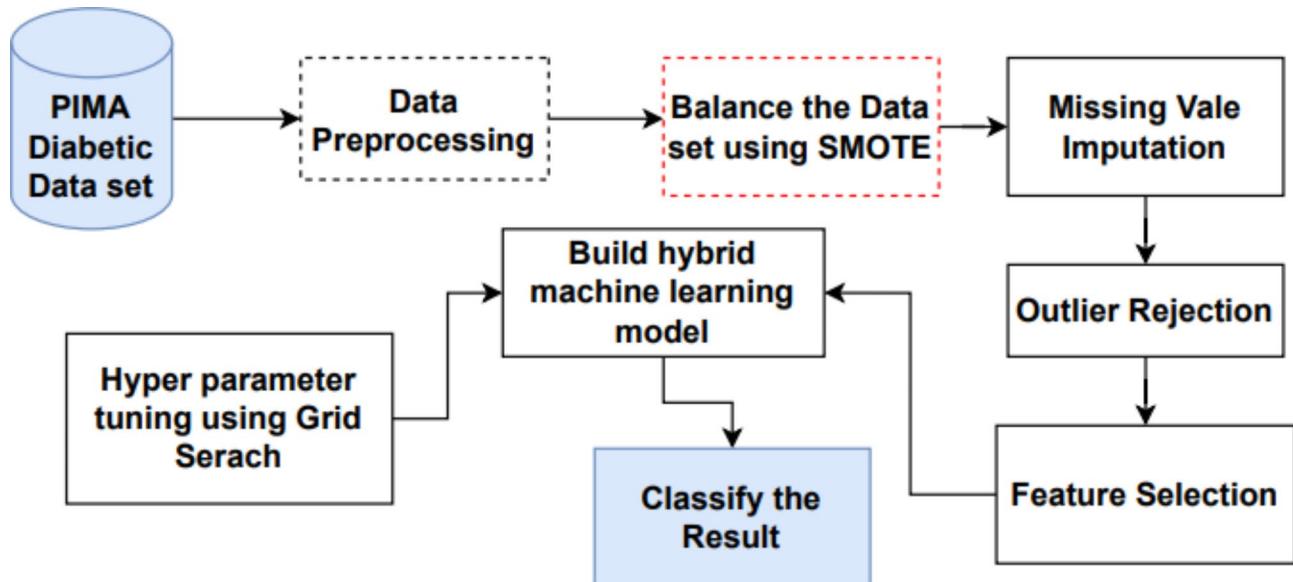
In the proposed framework, the preprocessing techniques employed are crucial as the data contains some issues that need to be addressed before implementing the classifiers. To handle the non-uniform class distribution in the Pima-Indian-Diabetes (PID) Dataset, SMOTE has been employed. This framework also employs gradient boosting classifiers, which are ensembled to improve the accuracy of the results. The hyperparameters of the gradient boosting classifiers are optimized using the technique of grid search.

The main contribution of the proposed model:

- The dataset is collected from Kaggle. The imbalanced data are balanced using SMOTE Algorithm.
- The outlier rejection is performed using interquartile range method.
- The essential features are extracted using correlation analysis.
- Data is trained with hybrid machine learning algorithms and optimized through the grid search method.

Author	Dataset	Limitation	Accuracy
¹⁶	Pima Indians Diabetes Dataset	Compares only a few ML algorithms	J48 decision tree with 94.44% accuracy, as well as Random Forest with 94% accuracy
¹⁸	Dataset of diabetes from Frankfurt hospital	Limited data preprocessing is done	Decision tree of 99% accuracy
¹⁹	Diabetes 130	Practical Implementation is difficult	Light gradient boosting model is better performing
²⁰	(NHANES), MIMIC-III and MIMIC-IV	Dataset is specific for a certain population	Logistic Regression model achieved the highest accuracy of 86%
²¹	Dataset from the TUBITAK study	The dataset size is relatively small, which may affect generalizability	The best model, an RNN-LSTM achieved an AUC of 98%.
²²	T2DM database	Models used are prone to overfitting	LGBM achieved the highest accuracy at 95.2%
²³	NHANES	Logistic regression may not capture complex relationships	The logistic regression model achieved an accuracy of approximately 78.26%

Table 1. Literature survey.

**Fig. 1.** Proposed work.

Features	Description	Range
Pregnant	Number of pregnancies	0-17
Glucose	Results of the oral glucose tolerance test expressed in milligrams.	0-199
Diastolic Blood Pressure	Diastolic BP expressed in (mmHg).	0-122
Skin thickness	The thickness of the triceps skinfold in millimeters.	0-99
Insulin level	Insulin level in the blood of a patient.	0-846
Body Mass Index	Weight of the patient(kg)/ height of the patient (m2)	0-67.1
Patient age	Age of the patient(years)	21-81
Diabetes pedigree	Diabetes is defined based on the heredity factor.	0.078-2.42

Table 2. The overview of the PID dataset.

- Finally, the hybrid algorithm of AdaBoost with XGBoost is compared with other state of art algorithms and the hybrid algorithm has better performance.

Dataset description

The study utilizes the Pima-Indians-Diabetes dataset from the UCI ML Repository, focusing on females over 21 with Pima Indian ancestry near Phoenix, Arizona. The data-set's relevance lies in contemporary lifestyle similarities, with 268 out of 768 patients diagnosed with diabetes. It features eight attributes and one class attribute, with a notable class imbalance affecting model training. This imbalance, where non-diabetic instances outweigh diabetic ones, could impair the efficacy of certain machine-learning algorithms and necessitates careful handling during model development. Table 2 shows the overview of the PID data set. The dataset used in the study can be accessed from the below link.

<https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database>.

By preprocessing, the quality of the data can be enhanced significantly. Preprocessing has become an inevitable step in machine learning. In our framework, preprocessing includes addressing the class imbalance problem by SMOTE, rejection of outliers, imputation of missing values, and selecting features that are more relevant to the outcome.

SMOTE

Chawla et al.²⁴ introduced SMOTE, a pioneering method in addressing imbalanced datasets. Unlike traditional oversampling approaches, SMOTE generates synthetic instances by leveraging neighboring information rather than relying solely on random duplication of existing samples. By interpolating between minority class samples, SMOTE creates new synthetic samples that retain similarities with existing instances while introducing variability. This augmentation strategy enhances the diversity of minority class representations, thereby improving the performance of machine learning models on imbalanced datasets. This is done by interpolating between existing minority class samples. Given a minority class sample x_i , find its k nearest neighbors in the feature space. Here, the Euclidian distance is used to find these nearest neighbors and it is represented in Eq. (1).

$$d(x_i, x_j) = \sqrt{\sum_{i=1}^p (x_{i,l}, x_{j,l})^2} \quad (1)$$

The synthetic samples are created using Eq. (2).

$$X_{synthetic} = \delta x_j + (1 - \delta)x_i \quad (2)$$

Since δ is between 0 and 1, $X_{synthetic}$ is guaranteed to lie on the line segment between x_i and x_j .

By generating synthetic samples within the convex hull of the existing minority class samples, SMOTE ensures that the new samples are plausible in the context of the existing data distribution. This approach helps in smoothing the decision boundary for the minority class, thus improving the performance of classifiers.

Outlier rejection

An outlier is a pattern that is dissimilar with respect to all the remaining patterns in the data set²⁵. Outliers can be caused by measurement errors, data entry errors, or other factors that cause a data point to be significantly different from the rest of the data. Outliers impact the predictions of the classifier. Therefore, they need to be removed from the data. The IQR model is used for outlier detection to identify and remove outliers from the dataset. The IQR method involves calculating the interquartile range (IQR) of the data and defining a fence outside of the first and third quartiles. Any data points that fall outside of this fence are considered outliers and are removed from the dataset. In Box plots, outliers are identified based on their distance from the median or the quartiles. Specifically, an observation is considered an outlier if it falls below the lower quartile minus 1.5 times the interquartile range (IQR) or above the upper quartile plus 1.5 times the IQR²⁶. It is shown in Eq. (3).

$$p(x) = \{x, \text{ if } q_1 - 1.5 * IQR \leq x \leq q_3 + 1.5 * IQR\} \quad (3)$$

The first quartile, third quartile, and interquartile range of the qualities are denoted as q_1 , q_3 and IQR , respectively.

Missing value imputation

After outlier rejection, the missing values of the attributes should be imputed. Missing values can occur in datasets for various reasons, such as corrupt measurements, data entry errors, or incomplete data. Imputing missing values is important because it can help to reduce bias and improve the accuracy of statistical analyses and machine learning models. By imputing the missing values, the sample size can be preserved. In this framework, the missing values are imputed with the mean of the data. By imputing with mean, it can be preserved and this will not introduce any outlier during the process. It is shown in Eq. (4).

$$Q(x) = \{mean(x), \text{ if } x = \frac{missed}{null}\} \quad (4)$$

where x represents the feature vector instances that are in N -dimensional space.

Feature selection

The main reason for doing feature selection is to improve the accuracy and efficiency of machine learning models by reducing the dimensionality of the data and eliminating irrelevant or redundant features. Proper feature selection enhances accuracy and decreases training time²⁷. By calculating the inter-correlation values between attributes, Correlation Based Feature Selection (CFS) calculates the relevance of each individual attribute²⁸. A feature subset with a correlation between the features to prevent redundancy and a high feature-class correlation to boost prediction result. It evaluates based on intrinsic data qualities, such as correlations. The feature selection is used to select the best features in order to reduce computational time. A correlation-based approach is proposed in order to minimize the high dimensionality, reduce the computational time, and select the best combinations of features so that the performance of the training and evaluation process will be increased. The correlation-based feature selection is shown in Eq. (5).

$$Corr_{x,y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}} \quad (5)$$

Where, $Corr_{x,y}$ is the correlation between the features x_i and target feature y . \bar{x} and \bar{y} are the mean value of x and y , respectively.

K-fold cross validation

K-fold Cross-Validation (KCV) is one of the most widely used techniques for choosing classifiers and estimating error²⁹. The dataset has been divided into the training set and the testing set at random for the K cross-validation. The K cross-validation method folds the data into K groups. The remaining $K-1$ folds are utilized for training, and one-fold is used for validation and testing. Until every K fold is a test set, the method will be repeated. The efficacy of the approaches on unknown data is precisely estimated via cross-validation³⁰. If the algorithm itself incorporates randomness, it will produce various outcomes for the same training data each time. The uncertainty in the results is not considered by cross-validation⁵. To compute final evaluation metrics the Eq. (6) is used,

$$M = \frac{1}{K} * \sum_{n=1}^K P_n \pm \sqrt{\frac{\sum_{n=1}^K (P_n - \bar{P})^2}{K-1}} \quad (6)$$

where K represents number of folds, M indicates the final performance metric for each classifier, and $P_n \in \mathbb{R}$.

K-nearest neighbor

K-Nearest Neighbors (k-NN) is a simple, yet powerful, supervised learning algorithm used for classification and regression tasks. It operates based on the principle of similarity: the algorithm classifies a data point by examining the 'k' closest training examples in the feature space. The majority class among these neighbors determines the class label for classification, while the average (or weighted average) of the neighbors' values determines the prediction for regression³¹.

Naïve Bayes

The Naïve Bayes classifier is a probabilistic model based on Bayes' Theorem, which is used for classification tasks. It assumes that the features used for classification are conditionally independent given the class label, which simplifies the computation of the posterior probabilities. Despite this simplifying assumption (which is often unrealistic in real-world scenarios), Naïve Bayes can perform remarkably well and is particularly effective for large datasets and text classification tasks.

Decision Tree

A Decision Tree is a supervised learning algorithm used for both classification and regression tasks. It models decisions and their possible consequences in a tree-like structure, where each internal node represents a decision based on a feature, each branch represents an outcome of the decision, and each leaf node represents a class label (for classification) or a value (for regression). Decision Trees are known for their simplicity and interpretability.

Random Forest

Random Forest is an ensemble learning method used for classification and regression tasks. It builds multiple decision trees during training and outputs the class that is the mode (most frequent) of the classes or the mean prediction of the individual trees. The key features of Random Forest are its robustness and its ability to handle large datasets with high-dimensionality. The randomness introduced in the model helps in reducing overfitting and improves generalization.

AdaBoost and XGBoost

To increase accuracy, ensemble learning combines machine learning models. AdaBoost combines ineffective classifiers to get a strong one. Iteratively training them, it modifies instance weights for challenging classifications. This procedure sharpens attention on difficult cases, guaranteeing precise forecasts even on intricate situations, as Fig. 2 illustrates.

Pseudocode for AdaBoost.

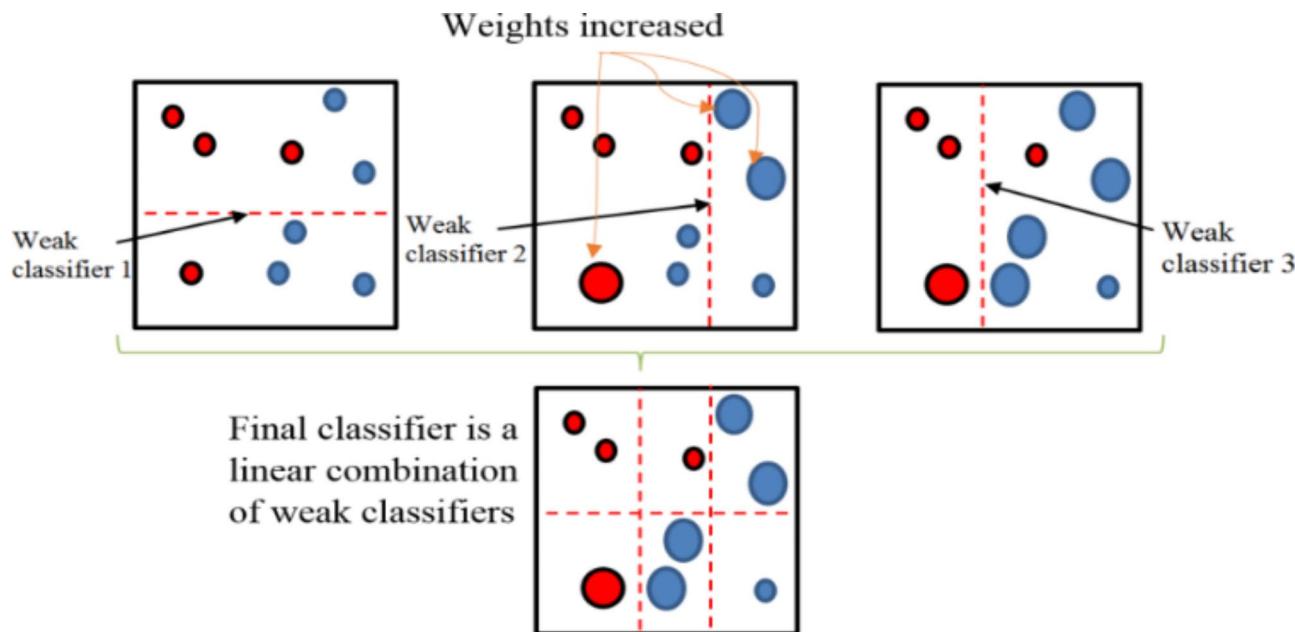


Fig. 2. Working of AdaBoost.

1. Initialize weights for all training examples.
2. Iterate over the number of boosting rounds (T):
 - a. Train a weak learner on the current weighted dataset.
 - b. Calculate the weak learner's weighted error rate.
 - c. Calculate the weak learner's weight in the final ensemble.
 - d. Update example weights based on the weak learner's performance.
 - e. Normalize example weights.
3. Combine weak learners into a strong classifier.
4. Make predictions using the weighted combination of weak learners.
5. Evaluate the ensemble's performance.

Repeat Steps 2–5 until convergence or a predetermined number of rounds (T) is reached.

Gradient boosting is a popular technique in machine learning that works by combining multiple weak models in order to create a stronger model. XGBoost, short for “Extreme Gradient Boosting”, is an open-source library that implements gradient boosting and has become a popular choice for many machine learning practitioners. In XGBoost, each iteration of the algorithm adds a new weak model to the ensemble. The weak model is trained to minimize the residual error of the current ensemble, and its predictions are combined with those of the previous models to produce the final prediction. Figure 3 depicts the working process of XGBoost.

Pseudocode for XGBoost.

1. Initialize weights for all training examples.
2. Iterate over the number of boosting rounds (T):
 - a. Train a weak learner on the current weighted dataset.
 - b. Calculate the weak learner's weighted error rate.
 - c. Calculate the weak learner's weight in the final ensemble.
 - d. Update example weights based on the weak learner's performance.
 - e. Normalize example weights.
3. Combine weak learners into a strong classifier.
4. Make predictions using the weighted combination of weak learners.
5. Evaluate the ensemble's performance.

Repeat Steps 2–5 until convergence or a predetermined number of rounds (T) is reached.

Ensembling of AdaBoost and XGBoost

A machine learning technique called ensemble model integrates numerous models into a single, more accurate predictive model. The reduction of bias and variance is the primary goal of ensemble approaches. In comparison to a single model, ensembles can assist in increasing the accuracy of predictions. There are numerous ways to build

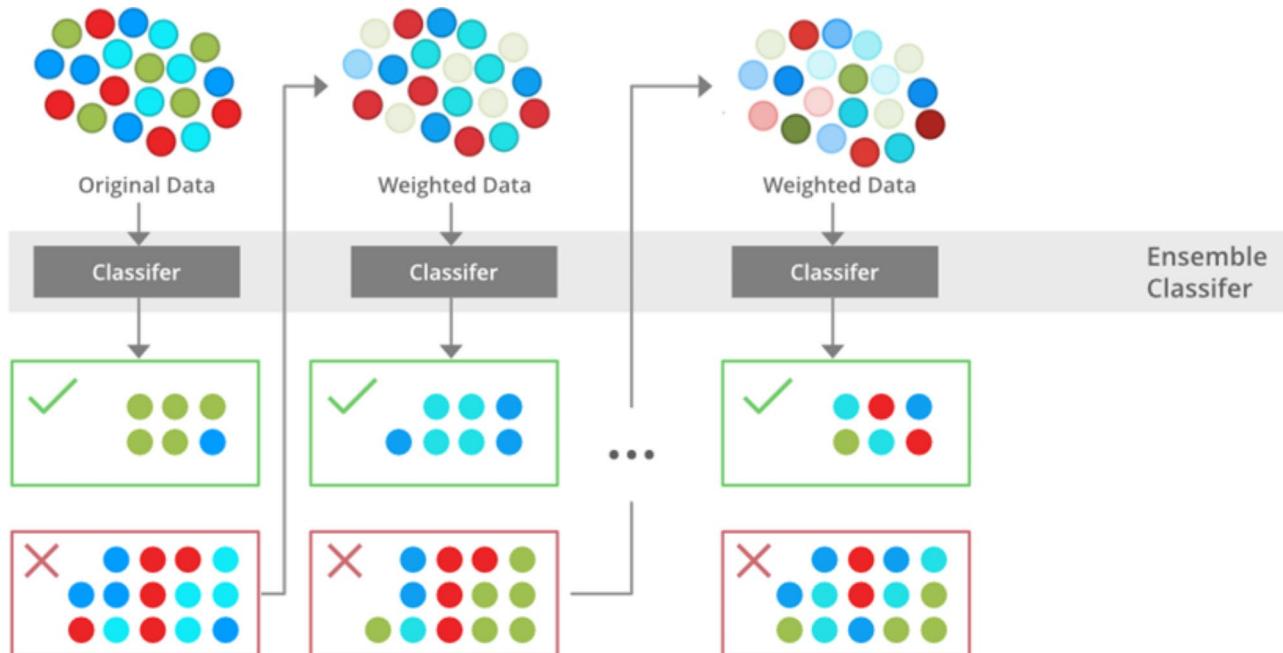


Fig. 3. Working of XGBoost.

ensemble models, including blending, bagging, stacking, and boosting. Getting constituent models with various types of flaws is the fundamental difficulty in creating ensemble models. To improve the performance of the ensemble model, tuning can be done on the hyperparameters. By pooling the predictions of various models, ensemble approaches for classification seek to increase the single estimator's robustness and generalizability^{32,33}.

Results

Results for visualization

The study visualizes data attributes through various plots like histograms, density distributions, box plots, pair plots, and heatmaps to understand data characteristics. Visualization aids in revealing hidden relationships, trends, and patterns, enhancing data comprehension. Visualization reveals data skewness, kurtosis, and outlier presence, necessitating outlier removal methods. Figure 4 display attribute histograms and boxplots, respectively, highlighting density distribution and outlier presence, prompting necessary outlier removal techniques. Through visualization, data characteristics and correlations are examined, aiding in informed decision-making for data analysis and model development.

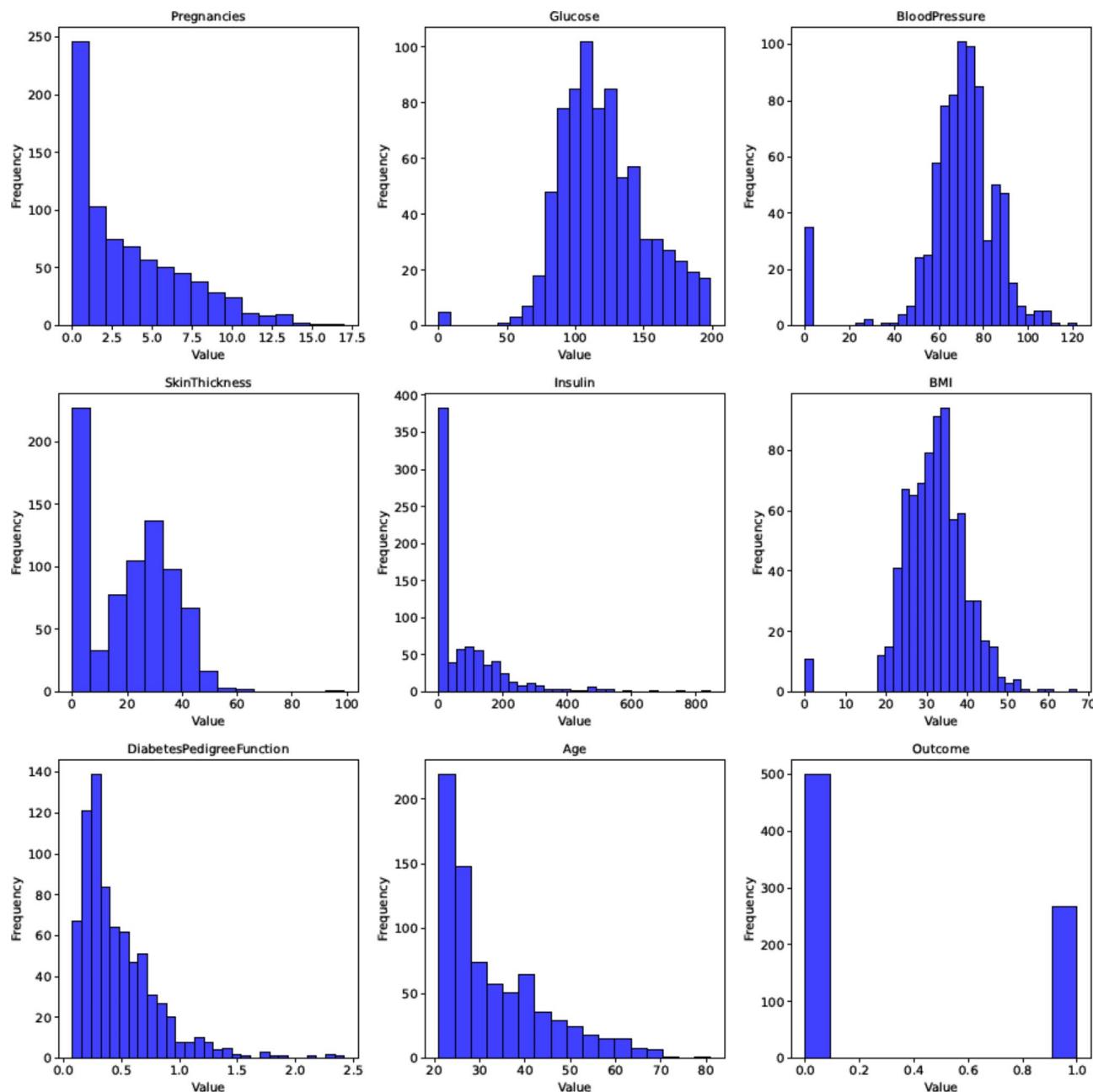


Fig. 4. Histogram of all attributes.

Results for SMOTE

The issue with unbalanced datasets is that machine learning algorithms frequently favor the majority class, which has the negative effect of making minority class predictions less accurate. This is because having observed more instances of the majority class, the algorithm tends to predict it more frequently. This might be a problem when trying to diagnose diseases, for example, since it is crucial to correctly identify the minority class. Implementing SMOTE can boost the dataset's representation of minority class cases, facilitating algorithm learning and enhancing prediction accuracy for the minority class. This method has been proven to work well. After applying SMOTE to our dataset, both the classes diabetes and non-diabetes seem to be balanced. This can be visualized in Fig. 5.

Results for preprocessing

In this work, some of the preprocessing techniques like missing values imputation, feature selection, and outlier rejection are employed to remove the noise in the data. Due to outlier rejection, the data size was reduced to 829 records. After preprocessing, the data is standardized and normalized to improve the accuracy of the model. Figure 6, displays the heatmap before and after preprocessing.

Results for ML models

To assess different ML models, performance metrics such as AUC, precision, F1 score, recall, and classification accuracy have been utilized. A ROC (Receiver Operating Characteristic) curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) for various classification thresholds. The AUC quantifies the total area beneath the ROC curve, providing a single. Sensitivity/Recall measures the proportion of actual positives that are correctly identified by the model. The measures are stated in equations.

$$\text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$$

$$\text{F1 Score} = 2 * \frac{\text{Precision} * \text{Recall}}{\text{Precision} + \text{Recall}}$$

$$\text{Precision} = \text{TP} / (\text{TP} + \text{FP})$$

$$\text{Recall} = \text{TP} / (\text{TP} + \text{FN})$$

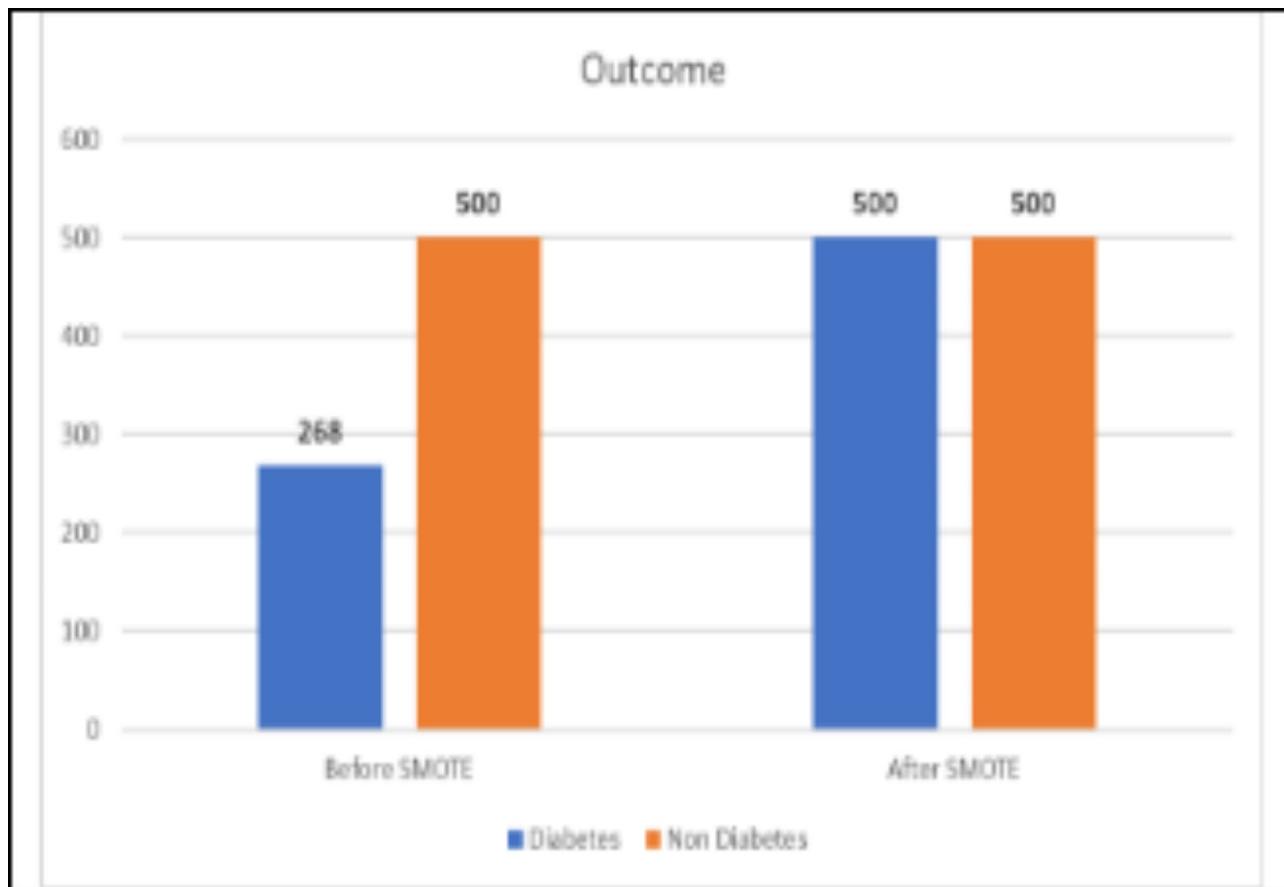


Fig. 5. Outcome distribution before SMOTE and after SMOTE.

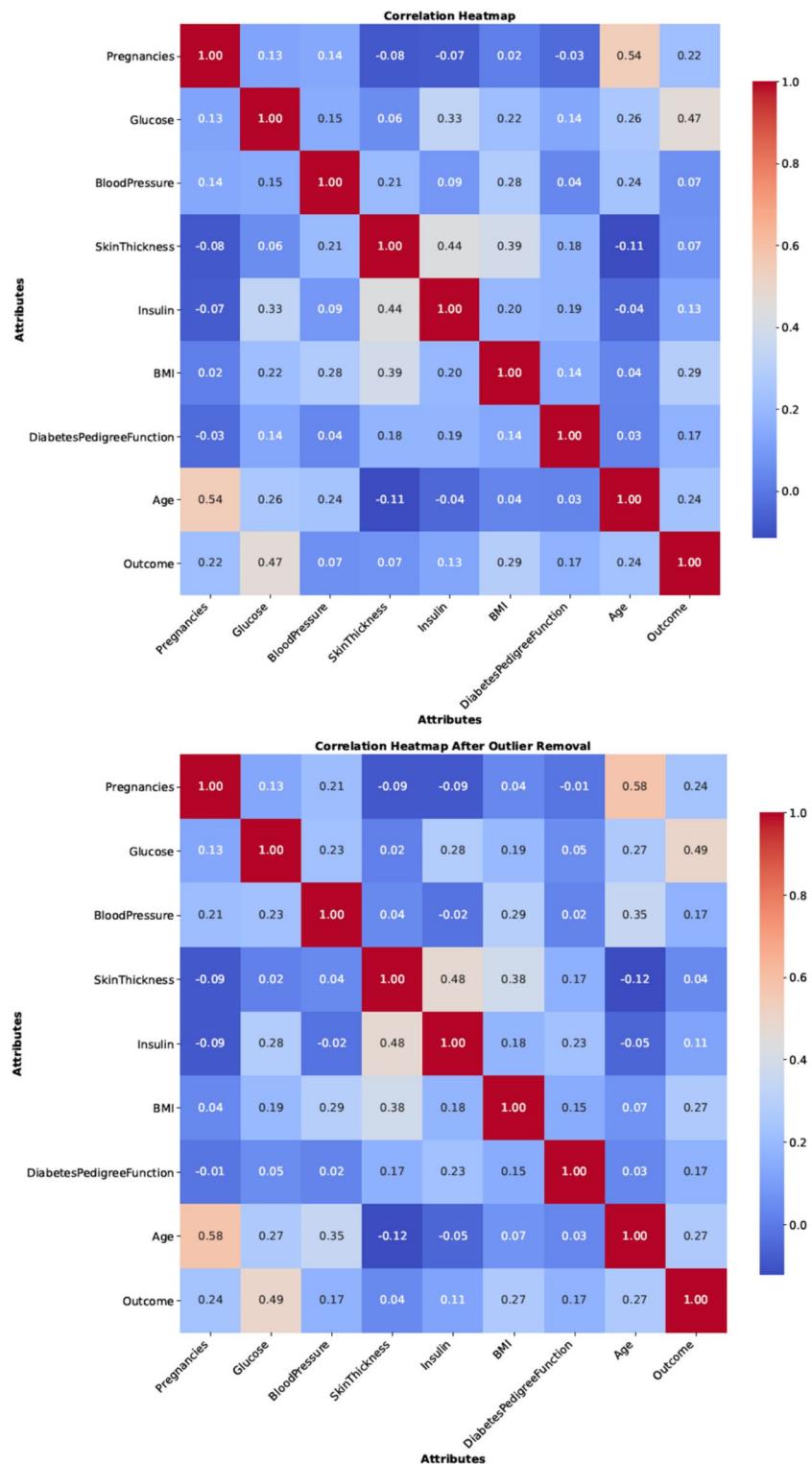


Fig. 6. Heatmap of the data before and after outlier rejection.

where TP indicates that both the result and the model's predictions are positive. FP denotes the model's positive prediction, but the outcome is negative. TN states that both the result and the model's prediction are negative. FN stands for the model's predicted negative yet positive outcome.

Results for ensemble model

The same performance metrics that have been used to assess the ML models have been used in evaluating the ensemble classifier. Figure 7a-g shows the ROC Curve for the ML classifiers. Figure 8 depicts the ROC curve

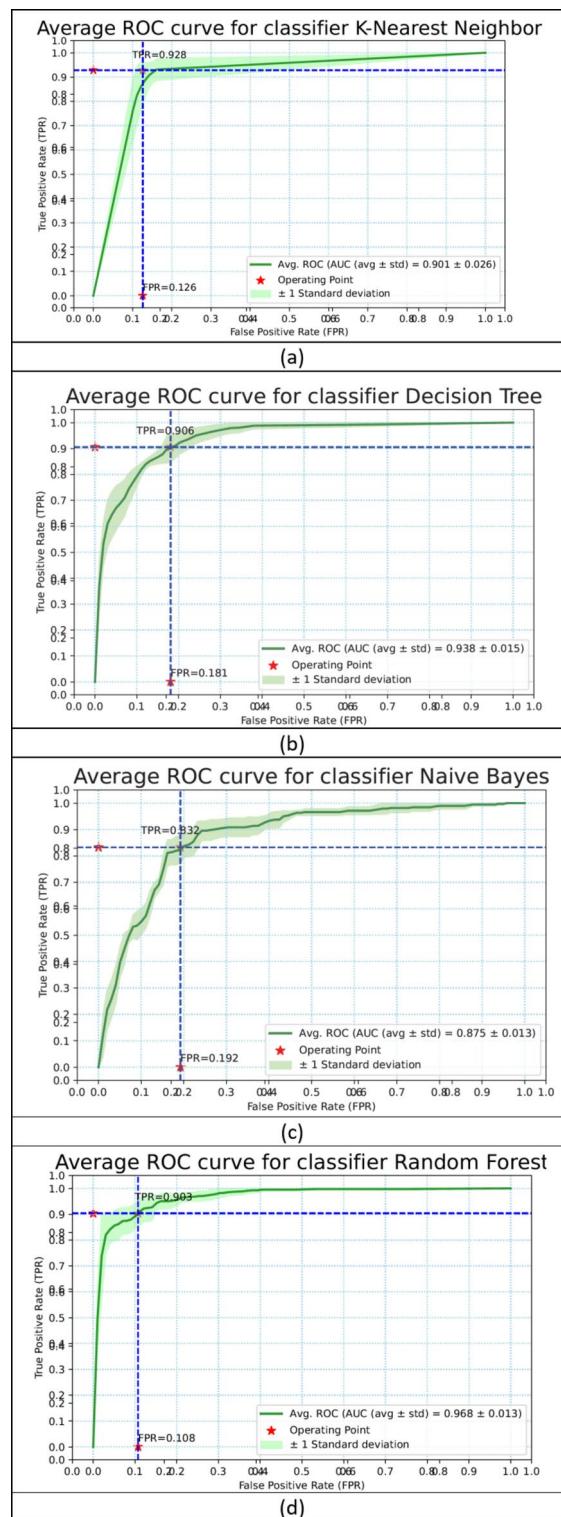


Fig. 7. The ROC curve of the ML classifiers (a–g).

of the ensemble classifier (AdaBoost and XGBoost). Diabetes was classified using the given PID dataset with many machine learning models and boosting classifiers like AdaBoost and XGBoost, and the results show that the XGBoost model performs better than any other model in five out of six situations (Refer Table 3). XGBoost outperformed other models with AUC and Accuracy as 0.962 ± 0.012 and 0.901 ± 0.016 respectively. Then the ensembling of both AdaBoost and XGBoost is implemented which outperforms the individual classifiers in three out of four with AUC and Accuracy 0.968 ± 0.015 and 0.904 ± 0.023 respectively.

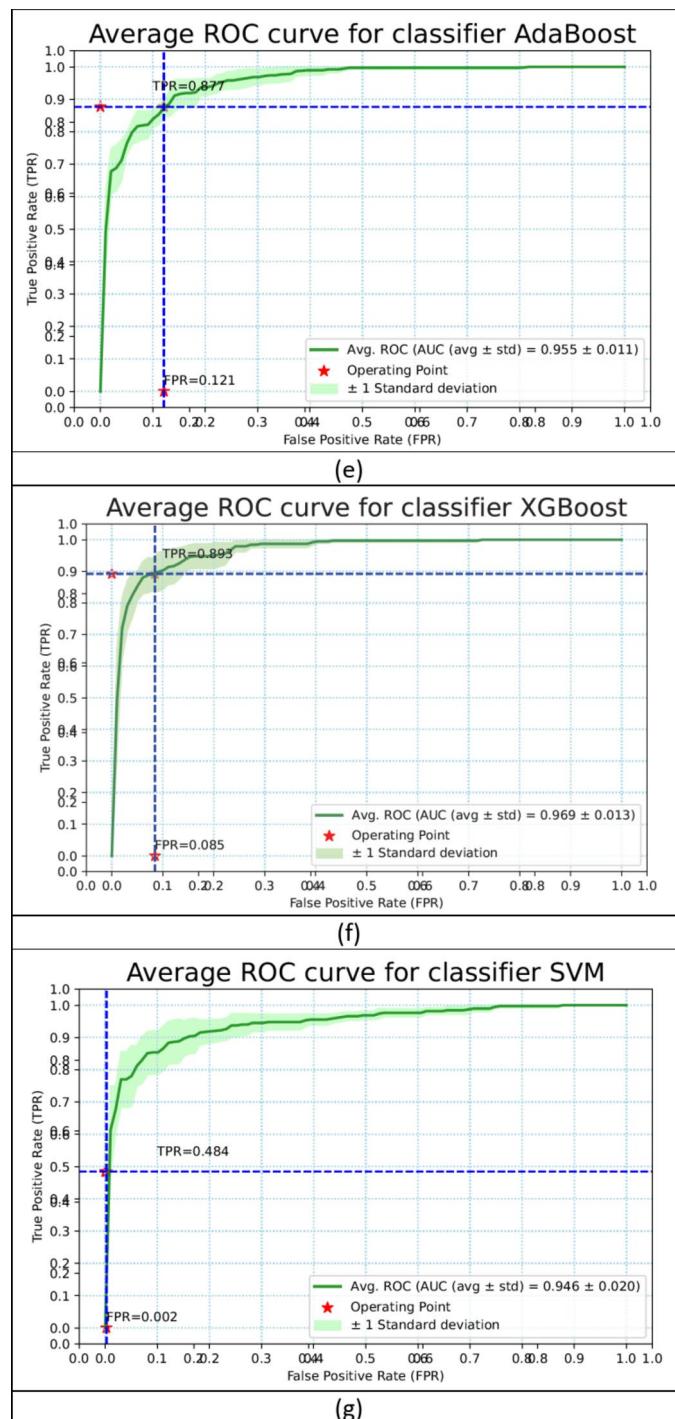


Figure 7. (continued)

Comparison of results

By analyzing all the results, ensembling AdaBoost and XGBoost has given the best AUC value of 0.968 ± 0.015 and accuracy of 0.904 ± 0.023 . This highlights the robustness and superior performance of the ensemble approach compared to individual classifiers. The below figure represents the comparison of the performance metrics between all the models described. Figure 8 shows the ROC curve of the ensemble classifier (AdaBoost + XGBoost).

Figure 9 demonstrates the comparison of the evaluation metrics using a bar chart. Table 3 shows the comparison of the proposed algorithm with the existing state-of-the-art algorithms, underscoring the effectiveness of our methodology.

Average ROC curve for classifier Ensemble model

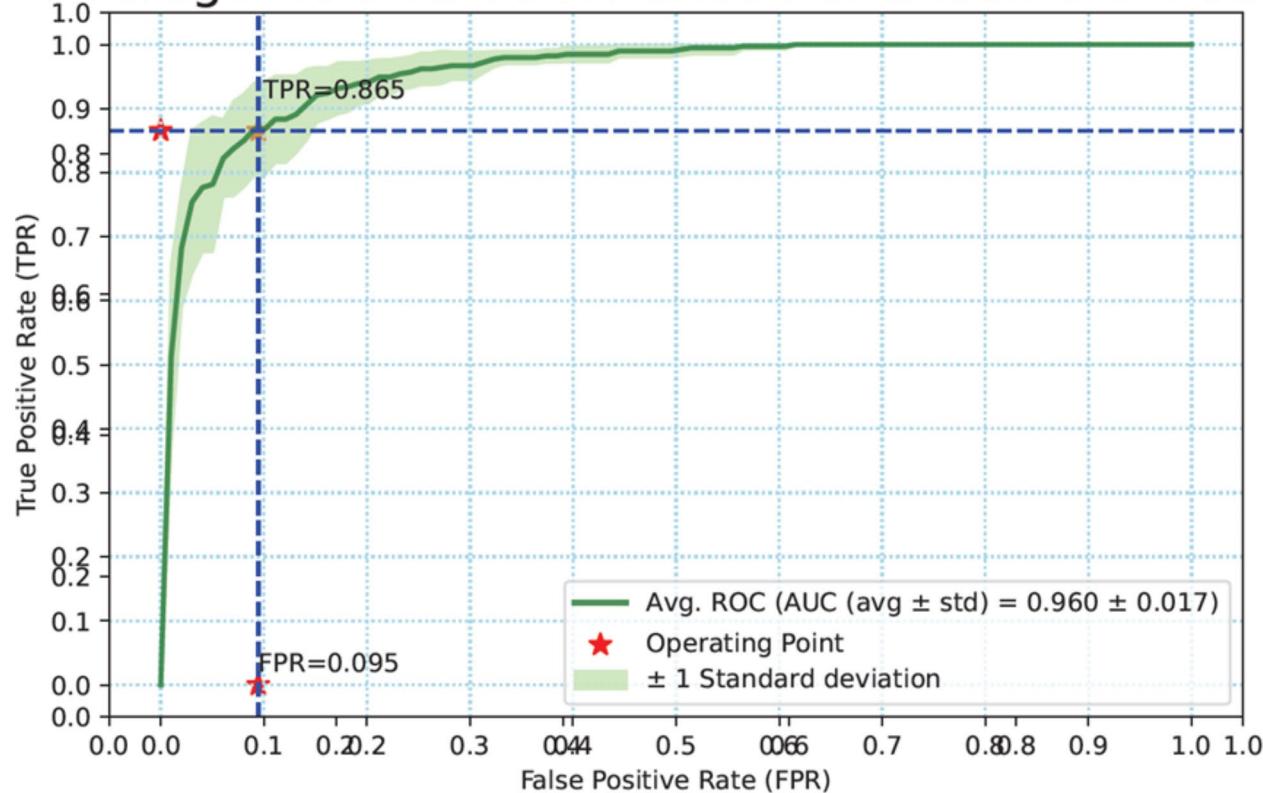


Fig. 8. The ROC curve of the ensemble classifier (AdaBoost + XGBoost).

Classifier	AUC (Avg ± Std)	Accuracy (Avg ± Std)	Sensitivity	Precision	Specificity	False Omission Rate	Diagnostic Odds Ratio
K-Nearest Neighbor	0.898 ± 0.035	0.881 ± 0.025	0.898	0.859	0.866	0.097	56.850
Decision Tree	0.938 ± 0.007	0.867 ± 0.011	0.868	0.855	0.866	0.122	42.512
Naïve Bayes	0.867 ± 0.023	0.803 ± 0.022	0.796	0.790	0.810	0.184	16.634
Random Forest	0.963 ± 0.009	0.875 ± 0.018	0.883	0.883	0.893	0.107	63.140
AdaBoost	0.950 ± 0.007	0.865 ± 0.013	0.855	0.860	0.873	0.131	40.657
XGBoost	0.962 ± 0.012	0.901 ± 0.016	0.895	0.895	0.906	0.094	82.686
AdaBoost + XGBoost	0.968 ± 0.015	0.904 ± 0.023	0.897	0.902	0.911	0.093	89.108

Table 3. Comparison of the performance of all the classifiers implemented.

Conclusion

Millions of individuals worldwide are being fatally suffered by diabetes at an increasing rate. Our study successfully achieved the objective of predicting diabetes early using lifestyle and biological factors. Through comprehensive data analysis of patients' lifestyles, we developed a robust framework that enhances prediction accuracy. We conducted extensive preprocessing and exploratory data analysis (EDA), including imputing missing values, identifying and rejecting outliers, and balancing classes using SMOTE. These steps were critical for maintaining dataset quality and improving prediction accuracy. The results on the PIMA Indian Dataset were compared with previous methodologies, as shown in Table 3. By combining AdaBoost and XGBoost, we achieved superior performance with an AUC of 0.968 and an accuracy of 0.904.

We chose a structured data set for the study, however, unstructured data will be taken into consideration in the future, which is a limitation. The models can be used to forecast cancer, Parkinson's disease, heart disease, and COVID-19, or they can be recommended to other healthcare areas. The research's wider depth includes considering additional characteristics for predicting diabetes, such as a family history of the disease, a habit of smoking or drinking, or a lack of physical activity.

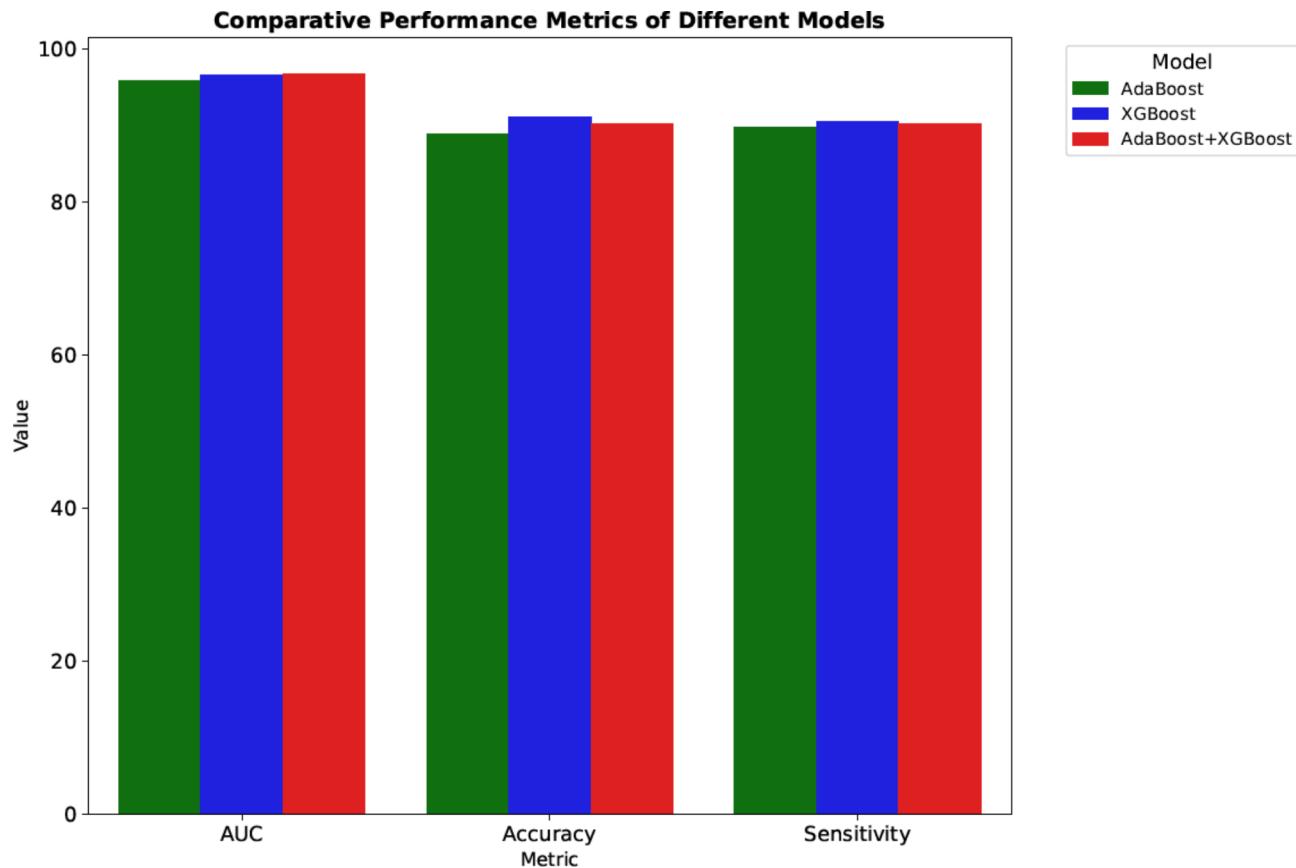


Fig. 9. Comparison of the evaluation metrics using bar chart.

Data availability

The data that support the findings of this study are publicly available online at Pima Indians Diabetes Dataset. (<https://www.kaggle.com/code/rahulharlalka/pima-indians-diabetes-dataset-model/input1>)

Received: 25 March 2024; Accepted: 31 October 2024

Published online: 22 November 2024

References

1. Misra, A. et al. Diabetes in developing countries. *J. Diabetes*. **11**(7), 522–539. <https://doi.org/10.1111/1753-0407.12913> (2019).
2. Jensen, J. K. Risk prediction: are we there yet? *Circulation*. **134**, 1441–1443. <https://doi.org/10.1161/CIRCULATIONAHA.116.024941> (2016).
3. Chou, C. Y., Hsu, D. Y. & Chou, C. H. Predicting the onset of diabetes with machine learning methods. *J. Pers. Med.* **13**(3). <https://doi.org/10.3390/jpm13030406> (2023).
4. Hasan, M. K., Alam, M. A., Das, D., Hossain, E. & Hasan, M. Diabetes prediction using ensembling of different machine learning classifiers. *IEEE Access*. **8**, 76516–76531. <https://doi.org/10.1109/ACCESS.2020.2989857> (2020).
5. Azad, C. et al. Prediction model using SMOTE, genetic algorithm and decision tree (PMSGD) for classification of diabetes mellitus. *Multimed Syst.* **28**(4), 1289–1307. <https://doi.org/10.1007/s00530-021-00817-2> (2022).
6. Ganie, S. M., Pramanik, P. K. D., Bashir Malik, M., Mallik, S. & Qin, H. An ensemble learning approach for diabetes prediction using boosting techniques. *Front. Genet.* **14**, 1–15. <https://doi.org/10.3389/fgene.2023.1252159> (2023).
7. Kaul, S. & Kumar, Y. Artificial Intelligence-based Learning techniques for diabetes prediction: challenges and systematic review. *SN Comput. Sci.* **1**(6), 1–7. <https://doi.org/10.1007/s42979-020-00337-2> (2020).
8. Saxena, R. & Gupta, S. K. S. M. Role of K-nearest neighbour in detection of diabetes mellitus. *Turkish J. Comput. Math. Educ.* **12**(10), 373–376 (2021).
9. Laila, U., Mahboob, K., Khan, A. W., Khan, F. & Taekeun, W. An ensemble approach to predict early-stage diabetes risk using machine learning: an empirical study. *Sensors*. **22**, 1–15. <https://doi.org/10.3390/s22145247> (2022).
10. Dutta, A. et al. Early prediction of diabetes using an ensemble of machine learning models. *Int. J. Environ. Res. Public. Health.* **19**, 1–25. <https://doi.org/10.3390/ijerph191912378> (2022).
11. Hasan, M. K. et al. Missing value imputation affects the performance of machine learning: a review and analysis of the literature (2010–2021). *Inf. Med. Unlocked*. **27**, 100799. <https://doi.org/10.1016/j.imu.2021.100799> (2021).
12. Sisodia, D. & Sisodia, D. S. Prediction of Diabetes using Classification Algorithms, *Procedia Comput. Sci.*, **132**(Iccids), 1578–1585 <https://doi.org/10.1016/j.procs.2018.05.122> (2018).
13. Maniruzzaman, M. et al. Accurate diabetes risk stratification using machine learning: role of missing value and outliers. *J. Med. Syst.* **42**(5), 1–17. <https://doi.org/10.1007/s10916-018-0940-7> (2018).
14. Maniruzzaman, M. et al. Comparative approaches for classification of diabetes mellitus data: machine learning paradigm. *Comput. Methods Programs Biomed.* **152**, 23–34. <https://doi.org/10.1016/j.cmpb.2017.09.004> (2017).

15. Nai-Arun, N. & Moungmai, R. Comparison of classifiers for the risk of diabetes prediction. *Procedia Comput. Sci.* **69**, 132–142. <https://doi.org/10.1016/j.procs.2015.10.014> (2015).
16. Chang, V., Bailey, J., Xu, Q. A. & Sun, Z. Pima indians diabetes mellitus classification based on machine learning (ML) algorithms. *Neural Comput. Appl.* 0123456789 <https://doi.org/10.1007/s00521-022-07049-z> (2022).
17. Naz, H. & Ahuja, S. Deep learning approach for diabetes prediction using PIMA Indian dataset. *J. Diabetes Metab. Disord.* **19**(1), 391–403. <https://doi.org/10.1007/s40200-020-00520-5> (2020).
18. Suryadevara, C. K. Issue 4 diabetes risk assessment using machine learning: a comparative study of classification algorithms. *Int. Eng. J. Res. Dev.* **8**(4), 1–10 (2023).
19. Jose, R., Syed, F., Thomas, A. & Toma, M. Cardiovascular health management in diabetic patients with machine-learning-driven predictions and interventions. *Appl. Sci.* **14**(5). <https://doi.org/10.3390/app14052132> (2024).
20. Agliata, A. et al. Machine learning as a support for the diagnosis of type 2 diabetes. *Int. J. Mol. Sci.* **24**(7). <https://doi.org/10.3390/ijms24076775> (2023).
21. Kurt, B. et al. Prediction of gestational diabetes using deep learning and bayesian optimization and traditional machine learning techniques. *Med. Biol. Eng. Comput.* **61**, 1649–1660. <https://doi.org/10.1007/s11517-023-02800-7> (2023).
22. Aguilera-Venegas, G., López-Molina, A., Rojo-Martínez, G. & Galán-García, J. L. Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus. *J. Comput. Appl. Math.* **427**, 115115. <https://doi.org/10.1016/j.cam.2023.115115> (2023).
23. I.Olufemi, C., Obunadike, A., Adefabi & Abimbola, D. Application of logistic regression model in prediction of early diabetes across United States. *Int. J. Sci. Manag. Res.* **06**(05), 34–48. <https://doi.org/10.37502/ijsmr.2023.6502> (2023).
24. Kovács, B., Tinya, F., Németh, C. & Ódor, P. Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment. *Ecol. Appl.* **30**(2), 321–357. <https://doi.org/10.1002/earp.2043> (2020).
25. Bansal, R., Gaur, N. & Singh, S. N. Outlier detection: applications and techniques in data mining. In *Proc. 6th Int. Conf. - Cloud Syst. Big Data Eng. Conflu. 2016*, **2016**, 373–377 <https://doi.org/10.1109/CONFLUENCE.2016.7508146> (2016).
26. An, J. et al. The importance of outlier rejection and significant explanatory variable selection for pinot noir wine soft sensor development. *Curr. Res. Food Sci.* **6**, 100514. <https://doi.org/10.1016/j.crhs.2023.100514> (2023).
27. Ganie, S. M. & Malik, M. B. An ensemble machine learning approach for predicting Type-II diabetes mellitus based on lifestyle indicators. *Healthc. Anal.* **2**, 100092. <https://doi.org/10.1016/j.health.2022.100092> (2022).
28. Howlader, K. C. et al. Machine learning models for classification and identification of significant attributes to detect type 2 diabetes. *Heal. Inf. Sci. Syst.* **10**(1), 1–13. <https://doi.org/10.1007/s13755-021-00168-2> (2022).
29. Arlot, S. & Celisse, A. A survey of cross-validation procedures for model selection. *Stat. Surv.* **4**, 40–79. <https://doi.org/10.1214/09-SS054> (2010).
30. Shankar, R. S., Raju, V. S., Murthy, K. V. & Ravibabu, D. Optimized model for predicting gestational diabetes using ML techniques. In *2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA)*, 1623–1629 (IEEE, 2021).
31. Reddy, S. S., Sethi, N., Rajender, R. & Mahesh, G. Forecasting diabetes correlated non-alcoholic fatty liver disease by exploiting Naïve Bayes Tree. *EAI Endorsed Trans. Scalable Inform. Syst.* **10**(1), e2 (2023).
32. Reddy, S. S., Sethi, N., Rajender, R. & Vetukuri, V. S. Non-invasive diagnosis of diabetes using chaotic features and genetic learning. In *International Conference on Image Processing and Capsule Networks*, 161–170 (Springer International Publishing, 2022).
33. Swaroop, C. R. et al. Optimizing diabetes prediction through Intelligent feature selection: a comparative analysis of Grey Wolf Optimization with AdaBoost and Ant Colony Optimization with XGBoost. In *Algorithms in Advanced Artificial Intelligence: ICRAAI-2023*. **8**, 311 (2024).

Author contributions

CRediT authorship contribution statement: Pradeepa Sampath, Gurupriya Elangovan, Kaaveya Ravichandran, Vimal Shanmuganathan, Subbulakshmi Pasupathi, Tulika Chakrabarti, Prasun Chakrabarti, and Martin Margala&Pradeepa Sampath: Writing - original draft, Writing - review & editing Conceptualization, Data curation, Validation. Gurupriya Elangovan: Writing - original draft, Writing - review & editing Conceptualization, Formal analysis, Supervision. Kaaveya Ravichandran: Conceptualization, Writing - original draft, Formal analysis, Supervision, Vimal Shanmuganathan: Conceptualization, Formal analysis, Writing - review & editing, Supervision. Subbulakshmi Pasupathi: Conceptualization, Formal analysis, Writing - review & editing, Supervision-Tulika Chakrabarti: Conceptualization, Formal analysis, SupervisionPrasun Chakrabarti: Conceptualization, Formal analysis, SupervisionMartin Margala: Conceptualization, Formal analysis, Supervision and Funding.

Declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to V.S. or M.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2024