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To achieve the desired superheat of molten steel during the continuous casting process, optimization 
of process parameters such as molten steel temperature in ladle furnace, casting speed, and baking 
temperature is necessary. Therefore, obtaining the superheat corresponding to these process 
parameters in advance is particularly important. To address this issue, a model for predicting the 
temperature of molten steel in the tundish during continuous casting is designed. The model adopts 
a combined modeling approach of mechanistic model and data model. To address the issue of 
the mechanism model’s inability to capture the variation of the lining’s thermal parameters, this 
article improves the traditional physics-informed neural network (PINN) algorithm. It combines the 
constraints from both the forward and inverse problems, allowing for obtaining solutions to the 
equations while capturing the variation of equation parameters. Actual data from multiple casting 
sequences at a steel plant are collected to validate the accuracy and interpretability of the model. The 
results show that the error of the model is about 2.1k which has better accuracy compared to pure 
mechanistic model and pure data model. Additionally, it can capture the variation patterns of tundish 
lining thermal parameters under different operating conditions. Therefore, the model designed in 
this article can provide both profound physical interpretation ability and more practical predictions of 
molten steel temperature.
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Continuous casting is a vital process in steel production, wherein molten steel is continuously cast into 
various shaped billets. The tundish, which serves as a crucial component in the continuous casting process, 
regulates the temperature and composition of molten steel as the final stage of metallurgy before solidification. 
Superheat stands as a core control parameter in the continuous casting process, exerting significant influence 
on the quality of castings and production processes. To stabilize the superheat of molten steel at predetermined 
values, optimization of continuous casting process parameters is imperative. Therefore, obtaining the superheat 
corresponding to each set of process parameters in advance becomes particularly crucial. The magnitude 
of superheat is equivalent to the difference between the tundish outlet temperature and the melting point 
temperature of the steel. Consequently, stabilizing superheat effectively entails stabilizing the temperature of the 
molten steel in the tundish, while predicting superheat essentially involves forecasting the temperature of the 
molten steel in the tundish.

The methods for establishing a prediction model of the molten steel temperature in the tundish generally 
fall into two categories: mechanistic models and data models, each with its own characteristics. Mechanistic 
models, such as the finite element method, are numerical methods based on physical formulas and mathematical 
models, which can be used to simulate the flow field and temperature field inside the tundish. L. SOWA utilized 
a mechanistic model to address issues of poor tundish structure1,2. By redesigning the shape and position of 
the casting pads, weirs, and baffles, they improved the flow field and temperature field within the tundish, 
thereby enhancing the quality of the castings. S. X. Liu, X. M. Yang and others used mechanistic models to 
optimize continuous casting process parameters3. By improving the clogging zone and reducing dead zones, 
they removed fine non-metallic inclusions from the molten steel, thus improving the quality of the castings. 
These examples demonstrate that constructing mechanistic models can accurately solve physical equations and 
simulate temperature fields inside the tundish4–6. Under certain circumstances, particularly in high-temperature 
conditions, the physical parameters within the equations may undergo temporal variations, and the precise 
patterns of these alterations remain unknown. Consequently, the resultant molten steel temperature values 
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are unavoidably impacted. Therefore, accurately simulating the temperature field under such conditions solely 
through the establishment of mechanistic models is rendered unfeasible7,8.

Another modeling approach is the data model. The term “data model” refers to the process of constructing 
models using data to describe internal relationships within the data. Common modeling techniques include 
machine learning algorithms. S. Hore, S. K. Das, and others addressed process optimization issues by constructing 
data models9. They developed a predictive model for defect occurrence to guide the setting of important process 
parameters such as casting speed, crystallizer temperature, and crystallizer vibration frequency. S. A. Botnikov, 
O. S. Khlybov, and others tackled real-time process parameter control issues by constructing data models10. 
They employed a combination of machine learning and Bayesian networks to establish a predictive model 
for continuous casting slab cooling temperatures, improving the accuracy of temperature predictions. These 
examples demonstrate that data models can be applied in the continuous casting process to address issues related 
to predicting physical variables11–13. However, such models have two drawbacks. Firstly, the model structure is 
simple and lacks interpretability, as it lacks physical formulas as support14,15. Secondly, the accuracy of the model 
depends on having a sufficient amount of training data, and a limited dataset can negatively impact the model’s 
accuracy16,17.

To address the limitations of the aforementioned modeling approaches, this article proposes a novel 
modeling method that combines mechanistic and data models to construct a predictive model for molten 
steel temperature in the tundish. This model combines the advantages of both traditional modeling methods. 
Compared to pure mechanistic models, it accounts for changes in thermal property parameters over casting 
time, enhancing the accuracy of temperature predictions and aligning them more closely with actual values. 
In contrast to pure data-driven models, this approach offers greater interpretability, providing insight into 
how predictions are made based on the input variables. To address the issue of limited datasets affecting result 
accuracy, this article employs a Physics-Informed Neural Network algorithm in the process of building the data 
model. This algorithm incorporates prior physical knowledge, enabling the data model to generalize better even 
with limited datasets18,19. Overall, the integration of mechanistic and data models maximizes the compression 
of the “black box” space, overcomes the issue of limited datasets, and enhances the accuracy and generalization 
of the model20,21.

Method
The prediction model of molten steel temperature in the tundish developed in this article is achieved through 
a combined approach of mechanistic and data modeling. The entire model is divided into two parts: the 
mechanistic model part and the data model part. The mechanistic model primarily focuses on the heat transfer 
process of molten steel in the tundish, considering both heat acquisition and loss to obtain the temperature of 
the molten steel. Meanwhile, the data model focuses on the variation patterns of the temperature field within the 
working layer, providing time-varying heat loss values to the mechanistic model.

Overall model design
The prediction model for molten steel temperature in the tundish, discussed in this article, is built by combining 
mechanistic and data-driven approaches, with its construction principle illustrated in Fig. 1. The inputs to the 
model are the temperature of the molten steel in the ladle furnace, the casting speed, and the tundish preheating 
temperature, while the output is the temperature of the molten steel in the tundish. The mechanistic model 
describes the heat absorption and dissipation states of the molten steel as it flows from the ladle furnace into the 
tundish, demonstrating the mathematical relationship between the temperature of the molten steel in the tundish 
and the heat dissipation of the lining. The data model describes the process of heat transfer within the working 
layer, showing the temporal variation patterns of temperature at different positions within the working layer. 
The two models are connected through heat transfer equations, describing the heat transfer process between 

Fig. 1.  Schematic diagram of the temperature prediction model.
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the molten steel in the tundish and the working layer of the tundish lining. This demonstrates the mathematical 
relationship between the heat transfer and the interface between the “molten steel” and “working layer.” This part 
is the core of the research, not only obtaining the temperature field within the working layer but also capturing 
the variation patterns of thermal property parameters within the working layer over casting time.

Design of the mechanistic section
This section constitutes the core of the entire model, aiming to determine the main variations and range of the 
molten steel temperature in the tundish, thereby defining the generalization of the entire model. For the molten 
steel in the tundish, the main source of heat is from the molten steel in ladle furnace, while the main pathways 
of heat loss include heat storage in the lining, convective heat transfer at the lining surface, thermal radiation on 
the molten steel surface, and convective heat transfer through the covering agent22. Overall, heat storage in the 
lining and convective heat transfer at the lining surface can be combined as heat dissipation through the molten 
steel passing through the working layer, while thermal radiation on the molten steel surface and convective heat 
transfer through the covering agent can be combined as heat dissipation through the covering agent. Firstly, 
according to the law of heat conservation, the entire process can be represented by (1), where Td represents the 
temperature of the molten steel in ladle furnace, T represents the temperature of the molten steel in tundish, c 
represents for the specific heat of molten steel, Vd represents the flow rate of the molten steel in ladle furnace, 
which is the product of the casting speed and the number of flow channels, Mz represents the mass of the tundish 
molten steel, Q1 represents the heat dissipated through the lining, and Q2 represents the heat dissipated through 
the covering agent.

	 cMz(t)(T (t + dt)− T (t)) = −cVd(t)dt (T (t + dt)− Td(t))−Q1(t)dt−Q2(t)dt� (1)

The rearrangement of (1) yields (2):

	
T (t) = − cVd(t)

cMz(t)
(T (t)− Td(t))−

Q1(t)

cMz
− Q2(t)

cMz
� (2)

Discretizing (2) leads to (3), establishing the relationship between the temperature of the tundish molten steel 
and the heat dissipation Q.

	
T (k + 1) = (1− dt

Vd(k)

mz
)T (k) + dt

Vd(k)

mz
Td(k)− dt

Q1(k)

cmz
− dt

Q2(k)

cmz
� (3)

First, considering the heat dissipation through the covering agent, the heat exchange process between the molten 
steel and the covering agent in the tundish was simplified by assuming that the heat dissipation of the covering 
agent is a constant value. This assumption is justified by the fact that the thickness of the covering agent remains 
relatively constant and can be manually adjusted. The basis for this assumption lies in the results of multiple 
numerical simulations, which revealed that the heat dissipation of the covering agent remains nearly unchanged 
under various operating conditions. Numerical simulations were conducted to test different scenarios, including 
varying molten steel temperatures, casting speeds, and preheating temperatures. As shown in Fig.  2, the 
calculated heat transfer indicates a similarity in heat dissipation across different experimental conditions. At the 
beginning of casting, the significant temperature difference between the covering agent and the molten steel, 

Fig. 2.  The curve of heat dissipation of molten steel through covering agent with time.
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along with possible phase changes and some chemical reactions, leads to substantial heat loss from the molten 
steel, which then stabilizes. This finding allowed the heat dissipation of the covering agent to be effectively 
represented as a constant in the model, thereby simplifying the model’s complexity. This simplification not only 
improved computational efficiency but also ensured the accuracy and stability of the model in predicting the 
temperature field of the molten steel.

Next, considering the heat dissipation through the lining, both heat storage and heat transfer within the 
tundish lining occur simultaneously. The tundish lining is divided into four layers: the working layer, the 
permanent layer, the insulation layer, and the steel shell23. These four layers consist of different materials, as 
illustrated in Fig. 3. Since the molten steel comes into direct contact with the working layer, its heat dissipation 
is directly transferred to this layer, which subsequently transfers the heat to the following layers. Therefore, it 
is sufficient to consider the heat transfer between the “molten steel” and “working layer” interface, as shown 
in (4), where S represents the contact area between molten steel and the working layer, λw represents thermal 
conductivity of the working layer, x represents the position of the working layer, Tw represents the temperature 
of the working layer.

	
Q1 = S · λw

∂Tw

∂x

∣∣∣∣
x=0

� (4)

From (4), it is evident that the heat transfer through the working layer is related to the temperature field within 
the working layer. Therefore, the next step is to solve for the temperature field within the working layer.

Fig. 3.  Structure diagram of tundish working layer.
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Design of the data model section
This section constitutes the innovative part of the entire model, aiming to provide the heat dissipation through 
the working layer for the mechanistic model. Firstly, the temperature field within the working layer is obtained by 
utilizing the Physics-Informed Neural Network algorithm, which determines the accuracy of the entire model. 
Secondly, by exploring the internal relationships within the data, the variation patterns of thermal property 
parameters within the working layer are identified, which determines the interpretability of the entire model.

Discussion on thermal property parameters
For this study, the thermal property parameters of the tundish working layer material, namely thermal 
conductivity and specific heat capacity, undergo changes as the casting process progresses. Firstly, physical 
erosion occurs due to the continuous scouring of molten steel against the working layer. This results in fluid 
shear forces and mechanical stresses on the working layer, leading to wear, cracks, or material fatigue, thus 
affecting its integrity. Consequently, the thickness of the working layer decreases over time, reducing the length 
of the heat transfer path and increasing the thermal conductivity. Thinner materials facilitate faster heat transfer. 
As for specific heat capacity, changes in material thickness do not directly affect its magnitude. Decreasing 
thickness only affects the overall heat capacity, storing less energy. Secondly, high temperatures can lead to 
thermal expansion, thermal stress, and chemical reactions in the working layer material, affecting both thermal 
conductivity and specific heat capacity24.

The conditions at the continuous casting site are complex, and the production environment varies for each 
casting. In addition to the erosion caused by molten steel scouring, there may be other factors influencing the 
thermal property parameters25,26. However, regardless of the circumstances, the temperature field within the 
working layer still follows the heat transfer equation, and these influences are ultimately reflected in the thermal 
property parameters, i.e. thermal conductivity and specific heat capacity.

When considering the changes in thermal property parameters, the number of unknowns in the partial 
differential equation increases from one temperature (T) to three: temperature (T), thermal conductivity (λ) and 
specific heat capacity (c). In such cases, using deep learning methods can solve the partial differential equation 
and capture the trends in thermal conductivity and specific heat capacity changes, making the prediction results 
closer to actual production conditions.

Solving the partial differential equation for “parameters vary with time " using PINN
According to the continuous casting process, the tundish undergoes high-temperature baking before being 
put into operation. During this high-temperature baking process27, the four layers of the tundish lining reach 
a steady-state thermal conduction status. When casting begins and molten steel flows into the tundish, the 
temperature on the inner side of the lining rapidly increases. At this point, the heat transfer state transitions to 
non-steady-state conduction. The non-steady-state heat transfer equation describes the relationship between 
the temperature within the working layer and time and position, as shown in (5). To determine the relationship 
between temperature and time, this partial differential equation needs to be solved.

	
∂T

∂t
=

λ

ρc

∂2T

∂x2
(0 ⩽ x ⩽ δ)� (5)

There are various methods for solving differential equations, such as Euler’s method and the Runge-Kutta 
method28. However, these methods perform well in solving simple ordinary differential equations. The 
temperature field within the working layer to be solved in this article is a partial differential equation (PDE). 
Many studies utilize finite element methods to solve PDE by establishing mechanistic models29. However, in 
the topic studied in this article, where the thermal conductivity and specific heat capacity change during the 
casting process and their patterns are unknown, numerical simulations cannot provide insights into the effects 
of changes in thermal property parameters on the temperature field.

The one-dimensional unsteady-state heat transfer equation describes the variation of temperature with time 
along a one-dimensional material. This equation is a PDE that relates the rate of change of temperature with 
time to the second derivative of temperature with respect to spatial distribution within the material. Among 
various data-driven techniques for partial differential equations, PINN have shown significant promise and 
generality30–32. Machine learning has been a revolutionary achievement in many scientific disciplines. However, 
it is often limited in complex physical, biological, or engineering fields due to the difficulty of collecting training 
data. Achieving high prediction accuracy with a limited training set is a research challenge. PINN is a new class 
of machine learning techniques where the loss function of the neural network is designed to satisfy both initial 
and boundary conditions33,34.

For the scenario applied in this article, heat transfer equation, initial conditions, and boundary conditions 
can be listed:

	





∂T

∂t
=

λ

ρc

∂2T

∂x2
(0 ⩽ x ⩽ δ)

T (x, 0) = T0, λ(x, 0) = λ0, c(x, 0) = c0

h1(T |x=0 − Ttundish) = −λ
∂T

∂x


x=0

h2(Tair − T |x=δ) = −λ
∂T

∂x


x=δ

� (6)
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In these equations, T represents the temperature of the tundish working layer, which is a function of both time 
t and space x (referring to the position within the thickness of the working layer). λ is the thermal conductivity 
of the working layer material, and c is its specific heat capacity. Ttundish is the temperature of molten steel in the 
tundish, Tair is the temperature of the surrounding air (i.e., room temperature), and h is the convective heat 
transfer coefficient. Table 1 presents the physical property parameters of the materials used in this study.

The so-called PINN model integrates physics equations as constraints into neural networks to ensure 
that the training results comply with physical laws. It involves adding the difference between the iterations of 
physics equations to the neural network’s loss function, allowing the physics equations to “participate” in the 
training process. Traditional PINN can solve partial differential equations by using initial conditions, boundary 
conditions, and the equations themselves as loss functions. However, the PDE solved in this study differ from 
the traditional form as they evolve from a single unknown variable T to three unknown variables: T, λ, and c. 
Therefore, the previously “positive definite” PDE become “under-determined” PDE. Consequently, additional 
data terms are added to the loss function to ensure unique solutions for the equations.

Figure 4 illustrates the PINN framework consisting of two networks. The first part of the framework is the 
neural network NN (w, b), which takes position x and time t as inputs and outputs temperature T, thermal 
conductivity λ, and specific heat capacity c. Subsequently, the output of the NN is then sent to the next two 
networks, NN_PDE and NN_DATA, which essentially use the initial and boundary conditions of the PDE to 
evaluate the residual of the PDE, and the difference between the real data and the predicted data to evaluate the 
accuracy of the model35,36. During the training iterations, the neural network optimizes not only its own loss 
function but also the difference in each iteration of the physics equations, ensuring that the final trained results 
satisfy physical laws.

Construction of PINN loss function
PINN approximates the mapping between points in the space-time domain as solutions to PDEs. The parameters 
of the neural network are randomly initialized and updated iteratively by minimizing the loss function that 
enforces the PDE. The loss function of the PINN model in this study consists of four error components: (a) 
initial condition term, (b) boundary condition term, (c) PDE term, and (d) data term, used for neural network 
prediction. The three components of the PINN loss function are as follows:

(a) Mean square error of initial conditions:

	
MSE0 =

1

Ni

Ni∑
k=1

((T (xik, 0)− T i
0)

2
+(λ(xik, 0)− λi

0)
2 + (c(xik, 0)− ci0)

2)� (7)

Here, T, λ, and c represent the neural network outputs at a certain position x and t = 0. T0, λ0, and c0 represent the 
initial conditions at this space-time point.

(b) Mean square error of boundary conditions:

	

Bl : Fl(T, λ)

MSElb =
1

Nlb

Nlb∑
k=1

(Bl(0, t
lb
k ))

2� (8)

	

Bu : Fu(T, λ)

MSEub =
1

Nub

Nub∑
k=1

(Bu(δ, t
ub
k ))

2� (9)

Here, Fl and Fu represent the boundary conditions at x = 0 and x = δ positions, respectively. Bl and Bu represent 
the residuals when the neural network outputs at x = 0 and x = δ are plugged into the boundary conditions.

(c) Mean square error of PDE equation:

Density (kg/m3) Thermal conductivity (W/m⋅k) Specific heat (J/ kg⋅K) Viscosity (pa⋅s) Thickness (m)

Molten steel 7200 41 480 0.006 –

Covering agent 600 1.7 1180 0.13 –

Air 1.225 0.024 1006.4 1.79e–5 –

Working layer 1900 1.2 1549 – 0.26

Permanent layer 2860 2.1 800 – 0.2

Insulating layer 1200 0.126 816.4 – 0.05

Steel shell 7800 28.9 473 – 0.05

Table 1.  Physical property parameters of the entities involved in the study.
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R : F (T, λ, c)

MSEf =
1

Nf

Nf∑
k=1

(R(xfk, t
f
k))

2� (10)

Here, F represents the heat transfer equation at a certain position x and time t. R represents the residual when the 
neural network outputs at this space-time point are plugged into the heat transfer equation.

(d) Mean square error of data:

	

D : Tdata − F (T, λ, c)

MSEdata =
1

Nd

Nd∑
k=1

(D(xdk, t
d
k))

2� (11)

Here, F represents the temperature of the molten steel in the tundish at a certain time t, The calculation process 
of this temperature is to first calculate the temperature of the working layer at x = 0, then calculate the heat of the 
molten steel through the working layer, and finally calculate the temperature of the molten steel at this time. D 
represents the residual between the model-predicted molten steel temperature at this time and the actual molten 
steel temperature.

The overall loss function in this study is formulated as:

	 MSE = MSE0 +MSElb +MSEub +MSEf +MSEdata� (12)

Table 2 shows the pseudocode of the PINN algorithm application in this study, focusing on the composition of 
the loss function and how the physical equations are incorporated into the loss.

Fig. 4.  PINN framework for solving the unsteady heat transfer equation of the tundish working layer.

 

Scientific Reports |        (2024) 14:27428 7| https://doi.org/10.1038/s41598-024-78611-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Experiments and results
To validate the effectiveness of the model, as a comparative experiment, this study also established pure 
mechanistic models and pure data models. Based on the research content of this article, a mechanistic model can 
be established using Fluent software, and the schematic diagram of this model is shown in Fig. 5. Through steps 
such as physical modeling, mesh partitioning, equation selection, condition application, and solution analysis, 
the control equations for the flow field and temperature field in tundish are solved. The control equations include 
continuity equations, N-S equations, turbulence model equations, energy equations, and boundary condition 
equations. The molten steel temperature in ladle furnace, casting speed, and baking temperature in tundish are 
the input conditions for the model.

Additionally, a data model is established in this study, as depicted in Fig. 6. The model takes the molten 
steel temperature in ladle furnace, casting speed, and baking temperature in tundish as inputs and predicts the 
molten steel temperature in the tundish as output. Employing deep learning techniques, the traditional neural 
network (NN) model regresses the relationship between inputs and outputs. Numerical values reflecting the 
variation of the molten steel temperature in the tundish collected from the field are utilized as training data. 
As the information about the thermal properties of the working layer material changes with casting time, it 
is inherently included in these training data. Therefore, after training the model, the regression results also 
encompass this information. The model consists of 3 input neurons, 4 hidden layers with 64 neurons in each 
layer, and 1 output neuron. The hidden layers use the ReLU activation function, while the output layer employs 
a linear activation function. The loss function is the mean squared error, and the optimizer selected is Adam. 

Fig. 5.  Schematic diagram of the mechanism-based temperature prediction model.

 

Table 2.  Pseudocode of PINN algorithm.
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With a learning rate of 0.1 and a batch size of 32, combined with early stopping and validation set monitoring, 
the model ensured convergence and prevention of overfitting. After hyperparameter tuning through cross-
validation, the final model demonstrated good predictive performance on the test set.

Validating model accuracy
Experimental details
Four sets of experiments are conducted, as shown in Table 3. Using the input values from Experiment 1 as the 
baseline, experiments are designed using the method of controlling variables. In Experiment 2, the molten steel 
outflow velocity and baking temperature remain consistent with Experiment 1, but the overall temperature is 
approximately 10 K higher. Experiment 3 maintains the molten steel temperature in ladle furnace and baking 
temperature as Experiment 1, but doubles the steel outflow velocity. Experiment 4 maintains the molten steel 
temperature in ladle furnace and casting speed as Experiment 1, while increasing baking temperature by nearly 
100 K.

The pure mechanistic model was developed using Fluent software. This experiment simulated a 15-ton T-type 
tundish from a steel plant. The dimensions of the tundish are approximately 6020 mm × 900 mm at the top and 
5940 mm × 450 mm at the bottom, with a height of about 1100 mm and a nozzle height of approximately 500 mm. 
This study replicated the tundish on a 1:1 scale according to its original dimensions. Given the axial symmetry of 
the tundish’s geometric structure, the three-dimensional model was simplified into a two-dimensional model to 
streamline calculations and enhance simulation efficiency. The two-dimensional section selected for numerical 
simulation lies along the straight line formed by the centerlines of the nozzles, and the computational domain is 
defined by the intersection of this vertical section with the tundish structure. This section sufficiently represents 
the characteristics of the flow and temperature fields within the tundish, allowing for a significant reduction in 
computational load while maintaining the accuracy and reliability of the results. To ensure the accuracy of the 
numerical simulation, a high-quality mesh was used in the model. Specifically, an unstructured quadrilateral 
mesh was employed to better capture the details of the complex geometry and boundary layers. Mesh refinement 
was applied in critical areas such as near the nozzles and along the tundish walls. The final mesh consisted of 
13,798 elements, with a minimum cell area of 5.13e-4 m² and a maximum cell area of 8.41e-4 m², achieving an 
optimal balance between computational efficiency and result precision.

In the transient simulation conducted in this study, an independence analysis was performed to ensure the 
accuracy of the results and the independence from selected parameters. The analysis primarily focused on the 
following parameters: time step, mesh resolution, and turbulence model. First, the independence of the time step 
was validated. By selecting different time steps and observing the variations in key variables such as molten steel 
temperature and velocity during the simulation, it was found that when the time step was reduced to 1 s, the 

Molten steel temperature in ladle furnace (K) Casting speed (m/min) Baking temperature (K)

Experiment 1 1828～1810 3 1175

Experiment 2 1838～1820↑ 3 1175

Experiment 3 1828～1810 6↑ 1175

Experiment 4 1828～1810 3 1255↑

Table 3.  Input variable values for each experiment.

 

Fig. 6.  Schematic diagram of the data-based temperature prediction model.
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changes in transient responses stabilized, and further reduction had a negligible effect on the results. Thus, a time 
step of 1 s was chosen to ensure the temporal accuracy of the simulation. Second, mesh resolution was tested by 
gradually refining the mesh. As the mesh density increased, we monitored the changes in the transient simulation 
results, and it was observed that when the mesh density reached 13,798 elements, the results no longer exhibited 
significant changes, indicating minimal dependence on mesh density. Additionally, independence analyses 
were conducted on the turbulence model and boundary conditions. By switching between different turbulence 
models, from k-ε to k-ω, it was observed that these secondary parameters had little impact on the simulation 
results. In summary, through the independence analyses of time step, mesh resolution, and turbulence model, 
we have verified the independence of the simulation results from these parameters, ensuring the accuracy and 
stability of the transient numerical simulation.

Table 4 shows the key parameters of the numerical simulation process. The inlet boundary conditions were 
defined, where the inlet velocity can be calculated using the casting speed, and the inlet temperature is one of the 
model inputs. The initial boundary conditions for the working layer were defined, where the initial temperature 
is the temperature before the tundish is put into operation. The Fluent software’s coupled method solver was 
selected for transient solution of the convection-temperature coupling field, with a time step of 1 s. The total 
calculation time for one casting was 21,000 s.

Under the input conditions of molten steel temperature in ladle furnace ranging from 1828 K to 1810 K, casting 
speed of 3 m/min, and tundish working layer baking temperature of 1255 K, the flow field and temperature field 
inside the tundish are being solved using the finite element method. Figure 7 shows the temperature contour 
maps of the steel and the tundish walls at different time points under these input conditions.

As the casting process progresses and the amount of heat rises, the erosion and corrosion of the working lining 
in the tundish become increasingly severe, which significantly impacts the heat transfer between the molten steel 
and the working lining. Therefore, this study conducted predictive experiments for ten heats within a single 
casting sequence. Each ladle lasts approximately 35 min, with a calculation interval of 1 s, resulting in around 
21,000 sets of predictive data per casting sequence. The input data for the model, as well as the actual measured 
data, were obtained using a blackbody cavity temperature measurement system developed by Professor Zhi Xie 
and his team. This system employs a contact measurement method, with the probe located between the two side 
outlet nozzles, approximately 0.5 m below the molten steel surface. If the coordinate system is established with 
the center of the middle outlet nozzle on the bottom surface of the tundish as the origin, then the coordinates 
of the measuring point are (1800, 0, 600). The system has a sampling interval of 1 s and can collect a total of 
21,000 data sets. This system is capable of accurately measuring molten steel temperatures, providing high-
quality experimental data. In addition to collecting the tundish molten steel temperature data for one casting 
sequence, the research also records the molten steel temperature in ladle furnace, casting speed, and baking 
temperature of the tundish at the same time. Given the wide range of values in the input data, normalization 
techniques were used to ensure the accuracy of the prediction results. The “Min-Max” normalization method 
was chosen for this purpose.

This experiment utilized an Apple MacBook Pro computer equipped for the training process. The computer 
features an M1 chip with an ARM architecture, consisting of an 8-core CPU and GPU, along with 16 GB of 
memory. This device effectively handles large-scale neural network training tasks, ensuring efficient model 
training. In this article, Xavier initialization was used for setting the model’s weights to ensure consistent 
variance between inputs and outputs, avoiding gradient issues. The ReLU activation function was chosen for its 
computational efficiency and ability to mitigate the vanishing gradient problem. The Adam optimizer was used, 
leveraging its advantages of momentum and adaptive learning rate, which accelerated model convergence and 

Modeling procedure Parameter Value

Physical modeling Tundish, molten steel, working layer, permanent layer, insulation layer, steel shell, covering agent 2D

Meshing Quadrilateral 0.03 m

Boundary condition

Velocity inlet Input

Inlet temperature Input

Hydraulic diameter 0.05 m

Turbulence intensity 5.25%

Outflow 0.2, 0.4, 0.4

Coefficient of convention (covering agent and air) 5.9 W/m2k, 300 K

Coefficient of convention (steel shell and air) 5.9 W/m2k, 300 K

Initial condition

Molten steel 1830 K

Working layer Input

Permanent layer 970 K

Insulation layer 655 K

Steel shell 401 K

Covering agent 300 K

Solution
Solve Coupled method

Time step 1s

Table 4.  Key parameters of the mechanistic model based on fluent.
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improved training stability. Table 5 shows the hyperparameters, training time and loss value of four experimental 
neural network models.

Experimental results
Figure 8 present the results of the three models predicting the continuous temperature of molten steel in the 
tundish under four experimental conditions. It is evident from the results that the proposed method yields 
values closer to the actual values. Through calculations, it is determined that the relative errors obtained by the 
pure mechanistic model for the four experiments are 0.144%, 0.143%, 0.079%, and 0.131%, respectively. The 
relative errors obtained by the pure data-driven model for the four experiments are 0.154%, 0.152%, 0.126%, 
and 0.160%, respectively. In contrast, the combined mechanistic and data-driven model proposed in this article 
yields relative errors of 0.139%, 0.142%, 0.061%, and 0.116% for the four experiments, respectively.

Table 6 shows the different accuracies under different modeling approaches. The average relative error of 
the mechanism model is 0.124%, the average relative error of the data model is 0.148%, and the average relative 
error of the combined mechanism and data model is 0.114%. Through comparison, it can be observed that the 

Fig. 7.  Temperature contour of the tundish at different time points within one casting. (a) At t = 1200s, the 
temperature contour plot of molten steel and lining in the tundish. (b) At t = 1200s, the temperature contour 
plot of molten steel in the tundish. (c) At t = 10500s, the temperature contour plot of molten steel and lining in 
the tundish. (d) At t = 10500s, the temperature contour plot of molten steel in the tundish. (e) At t = 21000s, the 
temperature contour plot of molten steel and lining in the tundish. (f) At t = 21000s, the temperature contour 
plot of the molten steel in the tundish.
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proposed model in this article has a higher accuracy, surpassing both the pure mechanism model and the pure 
data model in terms of accuracy.

Validating model generalization and interpretability
Experimental details
The experimental design approach is consistent with that used to validate model accuracy, with changes made 
to the model inputs, namely molten steel temperature in ladle furnace, casting speed, and baking temperature. 
The aim is to observe the variation of thermal conductivity and specific heat capacity over casting time. Due to 
variations in the effectiveness of repair work on the tundish working layer by workers, the numerical values of 
thermal conductivity and specific heat capacity cannot remain consistent for each casting, but their variation 
patterns should. This enables the determination of the model’s generalization based on the variation patterns 
observed in each experiment. Furthermore, the physical laws can be used to interpret the variation patterns of 
these thermal properties, thereby determining the model’s interpretability.

Experimental results
The following figures illustrate the variation patterns of the working layer’s thermal properties over time for 
the four aforementioned experiments. Figure 9a represents the variation pattern of thermal conductivity, while 
Fig. 9b depicts the variation pattern of specific heat capacity. It is evident from the figures that, despite continuous 
changes in input conditions, the variation patterns of thermal conductivity and specific heat capacity remain 
largely consistent. This allows us to conclude that the model proposed in this article exhibits good generalization.

From Fig. 9, it can be observed that the variation trend of thermal diffusivity and thermal conductivity remains 
consistent, while the specific heat capacity remains almost unchanged. Generally, with increasing temperature, 
the thermal diffusivity of a material tends to increase. This is because at higher temperatures, molecules and 
atoms in the material have higher kinetic energy, leading to more vigorous thermal motion and thus increasing 
thermal diffusion properties. As for specific heat capacity, it is an intrinsic property of a substance and does not 
vary with temperature due to the interactions between molecules and atoms, absorbing and releasing energy 
in a relatively constant manner even with temperature changes. Analyzing the results of thermal conductivity, 
within one casting cycle, the variation trend can be divided into three stages. First is the rising trend from 0 to 
3000 s, attributed to the rapid increase in the temperature of the working layer due to its contact with the high-
temperature steel flow, resulting in a rapid increase in thermal conductivity. Then, from 3000 to 6000 s, there is 
a declining trend as the temperature of the working layer stabilizes under the influence of the high-temperature 
steel flow, leading to a decrease in thermal conductivity. Finally, from 6000 s to the end of the casting cycle, there 
is a rising trend due to the continuous erosion of the working layer by the steel flow, which damages the physical 
structure, reducing the length of the heat transfer path and consequently increasing the thermal conductivity. 
This analysis confirms the interpretability of the model proposed in this article.

Investigating the impact of model input variables on results
Experimental details
Firstly, the effect of molten steel temperature in ladle furnace on the molten steel temperature the tundish will be 
explored. Using 1828 K ~ 1810 K as the baseline, the input temperature will be varied at intervals of 2 K, while 
casting speed and baking temperature remain constant. Six sets of experiments will be conducted. Secondly, 
the influence of casting speed on the molten steel temperature in tundish will be investigated. Using 3 m/min 
as the baseline, the casting speed will be varied at intervals of 0.6 m/min, while molten steel temperature in 
ladle furnace and baking temperature remains constant. Six sets of experiments will be conducted. Lastly, the 
impact of baking temperature on the molten steel temperature in tundish will be examined. Using 1175  K 
as the baseline, the baking temperature will be varied at intervals of 20 K, while molten steel temperature in 
ladle furnace and casting speed remains constant. Six sets of experiments will be conducted. The experimental 
procedure is outlined in Table 7.

Impact of molten steel temperature in ladle furnace on molten steel temperature in tundish
This study investigates the effect of molten steel temperature in ladle furnace on molten steel temperature in 
tundish through six sets of experiments. The molten steel temperature in ladle furnace is incrementally increased 
as input, and the resulting molten steel temperature in tundish is depicted in Fig. 10a. As observed from the 
curves, the molten steel temperature in tundish gradually rises with the increase in molten steel temperature in 
ladle furnace. Figure 10b quantifies the temperature increase of the molten steel in ladle furnace. The differences 
between adjacent curves are calculated to determine the change in temperature at the same time point under 
different experimental conditions. The average of these differences serves as a quantification indicator for the 

Neural network hyperparameters

Training time Loss valueLearning rate Number of hidden layers/neurons Training epochs

Experiment 1 0.1 4/100 99,660 1.67 h 3.04e–4

Experiment 2 0.1 4/100 98,950 1.65 h 2.40e–4

Experiment 3 0.1 4/100 93,580 1.56 h 3.45e–4

Experiment 4 0.1 4/100 97,920 1.63 h 2.43e–4

Table 5.  Parameters of the data model based on PINN under different experimental conditions.
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Fig. 8.  Comparison of the results of Four Experiments, predicting temperature of molten steel in the tundish 
by using three different methods. (a) Experiment (1) (b) Experiment (2) (c) Experiment (3) (d) Experiment 4.
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effect of molten steel temperature in ladle furnace on molten steel temperature in tundish. According to the 
experimental results, for every 2 K increase in the molten steel temperature in ladle furnace, the molten steel 
temperature in tundish rises by approximately 2 K.

Impact of casting speed on molten steel temperature in tundish
This study investigates the impact of casting speed on the tundish through six experiments. The casting speed is 
gradually increased as the input variable, while the output variable is the molten steel temperature in tundish, as 
shown in Fig. 11a. It can be observed from the curves that with the increase in casting speed, the tundish steel 
temperature also gradually rises. Figure 11b quantifies the temperature increase in the tundish due to casting 
speed. The temperature difference between adjacent curves is calculated to determine the effect of casting speed 
on the molten steel temperature in tundish at the same time point. The average of these differences serves as a 
quantitative indicator of the impact of casting speed on the molten steel temperature in tundish. According to 
the experimental results, the increase in casting speed by 0.6 m/min does not lead to a fixed increase in molten 
steel temperature in tundish but rather results in a range of 0.36 K to 1.76 K. This variation pattern is related to 
the casting speed and the duration of molten steel flow in ladle furnace.

Impact of Baking temperature on molten steel temperature in tundish
This study investigates the impact of baking temperature on the tundish through six sets of experiments. The 
baking temperature is incrementally increased as input, and the resulting molten steel temperature in tundish 
is observed. As shown in Fig. 12a, the molten steel temperature in tundish gradually rises with the increase 
in baking temperature. To quantify the increase in steel temperature, the differences between adjacent curves 
are calculated, as depicted in Fig. 12b. These differences at the same time points among different experimental 
conditions are averaged to quantify the influence of baking temperature on the molten steel temperature in 
tundish. According to the experimental results, for every 20 K increase in baking temperature before the tundish 
is put into operation, the molten steel temperature in tundish during the entire casting process will rise by 
approximately 1 K.

Conclusion
This article proposes a model based on the combination of mechanism model and data model to predict the 
temperature of molten steel in tundish in continuous casting. There are two main innovations in this study. 
Firstly, the model is established by integrating mechanism and data models, ensuring both the accuracy of 
the data model and the interpretability of the mechanism model. Secondly, in solving the time-varying partial 
differential equations for parameter estimation, the loss function terms of the Physics-Informed Neural Network 
algorithm are improved to capture the influence of thermal parameter changes on the results, thereby enhancing 
the accuracy of the model. With the actual conditions of a steel plant as experimental conditions and field 
data as experimental data, the experimental results show that the proposed model improves the accuracy of 
prediction compared to traditional mechanism and data models. Additionally, by capturing the time-varying 
patterns of thermal parameters, the results demonstrate that the proposed model exhibits good generalization 
and interpretability even with limited training samples. In summary, the molten steel temperature prediction 
model constructed in this study provides accurate and reliable support for subsequent optimization of process 
parameters.

Mechanistic model (FLUENT) Data model (NN)
Mechanistic +  data model 
(PINN)

Relative error 1800 K (example) Relative error 1800 K (example) Relative error 1800 K (example)

Experiment 1 0.144% 2.593 K 0.154% 2.764 K 0.139% 2.510 K

Experiment 2 0.143% 2.580 K 0.152% 2.744 K 0.142% 2.549 K

Experiment 3 0.079% 1.425 K 0.126% 2.267 K 0.061% 1.101 K

Experiment 4 0.131% 2.366 K 0.160% 2.876 K 0.116% 2.093 K

Table 6.  Accuracy of different models for each experimental group result.
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Fig. 9.  Variations of thermal properties of the tundish working layer over the casting time. (a) Thermal 
conductivity. (b) Specific heat. (c) Thermal diffusion coefficient.
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Influence factors Molten steel temperature in ladle furnace (K) Casting speed (m/min) Baking temperature (K)

Molten steel temperature in ladle furnace

Experiment a 1824～1806 3.0 1175

Experiment b 1826～1808 3.0 1175

Experiment c 1828～1810 3.0 1175

Experiment d 1830～1812 3.0 1175

Experiment e 1832～1814 3.0 1175

Experiment f 1834～1816 3.0 1175

Casting speed

Experiment g 1828～1810 3.0 1175

Experiment h 1828～1810 3.6 1175

Experiment i 1828～1810 4.2 1175

Experiment j 1828～1810 4.8 1175

Experiment k 1828～1810 5.4 1175

Experiment l 1828～1810 6.0 1175

Baking temperature

Experiment m 1828～1810 3.0 1175

Experiment n 1828～1810 3.0 1195

Experiment o 1828～1810 3.0 1215

Experiment p 1828～1810 3.0 1235

Experiment q 1828～1810 3.0 1255

Experiment r 1828～1810 3.0 1275

Table 7.  Experiments for investigating the impact of model input variables on results.
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Fig. 10.  The result of the model outputs under different molten steel temperature in ladle furnace conditions. 
(a) Continuous values of molten steel temperature in tundish under different molten steel temperature in ladle 
furnace conditions. (b) Temperature difference at the same time point among different experiments under 
different molten steel temperature in ladle furnace conditions.
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Fig. 11.  The result of the model outputs under different casting speed conditions. (a) Continuous values of 
tundish steel temperature under different casting speed conditions. (b) Temperature difference at the same 
time point among different experiments under different casting speed conditions.
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Fig. 12.  The result of the model outputs under different baking temperature conditions. (a) Continuous 
values of molten steel temperature in tundish under different baking temperature conditions. (b) Temperature 
difference at the same time point among different experiments under different baking temperature conditions.
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Data availability
Since the data in this article will be used in subsequent studies, the data are not publicly available. However, it 
may be obtained from the first author (dbw089019@163.com) at his reasonable request.
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