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Longitudinal dynamic behavior
study of a vibrating rod connected
through an elastic nonlinear single
degree freedom coupler

Mingfei Chen?, Sheng Li2 & Haijian Cui?**

This research explores the efficacy of integrating nonlinear single-degree-of-freedom systems in the
vibration control of rod coupling systems. By interlinking two rods with a nonlinear single-degree-
of-freedom system as the intermediary, the study employs the Lagrange method (LM) to forecast
nonlinear vibrational behaviors. The findings, substantiated by numerical analyses, affirm the
precision of LM in gauging the amplitude responses when such a nonlinear system is utilized. The
nonlinear dynamics, characterized by intricate vibrational patterns, peak jumping phenomena, and
the migration of resonance zones, are induced by the nonlinear single-degree-of-freedom system.
By fine-tuning the system’s parameters, significant alterations in the vibrational states of the rod
coupling system are achievable. This suggests that the application of a nonlinear single-degree-of-
freedom system is a viable strategy for modulating vibrations in rod systems. Furthermore, optimal
parameterization of this system is proven to effectively dampen vibrations, showcasing its potential as
a sophisticated mechanism for vibration suppression in coupled rod configurations.

Keywords Two-rod system, Nonlinear single-degree-freedom system, Nonlinear vibration, Lagrange
method

Vibrational forces, caused by power machinery and working conditions, are prevalent across diverse engineering
disciplines, invariably inducing structural vibrations. These vibrations often pose a risk to the integrity and
stability of engineering structures. Thus, understanding and controlling these vibrational characteristics is
fundamental. For analytical simplicity, many engineering structures can be conceptualized as assemblies
of elemental units such as rods, beams, and plates. This modular approach allows for a more manageable
examination of the structures’ vibrational properties.

In the machining engineering domain, the durability of boring bar systems is pivotal, and it hinges on
controlling structural vibrations. Engineers have thus scrutinized the vibration characteristics of the rod system,
the basic unit of the boring bar. Tang et al.! explored rods with complex boundary conditions, while Pritz?
looked into the dynamic strain of viscoelastic rods with added end masses. Giirgdze® meticulously studied
the specific frequencies of rod systems with a tip mass and mid-span spring-mass arrangements. Candan and
Elishakoff* calculated the axial stiffness of rods based on their primary vibrational shapes, and Erol® addressed
the characteristic equations for internally supported rod systems with an end mass. Mei® conducted a thorough
analysis of four rod theories, enhancing the application of vibration theory in rod systems. Goldberg et al.’”
investigated the movement at the contact points of rod systems under longitudinal vibrational forces, while
Aydogdu® considered axial vibrations in nanorods within a nonlocal continuum model. Xu et al.*!* applied
an improved Fourier series method to study the longitudinal vibrations of nonlocal nanorods with various
boundary conditions and supports. The field also delves into nonlinear vibrations; Cao and Tucker!! employed
Cosserat theory for the nonlinear dynamics of elastic rods. Andrianov et al.!? researched the nonlinear vibrations
of a rod with a microstructure. Considering rods with variable cross-sections and fractional derivative elements,
Malara et al.!3 explored nonlinear stochastic vibrations, and Shakhlavi et al.* analyzed internal resonances in
nanorod systems. These studies offered an extensive investigation into both the forced and natural vibrational
characteristics of single-rod structures.

In the analysis of complex rod systems, academic inquiry has focused on the longitudinal vibrations of
coupled rod configurations. Tomski et al.!> examined the vibrations within a compound two-rod system, while
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Kukla et al.'® explored how translation springs affect the vibrational behavior of two interconnected rods.
Giirgoze!” introduced alternative frequency equations to assess the vibrations of rods linked by a dual spring-
mass system. The work of Mermertas and Giirgoze'® extended this to the longitudinal vibrations of a double-rod
system joined by two spring-mass systems. Li et al.!® derived exact solutions for the vibrational characteristics
of rod systems coupled by translational springs. In scenarios involving multiple coupling spring-mass systems,
Inceoglu and Giirgdze?® analyzed the longitudinal vibrations, and Erol and Giirgdze?! studied the vibration
characteristics of double-rod systems connected by an array of springs and dampers. Lin et al.?? investigated
th?3e free vibration characteristics of two rods coupled by multiple spring-mass systems. Zhao et al studied the
nonlinear vibration responses of a double-rod system connected by a nonlinear element. Collectively, these
studies offered a systematic examination of the longitudinal vibration characteristics of two-rod systems coupled
by single, dual, and multiple spring-mass systems, within the context of linear dynamics.

Amidst the evolution of nonlinear vibration control theory, researchers have been experimenting with
nonlinear elements to devise mechanisms for mitigating the vibrations of elastic structures. A particular focus
has been on using cubic stiffness to craft nonlinear single-degree-of-freedom systems. These systems, devoid of
linear stiffness components, are termed nonlinear energy sinks (NESs)?2~%. Felix et al.”” deeply studied the energy
pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear
oscillator. Georgiades and Vakakis?® pioneered the integration of NES into a linear beam to assess its vibration
control capabilities. Subsequently, Ahmadabadi and Khadem?® explored the nonlinear vibration control of a
cantilever beam using NES. Kani et al.*® designed an NES considering various support conditions and utilized
it to dampen vibrations in a linear beam. They also investigated®! the vibration control of a nonlinear beam via
NES. Pelix et al.** introduced a nonlinear energy sink into the nonlinear electromechanical pendulum arm,
promoting its engineering application. Chen et al.** examined the suppression of vibrations in a beam system by
incorporating parallel NESs, paying special attention to the system’s higher branch responses. The effectiveness
of NES in an axially moving beam system was also studied by Moslemi et al.*%, focusing on both vibration control
and system stability. Zhang et al.’® introduced boundary inerter-enhanced NESs to quell vibrations in elastic
beams, and in a separate study®, they controlled vibrations in geometrically nonlinear beams using boundary
inertial NESs. Further extending the application, He et al.*” combined acoustic black hole effects with NES in
a cantilevered beam to mitigate both low and high-frequency vibrations. Zhao et al.¥*? utilized adjustable
nonlinear vibration absorbers, nonlinear energy sinks, and coupling nonlinear energy sinks for the vibration
control of beams, plates, and vibroacoustic coupling systems and further*** connected elastic structures with
nonlinear single-degree-of-freedom systems to study its dynamic behavior. Furthermore, Zhan et al*® used a
nonlinear connecting intercalary plate and connecting nonlinear oscillators to hybrid suppress the vibration of
a simplified floating raft system. Ding and Shao®’ first proposed the concept of NES cells and they*” employed
NES cells to effectively control the vibration of a plate platform. Tusset et al.***° introduced nonlinear energy
sinks to the high-speed elevator system and a portal frame, finding that nonlinear energy sinks can be employed
to harvest the vibration energy of various engineering structures, promoting the engineering application of
nonlinear energy sinks. The prevailing literature has largely centered on the vibration control of elastic beams,
plates, and their coupling systems, through the use of nonlinear single-degree-of-freedom systems, often in the
form of NESs. However, the application of these systems as coupling elements in rod systems remains under-
explored, with limited attention given to their potential in controlling vibrations in such configurations.

To promote the nonlinear single-degree-of-freedom systems in the engineering application of rod systems,
having an understanding of the influence of nonlinear single-degree-of-freedom systems on the longitudinal
dynamic behavior of the rod system is necessary. Against this background, this research evaluates the use of
nonlinear single-degree-of-freedom systems in managing vibrations within rod coupling assemblies. A nonlinear
single-degree-of-freedom system is introduced as the coupling mechanism linking two rods. Utilizing LM, the
study predicts the nonlinear vibrational responses when two rods are conjoined by such a system. Through
numerical analysis, the precision and robustness of LM in deducing the vibratory behavior of the coupled rods
are examined. The study meticulously analyzes how the nonlinear single-degree-of-freedom system influences
the magnitude-frequency and single-frequency responses of the rod coupling system. Ultimately, the study
arrives at several key conclusions regarding the system’s performance.

Theoretical formulations

Model description

This study presents a model for the longitudinal vibrations of a rod system composed of two rods linked by
a nonlinear single-degree-of-freedom system, as depicted in Fig. 1. The system comprises two sub-rods
and a nonlinear coupling element. Vibrational forces, exhibiting harmonic properties, act upon sub-rod 1.
Longitudinal support springs, representing general boundary conditions, are positioned at the ends of each sub-
rod. Table 1 enumerates the specific parameters for the sub-rods, the vibrational forces, and the support springs.
Additionally, u,(x,t) denotes the displacement of the ith sub-rod.

Fyx =k, [uy — Uy (L17 t)] + ki, [’LLN — U2 (0, t)]
+honlun — ur (L1, ) + Exfux — 2 (0,)]° (1)
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where k; is the linear stiffness of the nonlinear single-degree-freedom system; k is the cubic stiffness of the
nonlinear single-degree-freedom system; Cy; is the viscous damping of the nonlinear single-degree-freedom
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Fig. 1. Longitudinal vibration model of two rods coupled through a nonlinear single-degree-freedom system.
Parameters Symbol | Unit

Elastic modulus E, Pa

Density p; kg/m?

Length L, m

Diameter D, m

Stiffness of longitudinal supporting springs | k; /kp, | N/m

Angle frequency of the vibration excitation | rad/s

Position of the vibration excitation - m

Magnitude of the vibration excitation E, N
Table 1. The symbol definitions. Significantly, the nonlinear single-degree-freedom system presents the cubic
stiffness character. Consequently, the force (F) acting upon this nonlinear system can be derived as follows:
system; u, is the vibration displacement of the nonlinear single-degree-freedom system; and m, is defined as
the motion mass of the nonlinear single-degree-freedom system.

LM is applied to analyze the vibrational responses of the coupled rod system. To do this, it is essential to
formulate Lagrangian, which encapsulates the system’s kinetic energy, potential energy, and the work done by
external forces. Building on these principles, the research progresses to derive the expressions for the energy
terms specific to the coupled rod system.

According to the above derivation, the kinetic energy (T)), potential energy (Vy), and work done by the
viscous damping force (W) can be derived as follows:

1 duyn z
Ty = = : 2-a
N 2mN( m ) (2-2)
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Based on the vibration theory, the kinetic energy (T5,) and potential energy (V) of sub-rods can be determined
as follows:
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The work done by the vibration excitation (W},) is derived as follows:

Ly
Wg = / Dirac(z) — zg) Fosin (wt) uyday (4)
0

The potential energy of the longitudinal boundary springs (V},) is expressed as follows:
1 , 1
Vai = EkL]jUj(O, t) + ikmui (L]j, t) (5)

Based on the above forms of energy terms, the total kinetic energy (

System) total potential energy ( System) and
total work done by the external force (W,

) can be determined as follows:

System
2
TSystem = Z Tri + 1IN (6—a)
i=1
2
‘/Systcm = Z <VR1 + VB1) + VN (6-b)
i=1
and
WSysLem = WN + WE (6'C)

Therefore, Lagrange term of two rods coupled through a nonlinear single-degree-freedom system can be
developed as follows:

LSystem = TSystem - ‘/éystem + WSystem (7)

When using LM to forecast the vibrational responses of two rods linked by a nonlinear single-degree-of-freedom
system, the Lagrange term represents the total energy of the system is of great importance.

Solution procedure

Following the mode superposition method, the vibrational displacements of the two sub-rods are expressed in
an expanded form as follows:

Ul ’11 f kal m Tl Q1 771(’) (S_a)
and
(wg,t Z"QQ” ) oz (8-b)

where ¢ Jj {(x,) and Py {(x,) are the modal functions of sub-rods; g i (t) and q,,(¢) are the unknown coeflicients; and
M and Z ‘are the number of truncations.

To simply establish Lagrange function, the vibrational displacements of the sub-rods are reformed into
specific terms, which are outlined as follows:

w (z1,t) = 1A (9-a)
and
us (72,1) = Py (9-b)

where the form terms shown in Eq. (9) are listed as,

Q= [9911 e P - 1 M] (10-a)
®2=[pn - g2 oo ] (10-b)
Qa=[q - qm - QM\[]T (10-c)
and
T
q2 = [1121 cee Qo . qu} (10-d)

To ensure the uniformity of the solution procedure, q, is defined as follow:
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qs = [UN]T (11)
By substituting Egs. (10) and (11) into Eq. (7) and proceeding with the subsequent step:

g aLS_vstmu 7 6LSysh:m
ot Oq, 0 q;

=0 (12)

The Lagrange function, representing the energy dynamics of two rods coupled through a nonlinear single-
degree-freedom system, can be obtained as follows:
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Vibration responses of two rods coupled through a nonlinear single-degree-freedom system can be obtained
by numerically solving Eq. (13). Importantly, the Runge-Kutta method is employed to numerical solve Eq. (13).

Numerical analysis and discussion

This study focuses on deciphering the nonlinear vibrational properties of a system where two rods are connected
by a nonlinear single-degree-of-freedom system. The computational methods detailed in Section “Theoretical
formulations” are utilized to simulate the system’s nonlinear vibrational responses The parameters set for the
rod system include Young’s modulus E, = 6.89x10' Pa, p,=2.8x10* kg/m?* D, =0.06 m, D,=0.04 m, k;, =
ky; = 5x10* N/m, x,; = 0, and F= 100 N. The observation points are selected at x,=L, for the first rod and
x,=0 for the second rod. The time domain for calculating the nonlinear vibration i is set from 0 to 2000 times
the excitation period (Ty), with the assumption that the responses within the interval [1801 T, 2000 T] will
yield stable results. Besides, Fig. 2 gives the flowchart of this section, where the numerical results of this work are
analyzed through the corresponding flowchart.

Verify the calculation results gained by the LM

This section is dedicated to verifying the accuracy of the results calculated using LM. The parameters for the
nonlinear single-degree-of-freedom system are specified: m = 0.25 kg, k, = 10* N/m, k, = 10® N/m?, and
Cy = 10 Ns/m. Prior to affirming the accuracy of these results, it is crucial to confirm their stability. Figure 3
illustrates the magnitude responses of the two-rod system coupled with a nonlinear single-degree-of-freedom
system under various truncation levels. It is observed that the system’s magnitude responses stabilize when LM
truncation reaches a single term. Therefore, a truncation value of one is adopted for all further calculations in
this study.

Subsequently, to evaluate the accuracy of LM, this study compares the magnitude responses of two rods
connected by a nonlinear single-degree-of-freedom system as calculated by LM against those obtained using the
harmonic balance method (HBM) and Galerkin truncation method (GTM). For the GTM, the GTM employs
the Galerkin condition to discrete the vibration-governing equations of the two rods connected by a nonlinear
single-degree-of-freedom system. The detailed process of GTM is the same as those employed in Reference®. It
should be noted that the modeling processes of the GTM and LM are quite different. For the HBM, the aimed
equations of the HBM are the same as those employed in LM. However, the HBM employs the harmonics
to assume the unknown time terms. Considering the nonlinear forms studied in this work is cubic stiffness,
the fundamental and third harmonics are employed to simulate the unknown time terms. Then, employing
the above harmonics in the aimed equations, one can get a series of functions related to the coefficients of
harmonics. Magnitude responses of two rods connected by a nonlinear single-degree-of-freedom system can be
obtained by solving the above functions. It should be noted that the HBM calculates the magnitude responses of
two rods connected by a nonlinear single-degree-of-freedom system from the frequency domain while the LM
calculates those from the time domain. Considering the difference of the above three methods, Fig. 4 displays the

Scientific Reports |

(2024) 14:27326 | https://doi.org/10.1038/s41598-024-78762-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Program the solution
processes

* Harmonic balance method

[ Verity study ] Lagrange method

______________________ ‘__“__-—_“__—__(E?_l_e_{_lgi-r-l truncation method
- : '3 Nonlinear stiffness

Magnitude-frequency vibration impacted by
the nonlinear single-degree-freedom system

Single-frequency vibration impacted by the
nonlinear single-degree-freedom system
I ——— ; _______________________ \ Motion mass

| i
| i
i |
: |
E ‘ i< Viscous damping
| i
; |
, :
1

[ Make some conclusions ]

Fig. 2. The flowchart of Section “Numerical analysis and discussion”.
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Fig. 3. Magnitude responses of two rods coupled through a nonlinear single-degree-freedom system with
different truncations.
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Fig. 4. Magnitude responses of two rods coupled through a nonlinear single-degree-freedom system gained by
LM, HBM, and GTM.
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Fig. 5. Errors of magnitude responses of two rods coupled through a nonlinear single-degree-freedom system
gained by LM, HBM, and GTM.

magnitude responses derived from LM, HBM, and GTM. The close agreement among the responses from these
methods as seen in Fig. 4 suggests that the computational outcomes from LM are reliable.

Figure 5 gives the errors of magnitude responses of two rods coupled through a nonlinear single-degree-
freedom system gained by LM, HBM, and GTM. From Fig. 5, it can be found that the errors stay at a reasonable
level, which indicates that the computational outcomes from LM are reliable.

Magnitude-frequency vibration impacted by the nonlinear single-degree-freedom system
This section systematically investigates how a nonlinear single-degree-of-freedom system affects the magnitude-
frequency responses of a coupled rod system, aiming to assess its potential for vibration control applications.
Figure 6 illustrates the influence of k on the magnitude-frequency responses of a two-rod coupling system,
where k; is 10* N/m, C; is 10 Ns/m, and m, is 0.2 kg. The results indicate that variations in ky significantly
affect the system’s responses. Specifically, increasing k,; enhances vibration suppression in sub-rod 1, which is

| https://doi.org/10.1038/s41598-024-78762-z nature portfolio

Scientific Reports|  (2024) 14:27326


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.14

0.1271

0.1

Magnitude (m)

Position 1 Position 2
, . . . . 0.04 . . . ' .
- |- ky = 0 N/m? e iy = 0 N/m?
==l = 107 N/m? ] 0.035F} ~=ky = 10" N/m*
— oy = 10° N/m? —ky =108 N/m?
® /= 10°N/m? 0.03 ® /y=10°N/m? |
= IkN=2><10°N./m3 ] TeE ll\'N=2><l()°T\I./m3
H 7~~~
= £0.025
=| 4
E [
; E 0.02 Complex vibration
] 0.015
3 =

10

- 24 26 28 0.01} Complex vibration
Complex vibration ' Peak jumping

Complex vibration 1 0.005 }

20 30 40 50 60 10 20 30 40 50 60
Frequency (Hz) Frequency (Hz)

Fig. 6. Magnitude-frequency responses of the two-rod coupling system influenced by k.
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Fig. 7. Phase and time diagrams of compl ex vibration shown in Fig. 4.

directly subject to vibrational excitation, by broadening the range of effective vibration suppression. However,
this increase also intensifies the vibrations in sub-rod 2, indicating a transfer of vibratory energy from sub-rod 1
to sub-rod 2. This effect underscores the importance of selecting an optimal k,; value, as excessively increasing k;
can adversely affect vibration suppression in sub-rod 1. Additionally, the presence of the nonlinear single-degree-
of-freedom system induces nonlinear vibratory behaviors in the coupling system, as seen when k is raised to 10°
N/m? and 2 X 10° N/m®. This includes complex vibrations and peak jumping, with resonance regions shifting to
higher frequencies, particularly for the 1st resonance region. To further understand the nature of these complex
vibrations, Fig. 7 presents phase and time diagrams for different k, values. Figure 7a shows that at kg = 10°
N/m?, Poincaré points form a closed curve, and the system demonstrates stable quasi-periodic behavior. In
contrast, Fig. 7b reveals that at k; = 2x10° N/m?, Poincaré points are disordered, indicating chaotic behavior
within a bounded range. This analysis demonstrates that by adjusting the nonlinear single-degree-of-freedom
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Fig. 9. Magnitude-frequency responses of two rods coupling system influenced by m,.

system’s parameters, particularly k, one can alter the working condition of the two-rod coupling system, thus
influencing its vibrational characteristics.

Figure 8 presents the magnitude-frequency responses of a two-rod coupling system as influenced by Cy, with
k; =10* N/m, k= 10° N/m?, and m = 0.2 kg. It is observed that changes in C; significantly affect the system’s
responses. At lower C; values, nonlinear vibration phenomena, such as peak jumping and complex vibratory
patterns, are evident. As Cy increases, these nonlinear effects diminish, and the overall vibration intensity
for both sub-rods 1 and 2 decreases. Contrasting with the effects of ky, as discussed in relation to Fig. 6, an
increase in Cy; dampens nonlinear vibrations—a reversal of the trend induced by increasing k. This underscores
the pivotal role of C; in mitigating nonlinear vibrations and reducing overall vibration levels in the two-rod
coupling system. Thus, adjusting C,; upwards is beneficial for vibration control within this system. Additionally,
the characteristics of complex vibrations in Fig. 6 are consistent with those observed in Fig. 6.

Figure 9 depicts the magnitude-frequency responses of a two-rod coupling system impacted by m,, with k; =
10* N/m, ky, = 10° N/m?, and Cy, = 15 Ns/m. An analysis of Fig. 9 reveals that the mass of the nonlinear single-
degree-of-freedom system primarily affects the presence of nonlinear vibration phenomena in the response

Scientific Reports |

(2024) 14:27326

| https://doi.org/10.1038/s41598-024-78762-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0 Position 1 s Position 2 Position 1 Position 2
Phase trajecto: j —Time history —Time history
a * Poincaré points @ * Periodic poin —_ * Periodic poini
< < g
E o g E
T A :/N
-10
-0 0 30 68 70 72 74 68 70 72 74
u, (mm) u, (mm) Time (s) Time (s)
(a) mn is 0.3 kg and excitation frequency is 27.0 Hz
4 Position 1 | Position 2 Position 1 Position 2
Phase trajecto: —Time history —Time history
o 2 * Poincaré points > * Poincaré points —_ * Periodic poin —_ * Periodic point
= = g g
E o E o £ E
>— _2 ;N ' "—‘ ‘(\I
-4 -1
-20 0 20 S0 s 72 74 76 78 72 74 76 78
%, (mm) 4, (mm) Time (s) Time (s)

(b) mn is 0.4 kg and excitation frequency is 25.6 Hz

Fig. 10. Phase and time diagrams of complex vibration shown in Fig. 7.
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Fig. 11. Single-frequency responses of the two-rod coupling system influenced by k.

spectrum. When m, is low, the response of the system is typical. However, as m is increased to 0.3 kg and
0.4 kg, nonlinear behaviors begin to manifest in the magnitude-frequency responses. The vibration levels of the
sub-rods show slight variations with the increase in . This observation suggests that m is a critical factor in
either promoting or suppressing nonlinear vibrational phenomena, given a fixed set of other parameters in the
nonlinear single-degree-of-freedom system. To further understand the complex vibrations indicated in Figs. 9
and 10 offers phase and time diagrams for these conditions. Specifically, Fig. 10a corresponds to m, at 0.3 kg,
and Fig. 10b to my at 0.4 kg. In both scenarios, Poincaré points in the phase diagrams form closed loops, and the

phase and time diagrams indicate stability, leading to the conclusion that the complex vibration states at these
masses are quasi-periodic.

Single-frequency vibration influenced by the nonlinear single-degree-freedom system

In engineering applications, the vibrational forces acting on a two-rod coupling system typically remain within
a limited range. Therefore, examining how the nonlinear single-degree-of-freedom system affects the system’s
response to a constant-frequency vibration is of considerable importance. In this context, the study sets the
vibration excitation frequency at 27.0 Hz to investigate these effects.

Figure 11 illustrates the impact of k; on the magnitude responses of a two-rod coupling system at a single
excitation frequency of 27 Hz, with kL =10*N/m, Cy = 15Ns/m, and my =03 kg. Observations from Fig. 11
reveal that variations in k markedly affect the system’s magnitude responses at this frequency. Initially, as
ky increases within the range of 10® N/m® to 10%7 N/m?, the vibration magnitude remains low, indicating
effective vibration suppression. However, within the parameter range of [10%/ N/m?, 10! N/m?], an increase
in ky correlates with improved vibration suppression for the coupled system. Moreover, the progression of k
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values leads to nonmonotonic changes in the system’s working condition, with three distinct regions exhibiting
complex vibrations. Within these regions of complex vibration, the magnitude of the single-frequency response
is elevated compared to areas of normal vibration adjacent to them. Therefore, selecting an appropriate range
for ky, is crucial for optimizing vibration control of the two-rod system when subjected to single-frequency
excitation.

Figure 12 provides phase and time diagrams to analyze the complex vibratory states depicted in Fig. 11,
at a single excitation frequency of 27 Hz. Figure 12a corresponds to k of 10! N/m?, Fig. 10b to 10'®2 N/m?’,
and Fig. 10c to 10'% N/m?>. In Fig. 12a,c, Poincaré points form closed curves in the phase diagrams, indicating
a quasi-periodic state due to the stable nature of the phase and time diagrams. Conversely, Fig. 12b shows
disordered Poincaré points with fluctuating phase and time diagrams, signifying chaotic behavior at k = 10'%2
N/m?. This suggests that varying k,; influences the working condition of the two-rod systens single-frequency
responses.

Figure 13 displays the magnitude responses of a two-rod coupling system at a fixed excitation frequency of
27 Hz, affected by Cy, with k, = 10* N/m, k; = 10° N/m?, and m, = 0.3 kg. The data indicates that changes in
Cy have a significant impact on the magnitude responses at this frequency. Complex vibrational phenomena
are observed when Cy; ranges from 1 Ns/m to 24 Ns/m. Beyond a C; value of 24 Ns/m, the system’s response
normalizes, suggesting that higher C, values help eliminate complex vibrations. Additionally, the amplitude of
single-frequency vibrations consistently decreases as Cy; increases, implying that a higher Cy; is beneficial for
reducing vibrations in the two-rod coupling system under single-frequency excitation.

To analyze the complex vibrational state shown in Figs. 13 and 14 provides the corresponding phase and time
diagrams. These diagrams demonstrate stability, and Poincaré points form a complete curve. Therefore, it can be
concluded that the complex vibration observed in Fig. 13 is in a quasi-periodic state.

Figure 15 showcases how m influences the magnitude responses of a two-rod coupling system at an
excitation frequency of 27 Hz, with k; = 10* N/m, k, = 10° N/m?, and Cy = 15 N/m. The data indicates that
my significantly affects the system’s responses. Specifically, complex vibrational behaviors emerge when m is
between 0.26 kg and 0.36 kg. Outside this range—below 0.26 kg or above 0.36 kg—the system’s single-frequency
responses remain typical. The vibration magnitude fluctuates nonmonotonically with changes in m,, suggesting
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Fig. 12. Phase and time diagrams of complex vibration shown in Fig. 9.
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that adjusting m, is not a straightforward method for controlling vibrations at this frequency. To determine the
nature of the complex vibrations indicated in Figs. 15 and 16 provides phase and time diagrams. These diagrams,
upon analysis similar to that for Fig. 12, reveal that the complex vibrations are quasi-periodic in nature.

Conclusion

This study develops a vibration analysis model for a two-rod coupling system interconnected by a nonlinear
single-degree-of-freedom system. LM is utilized to determine the system’s vibrational responses. The accuracy
and stability of LM calculations for this system are verified. Further, the influence of the nonlinear single-degree-
of-freedom system on the system’s magnitude-frequency and single-frequency responses is extensively analyzed.
The key findings from the numerical analysis are summarized as follows:

(1) Vibration responses of the model consisting of two rods and a nonlinear single-degree-freedom system can
be precisely solved by using LM.

(2) The nonlinear single-degree-of-freedom system induces nonlinear vibrational phenomena such as complex
vibrations, peak jumping, and shifts in resonance regions. Adjustments to the system’s parameters signif-
icantly affect the vibration states of the coupled rods, with changes in k and C proving to be effective in
vibration control.

(3) The single-frequency vibrational states of the coupled rods can be substantially altered by modifying the
parameters of the nonlinear single-degree-of-freedom system. Selecting an appropriate range for these pa-
rameters is essential for suppressing vibrations under single-frequency excitation.

(4) Overall, incorporating a nonlinear single-degree-of-freedom system is a viable method for controlling vi-
brations in a two-rod coupling system, with optimal parameterization crucial for effective vibration sup-
pression.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
and first authors upon reasonable request.
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