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This research explores the efficacy of integrating nonlinear single-degree-of-freedom systems in the 
vibration control of rod coupling systems. By interlinking two rods with a nonlinear single-degree-
of-freedom system as the intermediary, the study employs the Lagrange method (LM) to forecast 
nonlinear vibrational behaviors. The findings, substantiated by numerical analyses, affirm the 
precision of LM in gauging the amplitude responses when such a nonlinear system is utilized. The 
nonlinear dynamics, characterized by intricate vibrational patterns, peak jumping phenomena, and 
the migration of resonance zones, are induced by the nonlinear single-degree-of-freedom system. 
By fine-tuning the system’s parameters, significant alterations in the vibrational states of the rod 
coupling system are achievable. This suggests that the application of a nonlinear single-degree-of-
freedom system is a viable strategy for modulating vibrations in rod systems. Furthermore, optimal 
parameterization of this system is proven to effectively dampen vibrations, showcasing its potential as 
a sophisticated mechanism for vibration suppression in coupled rod configurations.
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Vibrational forces, caused by power machinery and working conditions, are prevalent across diverse engineering 
disciplines, invariably inducing structural vibrations. These vibrations often pose a risk to the integrity and 
stability of engineering structures. Thus, understanding and controlling these vibrational characteristics is 
fundamental. For analytical simplicity, many engineering structures can be conceptualized as assemblies 
of elemental units such as rods, beams, and plates. This modular approach allows for a more manageable 
examination of the structures’ vibrational properties.

In the machining engineering domain, the durability of boring bar systems is pivotal, and it hinges on 
controlling structural vibrations. Engineers have thus scrutinized the vibration characteristics of the rod system, 
the basic unit of the boring bar. Tang et al.1 explored rods with complex boundary conditions, while Pritz2 
looked into the dynamic strain of viscoelastic rods with added end masses. Gürgöze3 meticulously studied 
the specific frequencies of rod systems with a tip mass and mid-span spring-mass arrangements. Candan and 
Elishakoff4 calculated the axial stiffness of rods based on their primary vibrational shapes, and Erol5 addressed 
the characteristic equations for internally supported rod systems with an end mass. Mei6 conducted a thorough 
analysis of four rod theories, enhancing the application of vibration theory in rod systems. Goldberg et al.7 
investigated the movement at the contact points of rod systems under longitudinal vibrational forces, while 
Aydogdu8 considered axial vibrations in nanorods within a nonlocal continuum model. Xu et al.9,10 applied 
an improved Fourier series method to study the longitudinal vibrations of nonlocal nanorods with various 
boundary conditions and supports. The field also delves into nonlinear vibrations; Cao and Tucker11 employed 
Cosserat theory for the nonlinear dynamics of elastic rods. Andrianov et al.12 researched the nonlinear vibrations 
of a rod with a microstructure. Considering rods with variable cross-sections and fractional derivative elements, 
Malara et al.13 explored nonlinear stochastic vibrations, and Shakhlavi et al.14 analyzed internal resonances in 
nanorod systems. These studies offered an extensive investigation into both the forced and natural vibrational 
characteristics of single-rod structures.

In the analysis of complex rod systems, academic inquiry has focused on the longitudinal vibrations of 
coupled rod configurations. Tomski et al.15 examined the vibrations within a compound two-rod system, while 
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Kukla et al.16 explored how translation springs affect the vibrational behavior of two interconnected rods. 
Gürgöze17 introduced alternative frequency equations to assess the vibrations of rods linked by a dual spring-
mass system. The work of Mermertas and Gürgöze18 extended this to the longitudinal vibrations of a double-rod 
system joined by two spring-mass systems. Li et al.19 derived exact solutions for the vibrational characteristics 
of rod systems coupled by translational springs. In scenarios involving multiple coupling spring-mass systems, 
Inceoğlu and Gürgöze20 analyzed the longitudinal vibrations, and Erol and Gürgöze21 studied the vibration 
characteristics of double-rod systems connected by an array of springs and dampers. Lin et al.22 investigated 
th23e free vibration characteristics of two rods coupled by multiple spring-mass systems. Zhao et al studied the 
nonlinear vibration responses of a double-rod system connected by a nonlinear element.  Collectively, these 
studies offered a systematic examination of the longitudinal vibration characteristics of two-rod systems coupled 
by single, dual, and multiple spring-mass systems, within the context of linear dynamics.

Amidst the evolution of nonlinear vibration control theory, researchers have been experimenting with 
nonlinear elements to devise mechanisms for mitigating the vibrations of elastic structures. A particular focus 
has been on using cubic stiffness to craft nonlinear single-degree-of-freedom systems. These systems, devoid of 
linear stiffness components, are termed nonlinear energy sinks (NESs)22–25. Felix et al.27 deeply studied the energy 
pumping, synchronization and beat phenomenon in a nonideal structure coupled to an essentially nonlinear 
oscillator. Georgiades and Vakakis28 pioneered the integration of NES into a linear beam to assess its vibration 
control capabilities. Subsequently, Ahmadabadi and Khadem29 explored the nonlinear vibration control of a 
cantilever beam using NES. Kani et al.30 designed an NES considering various support conditions and utilized 
it to dampen vibrations in a linear beam. They also investigated31 the vibration control of a nonlinear beam via 
NES. Felix et al.32 introduced a nonlinear energy sink into the nonlinear electromechanical pendulum arm, 
promoting its engineering application. Chen et al.33 examined the suppression of vibrations in a beam system by 
incorporating parallel NESs, paying special attention to the system’s higher branch responses. The effectiveness 
of NES in an axially moving beam system was also studied by Moslemi et al.34, focusing on both vibration control 
and system stability. Zhang et al.35 introduced boundary inerter-enhanced NESs to quell vibrations in elastic 
beams, and in a separate study36, they controlled vibrations in geometrically nonlinear beams using boundary 
inertial NESs. Further extending the application, He et al.37 combined acoustic black hole effects with NES in 
a cantilevered beam to mitigate both low and high-frequency vibrations. Zhao et al.38–42 utilized adjustable 
nonlinear vibration absorbers, nonlinear energy sinks, and coupling nonlinear energy sinks for the vibration 
control of beams, plates, and vibroacoustic coupling systems and further43,44 connected elastic structures with 
nonlinear single-degree-of-freedom systems to study its dynamic behavior. Furthermore, Zhan et al46 used a 
nonlinear connecting intercalary plate and connecting nonlinear oscillators to hybrid suppress the vibration of 
a simplified floating raft system. Ding and Shao45 first proposed the concept of NES cells and they47 employed 
NES cells to effectively control the vibration of a plate platform. Tusset et al.48,49 introduced nonlinear energy 
sinks to the high-speed elevator system and a portal frame, finding that nonlinear energy sinks can be employed 
to harvest the vibration energy of various engineering structures, promoting the engineering application of 
nonlinear energy sinks. The prevailing literature has largely centered on the vibration control of elastic beams, 
plates, and their coupling systems, through the use of nonlinear single-degree-of-freedom systems, often in the 
form of NESs. However, the application of these systems as coupling elements in rod systems remains under-
explored, with limited attention given to their potential in controlling vibrations in such configurations.

To promote the nonlinear single-degree-of-freedom systems in the engineering application of rod systems, 
having an understanding of the influence of nonlinear single-degree-of-freedom systems on the longitudinal 
dynamic behavior of the rod system is necessary. Against this background, this research evaluates the use of 
nonlinear single-degree-of-freedom systems in managing vibrations within rod coupling assemblies. A nonlinear 
single-degree-of-freedom system is introduced as the coupling mechanism linking two rods. Utilizing LM, the 
study predicts the nonlinear vibrational responses when two rods are conjoined by such a system. Through 
numerical analysis, the precision and robustness of LM in deducing the vibratory behavior of the coupled rods 
are examined. The study meticulously analyzes how the nonlinear single-degree-of-freedom system influences 
the magnitude-frequency and single-frequency responses of the rod coupling system. Ultimately, the study 
arrives at several key conclusions regarding the system’s performance.

Theoretical formulations
Model description
This study presents a model for the longitudinal vibrations of a rod system composed of two rods linked by 
a nonlinear single-degree-of-freedom system, as depicted in Fig.  1. The system comprises two sub-rods 
and a nonlinear coupling element. Vibrational forces, exhibiting harmonic properties, act upon sub-rod 1. 
Longitudinal support springs, representing general boundary conditions, are positioned at the ends of each sub-
rod. Table 1 enumerates the specific parameters for the sub-rods, the vibrational forces, and the support springs. 
Additionally, ui(xi,t) denotes the displacement of the ith sub-rod. 

	

FN = kL [uN − u1 (L1, t)] + kL [uN − u2 (0, t)]

+kN[uN − u1 (L1, t)]
3 + kN[uN − u2 (0, t)]

3

+CN

(
duN
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∣∣∣
x1=L1

)
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(
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∂t

∣∣∣
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) � (1)

where kL is the linear stiffness of the nonlinear single-degree-freedom system; kN is the cubic stiffness of the 
nonlinear single-degree-freedom system; CN is the viscous damping of the nonlinear single-degree-freedom 
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system; uN is the vibration displacement of the nonlinear single-degree-freedom system; and mN is defined as 
the motion mass of the nonlinear single-degree-freedom system.

LM is applied to analyze the vibrational responses of the coupled rod system. To do this, it is essential to 
formulate Lagrangian, which encapsulates the system’s kinetic energy, potential energy, and the work done by 
external forces. Building on these principles, the research progresses to derive the expressions for the energy 
terms specific to the coupled rod system.

According to the above derivation, the kinetic energy (TN), potential energy (VN), and work done by the 
viscous damping force (WN) can be derived as follows:

	
TN =

1

2
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(
duN

dt

)2

� (2-a)
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and
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Based on the vibration theory, the kinetic energy (TRi) and potential energy (VRi) of sub-rods can be determined 
as follows:

	
TRi =

∫ Li

0

πDi
2ρi
4

(
∂ui
∂t

)2

dxi� (3-a)

and

	
VRi =
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0
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2Ei

4

(
∂ui
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)2

dxi� (3-b)

Parameters Symbol Unit

Elastic modulus Ei Pa

Density ρi kg/m3

Length Li m

Diameter Di m

Stiffness of longitudinal supporting springs kLi/kRi N/m

Angle frequency of the vibration excitation ω rad/s

Position of the vibration excitation xE1 m

Magnitude of the vibration excitation F0 N

Table 1.  The symbol definitions. Significantly, the nonlinear single-degree-freedom system presents the cubic 
stiffness character. Consequently, the force (FN) acting upon this nonlinear system can be derived as follows:

 

Fig. 1.  Longitudinal vibration model of two rods coupled through a nonlinear single-degree-freedom system.
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The work done by the vibration excitation (WE) is derived as follows:

	
WE =

∫ L1

0

Dirac(x1 − xE1)F0 sin (ωt)u1dx1� (4)

The potential energy of the longitudinal boundary springs (VBi) is expressed as follows:

	
VBi =

1

2
kLiui(0, t)

2 +
1

2
kRiui (Li, t)� (5)

Based on the above forms of energy terms, the total kinetic energy (TSystem), total potential energy (VSystem), and 
total work done by the external force (WSystem) can be determined as follows:

	
TSystem =

2∑
i=1

TRi + TN� (6-a)

	
VSystem =

2∑
i=1

(VRi + VBi) + VN� (6-b)

and

	 WSystem = WN +WE� (6-c)

Therefore, Lagrange term of two rods coupled through a nonlinear single-degree-freedom system can be 
developed as follows:

	 LSystem = TSystem − VSystem +WSystem� (7)

When using LM to forecast the vibrational responses of two rods linked by a nonlinear single-degree-of-freedom 
system, the Lagrange term represents the total energy of the system is of great importance.

Solution procedure
Following the mode superposition method, the vibrational displacements of the two sub-rods are expressed in 
an expanded form as follows:

	
u1 (x1, t) =

M∑
m=1

φ1 m (x1) q1 m (t)� (8-a)

and

	
u2 (x2, t) =

Z∑
z=1

φ2z (x2) q2z (t)� (8-b)

where φ1j(x1) and φ2j(x2) are the modal functions of sub-rods; q1j(t) and q2z(t) are the unknown coefficients; and 
M and Z are the number of truncations.

To simply establish Lagrange function, the vibrational displacements of the sub-rods are reformed into 
specific terms, which are outlined as follows:

	 u1 (x1, t) = φ1q1� (9-a)

and

	 u2 (x2, t) = φ2q2� (9-b)

where the form terms shown in Eq. (9) are listed as,

	 φ1 =
[
φ11 . . . φ1m . . . φ1 M

]
� (10-a)

	 φ2 =
[
φ21 . . . φ2z . . . φ2Z

]
� (10-b)

	 q1 = [q11 . . . q1m . . . q1M]
T� (10-c)

and

	 q2 =
[
q21 . . . q2z . . . q2Z

]T� (10-d)

To ensure the uniformity of the solution procedure, q3 is defined as follow:
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	 q3 = [uN]
T� (11)

By substituting Eqs. (10) and (11) into Eq. (7) and proceeding with the subsequent step:

	

∂
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(
∂LSystem

∂q̇i

)
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∂qi
= 0� (12)

The Lagrange function, representing the energy dynamics of two rods coupled through a nonlinear single-
degree-freedom system, can be obtained as follows:
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and
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Vibration responses of two rods coupled through a nonlinear single-degree-freedom system can be obtained 
by numerically solving Eq. (13). Importantly, the Runge-Kutta method is employed to numerical solve Eq. (13).

Numerical analysis and discussion
This study focuses on deciphering the nonlinear vibrational properties of a system where two rods are connected 
by a nonlinear single-degree-of-freedom system. The computational methods detailed in Section “Theoretical 
formulations” are utilized to simulate the system’s nonlinear vibrational responses. The parameters set for the 
rod system include Young’s modulus Ei = 6.89 × 1010 Pa, ρi = 2.8 × 103 kg/m3, D1 = 0.06 m, D2 = 0.04 m, kLi = 
kRi = 5 × 104 N/m, xE1 = 0, and F0 = 100 N. The observation points are selected at x1 = L1 for the first rod and 
x2 = 0 for the second rod. The time domain for calculating the nonlinear vibration is set from 0 to 2000 times 
the excitation period (TE), with the assumption that the responses within the interval [1801 TE, 2000 TE] will 
yield stable results. Besides, Fig. 2 gives the flowchart of this section, where the numerical results of this work are 
analyzed through the corresponding flowchart.

Verify the calculation results gained by the LM
This section is dedicated to verifying the accuracy of the results calculated using LM. The parameters for the 
nonlinear single-degree-of-freedom system are specified: mN = 0.25 kg, kL = 104 N/m, kN = 108 N/m3, and 
CN = 10 Ns/m. Prior to affirming the accuracy of these results, it is crucial to confirm their stability. Figure 3 
illustrates the magnitude responses of the two-rod system coupled with a nonlinear single-degree-of-freedom 
system under various truncation levels. It is observed that the system’s magnitude responses stabilize when LM 
truncation reaches a single term. Therefore, a truncation value of one is adopted for all further calculations in 
this study. 

Subsequently, to evaluate the accuracy of LM, this study compares the magnitude responses of two rods 
connected by a nonlinear single-degree-of-freedom system as calculated by LM against those obtained using the 
harmonic balance method (HBM) and Galerkin truncation method (GTM). For the GTM, the GTM employs 
the Galerkin condition to discrete the vibration-governing equations of the two rods connected by a nonlinear 
single-degree-of-freedom system. The detailed process of GTM is the same as those employed in Reference43. It 
should be noted that the modeling processes of the GTM and LM are quite different. For the HBM, the aimed 
equations of the HBM are the same as those employed in LM. However, the HBM employs the harmonics 
to assume the unknown time terms. Considering the nonlinear forms studied in this work is cubic stiffness, 
the fundamental and third harmonics are employed to simulate the unknown time terms. Then, employing 
the above harmonics in the aimed equations, one can get a series of functions related to the coefficients of 
harmonics. Magnitude responses of two rods connected by a nonlinear single-degree-of-freedom system can be 
obtained by solving the above functions. It should be noted that the HBM calculates the magnitude responses of 
two rods connected by a nonlinear single-degree-of-freedom system from the frequency domain while the LM 
calculates those from the time domain. Considering the difference of the above three methods, Fig. 4 displays the 
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Fig. 3.  Magnitude responses of two rods coupled through a nonlinear single-degree-freedom system with 
different truncations.

 

Fig. 2.  The flowchart of Section “Numerical analysis and discussion”.
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magnitude responses derived from LM, HBM, and GTM. The close agreement among the responses from these 
methods as seen in Fig. 4 suggests that the computational outcomes from LM are reliable. 

Figure 5 gives the errors of magnitude responses of two rods coupled through a nonlinear single-degree-
freedom system gained by LM, HBM, and GTM. From Fig. 5, it can be found that the errors stay at a reasonable 
level, which indicates that the computational outcomes from LM are reliable. 

Magnitude-frequency vibration impacted by the nonlinear single-degree-freedom system
This section systematically investigates how a nonlinear single-degree-of-freedom system affects the magnitude-
frequency responses of a coupled rod system, aiming to assess its potential for vibration control applications.

Figure 6 illustrates the influence of kN on the magnitude-frequency responses of a two-rod coupling system, 
where kL is 104 N/m, CE is 10 Ns/m, and mN is 0.2 kg. The results indicate that variations in kN significantly 
affect the system’s responses. Specifically, increasing kN enhances vibration suppression in sub-rod 1, which is 

Fig. 5.  Errors of magnitude responses of two rods coupled through a nonlinear single-degree-freedom system 
gained by LM, HBM, and GTM.

 

Fig. 4.  Magnitude responses of two rods coupled through a nonlinear single-degree-freedom system gained by 
LM, HBM, and GTM.
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directly subject to vibrational excitation, by broadening the range of effective vibration suppression. However, 
this increase also intensifies the vibrations in sub-rod 2, indicating a transfer of vibratory energy from sub-rod 1 
to sub-rod 2. This effect underscores the importance of selecting an optimal kN value, as excessively increasing kN 
can adversely affect vibration suppression in sub-rod 1. Additionally, the presence of the nonlinear single-degree-
of-freedom system induces nonlinear vibratory behaviors in the coupling system, as seen when kN is raised to 109 
N/m3 and 2 × 109 N/m3. This includes complex vibrations and peak jumping, with resonance regions shifting to 
higher frequencies, particularly for the 1st resonance region. To further understand the nature of these complex 
vibrations, Fig. 7 presents phase and time diagrams for different kN values. Figure 7a shows that at kN = 109 
N/m3, Poincaré points form a closed curve, and the system demonstrates stable quasi-periodic behavior. In 
contrast, Fig. 7b reveals that at kN = 2 × 109 N/m3, Poincaré points are disordered, indicating chaotic behavior 
within a bounded range. This analysis demonstrates that by adjusting the nonlinear single-degree-of-freedom 

Fig. 7.  Phase and time diagrams of compl ex vibration shown in Fig. 4.

 

Fig. 6.  Magnitude-frequency responses of the two-rod coupling system influenced by kN.
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system’s parameters, particularly kN, one can alter the working condition of the two-rod coupling system, thus 
influencing its vibrational characteristics. 

Figure 8 presents the magnitude-frequency responses of a two-rod coupling system as influenced by CN, with 
kL = 104 N/m, kN = 109 N/m3, and mN = 0.2 kg. It is observed that changes in CN significantly affect the system’s 
responses. At lower CN values, nonlinear vibration phenomena, such as peak jumping and complex vibratory 
patterns, are evident. As CN increases, these nonlinear effects diminish, and the overall vibration intensity 
for both sub-rods 1 and 2 decreases. Contrasting with the effects of kN, as discussed in relation to Fig. 6, an 
increase in CN dampens nonlinear vibrations—a reversal of the trend induced by increasing kN. This underscores 
the pivotal role of CN in mitigating nonlinear vibrations and reducing overall vibration levels in the two-rod 
coupling system. Thus, adjusting CN upwards is beneficial for vibration control within this system. Additionally, 
the characteristics of complex vibrations in Fig. 6 are consistent with those observed in Fig. 6. 

Figure 9 depicts the magnitude-frequency responses of a two-rod coupling system impacted by mN, with kL = 
104 N/m, kN = 109 N/m3, and CN = 15 Ns/m. An analysis of Fig. 9 reveals that the mass of the nonlinear single-
degree-of-freedom system primarily affects the presence of nonlinear vibration phenomena in the response 

Fig. 9.  Magnitude-frequency responses of two rods coupling system influenced by mN.

 

Fig. 8.  Magnitude-frequency responses of the two-rod coupling system influenced by CN.

 

Scientific Reports |        (2024) 14:27326 9| https://doi.org/10.1038/s41598-024-78762-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


spectrum. When mN is low, the response of the system is typical. However, as mN is increased to 0.3 kg and 
0.4 kg, nonlinear behaviors begin to manifest in the magnitude-frequency responses. The vibration levels of the 
sub-rods show slight variations with the increase in mN. This observation suggests that mN is a critical factor in 
either promoting or suppressing nonlinear vibrational phenomena, given a fixed set of other parameters in the 
nonlinear single-degree-of-freedom system. To further understand the complex vibrations indicated in Figs. 9 
and 10 offers phase and time diagrams for these conditions. Specifically, Fig. 10a corresponds to mN at 0.3 kg, 
and Fig. 10b to mN at 0.4 kg. In both scenarios, Poincaré points in the phase diagrams form closed loops, and the 
phase and time diagrams indicate stability, leading to the conclusion that the complex vibration states at these 
masses are quasi-periodic. 

Single-frequency vibration influenced by the nonlinear single-degree-freedom system
In engineering applications, the vibrational forces acting on a two-rod coupling system typically remain within 
a limited range. Therefore, examining how the nonlinear single-degree-of-freedom system affects the system’s 
response to a constant-frequency vibration is of considerable importance. In this context, the study sets the 
vibration excitation frequency at 27.0 Hz to investigate these effects.

Figure 11 illustrates the impact of kN on the magnitude responses of a two-rod coupling system at a single 
excitation frequency of 27 Hz, with kL = 104 N/m, CN = 15 Ns/m, and mN = 0.3 kg. Observations from Fig. 11 
reveal that variations in kN markedly affect the system’s magnitude responses at this frequency. Initially, as 
kN increases within the range of 108 N/m3 to 108.7 N/m3, the vibration magnitude remains low, indicating 
effective vibration suppression. However, within the parameter range of [108.7 N/m3, 1011 N/m3], an increase 
in kN correlates with improved vibration suppression for the coupled system. Moreover, the progression of kN 

Fig. 11.  Single-frequency responses of the two-rod coupling system influenced by kN.

 

Fig. 10.  Phase and time diagrams of complex vibration shown in Fig. 7.
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values leads to nonmonotonic changes in the system’s working condition, with three distinct regions exhibiting 
complex vibrations. Within these regions of complex vibration, the magnitude of the single-frequency response 
is elevated compared to areas of normal vibration adjacent to them. Therefore, selecting an appropriate range 
for kN is crucial for optimizing vibration control of the two-rod system when subjected to single-frequency 
excitation. 

Figure  12 provides phase and time diagrams to analyze the complex vibratory states depicted in Fig. 11, 
at a single excitation frequency of 27 Hz. Figure 12a corresponds to kN of 109.1 N/m3, Fig. 10b to 1010.2 N/m3, 
and Fig. 10c to 1010.7 N/m3. In Fig. 12a,c, Poincaré points form closed curves in the phase diagrams, indicating 
a quasi-periodic state due to the stable nature of the phase and time diagrams. Conversely, Fig.  12b shows 
disordered Poincaré points with fluctuating phase and time diagrams, signifying chaotic behavior at kN = 1010.2 
N/m3. This suggests that varying kN influences the working condition of the two-rod system’s single-frequency 
responses.

Figure 13 displays the magnitude responses of a two-rod coupling system at a fixed excitation frequency of 
27 Hz, affected by CN, with kL = 104 N/m, kN = 109 N/m3, and mN = 0.3 kg. The data indicates that changes in 
CN have a significant impact on the magnitude responses at this frequency. Complex vibrational phenomena 
are observed when CN ranges from 1 Ns/m to 24 Ns/m. Beyond a CN value of 24 Ns/m, the system’s response 
normalizes, suggesting that higher CN values help eliminate complex vibrations. Additionally, the amplitude of 
single-frequency vibrations consistently decreases as CN increases, implying that a higher CN is beneficial for 
reducing vibrations in the two-rod coupling system under single-frequency excitation. 

To analyze the complex vibrational state shown in Figs. 13 and 14 provides the corresponding phase and time 
diagrams. These diagrams demonstrate stability, and Poincaré points form a complete curve. Therefore, it can be 
concluded that the complex vibration observed in Fig. 13 is in a quasi-periodic state. 

Figure  15 showcases how mN influences the magnitude responses of a two-rod coupling system at an 
excitation frequency of 27 Hz, with kL = 104 N/m, kN = 109 N/m3, and CN = 15 N/m. The data indicates that 
mN significantly affects the system’s responses. Specifically, complex vibrational behaviors emerge when mN is 
between 0.26 kg and 0.36 kg. Outside this range—below 0.26 kg or above 0.36 kg—the system’s single-frequency 
responses remain typical. The vibration magnitude fluctuates nonmonotonically with changes in mN, suggesting 

Fig. 12.  Phase and time diagrams of complex vibration shown in Fig. 9.
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Fig. 15.  Single-frequency responses of the two-rod coupling system influenced by mN.

 

Fig. 14.  Phase and time diagrams of complex vibration shown in Fig. 13.

 

Fig. 13.  Single-frequency responses of the two-rod coupling system influenced by CN.
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that adjusting mN is not a straightforward method for controlling vibrations at this frequency. To determine the 
nature of the complex vibrations indicated in Figs. 15 and 16 provides phase and time diagrams. These diagrams, 
upon analysis similar to that for Fig. 12, reveal that the complex vibrations are quasi-periodic in nature.  

Conclusion
This study develops a vibration analysis model for a two-rod coupling system interconnected by a nonlinear 
single-degree-of-freedom system. LM is utilized to determine the system’s vibrational responses. The accuracy 
and stability of LM calculations for this system are verified. Further, the influence of the nonlinear single-degree-
of-freedom system on the system’s magnitude-frequency and single-frequency responses is extensively analyzed. 
The key findings from the numerical analysis are summarized as follows:

	(1)	� Vibration responses of the model consisting of two rods and a nonlinear single-degree-freedom system can 
be precisely solved by using LM.

	(2)	� The nonlinear single-degree-of-freedom system induces nonlinear vibrational phenomena such as complex 
vibrations, peak jumping, and shifts in resonance regions. Adjustments to the system’s parameters signif-
icantly affect the vibration states of the coupled rods, with changes in kN and CN proving to be effective in 
vibration control.

	(3)	� The single-frequency vibrational states of the coupled rods can be substantially altered by modifying the 
parameters of the nonlinear single-degree-of-freedom system. Selecting an appropriate range for these pa-
rameters is essential for suppressing vibrations under single-frequency excitation.

	(4)	� Overall, incorporating a nonlinear single-degree-of-freedom system is a viable method for controlling vi-
brations in a two-rod coupling system, with optimal parameterization crucial for effective vibration sup-
pression.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
and first authors upon reasonable request.
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