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The continuous advancement of autonomous driving technology imposes higher demands on the 
accuracy of target detection in complex environments, particularly when traffic targets are occluded. 
Existing algorithms still face significant challenges in detection accuracy and real-time performance 
under such conditions. To address this issue, this paper proposes an improved YOLOX algorithm 
based on adaptive deformable convolution, named OCC-YOLOX. This algorithm enhances the feature 
extraction network’s ability to focus on occluded targets by incorporating a coordinate attention 
mechanism. Additionally, it introduces the Overlapping IoU (OL-IoU) loss function to optimize the 
overlap between predicted and ground truth bounding boxes, thereby improving detection accuracy. 
Furthermore, the adoption of Fast Spatial Pyramid Pooling (Fast SPP) reduces computational 
complexity while maintaining real-time performance. Experiments on fused public datasets 
demonstrate that OCC-YOLOX achieves improvements in accuracy, recall, and average precision by 
2.76%, 1.25%, and 1.92%, respectively. In addition to testing on the KITTI, CityPersons, and BDD100K 
datasets, the effectiveness of the OCC-YOLOX algorithm is further validated through comparisons with 
self-collected occlusion scene data. The experimental results indicate that OCC-YOLOX outperforms 
existing mainstream detection algorithms, particularly in handling complex occlusion scenarios, 
significantly enhancing the accuracy and efficiency of object detection. This study provides new 
insights for addressing the challenges of occluded target detection in intelligent transportation 
systems.
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Environment perception is a key technology for Intelligent Connected Vehicle (ICV), and object detection, as 
the basis for solving more complex environment sensing tasks, has a direct impact on traffic safety in terms of 
its accuracy1. In recent years, with the continuous development of object detection algorithms based on deep 
learning, the prediction accuracy has been continuously improved2. However, in the face of occluded traffic 
targets, the truncation phenomenon makes the feature acquisition crippled, often resulting in omission and 
false alarm phenomenon, which seriously affects the detection effect. There-fore, the study of occluded object 
detection is of great significance to traffic safety.

Object detection algorithms can be classified into two types: traditional and deep learning-based methods. 
Compared with the disadvantage of traditional methods3,4 which rely heavily on manually designed feature 
sub, deep learning-based methods can overcome the limitation of not being able to adapt to complex scenes. 
Therefore, deep learning-based object detection algorithms have become the mainstream of application. They 
are classified into two-stage and single-stage according to their detection logic. The RCNN series of algorithms 
proposed in the literature5–8, is a representative of two-stage algorithms, but all the algorithms in this series need 
to generate a large number of candidate regions first to mark all the possible targets, which has a high detection 
accuracy, but the redundant anchor frames of repeated calculations will reduce the computing speed. Therefore, 
the single-stage algorithms that do not need to select candidate regions and directly generate target position 
coordinates were then born.

Meanwhile, the optimization of object detection algorithms under occlusion conditions mainly follows two 
technical approaches: one is based on the improvement of overall feature detection algorithms, and the other 
is based on the enhancement of partial semantic detection algorithms. Although existing methods have made 
progress in occlusion target detection research through different technical directions, there are still some issues 
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that need to be addressed. For instance, common occlusion datasets such as the KITTI dataset, Caltech dataset, 
etc., have single-scene environments, leading to a lack of robustness in the detection results of the algorithms. 
The complexity of occlusion situations makes it difficult for algorithms to learn an infinite number of occlusion 
scenarios. Moreover, during occlusions, severe overlaps between prediction boxes may lead to the erroneous 
suppression of predicted targets, resulting in missed detections. There is an urgent need to propose more specific 
and robust algorithms based on the characteristics of targets under occlusion conditions, which is of great 
significance for complex perception systems.

YOLOX has designed four types of networks with different scale sizes for different application scenarios. 
Among them, YOLOX-s has the best degree of lightness and is of great significance for engineering applications. 
Therefore, this paper carries out research based on the YOLOX-s algorithm, and the network structure model 
is shown in Fig. 1.

The YOLOX-s backbone network is CSPDarknet9, which can deepen the network structure and improve 
the image feature expression while reducing network redundancy. The SPP structure is used at the end of the 
backbone network, and three maximum pooling kernels of different sizes are designed for processing to increase 
the sensory field of the network. The neck network uses three effective feature layers to construct the FPN 
(Feature Pyramid Network)10 + PAN (Path Aggregation network)11 two-way fusion feature pyramid structure, 
which performs multidimensional feature fusion on the effective features. The prediction end of the YOLOX-s 
adopts the form of decoupling, and obtains three prediction results for each.

In this paper, YOLOX is improved for the problem of poor detection of occluded targets from vehicle 
viewpoints, and an adaptive deformable YOLOX occlusion object detection algorithm is proposed. In summary, 
we make several important contributions in this work:

	1.	� We have applied adaptive deformable convolution to the backbone network of YOLOX, effectively enhancing 
the algorithm’s transformation capability for irregular geometries to adapt to complex and dynamic occlu-
sion scenes, and to strengthen the feature representation ability of occluded targets.

Fig. 1.  YOLOX network structure.
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	2.	� Coordinate attention mechanism12 is applied in the Neck part to overcome the restriction of weight applica-
tion in different channels and spatial domains, so as to improve the fusion ability of residual feature extrac-
tion for occluded targets.

	3.	� We propose the Overlapping IoU (OL-IoU) regression loss function based on the intersection and merger 
ratio (IoU)13, and a proportional penalty mechanism such as overlapping width and height is added to accel-
erate the convergence of the bounding box and increase the detection accuracy at the same time.

	4.	� The Spatial Pyramid Pooling (SPP)14 is replaced by the more efficient Fast SPP15 to balance the real-time 
and accuracy of occlusion object detection. Experiments in the occlusion scenario show that the algorithm 
improves the accuracy and real-time performance of occluded traffic object detection, which verifies the 
effectiveness of the algorithm.

Related work
Single-stage object detection
Literature16 proposed the YOLO (You Only Look Once) algorithm, which treats detection as a regression 
problem and greatly improves the detection speed, but the problem of missed detection is serious in the face 
of irregular targets and small targets. Literature17 proposed YOLO9000, which uses a joint dataset to train and 
design a Darknet19 backbone network, which improves the detection accuracy and speed, but is hindered by the 
fact that there is only one branch of detection, and it cannot be used for multi-size target detection. Literature18 
proposed SSD (Single Shot MultiBox Detector), which uses CNN to replace the fully connected layer in YOLO 
detection, and applies feature maps of different scales to detect targets of different sizes, but there is no restriction 
on the standard size, which makes the miss elected feature maps produce great detection errors. Literature9 
proposed YOLOv3 and designed Darknet53 backbone network to fill the gap of multi-size detection and used 
binary cross-entropy loss for multi-label classification, but did not consider regression loss, which made the 
localization results imprecise. Literature15 proposed YOLOv4, designed CSPDarknet53 backbone network, 
compared with Darknet53 applying deeper network and more parameters, and added some plug-ins, effectively 
balancing accuracy and real-time, but the adopted DropBlock random discard does not guarantee the diversity 
of the feature information, so there is still an indeterminable duplication of operations. Literature19 proposes 
YOLOv5 high efficiency detection model, which provides four different depths of network models to adapt to 
different detection requirements, and also applies Adaptive Anchor Box to train the customized dataset, which 
improves the operation speed. However, the manual matching rule strategy still requires empirical settings and 
poorly improves the detection of irregular targets.

YOLOX20 incorporates the anchor-free framework and decoupled head method, which reduces the tuning 
pressure of manually setting the Anchor, makes the feature learning and classification regression problems easy 
to learn, and improves the accuracy and computing speed compared with YOLOv5 models of all sizes. However, 
there is still the problem of not being able to detect effectively in scenes with a lot of occlusions. In summary, 
the object detection algorithm still has problems especially in irregular object detection. The irregular targets 
perceived in the field of intelligent traffic under the vehicle perspective are reflected in the occluded vehicles, 
pedestrians, cyclists, etc., and the variable traffic scene makes the occlusion relationship of the detection targets 
extremely complex, thus increasing the difficulty of object detection.

Occlusion object detection
The occlusion object detection algorithm is based on deep learning algorithms and optimized according to its 
own characteristics, with the aim of training a network model to cope with occlusion. Literature21 proposes 
occlusion processing techniques based on various parts of the pedestrian’s body, applying the Histogram of 
Oriented Gradients (HOG) detector to compute the classification scores of the sliding window and applying the 
sum of its responses to the global detector to reflect the possible partial occlusion of pedestrians. Literature22 
proposes a method to detect partially occluded pedestrians by determining the visible part of the object, which 
uses a discriminatively trained Deformable Parts Model (DPM) to solve the concave optimization problem 
to indicate whether the image part belongs to the target object or to the occluder. Literature23 proposes Soft-
NMS non-maximal suppression method to attenuate the scores of high overlapping prediction frames, but its 
essence is still to consider overlapping suggestion frames as false positives that cannot be accurately classified. 
Literature24 integrates deep convolutional neural networks and combinatorial convolutional neural networks, 
and utilizes a microscopically combinable layer instead of a fully-connected classification layer in order to 
achieve classification and localization of occluded targets. Literature25 uses background subtraction to simulate 
two-wheelers in a crowded scenario. Decision tree is used to evaluate the geometric features of overlapping 
two-wheelers for classification. All the above detection algorithms for occluded targets are only for a single class 
of targets and cannot be adapted to the task of occluded object detection in multi-category complex scenes. 
Literature26,27 requires manual annotation at the part level, which is associated with higher data preparation 
costs. Literature28–30, are primarily focused on processing video targets, whereas our method is more attentive to 
static images. Literature31 employs a combination of classification and proposal methods, which are less efficient 
and not suitable for complex and dynamic traffic scenarios. Literature32 concentrates on pedestrian targets, 
failing to cover various types of traffic participants, and does not address the model lightweight processing 
required for the computational demands of intelligent vehicles.

Attention mechanism for computer vision
Attention mechanism aims to enhance the ability of neural networks in judging the importance of feature 
information, and currently Squeeze-and-Excitation (SE)33, CBAM34, are mainly used in the field of computer 
vision. However, SE only considers weighting the importance of each channel by modelling the dependency 
between channel information, and ignores the importance of positional information. CBAM does not capture 
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the importance of spatial information through the use of a large-size kernel of convolution to introduce 
spatial information encoding on top of the channel information, but this approach can only capture the local 
information and not the information of long range dependencies. Based on the limitations of the above study, 
Coordinate Attention (CA)12 is proposed to decompose the 2D global pooling into one-dimensional coding in 
two spatial directions for obtaining position information and channel relationships, respectively.

OCC-YOLOX Algorithm
Deformable convolution
When conventional convolution is modelling image features, the receptive fields are all regular adjacent 
rectangles with limited geometric variation capability. However, the location and shape of the occluded targets 
cannot be predicted, requiring algorithms with the ability to adaptively perceive the target region and adjust 
the receptive fields. Deformable Convolutional Networks (DCN)35,36 provides an adaptive learnable offset for 
increasing spatial sampling points, enabling the network to have adaptive modelling capability. The deformation 
process can be described by Eq. (1).

	
y (p0) =

N∑
n=1

ωn × x (p + pn +∆pn)×∆mn� (1)

Where: ∆mn denotes the modulation scalar, and ∆mn is the sigmoid normalized modulation term allowing 
for more efficient feature level range control. p0 is the pixel of the output feature, ∆ pn denotes the offset position 
in x, ω n is the convolution weight, and pn enumerates the position in x, which can be expressed as Eq. (2). The 
sampling position of each sample point is affected by summing the offsets of each convolution position.

	 pn ∈ R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)}� (2)

Deformable convolution uses learnable offsets to describe target feature orientations, allowing the network’s 
sense field to be not limited to a fixed range and more flexible to adapt to changes in target geometry. As a 
result, DCNs are more conducive to adequate detection of complex scenes. Although DCNs do not bring 
significant extra computation, the application of a large number of DCNs increases the algorithm inference time. 
Therefore, in order to balance the inference efficiency and detection accuracy, this paper replaces the standard 
3 × 3 convolution in the FEAT3 layer of the backbone network, and adaptively changes the convolution kernel 
sampling position through the offset, and the offset process is shown in Fig. 2, which effectively adapts to the 
shape of the occluded target.

Fig. 2.  Deformable convolution offset effect.
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Fast SPP spatial pyramid pooling
YOLOX-s applies the Spatial Pyramid Pooling Structure (SPP) in the backbone network. The SPP takes the 
feature map through three different sizes of maximum pooling kernels of 5 × 5, 9 × 9, and 13 × 13 for feature 
extraction and then aggregation, which efficiently enlarges the sensory field of the network.

However, the use of multilayer concatenated convolutional kernels of different sizes would greatly enhance 
the computational difficulty and affect the detection speed of the algorithm. Therefore, the FAST SPP structure is 
utilized for replacement in the backbone network of OCC-YOLOX, and the FAST SPP structure model is shown 
in Fig. 3. Compared with the SPP structure, FAST SPP calculates three convolutional kernels as 5 × 5 pooling 
layers in series, so that the output of each pooling will become the input of the next pooling, and aggregates 
the features under different scales of the same feature map, which improves the utilization rate of the network 
parameters and reduces the difficulty of the operation.

Coordinate attention network
The CA attention module is shown in Fig. 4, where given the inputs two spatial ranges of the pooling and are 
used to encode each channel along the horizontal and vertical coordinates, respectively. encoding. Therefore, the 
output of the cth channel with height of h can be formulated as Eq. (4):

	
Zh
c (h) =

1

W

∑
0⩽i⩽W

xc(h, i)� (3)

The output of the cth channel with a width of w can be written as Eq. (5):

	
Zw
c (w) =

1

H

∑
0⩽i⩽H

xc(j, w)� (4)

And then the features are aggregated along the two spatial directions respectively, as in Eq. (6), to produce a pair 
of intermediate feature maps f  that encode spatial information in the horizontal and vertical directions.

	 f = δ
(
F1

([
Zh, Zw

]))
� (5)

where, F1 denotes the 1 × 1 convolutional transform function and δ  is a nonlinear activation function, which 
performs cascade operations on the two spatial dimensions. Then use two 1 × 1 convolution Fh and Fw encoded 
as tensor with the same channel respectively and calculate the attention weights of -two spatial directions, the 
operation process is as in Eqs.  (7) and (8), and finally the coordinate attention output can be obtained as in 
Eq. (9).

	 gh = σ
(
Fh

(
fh

))
� (6)

	 gw = σ
(
Fw

(
fW

))
� (7)

	 yc(i, j) = xc(i, j)× ghc (i)× gwc (j)� (8)

The CA attention module can satisfy the need to capture long-range dependencies along one direction while 
still ensuring accurate position information in the other direction. After adding the attention module to the 
up-sampling and down-sampling of the bidirectional FPN feature pyramid, it decides which part needs to be 
concerned, assigns the weights of different feature maps and activates them by the swish activation function, so 
that the part with smaller weights will be less concerned, and allocates the processing resources more reasonably. 
The location of the CA attention module is shown in Fig. 5.

YOLOX uses dynamic matching of positive samples to get the feature point corresponding to each real frame, 
and then takes out the predicted frame of that feature point, and uses the real frame and the predicted frame to 
calculate the IoU regression loss. IoU (Intersection over Union) is the intersection and union ratio, which is used 
to reflect the detection effect of the real frame and the predicted frame. However, it cannot accurately represent 
the way the two frames overlap, especially when the IoU is the same, the different two frames position indicates 
the regression effect is not the same, the calculation formula is Eq. (10), Such a representation is therefore flawed.

	
IoU(A,B) =

|A ∩ B|
|A ∪ B| � (9)

DIoU37 introduces the minimum outer rectangular diagonal distance between the prediction box and the real 
box to accelerate the regression to the Euclidean distance between the centroids of the two boxes, which avoids 
the phenomenon that Loss is too large to be optimised when the two boxes are far away from each other. The 
formula is expressed as Eq. (11):

	
LDIoU = 1− IoU(A,B) +

ρ2 (b, bgt)

c2
� (10)

where: c denotes the minimum outer rectangular diagonal distance between the prediction frame and the real 
frame, and b、 bgt denotes the center point of the prediction frame and the real frame, respectively.
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CIoU37 adds the factor of aspect ratio consistency between predicted and real frames on the basis of DIoU, 
and the formula is as in (12). Where, α  is the weight factor, which indicates the proportion of the consistency 
case in joining the consistency loss, and ν 1 indicates the metric aspect ratio consistency, and the formula is 
calculated as Eq. (13):

	
LCIoU = 1− IoU(A,B) +

ρ2 (b, bgt)

c2
+ αv1 � (11)

Fig. 3.  FAST SPP structural model.
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Fig. 4.  CA Attention Module Diagram.
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v1 =

4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

� (12)

	
α =

v1
1− IoU(A,B) + v1

� (13)

EIoU38 splits the aspect ratio on the basis of CIoU, and considers the consistency of the width and height of the 
overlapped part and the width and height of the smallest external rectangle respectively, and the formula is as 
(15). Where cw denotes the width of the minimum outer rectangle, ch denotes the width of the minimum outer 
rectangle, Iw denotes the width of the overlapping part, and Ih denotes the height of the overlapping part. The 
EIoU makes it clearer that the width and height are respectively the real differences with their confidence levels, 
which promotes the effective optimisation of the model.

	
LEIoU = 1− IoU(A,B) +

ρ2 (b, bgt)

c2
+

(cW − Iw)
2

c2W
+

(ch − Ih)
2

c2h
� (14)

In this paper, we propose OL-IoU, which introduces the consistency factor of the aspect ratio of the predicted 
frame to the real frame ν 1 and the consistency factor of the overlapping aspect-accelerated regression ν 2 on 
the basis of EIoU. Among them, ν 1 is the same as the representation in CIoU, and ν 2 is calculated as Eq. (16):

	
v2 =

4

π2

(
arctan

Iw
cw

− arctan
Ih
ch

)2

� (15)

where, β  is the weight coefficient, which indicates the proportion of the accelerated regression consistency case 
in the joining consistency loss, and the larger value indicates that the detection frame width and height can be 
closer to the real frame at the same time. the OL-IoU calculation formula is expressed as Eq. (17):

Fig. 5.  Enhancement of the structure of the feature extraction section.
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LoL−IoU = 1− IoU(A,B) +

ρ2 (b, bgt)

c2
+

(cw − Iw)
2

c2W
+

(ch − Ih)
2

c2h
+ αv1 + βv2� (16)

Design β ν 2 Overlapping width and height accelerated regression consistency penalties are used to promote the 
approach of predicted frames in both directions of width and height to the real frames with equal speed, avoiding 
that a single direction cannot achieve the purpose of maximising the optimization. At the same time, this 
design more encourages that the approach of the target frame in a single direction can promote the equivalent 
operation in the other direction, even if the overlap area reaches an increase of 2D square degree, accelerating 
the improvement of IoU. it is schematically shown in Fig. 6 below, where (a) is the intersection-parallel ratio 
representation without adding the overlap width-height accelerated regression consistency penalty, and (b) 
indicates that the prediction frames are more active after adding the overlap width-height accelerated regression 
consistency penalty closer to the real frame. By improving the YOLOX model above, the OCC-YOLOX1 as 
shown in Fig. 7 is finally obtained.

Experiments
Experimental environment
In order to verify the effectiveness of the proposed algorithm in this paper, the experimental environment uses 
Windows 10 platform and PyTorch deep learning framework, RTX 3060Ti graphics card, i7-11700 F processor. 
Python programming language was applied for programming development. ANACONDA was used for 
environment management and VSCODE was used for IDE.

Datasets preprocessing
Due to the adaptability of detecting occluded objects scenes, a large number of multi-target occlusion scenes 
need to be selected. Secondly, in order to meet the needs of in-vehicle viewpoint detection, it is necessary to 
select in-vehicle viewpoint traffic target public datasets, such as KITTI39, CityPersons40, and BDD100K41. The 
KITTI dataset is based on the in-vehicle camera captured more than 10,000 real image data of multiple 
scenes, labelled with eight types of traffic targets, which include various degrees of occlusion and truncation. 
CityPersons The Cityscapes in-vehicle dataset contains 5,000 images of pedestrians, including a large number 
of pedestrian occlusion scenes, and the BDD100K dataset collects more than 100,000 images based on the in-
vehicle viewpoint, including different lighting, weather, and other scenarios, and annotates 10 types of traffic 
targets. The above three datasets meet the requirements of the experimental scenarios, so this paper integrates 
the public datasets KITTI 7481, CityPersons 1599, and BDD100K 2500 images, a total of 11,580 images, as the 
data source for training and testing, and the selection of images pays special attention to the occlusion scenarios. 
As shown in Fig. 8, the three selected dataset image samples are shown.

Firstly, we choose KITTI dataset label form as a sample, intercept the category, degree of occlusion and 2D 
bounding box coordinates in the labels of the three datasets, and convert the TXT label format to VOC format 
uniformly and reconstruct the picture names. Secondly, we merge similar targets with different category names 
in different datasets, such as merging Human, Person, and Pedestrian into Pedestrian, and finally establish the 
vehicle view occlusion object detection dataset with five categories of targets (Car, Pedestrian, Truck, Van, and 
Cyclist). The occlusion object detection dataset is divided into training set, test set and validation set according 
to 8:1:1.

Evaluation indicators
The evaluation metrics reflect the model performance by applying the precision-recall (P-R) curve and the 
detection speed FPS (Frames Per Second). The IoU threshold takes the value of 0.5, in which the average 
precision of a category is, and the mean average precision (mAP) is the average precision of each category. 

1  [Online]. Available at https://github.com/Bryceder/OCC-YOLOX.

Fig. 6.  Schematic diagram of overlapping IoU regression.
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Detection speed FPS indicates how many frames per second can be detected, the larger the FPS, the higher the 
detection speed and the higher the real-time performance.

Model training
A single GPU is trained with 300epoch, batch size is 8, adam optimizer is selected, momentum is 0.937, learning 
rate is set to stochastic gradient descent, initial learning rate is 0.001, and minimum learning rate is 0.00001.

The model training results are shown in Fig. 9. The left side of the figure represents the change in training loss 
over time, The right side of the figure shows the change in training accuracy for each round. It can be observed 
that the OCC-YOLOX algorithm reaches the peak accuracy at the 210th round.

Results and discussion
Model testing
The model performance is tested in the test set of the fusion dataset and compared with the YOLOX model, and 
the comparison results are shown in Table 1 below. In addition, the model test visual image comparison results 
are shown in Figs. 10, 11, 12, 13, 14 and 15, where Figs. 10, 11 and 12 are the occlusion scene images selected in 
the test set of the public dataset, and Figs. 13, 14 and 15 are the test images of the occlusion scene collected by 
ourselves. The left side (a) shows the YOLOX model test results, and the right side (b) shows the OCC-YOLOX 
model test results. As can be observed from the visual comparison, the OCC-YOLOX algorithm demonstrates 

Fig. 8.  Sample plot of data set selection.

 

Fig. 7.  OCC-YOLOX structural model.
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significant improvements in detecting occluded objects compared to YOLOX. As shown in Fig. 10, OCC-YOLOX 
effectively detects small and occluded objects at a distance, demonstrating its ability to focus on distant targets 
with occlusion. Figure  11 illustrates the superior performance of OCC-YOLOX in detecting closely packed 
pedestrians in the near field within the KITTI dataset. Figure 12 highlights the improved attention given by 
OCC-YOLOX to occluded vehicles on the opposite lane in nighttime scenarios. Figures 13 and 14 showcase the 

Fig. 10.  Comparison of test results on CityPersons dataset.

 

Accuracy (%) Recall rate (%) AP (%)

YOLOX OCC-YOLOX YOLOX OCC-YOLOX YOLOX OCC-YOLOX

Car 91.62 92.12 68.89 69.31 79.77 81.37

Van 86.1 87.17 80.46 81.23 85.7 86.52

Truck 74.55 76.95 55.56 55.56 63.56 63.18

Cyclist 85.86 86.54 53.35 52.93 63.02 66.19

Pedestrian 86.14 86.82 45.22 45.7 58.22 60.70

Table 1.  Comparison of YOLOX, OCC-YOLOX accuracy, recall, and AP values. The metrics of the OCC-
YOLOX are presented in bold.

 

Fig. 9.  Comparison of average accuracy.

 

Scientific Reports |        (2024) 14:27644 11| https://doi.org/10.1038/s41598-024-78959-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


higher detection rate and reduced false positives of OCC-YOLOX in complex and congested traffic conditions 
within the campus environment. Lastly, Fig. 15 reveals the robustness of OCC-YOLOX in detecting occluded 
targets under challenging conditions of snowy weather and low visibility at night. These results collectively 
demonstrate the effectiveness of OCC-YOLOX in addressing the challenges of occlusion in diverse scenarios.

Ablation experiments
The results of applying the validation set to compare the average accuracy and detection speed of each 
improvement scheme are shown in Table  2. Replacing the adaptive deformable convolution led to a 0.77% 

Fig. 13.  Comparison of Car and Pedestrian test results.

 

Fig. 12.  Comparison of test effects on BDD100K dataset.

 

Fig. 11.  Comparison of test effects on KITTI dataset.
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increase in accuracy while still meeting real-time performance requirements. The theoretical rationale behind 
this improvement lies in the ability of adaptive deformable convolution to dynamically adjust the convolutional 
kernel based on the shape and position of the target, effectively extracting target features in occlusion scenarios. 
Implementing Fast SPP resulted in a 10.42 FPS increase in detection speed without any significant degradation in 
accuracy. This improvement is attributed to the simplification of the spatial pyramid pooling structure, reducing 
computational burden while maintaining the capability for multi-scale feature fusion, enabling the model to 
efficiently handle targets of various sizes. The addition of the CA module led to a 0.86% increase in accuracy. This 
module enhances the model’s ability to focus on occluded targets by emphasizing their positional information, 
thereby improving detection accuracy in complex occlusion scenarios. Replacing the IoU loss with OL-IoU loss 
resulted in a 0.18% increase in accuracy. The OL-IoU loss functions more accurately in evaluating the overlap 
between the predicted and ground truth bounding boxes, especially in cases of partial occlusion, aiding in more 
precise regression of the bounding boxes. Overall, the refinements implemented in the OCC-YOLOX algorithm 
have concurrently preserved real-time responsiveness and markedly enhanced its accuracy in detecting objects 
amid occlusions. These enhancements have not only been corroborated through experimental validation but 
also enjoy a robust theoretical underpinning.

Modelling Adaptive deformable convolution Fast SPP CA Attention Module OL-IoU mAP (%) Detection speed/FPS

YOLOX 69.86 70.80

OCC-YOLOX

√ 70.82 57.60

√ √ 70.74 68.02

√ √ √ 71.60 65.23

√ √ √ √ 71.78 68.55

Table 2.  Ablation study of OCC-YOLOX modules.

 

Fig. 15.  Comparison of Car test results at night and in snowy weather.

 

Fig. 14.  Comparison of Car and Cyclists test results.
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Comparison of models
Table  3 shows the comparison between the method proposed in this paper and the current mainstream 
single-stage object detection algorithms in terms of average accuracy, detection speed, model size, and model 
complexity. The algorithm’s metrics of mAP, Detection speed, and Model weight size were obtained after training 
on the occluded object detection dataset. Through the comparison, it can be concluded that the accuracy of the 
OCC-YOLOX algorithm has achieved competitive results with YOLOv7, while also surpassing other mainstream 
algorithms. At the same time, the advantage of our work lies in achieving a balance between detection precision 
and speed. Although the accuracy of OCC-YOLOX is 2.39% lower than that of YOLOv7, its detection frame 
rate is 93.7% higher than YOLOv7, and the model complexity and size are less than a quarter of YOLOv7, with 
the added benefit of being lightweight compared to other mainstream algorithms. Therefore, the OCC-YOLOX 
algorithm has more advantages in applications with an onboard perspective.

Conclusions
In this paper, for the occluded target in vehicle view object detection, based on the single-stage algorithm YOLOX, 
integrating the backbone network, neck network, and multiple improvement methods of the loss function, we 
propose the occluded object detection algorithm OCC-YOLOX. fusion of three public datasets and self-picked data 
to validate this paper’s algorithm, which proves the effectiveness of the algorithm. The conclusions are as follows:

	(1)	� The OL-IoU is proposed, and overlapping width-height accelerated regression consistency penalties are 
designed to facilitate the regression of prediction frames with equal speeds in both the width-height direc-
tions, which improves the real-time performance of the algorithm.

	(2)	� Adaptive deformable convolution is used to replace the traditional backbone convolution and change the 
spatial distribution of feature points to make it more flexible to adapt to the change of target geometry, 
which effectively improves the object detection accuracy of the occlusion scene. The number, size and con-
nection of spatial pyramid pooling kernels are simplified using FAST SPP, which effectively improves the 
efficiency of detection. Adding coordinate attention in enhancing the feature extraction part, using two-di-
mensional information improves the ability of the convolutional network to judge the importance of feature 
information, which in turn improves the algorithm’s feature extraction ability.

Additionally, for heavily occluded objects, the algorithm can only detect their approximate location and 
shape. It is unable to recover the complete object information, and the algorithm currently does not address 
the understanding of occlusion relationships. Therefore, it cannot yet be applied to scenarios requiring scene 
understanding. In future work, we plan to collect more data from extreme occlusion scenarios. We will enhance the 
algorithm’s robustness in these scenarios through techniques such as data augmentation and model refinement. 
Additionally, we will explore the modeling of occlusion relationships to achieve a better understanding of the 
occlusion relationships between occluded objects.

Data availability
The data that support the findings of this study are openly available in KITTI dataset at ​h​t​t​p​s​:​/​/​w​w​w​.​c​v​l​i​b​s​.​n​e​t​/​
d​a​t​a​s​e​t​s​/​k​i​t​t​i​/​r​a​w​_​d​a​t​a​.​p​h​p​; BDD100K datasat at https://www.bdd100k.com/ ; CityPersons dataset at ​h​t​t​p​s​:​/​/​w​
w​w​.​c​i​t​y​s​c​a​p​e​s​-​d​a​t​a​s​e​t​.​c​o​m​/​.​​
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