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The cut method is a computational approach utilized to predict the fundamental activities of
physicochemical properties of chemical networks, also called topological indices. The connection
number is a new idea, that gives interesting and good results of the topological indices (Tls) and
entropy measures (EMs) for structural representation of chemical compounds and networks. The
physical density of chemical networks is characterized by these indices. In this paper, we determined
the computational results for indices based on connection numbers for a two-dimensional lattice sheet
of hydrogen-bonded boric acid. Boric acid, an inorganic compound, is not very harmful when applied to
the skin or consumed. Finally, graphical and numerical comparisons of topological numbers including
the number of borate hydrogen-bonded double lattice forms are also included in this study.

Keywords Connection numbers, Entropy measures, Topological indices, Boric acid hydrogen-bonded 2D
lattice sheet

In mathematical chemistry, chemical graph theory uses graph theory to explore the topological structure or
networks of chemical compounds. Chemical graph theory is fruitful in many areas of mathematical chemistry.
Atoms and their bonds in a chemical structure are represented by the vertices and edges of the chemical graph,
respectively. Graph theory is crucial for predicting molecular structure using the Topological Index (TI)!. TI’s
research is important for drug research and provides insight into molecular behaviour and properties. These
parameters derived from molecular imaging provide a numerical approximation of specific molecular features
that are non-uniform in image migration. Their importance lies in the ability to measure the difference between
physical or chemical processes based on changes in molecular structure. The TTs assist in the numerical
evaluation of molecular structures, providing a real way to measure physicochemical and structural properties
prior to compound production®. By examining changes in index values, researchers can capture connections
or expectations between molecular structures and desired functions or properties, such as mutagenicityor
carcinogenicity, given by>.

The hypothetical work has significant ability to streamline drug design processes, identifying potent anti-
HIV agents*, anti-cancer compounds®, lowering support on costly trial-and-error synthesis approaches. The
flexibility of topological indices increases theoretical explorations, advancing in organic synthesis planning,
compound classification, and bioactivity estimations. While these techniques have indicated varying degrees
of success, ongoing innovations in chemical and topological knowledge, linked with the incorporation of
information technology, are estimated to improve their reliability and efficiency in the future.

This article related with the application of entropy measures and other topological indices in molecular
descriptors to assess structure-function relationships of different molecules and materials. It discusses recent
improvements in entropy measures and their connection with other topological indices, such as information
theoretic indices. The aim is to determine the appropriate topological indices and their entropy measures for
some molecular structures. Graphs are very important for characterizing and studying molecules and atoms,
with vertices and edges, denoting atoms and bonds. The analysis of graph complication via entropy has been
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considered by various disciplines, including computer science, statistical physics, chemistry, and life sciences.
Entropy measures have been used in several research areas, including chemical sciences, mathematical
information theory, social sciences, ecology, health sciences, and genetics.

The Randic index-formerly known as the branching index-is especially helpful for determining how much
a saturated hydrocarbon’s carbon atom framework is branching. The first and second Zagreb indices were
first introduced in® by Gutman and Transjistic, who utilized them to explain branching problems. The study
of chirality’, molecular complexity®®, ZE isomerism!?, and benzenoid hydrocarbons!! includes the fields in
which these Zagreb indices and their different types are used. Furthermore, the overall Zagreb indices are used
to find multilinear regression models!>!. According to'*!°, the connection between the ABC index and the
thermodynamic properties of alkanes are considerable. To learn more about the calculation of graph topological
indices, see'6~1°.

Recently a new concept, the connection number based indices are introduced and the researchers have started
working on these connection number based TIs rapidly. Tang et al.2’ and Ali et al.?! determined exact values of
connection number based indices and their modified versions for subdivision-related operations on graphs. Cao
et al.?2 gave the upper bounds for connection based Zagreb indices of product-related graphs. Ahmad et al.*
exact values of connection number based indices for Backbone DNA Networks. The connection number based
indices for cellular neural networks?!, wheel related graphs®, triangular chain structures®® and Skin Cancer
Drugs?’ are calculated. Further article related to connection number indices are listed in?®-.

In the discipline of topological indices, entropy measures are being used more and more because they provide
practical information on the information content and fundamental complexity of molecular networks®!. The
measurement of fundamental complexity and multiplicity in molecular graphs is one of the most familiar utilities
of entropy measures in topological indices®’. The degree of disorder or uncertainty in molecular structures can
be determined using entropy-based indices; this degree of uncertainty is normally associated with properties
like molecular stability, reactivity, and biological activity®®. Several entropy metrics have been particularly
constructed to be used with topological indices*!. Additionally, entropy metrics in topological indices are helpful
in a variety of fields, including bioinformatics, materials science, chemoinformatics, and drug discovery, see®~7.
The concept of entropy was introduced by Chen et al.*%, and is defined as
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1. The first Zagreb connection index entropy: if Q(p<) = (fp + 53) . Then
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By using this equation in Eq. (1.1), we get the first Zagreb connection index entropy:

1 5/!+‘fi¢
ENTrzcrq) = log(FZCI(G)) - FZCI(G) 10%{ H [@; + 5%} g } (1.3)
9SEE(G)

2. The second Zagreb connection index entropy: if Q(p<) = (gs, X fg) . Then
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By using this equation in Eq. (1.1), we get the second Zagreb connection index entropy:

1 EoxEy
ENTszcrq) = log(SZCI(G)) — SZCIG) 108‘{ H [fga X 5%} } (1.5)
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The remaining entropies were found in***, that are defined as:

3. The Randi¢ connection index entropy: if Q(pJ) = ( \/517) Then
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By using this equation in Eq. (1.1), we get the Randi¢ connection index entropy:

1
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[ 1
psenie) -V X &

4. The sum connectivity connection index entropy: if Q(p L ) . Then
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By using this equation in Eq. (1.1), we get the sum connectivity connection index entropy:
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By using this equation in Eq. (1.1), we get the atom-bond connectivity connection index entropy:
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6. 'The geometric-arithmetic connection index entropy: if Q(p<) = 2VEXES hen
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By using this equation in Eq. (1.1), we get the geometric-arithmetic connection index entropy:
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7. the augmented Zagreb connection index entropy: if Q(p<) = < 55‘25—‘2) . Then
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By using this equation in Eq. (1.1), we get the augmented Zagreb connection index entropy:
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8. The symmetric division degree connection index entropy: if Q(p<J) = (%) . Then

SDDCI(G) = Z ( +£) Z Q(pS), (1.16)

X
pSeB(G gSJ g\;

By using this equation in Eq. (1.1), we get the symmetric division degree connection index entropy:
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9. The harmonic connection index entropy: if Q(p<) = ( 3 +&) Then
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By using this equation in Eq. (1.1), we get the harmonic connection index entropy:
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10. The inverse sum connection index entropy: if Q(pS) = (2;?) . Then
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By using this equation in Eq. (1.1), we get the inverse sum connection index entropy:
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Main results

In this study, we determined the TIs and entropy measures based on connection numbers for the structure of
boric acid. Boricacid, is well known an inorganic compound used for cleaning and food preservation, its chemical
formula H3BO3 or B(OH)3, also known by several names such as orthoboric acid, boracic acid, hydrogen
borate, and acidum boricum, it has been utilized since ancient Greece*>*!. This flexible material is used in many
different productions, such as the production of jewellery, LCD displays, nuclear reactors, pH-regulating buffers
in swimming pools, lubricants and flame retardants. The importance of boric acid in the discipline of inorganic
chemistry cannot be exaggerated?®!. The solubility of the chemical is significantly influenced by temperature.
In order to control neutron reactivity in the core of the reactor, boric acid is dissolved in the reactor coolant
and acts as a soluble neutron absorber, soluble poison, or chemical shim??. The existence of a high boron level
shows the commencement of a fuel cycle and acts to balance additional reactivity within the core**. Fuel burn-
up, temperature changes, core reactivity, and the build-up of additional poisons such as xenon and samarium
all influence to the quantity being decreased throughout the fuel cycle*’. The first crystals of boric acid were
constructed by Wilhelm Hornberg in 1702, who named it sal sedativum Hombergi (sedative salt of Hornberg).
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Fig. 1. Unit cell of boric acid hydrogen-bonded 2D lattice sheets.

€+ €3) | No. of Edges
23) 2p+4q+2
(33) 2p+6q+6
(34) dp+4q —4
3.5) 4p+8q+4
(
(
(

4,4) 24pg + 2p + 6g — 6
4,5) 2p+4q+2
4,6) 12pg — 6

Table 1. The edge partition of B, , based on the connection numbers of the end vertices.

In the construction of boric acid, planar BO3 units are bonded by hydrogen bonds, forming a polymeric layer
structure, boric acid is considered as a 2D sheet in the Fig. 2, for further detail*.

In this section, we computed topological indices for the boric acid hydrogen-bonded 2D lattice sheets using
the data from the edge partition with connection numbers. The Fig. 1 is a graph of Unit cell boric acid hydrogen-
bonded 2D lattice sheets. Let the graph B2, , be a boric acid hydrogen-bonded 2D lattice sheets with E, g
are edges with end vertices have connection number £, and &g. The order and size of the graph B, , are
28pq + 14p + 28¢ and 36pg + 16p + 32¢ — 2. We partitioned the edges based on the connection numbers of the
end vertices are as follows: 2, 3; 3, 3; 3, 4; 3, 5; 4, 4; 4, 5; 4, 6. Now, we determine the cardinalities of these edge
partitions. The number of edges of each type (&, {&s) are shown in Table 1

Topological indices
By using the values of Table 1, the first Zagreb connection index calculated as:

FZCIBAN) = > (&+&)

©SEE(BASH,.q)
=(2p+4¢+2)2+3)+(2p+6¢+6)(3+3)+(dp+4g—4)3+4)+ (4p+8¢+4)(3+5)

+ (24pg +2p +6q — 6)(4 +4) + (2p + 4g + 2)(4 + 5) + (12pg — 6)(4 + 6) (2.22)
= 312pq + 116p + 232q — 40

By using the values of Table 1, the second Zagreb connection index calculated as:
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SZCIBAN,) = > (& x&)
PIEE(BAD,,q)
=(2p+4¢+2)2x3)+(2p+6¢+6)(3x3)+ (p+4g—4)(3x4)+ (4p+8g+4)(3 x5)
+ (24pg + 2p + 6 — 6)(4 x 4) + (2p + 4 + 2)(4 x 5) + (12pg — 6)(4 x 6) (2.23)

= 672pq + 210p + 422q — 122

By using the values of Table 1, the Randi¢ connection index calculated as:

RC(BAH,,) = -
" g)qEE%ZU’)I,,‘ (\/m)

= (2p+4q +2)( ! )+ (2p + 6g + 6)( ! )+ (4p +4q — 4)( ! )+ (4p +8q+4)( ! )
B V2x3 T Vixg rTH Vaxa TP 3x5
1 1 1
+ (24pg+2p+6g — 6 + (2p+4g + 2)(———) + (12pq — 6)(—
(24pq + 2p + 6q )(\/m) (2p+4q )(m) (12pq = 6)(——=)
46 V6 7T 23 415 VB 206 7T 23 8/15 25 (2.24)
=(6+— — o+ + +—|p+ =+ +
( 3>pq+<s R R TR L S R 5 5 )1
6 1 2v3 4V15 5
V61 2vB VIS VG
6 2 3 15 )
= 8.4495pq + 4.6179p + 9.2477q + 0.41702
By using the values of Table 1, the sum Connectivity connection index calculated as:
SCCIBAG,,) = > (ﬁ)
OIEE(BAR, ) P TeS
1 1 1
=(2p+4q+2)(——=) + (2p+6q + 6)(——) + (dp+ 4g — 4)(——=) + (dp+8g + 4
(2p +4q )(m) (2p +6q )(m) (4p+4q )(m) (4p+8q )(\/—
1 1 1
+ (24pg+2p + 6 — 6 + (2p+4g + 2)(——) + (12pg — 6)(—
(24pq +2p + 6q )(m) (2p+4q )(m) (12pq )(m)
8 2v5 6 47 3v2 2 45 4T T
6v2 + = \ﬁ ﬁ+£+ {+i+¢ p+ (251 v {+i g 229
5 7 2 3 5 7 2
§ 4f _Y2,2 N
2 3 5
— 12.280015 5pq + 6.01 )108p + 12.033¢ — 0.1058
By using the values of Table 1, the atom-bond connectivity connection index calculated as:
S Ey—2
ABcCI®A,,) ~ Y [
BB, & X &3
[ Jx
24+3-2 3+3-2 34+4-2
=2p+4q+2 2 Ap +4q —4
(2p +4q + 2/ 5=+ @+ 60+ 6)\ [ - ==+ (p+dg — 4/
34+5-2 44+4-2 445-2
y 4 9 _
+ (4p+8q+4) %5 + (24pg + 2p + 6g — 6) x4 +(2p+49+2) T
4+6-2
+ (12pq — 6)\ | ————
(2 =00\ =155 (2.26)
16 4 2v15  4v10 35
6\f+qu+ V2+ o+ +££ \/_jp
3 3 5 2
+<2\/§+4+2\éﬁ+8@+3\2@ 2v/35 4_2? 4@_¥+\/—5_2\/§
) 5 o) )

= 21.6251pq + 10.267p + 20.510¢ — 0.5932

By using the values of Table 1, the Geometric-arithmetic connection index calculated as:
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(94 . 32\/6> » (4\/ s mf = 8\f> <a\/ 16\/ o 10\/>
5
- 8{0 - 10;/3 + V15 + ¥
= 35.7576pq + 15.780p + 31.599q — 2.0177
By using the values of Table 1, the augmented Zagreb connection index calculated as:
~ 3
azonman,) = Y (FE)
OSEE(BA,) b ts
2x3 \3 3X3 \3 3x4 \3
=2p+4¢+2)( 75— 2p+6q+6)( ——F——= dp+4q—4)\ 77—
(Gp g+ )(2+3 5) oot >(3+3 5) (g )(3+472>

(4p+8q+4)(5+r%52) + (24pg + 2p + 6q — )(i)-5+(2p+4q+2)<%>3

it4-2 it5 029)
4% 6 \3 2.28
12pq — (7>
+(2pa =055
_ 984 SUB3ITSGAO 6022267633 1698572383
=9 P47 3704000 P 12348000 ¢ 12348000
— 779.1111pg + 241.15p + 487.71¢ — 137.58

By using the values of Table 1, the symmetric division degree connection index calculated as:

2483
SDDCI(BUAN,,) = Z ; X §i>
POEE(BAD,) Y O
92 4 32 32 4 32 F+4
=Gy tg+2) (o) + @k o0 (o) + (a9 (o)
32 4 52 £44 SR
g4 () + @4+ 260 = 0) (S ) + 4029 (S ) .09
52+52
+(12qu6)<4x6)

248 203 202 23
=3 + <P + A T4pq + 33.833p + 67.333¢ — 3.8333

By using the values of Table 1, the harmonic connection index calculated as:
2
HCI®BAD,) = Y ()

OSEB(BASp ) ftés
=(2p+4 +2)< 2 )+(2 +6 +6)< = >+(4 +4 4)( 2 )+(4 +8 +4)( 2 )
=\p T 213 P 313 P 3+4 ped 3+5

(24pq+2p+6q—6< ) 2p+4q+2)<4i>+(12pq—6)<ﬁ> (2.30)

46 2869p  5753q 203 _
=— —— — = 8.4 4.554 131 4017
5P¢1+ 630 + 530 +630 8.4pq + 4.554p + 9.1317q + 0.40159

By using the values of Table 1, the inverse sum connection index calculated as:

ISCI(BAD,,) = Z (M)

er &+ &
OB (DA, ,)
(QPH(ZH)(HE’) (2p+6q+6)<3+5)+(4p+4q—4)<3><4) (4p+8q+4)<3i5)

+tpg 20+ 60— 0) (7o) + @040+ 2 (T2 + (120 - 6) () (2.31)

4+6
432 17767 17812 1249
7?pq+wp+ 315 q—ﬁ7768pq+28202p+060—16q—9912/
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(p,q) | FZCI(BAH,,) | SZCI(BAN,,) | RC(BAUSH,,) | SCCI(BAN,,) | ABCCI(BAH,,)

(5.5 | 9500.0 19838.0 280.99 397.11 693.90

(6,6) | 13280.0 27862.0 387.80 550.23 962.57

(7,7) | 176840 372300 511.49 727.92 1274.6

(8,8) | 227120 47942.0 652.11 930.16 1629.6

(9.9 | 28364.0 59998.0 809.62 1157.0 2028.0

(10, 10) | 34640.0 73398.0 984.03 1408.3 2469.7

(11, 11) | 415400 88142.0 11753 1684.3 2954.6

(12, 12) | 49064.0 104230.0 1383.5 1984.7 3482.7

(13,13) | 57212.0 121660.0 1608.5 2309.7 4054.1

(14, 14) | 65984.0 140440.0 1850.7 2659.5 4668.7
Table 2. The numerical values of connection number-based T1Is of BS), ;.

(p,q) | GACI(BAS,,) | AZCI(BASH,,) | SDDCI(BASH,,) | HCI(BAN,,) | ISCI(BAS,,)

(55 [11288 22985.0 2352.1 278.83 2333.8

(6:6) | 1569.6 32283.0 3267.2 384.91 3263.4

(7.7)  |2081.9 431410 4330.3 507.80 4346.5

(8,8) |2665.5 55556.0 5541.6 647.48 5583.3

(9.9 |3320.8 69529.0 6900.7 803.98 6973.6

(10,10) | 4047.6 85061.0 8407.8 977.26 8517.6

(11,11) | 4845.9 102150.0 10063.0 1167.4 10215.0

(12,12) | 5715.8 120790.0 11866.0 1374.2 12066.0

(13,13) | 6656.9 141000.0 13817.0 1597.9 14071.0

(14, 14) | 7669.8 162780.0 15917.0 1838.4 16230.0

Table 3. The numerical values of connection number-based T1Is of ‘BRS), ;.

The numerical values of connection number-based of all above TIs for B2, , are shown in Tables 2 and 3 (Fig.
2).

Entropy measures
By putting the value of Eq. (2.22) in Eq. (1.3), we obtain the first Zagreb connection index entropy as:

log { H (&, + £q) &) }

©SEE(G)

. 1
E]\ TFZC[(‘BQUJ[J.q) = l()g(FZC[(%Q[f)I,Q)) — Wmﬁpq)

1 .

— loo . — _ 5 ~ (Eotés)

= log(312pg + 16p + 2320 = 40) = 50 G, T 2300 — 10 { ,\Idl( o (6 + &)™ }
[eN1 B

1 ’ 5
log {2”32451%7 (p+2¢+1)

 312pq + 116p + 232¢ — 40
(p+3<1+3)(p+q—1)(12pq+p+3q—3)(8pq—3)}

5 (2.32)

= log(312pq + 116p + 232q — 40)

By putting the value of Eq. (2.23) in Eq. (1.5), we obtain the second Zagreb connection index entropy as:

1 o e
ENTszc1mus,,) = 108(SZCT(BANH,.,)) — 7SZCI(£BQU§, 3 log{ H (€p X )& xég) }
& pSEB(Q)
1
— log(672pq + 210p + 422 — 122) — ] { X & “M‘d‘)}
08(072pg + 210p + 422q = 122) — o s — 120 8 (\g«,) (& > &)
[eR] 7)
1 (2.33)

= log(672pq + 210p + 422 — 122) > log {2215375535 (p+2¢+1)7°

T 672pq + 210p + 4229 — 1
(p+3¢+3)(p+qg— 1)(12pq+p+3q73)(8mf3)}

By putting the value of Eq. (2.24) in Eq. (1.7), we obtain the Randi¢ connection index entropy as:
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Fig. 2. Boric acid hydrogen-bonded 2D lattice sheets.

1

ﬂ
x
o)
&
——

ENTRC(%QI&,)7,,) = log(RC(‘BQ%p:q))

I { 11 L
RC(%QLVJP(I) 0S€B(G) m

= log(8.4495pq + 4.6179p + 9.2477¢ + 0.41702)

1
1 1 VEpxEy
"~ S405pq + 4.6170p + 0.2477q + 041702 2 { 11 JE X & } (234)
' ' ’ ’ PSEE(G) p >

= log(8.4495pq + 4.6179p + 9.2477¢q + 0.41702)

1 3
- 1 {44.352 2 +1 3¢+3
8.4495pq + 4.6179p + 9.2477¢ + 041702 ° (p+2¢+1)* (p+3q+3)

(b 1) (12pg +p+3¢ —3) (Spg — 3) }

By putting the value of Eq. (2.25) in Eq. (1.9), we obtain the sum connectivity connection index entropy as:

1 1 \/50]*75“:
ENTscernmsas,,) = og(SCCI(BASH, ) — SCCT®An,,) log{ H \/ﬁ }
D, © R

©S€E(G)
= log(12.280015pq + 6.0108p + 12.033¢ — 0.1058)

1
1 1 Véptés
T 12.280015pg + 6.0108p + 12.033¢ — 0.1058 log{ 11
. pg + 0.0108p + 12.033¢ — U. wsene \VE T& (2.35)

= log(12.280015pq + 6.0108p + 12.033¢ — 0.1058)

1 ‘
. ] {39.626?2 2 +1)° (p+3¢+3
12.280015pg + 6.0108p + 12.033g — 0.1058 2 P2(p+ 20+ 1) (p+3¢+3)

(b+a—1)(12pg+p+3q - 3) (Sp0 - 3) }

By putting the value of Eq. (2.26) in Eq. (1.11), we obtain the atom-bond connectivity connection index entropy
as:

Scientific Reports |

(2024) 14:27807 | https://doi.org/10.1038/s41598-024-79168-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

ENTapccisas,, = og(ABCCI(BASH, ) — ABCCI(BAS,,) log { & x &
4 OS€E(G) p 58

5&?@2*‘2
1 H <\/§«>+§s—2> i }
=log(21.6251pg + 10.267p + 20.510¢ — 0.5932)

_ log {
21.6251pq + 10.267p + 20.510g — 0.5932 ° €, % &

VSEE(G) (2.36)
= log(21.6251pg + 10.267p + 20.510¢ — 0.5932)
1

" 21.6251pg + 10.267p + 20.510¢ — 0.5932
(p+a—1)(12pg +p+3q—3) (Sp0 - 3) }

log {68.21376 (p+2q+ 1) (p+ 3+ 3)

By putting the value of Eq. (2.27) in Eq. (1.13), we obtain the geometric-arithmetic connection index entropy as:
2/Epx&y

1 2/€, x &\ VO
ENTgacisas,,) = l0g(GACIH(BAN, ) — 5 ~77mmre 108 { H < }
GACT(®n,,) L 11 \Te e
— 10g(35.7576pq + 15.780p + 31.599¢ — 2.0177)
2/€pxEs

1 2 f@ X &g fotis
T 35.7576pq + 15.780p + 31.599¢ — 2.0177 bg{ 11 £+ & }
-(5976pg + 15.780p + 31.599¢ — 2. pSEB(G) grey (2.37)
= log(35.7576pq + 15.780p + 31.599¢ — 2.0177)
1

© 35.7576pq + 15.780p + 31.599¢ — 2.0177
(p+q—1)(12pg+p+3q—3) (8pq—3)}

log {469‘06368 (p+2¢+ 17 (p+3¢+3)

By putting the value of Eq. (2.28) in Eq. (1.15), we obtain the augmented Zagreb connection index entropy as:

§pxEg 3
| Ex & ) 5
E]VTAZ(;[(%QW) a) = log(AZC](%Q[ﬁpq)) - log H <( : )
a AZCI(BAR,,) { I BN }
= log(779.1111pq + 241.15p + 487.71q — 137.58)
Epxés \3
A)

1 fg«) X 5‘3 3 (5"“372
- il I () i
779.1111pq + 241.15p + 487.71q — 137.58 Eo+&—2
PSEE(G) (238)
= log(779.1111pq + 241.15p + 487.71q — 137.58)

1
©779.1111pq + 241.15p + 487.71q — 137.58

(p+qf1)(12pr+p+3q73)(8pq73)}

log {1.4856704 X 10 (p+2¢ + 1) (p+ 3¢ + 3)

By putting the value of Eq. (2.29) in Eq. (1.17), we obtain the symmetric division degree connection index

entropy as:
2462
1 24 %
ENTspperas,,) = 0g(SDDCI(BAS,,)) — W‘Bﬂﬁpq)h)g{ 11 fj Es }
‘ 0SeE(G) \°Y N
= log(74pq + 33.833p + 67.333¢ — 3.8333)
g+
2 2\ Wgy
— = - ! log { H © + gi‘ }
Tdpq + 33.833p + 67.333¢ — 3.8333 PSEE(C) &o X &g (2.39)

= log(74pq + 33.833p + 67.333¢ — 3.8333)
1

" Tdpq + 33.833p + 67.333¢ — 3.8333

(p+q—1)(12pq +p+3q — 3) (8pq — 3) }

log {3.00()617106 x 107 (p+2¢ + 1 (p + 3¢ + 3)

By putting the value of Eq. (2.30) in Eq. (1.19), we obtain the harmonic connection index entropy as:
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2
1 2 fptiy
ENTycornsas,,) = log(HCI(BAN,,)) — ACT(BA5, ) log { '\1;[«;) (m) }
’ (R} °

= log(8.4pq + 4.554p + 9.1317¢ + 0.40159)

1 . { 0 2 \&m }
8.4pq + 4.554p + 9.1317¢ + 0.40159 ° seho \&o & (2.40)
e8] N

= log(8.4pq + 4.554p + 9.1317¢ + 0.40159)
1
© 8.4pq + 4.554p + 9.1317¢ + 0.40159

(p+q—1)(12pq+p+3q—3)(8pq—3)}

log {44.632064 (p+2¢+1)° (p+3g+3)

By putting the value of Eq. (2.31) in Eq. (1.21), we obtain the inverse sum connection index entropy as:

Epx€y
1 &, X fg S g
ENTISC[ BAN ) — 10?;(1501(39[5 ¥ )) — TAANT/ oo e N 10% ((7>
(BAHp.¢) P.g ISCI(BUD,,) { p%g@ &+ &s }
= log(76.8pq + 28.202p + 56.546¢ — 9.9127)

Spx€y

1 £, x &5 S76
- — - — 108{ H 28 > }
76.8pq + 28.202p + 56.546¢ — 9.9127 ) o+
pSEE(GQ) ’ (241)
= log(76.8pq + 28.202p + 56.546q — 9.9127)
1
 76.8pq + 28.202p + 56.546q — 9.9127

(b —1)(12pg+p+3q—3) (Sp0 - 3) }

log {1.8484736 % 10° (p + 2¢ + 1) (p + 3¢ + 3)

Conclusion

The hydrogen-bonded 2D lattice sheets of boric acid play an important role in its thermodynamic and entropic
properties, that have a broad range of applications in materials/data science, catalysis, energy storage etc. The
active character of hydrogen bonds in these sheets, along with the correlated entropy changes, make boric acid
an stimulating material for further research in both theoretical and particles. In this article, we studied some
well-known connection number-based topological indices and determined their entropies. The numerical
values of these connection number-based entropy measures for B, , are shown in Tables 4 and 5. From
Tables 2 and 3, we observe that

RC(BAS,,) < SCCI(BAN, ) < ABCCI(BAR,,) < FZCI(BAS,,) < SZCI(BANH,,)
HCI(BAS,,) < GACI(BAS,,) < SDDCI(BAH, ) < ISCI(BAS,,) < AZCI(BAS,,)

From Tables 4 and 5, we observe that

ENTrowsas,,) < ENTscormsas,,) < ENTapccrmus,,) < ENTrzorsas,,) < ENTszormsas,,)
ENTyeorsas,,) < ENTeacisus,,) < ENTspporsas,,) < ENTrscimus,,) < ENTazcrmsus,,)

By Comparing the Tables 2, 3, 4 and 5, we can see that the greater the TTs, the entropy measure is greater. Also,
the graphical representation of Entropy measures of the results are shown in Fig. 3.

(p,q) | ENTrzcrmas,, | ENTszormwus,,) | ENTrowas,,) | ENTscormsas,,) | ENTapccrsus,,)
(.5 | 9.1443 9.8796 5.5369 5.9208 6.5006
(6, 6) 9.4834 10.224 5.8829 6.2620 6.8379
7,7) 97723 10517 6.1758 6.5520 7.1254
8.8 | 10,025 10771 6.4302 6.8044 73758
9.9) | 10248 10997 6.6550 7.0279 7.5980
(10, 10) | 10.449 11200 6.8565 72284 77977
(11, 11) | 10.630 11.383 7.0391 7.4105 7.9790
(12,12) | 10.798 11.551 7.2062 7.5771 8.1451
(13,13) | 10.952 11.706 73601 7.7308 82983
(14, 14) | 11.095 11.851 7.5030 7.8734 8.4405

Table 4. The numerical values of connection number-based entropy measures of B, ;.
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(p,q) |ENToacisus,,) | ENTazonsas,,) | ENTspporsas,,) | ENTaor®us,,) | ENTiscrsas,.,)
(5,5 | 7.0016 10.027 7.7452 5.5284 7.7385
6,6 |73379 10370 8.0784 5.8748 8.0780
7,7) | 7.6248 10.663 8.3630 6.1682 8.3674
(8,8) |7.8750 10918 8.6117 6.4227 8.6198
9,9 | 80972 11.145 8.8326 6.6477 8.8435
(10, 10) | 82968 11347 9.0312 6.8494 9.0446
(11,11) | 8.4781 11530 92117 7.0320 92271
(12,12) | 8.6443 11.699 93772 7.1992 9.3942
(13,13) | 87975 11.854 95301 73533 9.5485
(14, 14) | 89398 11.998 9.6719 7.4962 9.6916

Table 5. The numerical values of connection number-based entropy measures of B, ,.
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(a) ENTrzcr1(G) (b) ENTszcr1(c) (¢) ENTro(q)

(d) ENTsccra) (e) ENTapccr(a) (f) ENTgacr(a)

(8) ENTazc1(G) (h) ENTsppci(e) () ENTucra)

() ENTrscra)

Fig. 3. Numerical values for different connection number based entropies, the data is taken from the Tables 2,
3,4 and 5.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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