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The cut method is a computational approach utilized to predict the fundamental activities of 
physicochemical properties of chemical networks, also called topological indices. The connection 
number is a new idea, that gives interesting and good results of the topological indices (TIs) and 
entropy measures (EMs) for structural representation of chemical compounds and networks. The 
physical density of chemical networks is characterized by these indices. In this paper, we determined 
the computational results for indices based on connection numbers for a two-dimensional lattice sheet 
of hydrogen-bonded boric acid. Boric acid, an inorganic compound, is not very harmful when applied to 
the skin or consumed. Finally, graphical and numerical comparisons of topological numbers including 
the number of borate hydrogen-bonded double lattice forms are also included in this study.

Keywords  Connection numbers, Entropy measures, Topological indices, Boric acid hydrogen-bonded 2D 
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In mathematical chemistry, chemical graph theory uses graph theory to explore the topological structure or 
networks of chemical compounds. Chemical graph theory is fruitful in many areas of mathematical chemistry. 
Atoms and their bonds in a chemical structure are represented by the vertices and edges of the chemical graph, 
respectively. Graph theory is crucial for predicting molecular structure using the Topological Index (TI)1. TI’s 
research is important for drug research and provides insight into molecular behaviour and properties. These 
parameters derived from molecular imaging provide a numerical approximation of specific molecular features 
that are non-uniform in image migration. Their importance lies in the ability to measure the difference between 
physical or chemical processes based on changes in molecular structure. The TI’s assist in the numerical 
evaluation of molecular structures, providing a real way to measure physicochemical and structural properties 
prior to compound production2. By examining changes in index values, researchers can capture connections 
or expectations between molecular structures and desired functions or properties, such as mutagenicityor 
carcinogenicity, given by3.

The hypothetical work has significant ability to streamline drug design processes, identifying potent anti-
HIV agents4, anti-cancer compounds5, lowering support on costly trial-and-error synthesis approaches. The 
flexibility of topological indices increases theoretical explorations, advancing in organic synthesis planning, 
compound classification, and bioactivity estimations. While these techniques have indicated varying degrees 
of success, ongoing innovations in chemical and topological knowledge, linked with the incorporation of 
information technology, are estimated to improve their reliability and efficiency in the future.

This article related with the application of entropy measures and other topological indices in molecular 
descriptors to assess structure-function relationships of different molecules and materials. It discusses recent 
improvements in entropy measures and their connection with other topological indices, such as information 
theoretic indices. The aim is to determine the appropriate topological indices and their entropy measures for 
some molecular structures. Graphs are very important for characterizing and studying molecules and atoms, 
with vertices and edges, denoting atoms and bonds. The analysis of graph complication via entropy has been 
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considered by various disciplines, including computer science, statistical physics, chemistry, and life sciences. 
Entropy measures have been used in several research areas, including chemical sciences, mathematical 
information theory, social sciences, ecology, health sciences, and genetics.

The Randic index-formerly known as the branching index-is especially helpful for determining how much 
a saturated hydrocarbon’s carbon atom framework is branching. The first and second Zagreb indices were 
first introduced in6 by Gutman and Transjistic, who utilized them to explain branching problems. The study 
of chirality7, molecular complexity8,9, ZE isomerism10, and benzenoid hydrocarbons11 includes the fields in 
which these Zagreb indices and their different types are used. Furthermore, the overall Zagreb indices are used 
to find multilinear regression models12,13. According to14,15, the connection between the ABC index and the 
thermodynamic properties of alkanes are considerable. To learn more about the calculation of graph topological 
indices, see16–19.

Recently a new concept, the connection number based indices are introduced and the researchers have started 
working on these connection number based TIs rapidly. Tang et al.20 and Ali et al.21 determined exact values of 
connection number based indices and their modified versions for subdivision-related operations on graphs. Cao 
et al.22 gave the upper bounds for connection based Zagreb indices of product-related graphs. Ahmad et al.23 
exact values of connection number based indices for Backbone DNA Networks. The connection number based 
indices for cellular neural networks24, wheel related graphs25, triangular chain structures26 and Skin Cancer 
Drugs27 are calculated. Further article related to connection number indices are listed in28–30.

In the discipline of topological indices, entropy measures are being used more and more because they provide 
practical information on the information content and fundamental complexity of molecular networks31. The 
measurement of fundamental complexity and multiplicity in molecular graphs is one of the most familiar utilities 
of entropy measures in topological indices32. The degree of disorder or uncertainty in molecular structures can 
be determined using entropy-based indices; this degree of uncertainty is normally associated with properties 
like molecular stability, reactivity, and biological activity33. Several entropy metrics have been particularly 
constructed to be used with topological indices34. Additionally, entropy metrics in topological indices are helpful 
in a variety of fields, including bioinformatics, materials science, chemoinformatics, and drug discovery, see35–37. 
The concept of entropy was introduced by Chen et al.38, and is defined as

	

ENTΩ =
∑

℘ℑ∈E(G)

Ω(℘ℑ)∑
℘ℑ∈E(G)

Ω(℘ℑ)
log

{ Ω(℘ℑ)∑
℘ℑ∈E(G)

Ω(℘ℑ)

}
.� (1.1)

	 1.	� The first Zagreb connection index entropy: if Ω(℘ℑ) =
(
ξ℘ + ξℑ

)
. Then 

	
FZCI(G) =

∑
℘ℑ∈E(G)

(ξ℘ + ξℑ) =
∑

℘ℑ∈E(G)

Ω(℘ℑ),� (1.2)

 By using this equation in Eq.  (1.1), we get the first Zagreb connection index entropy: 

	
ENTFZCI(G) = log(FZCI(G))− 1

FZCI(G)
log

{ ∏
℘ℑ∈E(G)

[
ξ℘ + ξℑ

]ξ℘+ξℑ}
.� (1.3)

	 2.	� The second Zagreb connection index entropy: if Ω(℘ℑ) =
(
ξ℘ × ξℑ

)
. Then 

	
SZCI(G) =

∑
℘ℑ∈E(G)

(ξ℘ × ξℑ) =
∑

℘ℑ∈E(G)

Ω(℘ℑ),� (1.4)

 By using this equation in Eq. (1.1), we get the second Zagreb connection index entropy: 

	
ENTSZCI(G) = log(SZCI(G))− 1

SZCI(G)
log

{ ∏
℘ℑ∈E(G)

[
ξ℘ × ξℑ

]ξ℘×ξℑ}
.� (1.5)

 The remaining entropies were found in34,39, that are defined as:

	 3.	� The Randić connection index entropy: if Ω(℘ℑ) =
(

1√
ξ℘×ξℑ

)
. Then 
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RC(G) =

∑
℘ℑ∈E(G)

( 1√
ξ℘ × ξℑ

)
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.6)

 By using this equation in Eq. (1.1), we get the Randić connection index entropy: 

	
ENTRC(G) = log(RC(G))− 1

RC(G)
log

{ ∏
℘ℑ∈E(G)

[ 1√
ξ℘ × ξℑ

] 1√
ξ℘×ξℑ

}
.� (1.7)

	 4.	� The sum connectivity connection index entropy: if Ω(℘ℑ) =
(

1√
ξ℘+ξℑ

)
. Then 

	
SCCI(G) =

∑
℘ℑ∈E(G)

( 1√
ξ℘ + ξℑ

)
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.8)

 By using this equation in Eq. (1.1), we get the sum connectivity connection index entropy: 

	
ENTSCCI(G) = log(SCCI(G))− 1

SCCI(G)
log

{ ∏
℘ℑ∈E(G)

( 1√
ξ℘ + ξℑ

) 1√
ξ℘+ξℑ

}
.� (1.9)

	 5.	� The atom-bond connectivity connection index entropy: if Ω(℘ℑ) =
√

ξ℘+ξℑ−2

ξ℘×ξℑ
. Then 

	
ABCCI(G) =

∑
℘ℑ∈E(G)

√
ξ℘ + ξℑ − 2

ξ℘ × ξℑ
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.10)

 By using this equation in Eq. (1.1), we get the atom-bond connectivity connection index entropy: 

	
ENTABCCI(G) = log(ABCCI(G))− 1

ABCCI(G)
log

{ ∏
℘ℑ∈E(G)

(√ξ℘ + ξℑ − 2

ξ℘ × ξℑ

)√
ξ℘+ξℑ−2
ξ℘×ξℑ

}
.� (1.11)

	 6.	� The geometric-arithmetic connection index entropy: if Ω(℘ℑ) = 2
√

ξ℘×ξℑ
ξ℘+ξℑ

. Then 

	
GACI(G) =

∑
℘ℑ∈E(G)

2
√
ξ℘ × ξℑ

ξ℘ + ξℑ
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.12)

 By using this equation in Eq. (1.1), we get the geometric-arithmetic connection index entropy: 

	
ENTGACI(G) = log(GACI(G))− 1

GACI(G)
log

{ ∏
℘ℑ∈E(G)

(2√ξ℘ × ξℑ

ξ℘ + ξℑ

)2
√

ξ℘×ξℑ
ξ℘+ξℑ

}
.� (1.13)

	 7.	� the augmented Zagreb connection index entropy: if Ω(℘ℑ) =
(

ξ℘×ξℑ
ξ℘+ξℑ−2

)3

. Then 

	
AZCI(G) =

∑
℘ℑ∈E(G)

( ξ℘ × ξℑ
ξ℘ + ξℑ − 2

)3

=
∑

℘ℑ∈E(G)

Ω(℘ℑ),� (1.14)

 By using this equation in Eq. (1.1), we get the augmented Zagreb connection index entropy: 
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ENTAZCI(G) = log(AZCI(G))− 1

AZCI(G)
log

{ ∏
℘ℑ∈E(G)

(( ξ℘ × ξℑ
ξ℘ + ξℑ − 2

)3)
(

ξ℘×ξℑ
ξ℘+ξℑ−2

)3}
.� (1.15)

	 8.	� The symmetric division degree connection index entropy: if Ω(℘ℑ) =
(
ξ2℘+ξ2ℑ
ξ℘×ξℑ

)
. Then 

	
SDDCI(G) =

∑
℘ℑ∈E(G)

(ξ2℘ + ξ2ℑ
ξ℘ × ξℑ

)
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.16)

 By using this equation in Eq. (1.1), we get the symmetric division degree connection index entropy: 

	
ENTSDDCI(G) = log(SDDCI(G))− 1

SDDCI(G)
log

{ ∏
℘ℑ∈E(G)

(ξ2℘ + ξ2ℑ
ξ℘ × ξℑ

)ξ2℘+ξ2ℑ
ξ℘×ξℑ

}
.� (1.17)

	 9.	� The harmonic connection index entropy: if Ω(℘ℑ) =
(

2
ξ℘+ξℑ

)
. Then 

	
HCI(G) =

∑
℘ℑ∈E(G)

( 2

ξ℘ + ξℑ

)
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.18)

 By using this equation in Eq. (1.1), we get the harmonic connection index entropy: 

	
ENTHCI(G) = log(HCI(G))− 1

HCI(G)
log

{ ∏
℘ℑ∈E(G)

( 2

ξ℘ + ξℑ

) 2
ξ℘+ξℑ

}
.� (1.19)

	10.	� The inverse sum connection index entropy: if Ω(℘ℑ) =
(
ξ℘×ξℑ
ξ℘+ξℑ

)
. Then 

	
ISCI(G) =

∑
℘ℑ∈E(G)

(ξ℘ × ξℑ
ξ℘ + ξℑ

)
=

∑
℘ℑ∈E(G)

Ω(℘ℑ),� (1.20)

 By using this equation in Eq. (1.1), we get the inverse sum connection index entropy: 

	
ENTISCI(G) = log(ISCI(G))− 1

ISCI(G)
log

{ ∏
℘ℑ∈E(G)

(ξ℘ × ξℑ
ξ℘ + ξℑ

)ξ℘×ξℑ
ξ℘+ξℑ

}
.� (1.21)

Main results
In this study, we determined the TIs and entropy measures based on connection numbers for the structure of 
boric acid. Boric acid, is well known an inorganic compound used for cleaning and food preservation, its chemical 
formula H3BO3 or B(OH)3, also known by several names such as orthoboric acid, boracic acid, hydrogen 
borate, and acidum boricum, it has been utilized since ancient Greece40,41. This flexible material is used in many 
different productions, such as the production of jewellery, LCD displays, nuclear reactors, pH-regulating buffers 
in swimming pools, lubricants and flame retardants. The importance of boric acid in the discipline of inorganic 
chemistry cannot be exaggerated40,41.The solubility of the chemical is significantly influenced by temperature. 
In order to control neutron reactivity in the core of the reactor, boric acid is dissolved in the reactor coolant 
and acts as a soluble neutron absorber, soluble poison, or chemical shim42. The existence of a high boron level 
shows the commencement of a fuel cycle and acts to balance additional reactivity within the core43. Fuel burn-
up, temperature changes, core reactivity, and the build-up of additional poisons such as xenon and samarium 
all influence to the quantity being decreased throughout the fuel cycle44. The first crystals of boric acid were 
constructed by Wilhelm Hornberg in 1702, who named it sal sedativum Hombergi (sedative salt of Hornberg). 
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In the construction of boric acid, planar BO3 units are bonded by hydrogen bonds, forming a polymeric layer 
structure, boric acid is considered as a 2D sheet in the Fig. 2, for further detail45.

In this section, we computed topological indices for the boric acid hydrogen-bonded 2D lattice sheets using 
the data from the edge partition with connection numbers. The Fig. 1 is a graph of Unit cell boric acid hydrogen-
bonded 2D lattice sheets. Let the graph BAHp,q be a boric acid hydrogen-bonded 2D lattice sheets with E℘,ℑ 
are edges with end vertices have connection number ξ℘ and ξℑ. The order and size of the graph BAHp,q are 
28pq + 14p + 28q and 36pq + 16p + 32q − 2. We partitioned the edges based on the connection numbers of the 
end vertices are as follows: 2, 3; 3, 3; 3, 4; 3, 5; 4, 4; 4, 5; 4, 6. Now, we determine the cardinalities of these edge 
partitions. The number of edges of each type (ξ℘, ξℑ) are shown in Table 1

Topological indices
By using the values of Table 1, the first Zagreb connection index calculated as:

	

FZCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

(
ξ℘ + ξℑ

)

= (2p + 4q + 2)(2 + 3) + (2p + 6q + 6)(3 + 3) + (4p + 4q − 4)(3 + 4) + (4p + 8q + 4)(3 + 5)

+ (24pq + 2p + 6q − 6)(4 + 4) + (2p + 4q + 2)(4 + 5) + (12pq − 6)(4 + 6)

= 312pq + 116p + 232q − 40

� (2.22)

By using the values of Table 1, the second Zagreb connection index calculated as:

(ξ℘, ξℑ) No. of Edges

(2,3) 2p + 4q + 2

(3,3) 2p + 6q + 6

(3,4) 4p + 4q − 4

(3,5) 4p + 8q + 4

(4,4) 24pq + 2p + 6q − 6

(4,5) 2p + 4q + 2

(4,6) 12pq − 6

Table 1.  The edge partition of BAHp,q based on the connection numbers of the end vertices.

 

Fig. 1.  Unit cell of boric acid hydrogen-bonded 2D lattice sheets.
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SZCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

(
ξ℘ × ξℑ

)

= (2p + 4q + 2)(2× 3) + (2p + 6q + 6)(3× 3) + (4p + 4q − 4)(3× 4) + (4p + 8q + 4)(3× 5)

+ (24pq + 2p + 6q − 6)(4× 4) + (2p + 4q + 2)(4× 5) + (12pq − 6)(4× 6)

= 672pq + 210p + 422q − 122

� (2.23)

By using the values of Table 1, the Randić connection index calculated as:

	

RC(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

( 1√
ξ℘ × ξℑ

)

= (2p + 4q + 2)(
1√
2× 3

) + (2p + 6q + 6)(
1√
3× 3

) + (4p + 4q − 4)(
1√
3× 4

) + (4p + 8q + 4)(
1√
3× 5

)

+ (24pq + 2p + 6q − 6)(
1√
4× 4

) + (2p + 4q + 2)(
1√
4× 5

) + (12pq − 6)(
1√
4× 6

)

=

(
6 +

4
√
6

3

)
pq +

(√
6

3
+

7

6
+

2
√
3

3
+

4
√
15

15
+

√
5

5

)
p +

(
2
√
6

3
+

7

2
+

2
√
3

3
+

8
√
15

15
+

2
√
5

5

)
q

−
√
6

6
+

1

2
− 2

√
3

3
+

4
√
15

15
+

√
5

5
= 8.4495pq + 4.6179p + 9.2477q + 0.41702

� (2.24)

By using the values of Table 1, the sum Connectivity connection index calculated as:

	

SCCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

( 1√
ξ℘ + ξℑ

)

= (2p + 4q + 2)(
1√
2 + 3

) + (2p + 6q + 6)(
1√
3 + 3

) + (4p + 4q − 4)(
1√
3 + 4

) + (4p + 8q + 4)(
1√
3 + 5

)

+ (24pq + 2p + 6q − 6)(
1√
4 + 4

) + (2p + 4q + 2)(
1√
4 + 5

) + (12pq − 6)(
1√
4 + 6

)

=

(
6
√
2 +

8
√
10

5

)
pq +

(
2
√
5

5
+

√
6

3
+

4
√
7

7
+

3
√
2

2
+

2

3

)
p +

(
4
√
5

5
+
√
6 +

4
√
7

7
+

7
√
2

2
+

4

3

)
q

+
2
√
5

5
+
√
6− 4

√
7

7
−

√
2

2
+

2

3
− 3

√
10

5
= 12.280015pq + 6.0108p + 12.033q − 0.1058

� (2.25)

By using the values of Table 1, the atom-bond connectivity connection index calculated as:

	

ABCCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

√
ξ℘ + ξℑ − 2

ξ℘ × ξℑ

= (2p + 4q + 2)

√
2 + 3− 2

2× 3
+ (2p + 6q + 6)

√
3 + 3− 2

3× 3
+ (4p + 4q − 4)

√
3 + 4− 2

3× 4

+ (4p + 8q + 4)

√
3 + 5− 2

3× 5
+ (24pq + 2p + 6q − 6)

√
4 + 4− 2

4× 4
+ (2p + 4q + 2)

√
4 + 5− 2

4× 5

+ (12pq − 6)

√
4 + 6− 2

4× 6

=

(
6
√
6 +

16
√
3

3

)
pq +

(
√
2 +

4

3
+

2
√
15

3
+

4
√
10

5
+

√
6

2
+

√
35

5

)
p

+

(
2
√
2 + 4 +

2
√
15

3
+

8
√
10

5
+

3
√
6

2
+

2
√
35

5

)
q +

√
2 + 4− 2

√
15

3
+

4
√
10

5
− 3

√
6

2
+

√
35

5
− 2

√
3

= 21.6251pq + 10.267p + 20.510q − 0.5932

� (2.26)

By using the values of Table 1, the Geometric-arithmetic connection index calculated as:
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GACI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

2
√
ξ℘ × ξℑ

ξ℘ + ξℑ

= (2p + 4q + 2)
(2√2× 3

2 + 3

)
+ (2p + 6q + 6)

(2√3× 3

3 + 3

)
+ (4p + 4q − 4)

(2√3× 4

3 + 4

)

+ (4p + 8q + 4)
(2√3× 5

3 + 5

)
+ (24pq + 2p + 6q − 6)

(2√4× 4

4 + 4

)
+ (2p + 4q + 2)

(2√4× 5

4 + 5

)

+ (12pq − 6)
(2√4× 6

4 + 6

)

=

(
24 +

32
√
6

5

)
pq +

(
4
√
6

5
+ 4 +

16
√
3

7
+
√
15 +

8
√
5

9

)
p +

(
8
√
6

5
+ 12 +

16
√
3

7
+ 2

√
15 +

16
√
5

9

)
q

− 8
√
6

5
− 16

√
3

7
+
√
15 +

8
√
5

9
= 35.7576pq + 15.780p + 31.599q − 2.0177

� (2.27)

By using the values of Table 1, the augmented Zagreb connection index calculated as:

	

AZCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

( ξ℘ × ξℑ
ξ℘ + ξℑ − 2

)3

= (2p + 4q + 2)
( 2× 3

2 + 3− 2

)3

+ (2p + 6q + 6)
( 3× 3

3 + 3− 2

)3

+ (4p + 4q − 4)
( 3× 4

3 + 4− 2

)3

+ (4p + 8q + 4)
( 3× 5

3 + 5− 2

)3

+ (24pq + 2p + 6q − 6)
( 4× 4

4 + 4− 2

)3

+ (2p + 4q + 2)
( 4× 5

4 + 5− 2

)3

+ (12pq − 6)
( 4× 6

4 + 6− 2

)3

=
7984

9
pq +

8933175649

37044000
p +

6022267633

12348000
q − 1698872383

12348000
= 779.1111pq + 241.15p + 487.71q − 137.58

� (2.28)

By using the values of Table 1, the symmetric division degree connection index calculated as:

	

SDDCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

(ξ2℘ + ξ2ℑ
ξ℘ × ξℑ

)

= (2p + 4q + 2)
(22 + 32

2× 3

)
+ (2p + 6q + 6)

(32 + 32

3× 3

)
+ (4p + 4q − 4)

(32 + 42

3× 4

)

+ (4p + 8q + 4)
(32 + 52

3× 5

)
+ (24pq + 2p + 6q − 6)

(42 + 42

4× 4

)
+ (2p + 4q + 28)

(42 + 52

4× 5

)

+ (12pq − 6)
(52 + 52

4× 6

)

=
248

3
pq +

203

6
p +

202

3
q − 23

6
= 74pq + 33.833p + 67.333q − 3.8333

� (2.29)

By using the values of Table 1, the harmonic connection index calculated as:

	

HCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

( 2

ξ℘ + ξℑ

)

= (2p + 4q + 2)
( 2

2 + 3

)
+ (2p + 6q + 6)

( 2

3 + 3

)
+ (4p + 4q − 4)

( 2

3 + 4

)
+ (4p + 8q + 4)

( 2

3 + 5

)

+ (24pq + 2p + 6q − 6)
( 2

4 + 4

)
+ (2p + 4q + 2)

( 2

4 + 5

)
+ (12pq − 6)

( 2

4 + 6

)

=
46

5
pq +

2869p

630
+

5753q

630
+

253

630
= 8.4pq + 4.554p + 9.1317q + 0.40159

� (2.30)

By using the values of Table 1, the inverse sum connection index calculated as:

	

ISCI(BAHp,q) =
∑

℘ℑ∈E(BAHp,q)

(ξ℘ × ξℑ
ξ℘ + ξℑ

)

= (2p + 4q + 2)
(2× 3

2 + 3

)
+ (2p + 6q + 6)

(3× 3

3 + 3

)
+ (4p + 4q − 4)

(3× 4

3 + 4

)
+ (4p + 8q + 4)

(3× 5

3 + 5

)

+ (24pq + 2p + 6q − 6)
(4× 4

4 + 4

)
+ (2p + 4q + 2)

(4× 5

4 + 5

)
+ (12pq − 6)

(4× 6

4 + 6

)

=
432

5
pq +

17767

630
p +

17812

315
q − 1249

126
= 76.8pq + 28.202p + 56.546q − 9.9127

� (2.31)
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The numerical values of connection number-based of all above TIs for BAHp,q are shown in Tables 2 and 3 (Fig. 
2).

Entropy measures
By putting the value of Eq. (2.22) in Eq. (1.3), we obtain the first Zagreb connection index entropy as:

	

ENTFZCI(BAHp,q) = log(FZCI(BAHp,q))−
1

FZCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(ξ℘ + ξℑ)
(ξ℘+ξℑ)

}

= log(312pq + 116p + 232q − 40)− 1

312pq + 116p + 232q − 40
log

{ ∏
℘ℑ∈E(G)

(ξ℘ + ξℑ)
(ξ℘+ξℑ)

}

= log(312pq + 116p + 232q − 40)− 1

312pq + 116p + 232q − 40
log

{
27332451577 (p + 2q + 1)3

(p + 3q + 3) (p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.32)

By putting the value of Eq. (2.23) in Eq. (1.5), we obtain the second Zagreb connection index entropy as:

	

ENTSZCI(BAHp,q) = log(SZCI(BAHp,q))−
1

SZCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(ξ℘ × ξℑ)
(ξ℘×ξℑ)

}

= log(672pq + 210p + 422q − 122)− 1

672pq + 210p + 422q − 122
log

{ ∏
℘ℑ∈E(G)

(ξ℘ × ξℑ)
(ξ℘×ξℑ)

}

= log(672pq + 210p + 422q − 122)− 1

672pq + 210p + 422q − 122
log

{
2215375535 (p + 2q + 1)3

(p + 3q + 3) (p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.33)

By putting the value of Eq. (2.24) in Eq. (1.7), we obtain the Randić connection index entropy as:

(p, q) GACI(BAHp,q) AZCI(BAHp,q) SDDCI(BAHp,q) HCI(BAHp,q) ISCI(BAHp,q)

(5, 5) 1128.8 22985.0 2352.1 278.83 2333.8

(6, 6) 1569.6 32283.0 3267.2 384.91 3263.4

(7, 7) 2081.9 43141.0 4330.3 507.80 4346.5

(8, 8) 2665.5 55556.0 5541.6 647.48 5583.3

(9, 9) 3320.8 69529.0 6900.7 803.98 6973.6

(10, 10) 4047.6 85061.0 8407.8 977.26 8517.6

(11, 11) 4845.9 102150.0 10063.0 1167.4 10215.0

(12, 12) 5715.8 120790.0 11866.0 1374.2 12066.0

(13, 13) 6656.9 141000.0 13817.0 1597.9 14071.0

(14, 14) 7669.8 162780.0 15917.0 1838.4 16230.0

Table 3.  The numerical values of connection number-based TIs of BAHp,q.

 

(p, q) FZCI(BAHp,q) SZCI(BAHp,q) RC(BAHp,q) SCCI(BAHp,q) ABCCI(BAHp,q)

(5, 5) 9500.0 19838.0 280.99 397.11 693.90

(6, 6) 13280.0 27862.0 387.80 550.23 962.57

(7, 7) 17684.0 37230.0 511.49 727.92 1274.6

(8, 8) 22712.0 47942.0 652.11 930.16 1629.6

(9, 9) 28364.0 59998.0 809.62 1157.0 2028.0

(10, 10) 34640.0 73398.0 984.03 1408.3 2469.7

(11, 11) 41540.0 88142.0 1175.3 1684.3 2954.6

(12, 12) 49064.0 104230.0 1383.5 1984.7 3482.7

(13, 13) 57212.0 121660.0 1608.5 2309.7 4054.1

(14, 14) 65984.0 140440.0 1850.7 2659.5 4668.7

Table 2.  The numerical values of connection number-based TIs of BAHp,q.
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ENTRC(BAHp,q) = log(RC(BAHp,q))−
1

RC(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
1√

ξ℘ × ξℑ

) 1√
ξ℘×ξℑ }

= log(8.4495pq + 4.6179p + 9.2477q + 0.41702)

− 1

8.4495pq + 4.6179p + 9.2477q + 0.41702
log

{ ∏
℘ℑ∈E(G)

(
1√

ξ℘ × ξℑ

) 1√
ξ℘×ξℑ }

= log(8.4495pq + 4.6179p + 9.2477q + 0.41702)

− 1

8.4495pq + 4.6179p + 9.2477q + 0.41702
log

{
44.352 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.34)

By putting the value of Eq. (2.25) in Eq. (1.9), we obtain the sum connectivity connection index entropy as:

	

ENTSCCI(BAHp,q) = log(SCCI(BAHp,q))−
1

SCCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
1√

ξ℘ + ξℑ

) 1√
ξ℘+ξℑ }

= log(12.280015pq + 6.0108p + 12.033q − 0.1058)

− 1

12.280015pq + 6.0108p + 12.033q − 0.1058
log

{ ∏
℘ℑ∈E(G)

(
1√

ξ℘ + ξℑ

) 1√
ξ℘+ξℑ }

= log(12.280015pq + 6.0108p + 12.033q − 0.1058)

− 1

12.280015pq + 6.0108p + 12.033q − 0.1058
log

{
39.626752 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.35)

By putting the value of Eq. (2.26) in Eq. (1.11), we obtain the atom-bond connectivity connection index entropy 
as:

Fig. 2.  Boric acid hydrogen-bonded 2D lattice sheets.
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ENTABCCI(BAHp,q) = log(ABCCI(BAHp,q))−
1

ABCCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(√
ξ℘ + ξℑ − 2

ξ℘ × ξℑ

)√
ξ℘+ξℑ−2
ξ℘×ξℑ }

= log(21.6251pq + 10.267p + 20.510q − 0.5932)

− 1

21.6251pq + 10.267p + 20.510q − 0.5932
log

{ ∏
℘ℑ∈E(G)

(√
ξ℘ + ξℑ − 2

ξ℘ × ξℑ

)√
ξ℘+ξℑ−2
ξ℘×ξℑ }

= log(21.6251pq + 10.267p + 20.510q − 0.5932)

− 1

21.6251pq + 10.267p + 20.510q − 0.5932
log

{
68.21376 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.36)

By putting the value of Eq. (2.27) in Eq. (1.13), we obtain the geometric-arithmetic connection index entropy as:

	

ENTGACI(BAHp,q) = log(GACI(BAHp,q))−
1

GACI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
2
√

ξ℘ × ξℑ

ξ℘ + ξℑ

)2
√
ξ℘×ξℑ

ξ℘+ξℑ }

= log(35.7576pq + 15.780p + 31.599q − 2.0177)

− 1

35.7576pq + 15.780p + 31.599q − 2.0177
log

{ ∏
℘ℑ∈E(G)

(
2
√

ξ℘ × ξℑ

ξ℘ + ξℑ

)2
√

ξ℘×ξℑ
ξ℘+ξℑ }

= log(35.7576pq + 15.780p + 31.599q − 2.0177)

− 1

35.7576pq + 15.780p + 31.599q − 2.0177
log

{
469.06368 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.37)

By putting the value of Eq. (2.28) in Eq. (1.15), we obtain the augmented Zagreb connection index entropy as:

	

ENTAZCI(BAHp,q) = log(AZCI(BAHp,q))−
1

AZCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
(

ξ℘ × ξℑ
ξ℘ + ξℑ − 2

)3
)(

ξ℘×ξℑ
ξ℘+ξℑ−2)

3 }

= log(779.1111pq + 241.15p + 487.71q − 137.58)

− 1

779.1111pq + 241.15p + 487.71q − 137.58
log

{ ∏
℘ℑ∈E(G)

(
(

ξ℘ × ξℑ
ξ℘ + ξℑ − 2

)3
)(

ξ℘×ξℑ
ξ℘+ξℑ−2)

3 }

= log(779.1111pq + 241.15p + 487.71q − 137.58)

− 1

779.1111pq + 241.15p + 487.71q − 137.58
log

{
1.4856704× 10151 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.38)

By putting the value of Eq. (2.29) in Eq. (1.17), we obtain the symmetric division degree connection index 
entropy as:

	

ENTSDDCI(BAHp,q) = log(SDDCI(BAHp,q))−
1

SDDCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
ξ2℘ + ξ2ℑ
ξ℘ × ξℑ

)ξ2℘+ξ2ℑ
ξ℘×ξℑ }

= log(74pq + 33.833p + 67.333q − 3.8333)

− 1

74pq + 33.833p + 67.333q − 3.8333
log

{ ∏
℘ℑ∈E(G)

(
ξ2℘ + ξ2ℑ
ξ℘ × ξℑ

)ξ2℘+ξ2ℑ
ξ℘×ξℑ }

= log(74pq + 33.833p + 67.333q − 3.8333)

− 1

74pq + 33.833p + 67.333q − 3.8333
log

{
3.000617106× 107 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.39)

By putting the value of Eq. (2.30) in Eq. (1.19), we obtain the harmonic connection index entropy as:
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ENTHCI(BAHp,q) = log(HCI(BAHp,q))−
1

HCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
2

ξ℘ + ξℑ

) 2
ξ℘+ξℑ

}

= log(8.4pq + 4.554p + 9.1317q + 0.40159)

− 1

8.4pq + 4.554p + 9.1317q + 0.40159
log

{ ∏
℘ℑ∈E(G)

(
2

ξ℘ + ξℑ

) 2
ξ℘+ξℑ

}

= log(8.4pq + 4.554p + 9.1317q + 0.40159)

− 1

8.4pq + 4.554p + 9.1317q + 0.40159
log

{
44.632064 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.40)

By putting the value of Eq. (2.31) in Eq. (1.21), we obtain the inverse sum connection index entropy as:

	

ENTISCI(BAHp,q) = log(ISCI(BAHp,q))−
1

ISCI(BAHp,q)
log

{ ∏
℘ℑ∈E(G)

(
ξ℘ × ξℑ
ξ℘ + ξℑ

)ξ℘×ξℑ
ξ℘+ξℑ

}

= log(76.8pq + 28.202p + 56.546q − 9.9127)

− 1

76.8pq + 28.202p + 56.546q − 9.9127
log

{ ∏
℘ℑ∈E(G)

(
ξ℘ × ξℑ
ξ℘ + ξℑ

)ξ℘×ξℑ
ξ℘+ξℑ

}

= log(76.8pq + 28.202p + 56.546q − 9.9127)

− 1

76.8pq + 28.202p + 56.546q − 9.9127
log

{
1.8484736× 106 (p + 2q + 1)3 (p + 3q + 3)

(p + q − 1) (12pq + p + 3q − 3) (8pq − 3)
}

� (2.41)

Conclusion
The hydrogen-bonded 2D lattice sheets of boric acid play an important role in its thermodynamic and entropic 
properties, that have a broad range of applications in materials/data science, catalysis, energy storage etc. The 
active character of hydrogen bonds in these sheets, along with the correlated entropy changes, make boric acid 
an stimulating material for further research in both theoretical and particles. In this article, we studied some 
well-known connection number-based topological indices and determined their entropies. The numerical 
values of these connection number-based entropy measures for BAHp,q are shown in Tables 4 and 5. From 
Tables 2 and 3, we observe that

	

RC(BAHp,q) < SCCI(BAHp,q) < ABCCI(BAHp,q) < FZCI(BAHp,q) < SZCI(BAHp,q)

HCI(BAHp,q) < GACI(BAHp,q) < SDDCI(BAHp,q) < ISCI(BAHp,q) < AZCI(BAHp,q)

From Tables 4 and 5, we observe that

	

ENTRC(BAHp,q) < ENTSCCI(BAHp,q) < ENTABCCI(BAHp,q) < ENTFZCI(BAHp,q) < ENTSZCI(BAHp,q)

ENTHCI(BAHp,q) < ENTGACI(BAHp,q) < ENTSDDCI(BAHp,q) < ENTISCI(BAHp,q) < ENTAZCI(BAHp,q)

By Comparing the Tables 2, 3, 4 and 5, we can see that the greater the TIs, the entropy measure is greater. Also, 
the graphical representation of Entropy measures of the results are shown in Fig. 3.

(p, q) ENTFZCI(BAHp,q) ENTSZCI(BAHp,q) ENTRC(BAHp,q) ENTSCCI(BAHp,q) ENTABCCI(BAHp,q)

(5, 5) 9.1443 9.8796 5.5369 5.9208 6.5006

(6, 6) 9.4834 10.224 5.8829 6.2620 6.8379

(7, 7) 9.7723 10.517 6.1758 6.5520 7.1254

(8, 8) 10.025 10.771 6.4302 6.8044 7.3758

(9, 9) 10.248 10.997 6.6550 7.0279 7.5980

(10, 10) 10.449 11.200 6.8565 7.2284 7.7977

(11, 11) 10.630 11.383 7.0391 7.4105 7.9790

(12, 12) 10.798 11.551 7.2062 7.5771 8.1451

(13, 13) 10.952 11.706 7.3601 7.7308 8.2983

(14, 14) 11.095 11.851 7.5030 7.8734 8.4405

Table 4.  The numerical values of connection number-based entropy measures of BAHp,q.
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(p, q) ENTGACI(BAHp,q) ENTAZCI(BAHp,q) ENTSDDCI(BAHp,q) ENTHCI(BAHp,q) ENTISCI(BAHp,q)

(5, 5) 7.0016 10.027 7.7452 5.5284 7.7385

(6, 6) 7.3379 10.370 8.0784 5.8748 8.0780

(7, 7) 7.6248 10.663 8.3630 6.1682 8.3674

(8, 8) 7.8750 10.918 8.6117 6.4227 8.6198

(9, 9) 8.0972 11.145 8.8326 6.6477 8.8435

(10, 10) 8.2968 11.347 9.0312 6.8494 9.0446

(11, 11) 8.4781 11.530 9.2117 7.0320 9.2271

(12, 12) 8.6443 11.699 9.3772 7.1992 9.3942

(13, 13) 8.7975 11.854 9.5301 7.3533 9.5485

(14, 14) 8.9398 11.998 9.6719 7.4962 9.6916

Table 5.  The numerical values of connection number-based entropy measures of BAHp,q.
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Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Fig. 3.  Numerical values for different connection number based entropies, the data is taken from the Tables 2, 
3, 4 and 5.
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