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Exploring the ceRNA network
involving AGAP2-AS1 as a novel
biomarker for preeclampsia

Fan Lu!, Ni Zeng?, Xiang Xiao?, Xingxing Wang?, Han Gong* & Houkang Lei'**

Preeclampsia (PE) is an important research subject in obstetrics. Nevertheless, the underlying mechanisms
of PE remain elusive. PE-related expression datasets (GSE96983, GSE96984 and GSE24129) were
downloaded from the Gene Expression Omnibus (GEO) database. Firstly, the differentially expressed
messenger RNAs (DE-mRNAs), DE-microRNA (DE-miRNAs) and DE-long non-coding RNA (DE-IncRNAs)
between PE and control cohorts were identified, and the ceRNA network was constructed. Then candidate
hub genes were obtained through five algorithms by the protein-protein intersection (PPI) network of the
mRNAEs. Further, five hub genes were identified by receiver operating characteristic (ROC) curve and gene
expression profiles: DAXX, EFNB1, NCOR2, RBBP4 and SOCS1. The function of 5 hub genes was analyzed
and the interaction between drugs and hub genes was predicted. A total of 5 small molecule drugs were
predicted, namely benzbromarone, 9,10-phenanthrenequinone, chembl312032, insulin and aldesleukin.
AGAP2-AS1 was mainly located in exosome and cytoplasm. Agap2-as1-related regulatory subnetworks
were extracted from ceRNA networks which included 41 mRNAs, 2 miRNAs and 1 IncRNA, including the
regulated relationship pairs AGAP2-AS1-hsa-miR-497-5p-SRPRB, and AGAP2-AS1-hsa-miR-195-5p-RPL36.
In summary, we constructed a competitive endogenous RNA (ceRNA) network to identify five potential
biomarkers (DAXX, EFNB1, NCOR2, SOCS1 and RBBP4) of PE. The in-depth analysis of the AGAP2-AS1
regulatory network will help to uncover more important molecules closely related to PE and provide a
scientific Reference.

Keywords Preeclampsia, Competing endogenous RNA network, Biomarkers, IncRNA, AGAP2-AS1

Abbreviations

PE Preeclampsia

ceRNA Competing endogenous RNA
GEO Gene Expression Omnibus

DE-mRNAs Differentially expressed message RNAs
DE-IncRNAs  Differentially expressed long non-coding RNAs
DE-miRNAs  Differentially expressed microRNAs

PPI Protein-protein intersection
ROC Receiver operating characteristic
AUC Area under the curve

IncRNAs Non-coding RNAs

mRNA-seq mRNA sequencing
IncRNA-seq IncRNA sequencing
miRNA-seq miRNA sequencing

GSEA Gene Set Enrichment Analysis

NES Normalized enrichment score

GO Gene Ontology

CcC Cellular component

BP Biological process

MF Molecular function

KEGG Kyoto Encyclopedia of Genes and Genomes
RT-qPCR Real time quantitative-polymerase chain reaction
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Preeclampsia (PE) is a prevalent acute and severe obstetric disorder, characterized by elevated blood pressure
and the presence of excess protein in the urine. It can cause severe multiorgan functional damage and adversely
affect the health of both mother and child. If left undetected or untreated, it can result in maternal and neonatal
mortality, particularly in severe instances, thus emerging as a significant contributor to global maternal and
neonatal death rates!. The diagnosis of PE is made by a systolic blood pressure of 140mmHg and/or a diastolic
blood pressure of 90mmHg after 20 weeks of gestation, combined with urinary protein quantity and urine
protein/creatinine ratio of 0.3 or random urinalysis results. In the absence of proteinuria, the diagnostic criteria
for PE can also include the presence of organ or system involvement, such as cardiovascular, respiratory, hepatic,
renal, hematological, gastrointestinal, neurological, or placental-fetal abnormalities??. PE impacts 5-8% of
pregnancies, correlating with a higher likelihood of negative pregnancy outcomes like placental detachment,
preterm delivery, and restricted fetal growth, leading to stillbirth**. In recent years, the occurrence rate of PE
has been rising annually, but the study of its related pathological mechanism is relatively limited. It is currently
believed that factors such as the infiltration capacity of placental trophoblast cells and uterine spiral artery
remodeling are closely related to the pathogenesis of PE, but the exact mechanism remains unclear®’. Therefore,
it is critical to explore the pathologic mechanisms of PE occurrence in order to find effective and accessible
clinical biomarkers for PE screening in the field of obstetrics, and then to develop effective PE treatment and
prevention measures in the clinic.

Research indicates that less than 2% of the human genome is made up of genes coding for proteins, with the
bulk comprising non-coding genes, such as microRNAs (miRNAs) and long non-coding RNAs (IncRNAs)®. The
significance of non-coding RNAs in regulating genes has gained increasing recognition in recent years. miRNAs,
a category of small, naturally occurring single-stranded noncoding RNAs, are crucial in the progression of
diseases. LncRNAs, an RNA molecule with a gene length of more than 200 nucleotide units, lack an open-reading
coding frame and have no ability to encode proteins, but they possess a broad array of biological functions,
capable of regulating gene expression both at the transcriptional and post-transcriptional stages’. LncRNAs play
arole in numerous cellular activities, including cell differentiation, immune responses, metastasis in cancer cells,
proliferation, and resistance to drugs'®-12. In addition, IncRNAs can be involved in several biological processes
including growth and development, and material metabolism at the epigenetic level'>. It has been established
that IncRNAs and miRNAs are critical in the onset and progression of PE!*-16. There is a variety of miRNAs
expressed differently in the placentas of patients with PE compared to normal pregnancies, suggesting that these
miRNAs may be associated with PEY. Furthermore, some studies have indicated that IncRNAs can be involved
in PE progression by affecting the function of trophoblast cells!®!°.

Recently, the significance of non-coding RNAs (ncRNAs), including IncRNAs and miRNAs, in gene
regulation has increasingly been acknowledged. LncRNAs, a type of RNA molecule exceeding 200 nucleotides
in length, don’t encode proteins but are crucial in regulating gene expression?’. LncRNAs can regulate the
transcriptional, post-transcriptional and epigenetic levels of gene expression by interacting with DNA, RNA
and proteins®!. Conversely, miRNAs are small RNA molecules, approximately 22 nucleotides long, primarily
regulating gene expression by binding to the mRNAs of target genes, leading to their degradation or inhibiting
their translation?.

Abnormal expression and dysfunction of IncRNAs and miRNAs have been widely observed during disease
development, and they can influence cell proliferation, apoptosis, differentiation, and cell cycle regulation, thus
affecting disease onset and progression®*?%. In the context of PE, numerous research investigations have proposed
that IncRNAs and miRNAs might play crucial roles in the onset and advancement of this condition?>2°. For
instance, a previous discovered found that the IncRNA AGAP2-AS1 was aberrantly expressed in tumor cells
and was involved in tumorigenesis and progression®’. In addition, down-regulated IncRNA AGAP2-AS1 causes
pre-eclampsia by impairing the trophoblast phenotype as a competing endogenous RNA for jun dimerization
protein 2 (JDP2)?8. However, the specific regulatory mechanism and its specific role manages to be investigated
for other downstream of AGAP2-AS1 in PE occurrence.

In this investigation, the transcriptomic data and pertinent clinical data of placental tissues (GSE96983,
GSE96984, GSE24129) were acquired from the Gene Expression Omnibus (GEO) repository, specifically
focusing on individuals diagnosed with PE. The IncRNA-miRNA-mRNA regulatory network of PE was
constructed. Furthermore, PE-related biomarkers were identified by bioinformatics analysis. By deeply studying
the function and regulatory mechanism of AGAP2-AS]1, our objective is to elucidate the precise involvement
of these factors in the onset and progression of PE, thus establishing a significant theoretical foundation for the
timely detection and management of PE. In addition, by analyzing the regulatory network of AGAP2-AS1, we
anticipate discovering other important molecules related to PE and further resolve the pathogenesis of PE.

Results

Creation of ceRNA network

There were 4388 differentially expressed messenger RNAs (DE-mRNAs) between PE and control cohorts
(Fig. 1A,B). In total, 4129 differentially expressed long non-coding RNAs (DE-IncRNAs) (PE vs. control) were
identified, comprising 1597 up-regulated IncRNAs and 2532 down-regulated IncRNAs (Fig. 1C,D). There were
46 differentially expressed microRNAs (DE-miRNAs) (PE vs. control), consisting 17 up-regulated miRNAs and
29 down-regulated miRNAs (Fig. 1E,F). There were 1318 miRNAs predicted, and 40 miRNAs were obtained
finally (Fig. 2A,B). In total, 7599 mRNAs were predicted, and 1254 mRNAs finally were got (Fig. 2C,D).
Afterwards, the ceRNA network was created, including 1203 mRNAs, 39 miRNAs, and 138 IncRNAs (Fig. 2E).
For instance, the regulated relationship pairs included AC092168.2-hsa-miR-324-5p-RBBP4, and ADAMTSL4-
AS1-hsa-miR-331-3p- SOCS1 (Fig. 2E). The results of enrichment analysis for the mRNAs suggested that, 1517
Gene Ontology- biological process (GO BP) items, 87 Gene Ontology- cellular component (GO CC) items,
113 Gene Ontology-molecular function (GO MF) items, and 85 Kyoto Encyclopedia of Genes and Genomes
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Fig. 1. Identification of DE-mRNAs, DE-IncRNAs and DE-miRNAs. The volcano plot (A) and heatmap (B) of
DE-mRNAs between PE and control cohorts. The volcano plot (C) and heatmap (D) of DE-IncRNAs between
PE and control cohorts. The volcano plot (E) and heatmap (F) of DE-miRNAs between PE and control cohorts.

Scientific Reports|  (2024) 14:27330 | https://doi.org/10.1038/s41598-024-79224-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A B

mirtarbase Star3ase StarBase mirtarbase DEmIR NA

C D

mirtarbase StarBase StarBase mirtarbase  DEmR NA

The Most Enriched GO Terms

kidney epithelium development

epithelial tube morphogenesis

kidney morphogenesis

positive regulation of miRNA transcription

regulation of miRNA transcription

miRNA transcription

cellular response to insulin stimulus

pattern specification process

i focal adhesion

transcription regulator complex

_cell-substrate junction

collagen—containing extracallular matrix

racycling endosome membrane

cell leading edge

actin cytoskeleton

recycling endosome

DNA-binding transcription activator activity, RNA polymerase |I-specific
DNA-binding transcription activator activity

growth facter binding

frizzled binding
protein-membrane adaptor activity
fthr hosph activity

type
[ biological arocess
= cellular camponent
[ molecular function

MAP kinase tyrosi

growth factor racapter binding
ubiquitin=like protein ligase binding

=
S
&l
(3
o
2

Count

Human papillomavirus infection

AGE-RAGE signaling pathway
in diabetic complications
Signaling pathways

regulating pluripotency of

stem cells pvalue

Osteoclast differentiation 2 5e-05
5.0e-05

Proteoglycans in cancar zg::gg

Pathogenic Escherichia coli
infection

Hippo signaling pathway

Leishmaniasis

o
o
&

10 30

Count

Fig. 2. Construction of ceRNA network. (A) The Venn map of candidate miRNA between mirtarbase and
StarBase database. (B) The Venn map between candidate miRNA and DE-miRNA. (C) The Venn map of
candidate mRNA between mirtarbase and StarBase database. (D) The Venn map between candidate mRNA
and DE-mRNA. (E) Construction of ceRNA network. Blue circles indicate IncRNA, green circles indicate
miRNA, red circles indicate mRNA. (F) GO enrichment analysis of mRNAs. (G) KEGG enrichment analysis of
mRNAs.
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(KEGG) pathways were enriched (Supplementary Tables 1-2), including kidney epithelium development, focal
adhesion, DNA-binding transcription activator activity, human papillomavirus infection, etc. (Fig. 2EG).

Acquisition of biomarkers

The protein-protein interaction (PPI) network of the mRNAs contained 128 nodes and 123 edges, which
displayed that RAC1 interacted with various proteins, including ROR2, PLD1, EFNBI, etc. (Fig. 3A). Then,
17 hub genes were identified, namely RAC1, PRKCE, TIAMI, JAK1, EFNBI, DAXX, PTPN13, MAP3K5,
NCOR2, RBBP4, MYH14, ADCY1, SOCS1, FOXO1, WNT5A, NF2, and VEGFA (Fig. 3B). And 11 candidate
genes were gained, namely DAXX, EFNB1, FOXO1, MAP3K5, NCOR2, NF2, PRKCE, RBBP4, SOCS1, TIAMI,
and WNT5A (Fig. 3C,D). The expression of DAXX, EFNB1, NCOR2, SOCS1, and RBBP4 between PE and
control cohorts were significantly different, and showed the same expressive trend in GSE96984 and GSE24129
(Fig. 3E,F). In PE, the expression of DAXX, EFNB1, NCOR2, and SOCS1 was found to be increased, whereas
RBBP4 exhibited decreased expression. Therefore, these five genes were defined as the biomarkers. The results
of functional similarity demonstrated that the similarity scores of DAXX and NCOR?2 were greater than 0.6,
indicating these two genes had a strong similarity (Fig. 3G,H). Finally, the relevant analysis showed all five
biomarkers correlated with each other, and RBBP4 was negatively correlated with NCOR2, EFNB1, DAXX,
and SOCSI (Fig. 3I). However, NCOR2, EFNB1, DAXX, and SOCSI were positively correlated with each other
(Fig. 31).

Enrichment analysis

The enrichment analysis displayed the top 10 GO categories and KEGG pathways. Among the GO results, all
biomarkers were involved in lymphocyte mediated immunity and adaptive immune response (Fig. 4A-E). The
DAXX, EFNB1, NCOR2, and SOCS1 were involved in these items in high expressed cohort, yet RBBP4 enriched
in these items in low expressed cohort (Fig. 4A-E). The DAXX and SOCS1 were involved in positive regulation of
immune effector process, T cell differentiation, and regulation of leukocyte mediated immunity in high expressed
cohort, while RBBP4 was involved in these items in low expressed cohort (Fig. 4A,D,E). Interestingly, DAXX
and SOCSI enriched in the same items, such as response to interferon gamma, positive regulation of leukocyte
mediated immunity, etc. (Fig. 4A,D). Additionally, EFNB1 and NCOR?2 also enriched in the same items, such
as endoplasmic reticulum lumen, collagen containing extracellular matrix, regulation of peptidase activity, etc.
(Fig. 4B,C). Of the KEGG results, all biomarkers were involved in allograft rejection, antigen processing and
presentation, graft versus host disease, natural killer cell mediated cytotoxicity, cytokine-cytokine receptor
interaction, autoimmune thyroid disease (Fig. 5A,B). The DAXX, EFNB1, NCOR2, and SOCS1 were involved
in these items in high expressed cohort, yet RBBP4 enriched in these items in low expressed cohort (Fig. 5A-E).
The DAXX, NCOR?2, and SOCS1 were involved in Toll like receptor signaling pathway in high expressed cohort
(Fig. 5A,C,D). EFNB1 and RBBP4 enriched in the same items, such as type I diabetes mellitus, systemic lupus
erythematosus, hematopoietic cell lineage, etc. (Fig. 5B,E). And EFNB1 was involved in these pathways in high
expressed cohort, while RBBP4 enriched in these pathways in low expressed cohort (Fig. 5B,E). We speculated
that the reason for this result might be due to too few samples in the training set or similar genes functions.

Drug analysis

We generated drug-gene interaction networks using the DGIdb database. The analysis revealed predictions for
a total of 5 small molecule drugs (Table 1). There were 3 small molecule drugs predicted for NCOR2, namely
benzbromarone, 9,10-phenanthrenequinone, and chembl312032 (Fig. 6). For SOCS1, 2 small molecule drugs
were predicted, namely insulin and aldesleukin (Fig. 6). However, no small molecule drugs that were predicted
interacted with DAXX, EFNB1, and RBBP4.

Regulatory network and subcellular localization of AGAP2-AS1
The subcellular localization analysis indicated that AGAP2-AS1 predominantly localized within exosomes and
the cytoplasm (Fig. 7A). The AGAP2-AS1 expression between PE and control cohorts was significantly different,
and markedly lower in the PE cohort (Fig. 7B). Subsequently, we found the constructed ceRNA network containing
AGAP2-AS]1, and the regulatory network of AGAP2-AS1 was extracted (Fig. 7C). The regulatory network
included 41 mRNAs, 2 miRNAs, and 1 IncRNA, which contained the regulated relationship pairs AGAP2-
ASI1-hsa-miR-497-5p-SRPRB, and AGAP2-AS1-hsa-miR-195-5p-RPL36 (Fig. 7C). Significant differences were
observed in the expression levels of both miRNAs and mRNAs between the PE and control cohorts (Fig. 7D-E).
The 2 miRNAs were both up-regulated in PE cohorts, and most mRNAs were also significantly up-regulated
in PE cohort (Fig. 7D-E). Correlation analysis showed that AGAP2-AS1 had a significant strong or extremely
strong correlation with 27 mRNAs, such as PAFAH1B1, SKI, PNPLAG, etc. (Fig. 7F).

The results of enrichment analysis of the mRNAs demonstrated that there were 415 GO BP, 23 GO CC, 28 GO
ME, and 5 KEGG pathways enriched (Supplementary Tables 3-4), including cerebral cortex radial glia-guided
migration, platelet alpha granule lumen, sulfur compound binding, VEGF signaling pathway, etc. (Fig. 7G-H).

Validation of the expression of biomarkers in clinical samples

The expression of biomarkers was further assessed via real time quantitative-Polymerase Chain Reaction (RT-
qPCR). DAXX, EFNBI, NCOR2, and SOCS1 were highly expressed and RBBP4 was lowly expressed in the PE
cohort (Fig. 8A-E). Nevertheless, the expression levels of DAXX, SOCS1, and RBBP4 did not exhibit substantial
variations between the PE and control cohorts (Fig. 8A,D,E). Overall, the expression trends were in line with
findings from public database.
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Fig. 3. Screening of biomarkers. (A) Construction of PPI network. Red circles indicate up-regulated mRNAs,
blue circles indicate down-regulated mRNAs. (B) The hub gene was obtained by BottleNeck, EcCentricity,
Closeness, Betweenness and Stress algorithms. ROC curve of hub genes in GSE96984 (C) and GSE24129
dataset (D). The expression of hub genes between PE and control cohorts in GSE96984 (E) and GSE24129
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Fig. 4. GO enrichment analysis of five hub genes. DAXX (A), EFNBI1 (B), NCOR2 (C), SOCS1 (D) and

RBBP4 (E).

Discussion

PE is a significant pregnancy complication and has emerged as a primary cause of maternal and neonatal deaths
worldwide due to its unknown mechanism and poor drug treatment, exploring the potential biomarkers related
to its pathogenesis is of important for the prevention and diagnosis of PE?. PE is also associated with maternal
and neonatal health problems in pregnant women, such as maternal-associated chronic hypertension, myocardial
ischemia, end-stage renal disease, placental abruption, intrauterine fetal growth restriction, neonatal-associated
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Fig. 5. KEGG enrichment analysis of five hub genes. DAXX (A), EFNBI (B), NCOR2 (C), SOCS1 (D) and
RBBP4 (E).

bronchopulmonary dysplasia, and cognitive impairments®®. Moreover, PE is associated with maternal and
neonatal health problems in pregnant women, such as maternal-associated chronic hypertension, myocardial
ischemia, end-stage renal disease, intrauterine fetal growth restriction, neonatal-associated bronchopulmonary
dysplasia and cognitive impairment3\-32

In this study, we downloaded PE GeneChip datasets GSE96983, GSE96984 and GSE24129 from the GEO
database, and screened 251 DEGs by bioinformatics analysis and validation of the RFalgorithm, followed by
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9,10-PHEN

Gene Drug Sources | PMID
NCOR2 | 9,10-PHENANTHRENEQUINONE | DTC

NCOR2 | CHEMBL312032 DTC

NCOR2 | BENZBROMARONE DTC

SOCS1 | INSULIN NCI 18,171,911
SOCS1 | ALDESLEUKIN NCI 12,928,391

Table 1. Drug information corresponding to hub gene.

BENEZBROMARONE INSULIN

| Drug
ANTHRENEQUINONE

CHEMBL312(32

O Gene

AUDESLEUKIN

Fig. 6. Construction of drug-gene interaction networks. Green squares indicate drug, red circles indicate hub
genes.

downscaling of the differential genes to obtain 17 candidate hub genes, including Ras-related C3 botulinum toxin
substrate 1 (RAC1), protein kinase C epsilon (PRKCE), T-lymphoma invasion and metastasis 1 (TTAM1), Janus
kinase 1 (JAK1), ephrin B1 (EFNB1), Death domain-associated protein (DAXX), protein tyrosine phosphatase
non-receptor type 13 (PTPN13), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), nuclear receptor
corepressor 2 (NCOR2), RB binding protein 4 (RBBP4), myosin heavy chain 14 (MYH14), adenylate cyclase
1 (ADCY1), Suppressor of cytokine signaling (SOCS1), Forkhead box O1 (FOXO1), Wnt family member 5 A
(WNT5A), Nuclearrespiratoty factor 2 (NF2), and vascular endothelial growth factor A (VEGFA). The 17
candidate keys were analyzed in other datasets GSE96984 and GSE24129 for the expression of candidate hub
genes, resulting in 5 hub genes with significant differences and consistent expression pattern, namely DAXX,
EFNB1, NCOR2, RBBP4, and SOCSI.

Previous research reveals that the DAXX gene mRNA is a newly identified histone chaperone playing a
role in the regulation of chromatin architecture and that DAXX is associated with trophoblast differentiation
during placental development, with significantly elevated expression in patients with PE?*34, Sabri N et al.
demonstrated that tumor suppressor Speckle-type POZ protein regulates tumor progression by modulating the
polyubiquitination activity of DAXX?®. Additionally, treatment with the HPV16 E7 protein can increase the
expression of DAXX protein. Conversely, disrupting DAXX expression and using agonists for JNK can diminish
the inhibitory effects of HPV16 E7 on TNF-a-induced apoptosis. This indicates that the DAXX/JNK pathway
might be implicated in the anti-apoptotic function of HPV16 E7 *. Currently, no literature has been found
linking NCOR2 with preeclampsia. We are the first to identify NCOR2 as a biomarker associated with PE,
thereby expanding research in this field and providing new therapeutic targets. In our study, the similarity scores
of DAXX and NCOR?2 genes were greater than 0.6, indicating that these two genes are strongly similar and both
are upregulated in PE.

EFNBI1 (Ephrin-B1) is expressed in chorionic capillary endothelial cells during early and mid-gestation.
Inhibition of EFNBI suppresses HTR8/SVneo cell invasiveness through downregulation of MMP2 and
MMPY; and impairs spiral artery remodeling by decreasing placental growth factor expression, leading to PE
pathogenesis®”®. Previous studies have indicated that EFBN1 plays a vital role in promoting autophagy in
colonic epithelial cells, thereby contributing to the maintenance of intestinal homeostasis and the regulation of
blood pressure in humans>*4°,

There are no reports have detected the association of RBBP4 with the pathogenesis of PE. However, it has been
surfaced that RBBP4 is involved in the overlapping functions of the regulation of cell proliferation, apoptosis, and
the deposition of histone H3.3 during the preimplantation development of mouse embryos, which is thought
to be a crucial component in the pathogenesis of PE*'"*. Liu H et al. showed that SOCS1 negatively regulates
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the JAK/STAT1 signaling pathway and affects placental trophoblast invasiveness, and the assessment of clinical
specimens revealed elevated levels of SOCS1 and IFN-y expression in patients diagnosed with PE compared
to those in the healthy control cohort**. Mayor-Lynn K et al. showed that SOCS1 can alter normal placental
function by regulating cellular activity, leading to the development and progression of PE*>. Our study analysis
demonstrated a significant upregulation of EFNB1 and SOCS]I, as well as a notable downregulation of RBBP4,
in PE, corroborating the aforementioned observations.

The DGIdb database predicts the interaction of drugs with the hub gene and finds 5 potential small molecule
drugs for the treatment of eclampsia, which provides new ideas for the treatment of eclampsia. We identified
a total of five target drugs 9,10-PHENANTHRENEQUINONE, HEMBL312032, BENZBROMARONE,
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Fig. 8. RT-qPCR analysis of expression levels of five hub genes in serum and placenta samples between PE
and control cohorts. DAXX (A), EFNBI1 (B), NCOR?2 (C), SOCS1 (D) and RBBP4 (E). The error bar indicates
standard error (SE). ns, not significant; *, P <0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.

INSULIN, ALDESLEUKIN, which could be influential in the future management of individuals suffering from
PE. INSULIN has been reported to be involved in the pathogenesis of PE, and its distinct process might be linked
to the crucial function of insulin signaling in the differentiation, longevity, and effector actions of immune cells,
primarily through the standard activation of the PI3K/Akt/mTOR pathway“6*”. Hyperinsulinemia, characterized
by insulin resistance or aggressive insulin treatment, might directly contribute to immune cell impairment,
which is a key factor in the onset of PE*®4.

We extracted the AGAP2-AS1-related regulatory sub-network from ceRNA network and performed Gene
Set Enrichment Analysis (GSEA) analysis. AGAP2-AS1, a 1567 nucleotide IncRNA situated on chromosome
12q14.1, has been identified as being unusually expressed in multiple diseases, such as cancer®®!. Decreased
expression of AGAP2-AS1 in PE has been previously reported, whereas overexpression of AGAP2-AS1 in cells
enhances the growth, invasion, and movement of trophoblast cells and hinders the programmed cell death
of these cells. AGAP2-AS] stabilizes trophoblast cells and reduces apoptosis by sponging the miR-574-5p
Promoter-Depressor Protein Jun Dimerization Protein 2 (JDP2), and our findings are consistent with previous
reports?®. In brain tumor research, AGAP2-ASI is involved in the regulation of the Wnt signaling pathway
through its interaction with miR-15a/b-5p, thereby influencing the pathogenesis, diagnosis, prognosis, and
treatment of brain tumors®2. Another study on renal cell carcinoma (RCC) revealed a different pathway, where
IGF2BP3 stabilizes AGAP2-AS]I, allowing it to competitively bind with miR-9-5p, consequently upregulating
the expression of Thrombospondin-2 (THBS2) and activating the PI3K/AKT signaling pathway. This process
induces M2 polarization of macrophages and promotes the progression of RCC*?. Additionally, in studies on
glioblastoma (GBM), AGAP2-ASI in exosomes (Exo-AGAP2-AS1) was found to inhibit the function of miR-
486-3p through a sponging mechanism, thereby regulating the expression of Transforming Growth Factor 1
(TGF-P1) in myeloid-derived suppressor cells (MDSCs). This regulatory mechanism promotes the development
of GBM cells and provides new potential targets for GBM treatment®. We followed up with GSEA analysis, and
we found that AGAP2-AS1 was mainly enriched in the VEGF pathway as well as the EGFR pathway and MAPK
pathway. Previously, it has been reported in the literature that VEGF is involved in the formation of gestational
diabetes and peeclampsia®*6. MAPK has been used as an important pathway for stabilizing trophoblast cells
and an important mechanism in the pathogenesis of PE*”. Our study is consistent with previous reports. By
correlation analysis, we found that AGAP2-AS1 may affect the pathogenesis of PE by regulating genes such as
TRIM35 to influence the expression of DAXX, EFNB1, NCOR2, RBBP4 and SOCS1.

Research has found that IncRNAs in biological fluids, as promising biomarkers, have shown significant
emerging relevance in the risk stratification of pregnancy-related complications (PRC), including preeclampsia
(PE). Studies on the expression patterns of IncRNAs and their potential clinical applications hold diagnostic,
prognostic, and therapeutic value, paving the way for innovative approaches to improve prenatal care and the
prognosis of pregnant women and fetuses®®. Additionally, Xiao-Hong Wei and others have discovered that the
long non-coding RNA (IncRNA) DUXAPS is upregulated in the placental tissues of patients with preeclampsia

Scientific Reports |

(2024) 14:27330 | https://doi.org/10.1038/s41598-024-79224-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

and is significantly correlated with multiple clinical indices. This finding reveals the crucial role of DUXAPS8 in
regulating the biological behavior of trophoblasts through the FAM134B-mediated endoplasmic reticulum (ER)
phagocytosis process, thus providing new theoretical support and perspectives for exploring the pathogenesis of
preeclampsia (PE)*.However, further studies are needed to determine how LNC RNA affects the development
of PE. Currently, although there is no direct evidence to suggest an interaction between IncRNA AGAP2-AS1
and the five core genes, existing research has revealed that the downregulation of IncRNA AGAP2-AS1 could act
as a key inhibitory factor in preeclampsia (PE) by competitively inhibiting JDP2 at the post-transcriptional level
through miR-574%8. Given the direct or indirect association between these five core genes and preeclampsia, it is
reasonable to speculate that there might be some as yet undefined but significant connections between AGAP2-
AS1 and these core genes. This potential mechanism warrants further investigation, and our current findings lay
a theoretical foundation and direct the path for future scientific exploration.

Conclusion

In this study, we established a ceRNA regulatory network and identified hub genes of PE, namely DAXX, EFNBI,
NCOR2, RBBP4 and SOCS1, which provided new ideas for the study of the pathogenesis of PE. However, this
study is limited by its small sample size. This may weaken the statistical power and introduce sample bias, thereby
introducing uncertainties or errors in the research results, which reduces the credibility of the conclusions. To
overcome this limitation, we plan to enhance the statistical power in future research by increasing the sample size.
This will help to reduce potential biases and errors, ensuring the scientific integrity and rigor of the experimental
design, thereby improving the reliability and scientific validity of the research findings.We will follow up with an
in-depth study on how LncRNA regulates the relationship between AGAP2-AS1 and DAXX, EFNB1, NCOR?2,
RBBP4 and SOCSI.

Materials and methods

Data sources

The datasets related to PE (GSE96983, GSE96984, and GSE24129) were retrieved from the GEO repository,
accessible through the https://www.ncbi.nlm.nih.gov/. The samples of all three data sets are placental samples.
The dataset GSE96983 consists of three samples from individuals with PE and four samples from healthy controls.
The dataset GSE96984 comprises three samples from PE subjects and four samples from control subjects. The
GSE96983 and GSE96984 datasets were from the same cohort of patients, with patients aged 26, 28, 29, 30,
31, 32, and 33, respectively. The mRNA sequencing data (mRNA-seq) and IncRNA sequencing data (IncRNA-
seq) were downloaded from the GSE96984. The miRNA sequencing data (miRNA-seq) was downloaded from
the GSE96983. The mRNA-seq was downloaded from the GSE24129 to perform validation, and the GSE24129
included 8 PE samples and 8 control samples®. In the GSE24129 dataset, all placenta biopsy samples originated
from collections following caesarean section procedures. To ensure that the delivery process did not potentially
affect the gene expression profiles of the tissue samples, placentas from women who had never experienced a
delivery were purposely selected as the source of the samples.

Creation of the competing endogenous RNA (ceRNA) network

Firstly, the gene expression matrix of three PE samples and four control samples in the GSE96984 dataset was
analyzed by the voom method in the “limma” R package (version 3.48.3) (|log2FC| > 0.5 and P<0.05)°!, and
DE-mRNAs and DE-IncRNAs between the PE groups and the control groups were identified. Subsequently, DE-
miRNAs between PE and control were analyzed in the GSE96983 dataset (|log2FC| > 0.5 and P < 0.05). Finally,
volcano plots were drawn using the “ggplot2” R package (version 3.3.5)%? to show DE-IncRNAs, DE-miRNAs
and DE-mRNAs, and heatmaps of differential expression were drawn using the “pheatmap” R package (version
1.0.12)%. The target miRNAs of DE-IncRNAs were predicted by StarBase (http://starbase.sysu.edu.cn) and
miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw), respectively, and the screened miRNAs were taken
to intersect to obtain candidate miRNAs, and its intersection with DE-miRNAs was taken to obtain overlapping
miRNAs. Similarly, the target mRNAs of DEmiRNAs were predicted by StarBase (http://starbase.sysu.edu.cn)
and miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw), respectively, and the screened mRNAs were
intersected to obtain candidate mRNAs, whose intersection with DE-mRNAs was taken to obtain overlapping
mRNAs. Subsequently, the Cytoscape software (version 3.9.1) was used to integrate the interactions of DEIncRNAs
and overlapping miRNAs and overlapping mRNAs, to construct the IncRNAs-miRNAs-mRNAs regulatory
network with overlapping miRNAs regulating both DEIncRNAs and overlapping mRNAs as a complete ceRNA.
Finally, the overlapping mRNAs were enriched (P<0.05 and counts>1) by the “ClusterProfiler” R package
(version 4.0.2)% to look for common functions and related pathways. The top 10 GO-enriched functions and
KEGG-enriched pathways were plotted using the “ggplot2” R package (version 3.3.5)%°-¢7.

Screening of biomarkers

The STRING database was utilized to construct the PPInetwork of the identified mRNAs, considering only
interactions with a confidence score higher than 0.9. Then, the BottleNeck, EcCentricity, Closeness, Betweenness,
and Stress in Cytoscape were utilized to identify hub genes. The hub genes were identified by intersecting the
top 30 genes obtained from five different algorithms. The hub genes underwent additional screening based on
Receiver Operating Characteristic (ROC) curves. Candidate genes were identified among the hub genes based
on an area under the curve (AUC) value exceeding 0.7. Subsequently, the expression levels of candidate genes in
both PE and control groups were examined using datasets GSE96984 and GSE24129. The candidate genes that
were significantly different between PE and control cohorts and had the same expressive trend in both datasets
were used for subsequent analysis and noted as biomarkers. The functional similarity among the biomarkers
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was assessed via “GOSemSim” R package (version 2.18.1)%%°. Lastly, the correlation between the identified
biomarkers was determined using the Spearman correlation coefficient.

Functional analysis

To investigate the enrichment pathways associated with the biomarkers, we conducted GSEA using the
“clusterProfiler” R package (version 4.0.2) along with org.Hs.eg.db (version 3.13.0)%. The reference gene sets
used for analysis were obtained by downloading the “C2.cp.kegg.v7.5.1.symbols.gmt” and “C2.go.v7.5.entrez.
gmt” datasets. Based on the median expression value of the identified biomarkers, the samples from GSE96984
dataset were categorized into cohorts with high and low expression levels, and differential analysis was carried
out. The all genes were ranked via log fold change (1ogFC). The threshold value were |normalized enrichment
score (NES)| > 1, NOM P<0.05, and q<0.25.

Prediction of small molecule drugs

Each biomarker was utilized as a keyword to predict potential small molecule drugs that interact with the
biomarkers in the Drug-Gene Interaction Database (DGIdb, available at https://dgidb.org). Subsequently, the
biomarker-drug network was visualized using Cytoscape software (version 3.7.2)°.

Creation of regulatory network and subcellular localization of AGAP2-AS1

Firstly, the subcellular localization of AGAP2-AS1 was performed through IncLocator Database (www.
csbio.sjtu.edu.cn/bioinf/IncLocator). Then, the AGAP2-AS1 expression between PE and control cohorts was
compared via Wilcox test. The regulatory network of AGAP2-AS1 was extracted from the constructed ceRNA
network. The expression of AGAP2-AS1-regulated miRNAs and mRNAs between PE and control were analyzed.
Additionally, the correlation of AGAP2-AS1 with AGAP2-AS1-regulated mRNAs was calculated by Pearson.
The 0.0 < |r| < 0.2 was extremely weak or no correlation, 0.2 < |r| <0.4 was weak correlation, 0.4 < |r| < 0.6 was
moderate correlation, 0.6 < |r| < 0.8 was strong correlation, and 0.8 < |r| < 1.0 was extremely strong correlation.
Afterwards, the enrichment analysis were carried out for mRNAs via “ClusterProfiler” R package (version 4.0.2)
(P<0.05 and count > 1)%,

Differential gene correlation analysis with LncRNA regulated genes

In order to delve deeper into the association between IncRNA regulated genes and DE-mRNA in PE, we
performed a correlation analysis.Genes with significant positive correlation between LncRNA and DE-mRNA
were selected for correlation analysis. Spearman’s correlation analysis was employed to assess the correlation
between the expression of DE-mRNA and the data obtained from GEO datasets on the expression of regulatory
IncRNAs.

Sample collection and RT-qPCR

A total of 8 PE patients and 8 controls at Affiliated Hospital of Guizhou Medical University from January
2023 to June 2023 were enrolled in this study.All PE patients were diagnosed according to the 2020 guidelines
for hypertensive disorders of pregnancy issued by the American College of Obstetricians and Gynecologists
(ACOG)?. This study did not involve human in vivo experiments or human transplantation-related studies
and has been conducted in accordance with the Declaration of Helsinki, which has been obtained from all
participants and informed consent.The exclusion criteria were as follows: pregnant women under the age of
18, smoking, alcohol addiction, history of diabetes, anemia, dyslipidemia, autoimmune diseases, malignancy,
or gastrointestinal surgery. After the termination of pregnancy, fetal side placental tissues were immediately
collected under sterile conditions, approximately 10¥10 mm in size, washed with saline, and rapidly frozen at
-80 °C. And the Serum and placenta samples were collected to perform RT-qPCR. This study was approved
by Ethics Committee of Affiliated Hospital of Guizhou Medical University, Approval Number 2022(410). All
participants provided their informed consent by signing a consent form prior to their involvement in the study.
The RNA was extracted by TRIzol (Ambion, Austin, USA) in accordance with the instructions provided by the
manufacturer. SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) was utilized to perform

Gene Primer sequence (5°-3’)

DAXX-F GAAATCCCCACCACTTCCTCC
DAXX-R GCACGATGATGCTGTTAGCG
EFNBI-F AGCAGTGGGAGGTTTGTGAG
EFNBI-R TAGAAGAGCGGGGAGATGCT
NCOR2-F GATGGTGGGCTCCAAGACTG
NCOR2-R CCTCATTCCCAGAGGCATGTA
RBBP4-F CAGCATTCATCGACTTGTCCT
RBBP4-R TGTGACGCATCAAACTGAGCA
SOCSI-F GACACGCACTTCCGCACATT
SOCS1-R CGAGGCCATCTTCACGCTAA
Reference gene-GAPDH-F | CGAAGGTGGAGTCAACGGATTT
Reference gene-GAPDH-R | ATGGGTGGAATCATATTGGAAC

Table 2. The information of primer sequence in RT-qPCR.
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reverse transcription analysis. The RT-qPCR analysis was performed using the 2xUniversal Blue SYBR Green
qPCR Master Mix (Servicebio, Wuhan, China). The primer sequences used for the analysis can be found in
Table 2. The expression levels of biomarkers were quantified using the 2724t method, with normalization to the
mRNA levels of GAPDH"!.

Data statistics

Statistical analysis was conducted using R software (version 4.2.0) (https://www.r-project.org) and GraphPad
Prism v9.0. Differences between two cohorts were analyzed using ANOVA and Wilcoxon’s test for multiple
cohorts. The difference in OS between cohorts was estimated using a log-rank test and Kaplan-Meier (K-M)
analysis. Pearson’s correlation test was utilized to determine the associations among subtypes, clinicopathological
features, risk scores, immune checkpoint expression, methyltransferases, and levels of immune infiltration. The
obtained results were deemed statistically significant at a significance level of P <0.05.

Data availability

The datasets used and analyzed in the current study are available from the GEO database (https://www.ncbi.
nlm.nih.gov/gds) [GSE96983, GSE96984 and GSE24129], StarBase (Http://starbase.sysu.edu.cn), miRTarBase
Database (Http://mirtarbase.mbc.nctu.edu.tw), DGIdb database (https://dgidb.org), IncLocator Database (ww
w.csbio.sjtu.edu.cn/bioinf/IncLocator).
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