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During a radiotherapy (RT) course, geometrical variations of target volumes, organs at risk, weight 
changes (loss/gain), tumor regression and/or progression can significantly affect the treatment 
outcome. Adaptive RT has become the effective methods along with technical advancements 
in imaging modalities including cone-beam computed tomography (CBCT). Planning CT (pCT) 
can be modified via deformable image registration (DIR), which is applied to the pair of pCT and 
CBCT. However, the artifact existed in both pCT and CBCT is a vulnerable factor in DIR. The dose 
calculation on CBCT is also suggested. Missing information due to the artifacts hinders the accurate 
dose calculation on CBCT. In this study, we aim to develop a deep learning-based metal artifact 
reduction (MAR) model to reduce the metal artifacts in CBCT for head and neck cancer RT. To train 
the proposed MAR model, we synthesized the kV-CBCT images including metallic implants, with and 
without metal artifacts (simulated image data pairs) through sinogram image handling process. We 
propose the deep learning architecture which focuses on both artifact removal and reconstruction 
of anatomic structure using a dual-encoder architecture. We designed four single-encoder models 
and three dual-encoder models based on UNet (for an artifact removal) and FusionNet (for a tissue 
restoration). Each single-encoder model contains either UNet or FusionNet, while the dual-encoder 
models have both UNet and FusionNet architectures. In the dual-encoder models, we implemented 
different feature fusion methods, including simple addition, spatial attention, and spatial/channel wise 
attention. Among the models, a dual-encoder model with spatial/channel wise attention showed the 
highest scores in terms of peak signal-to-noise ratio, mean squared error, structural similarity index, 
and Pearson correlation coefficient. CBCT images from 34 head and neck cancer patients were used to 
test the developed models. The dual-encoder model with spatial/channel wise attention showed the 
best results in terms of artifact index. By using the proposed model to CBCT, one can achieve more 
accurate synthetic pCT for head and neck patients as well as better tissue recognition and structure 
delineation for CBCT image itself.

Abbreviations
CBCT	� Cone-beam computed tomography
CT	� Computed tomography
DIR	� Deformable image registration
HU	� Hounsfield unit
IGRT	� Image-guided radiotherapy
LINAC	� Linear accelerator
MAR	� Metal artifact reduction
MSE	� Mean squared error
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O-MAR	� Metal artifact reduction for orthopedic implants
PCC	� Pearson correlation coefficient
pCT	� Planning computed tomography
PSNR	� Peak signal-to-noise ratio
RT	� Radiotherapy
SD	� Standard deviation
SSIM	� Structural similarity index

Recently, an image-guided radiotherapy (IGRT) or adaptive radiotherapy (RT) has become the effective methods 
along with technical advancements in imaging modalities such as magnetic resonance imaging or cone-beam 
computed tomography (CBCT)1–4. During RT, geometrical variations of target volumes, organs at risk, weight 
changes (loss/gain), tumor regression and/or progression can significantly affect the treatment outcome5. 
The patients’ anatomy can vary along the time that leads to an inaccurate dose delivery (or accumulated dose 
calculation) which is driven from the static (stationary) treatment planning6. The adaption by daily accumulation 
can resolve the problem of previous independent computed tomography (CT) scan methods7.

Within this, the synthetic CT generation using CBCT image for adaptive radiotherapy (RT) is also prevalent. 
Particularly, using the deformable image registration (DIR), it is possible to generate the synthetic CT from 
planning CT (pCT) and daily CBCT image. By adopting the original plan on pCT to this synthetic CT image, the 
change of dose delivery compared to the original plan is calculated and some left partial plans can be modified 
considering the daily change of the anatomy. Furthermore, the structure set contoured on pCT can be modified 
with respect to the same DIR applied to the pair of pCT and CBCT. However, the artifact existed in both pCT 
and CBCT is a vulnerable factor in DIR8–12. On the other hand, an attempt has made for the CBCT to directly 
calculate the patient dose. The dose calculation on CBCT is also suggested by using a deep learning method and 
has shown a great feasibility. During the conversion process of Hounsfield unit (HU)-electron density curve to 
CBCT, missing information due to the CBCT artifacts hinders the accurate dose calculation on CBCT13.

There are a lot of methods for removing artifacts in CBCT, but they are mostly for scattering, motion, and 
cupping artifacts. However, for the head and neck RT, strong metal artifacts significantly degrade the accuracy 
of dose calculation and the performance of DIR, as well as the image quality of CBCT. In contrast to the CT 
scanner for pCT, to our knowledge, CBCTs attached to linear accelerator (LINAC) have no dedicated software 
to reduce metal artifacts.

Existing metal artifact reduction (MAR) methods for a typical dental CBCT utilize a passive inpainting method 
to prevent destroying tissue parts rather than reducing the artifacts14,15. Recently, a deep learning method was 
used for MAR in dental CBCT16. As the generative adversarial network has shown the effective result, and the 
lack of data acquisition, the attempt to solve the MAR problem as unsupervised method using the cycleGAN17 
has been also proposed. The method using dual domain18, sinogram and image19,20 has been also proposed. 
The CBCT image data used in aforementioned studies were acquired from dental CBCT. More recently, several 
studies have presented deep learning-based MAR for CBCT attached to LINAC21,22. In those studies, images 
from MV-CBCT were used to synthesize the target kV-CBCT images having no metal artifacts17,23,24.

In this study, we aim to develop a deep learning-based MAR model to reduce the metal artifacts in CBCT for 
head and neck cancer RT. To train the proposed MAR model, we synthesized the kV-CBCT images including 
metallic implants, with and without metal artifacts (simulated image data pairs) through sinogram image 
handling process. We propose the deep learning architecture which only uses image domain, and focuses on 
both artifact removal and reconstruction of anatomic structure.

Methods
Ethics declarations
All procedures performed in study involving human participants were in accordance with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. The experimental protocols were 
approved by the Seoul National University Hospital Institutional Review Board (IRB approval No. H-2111-198-
1280) and Written informed consent by the patients was waived due to a retrospective nature of our study.

Generation of synthetic dataset
Since the acquisition of pairs of metal artifact CBCT image and artifact free CBCT slices in one patient is not 
available, we synthesized the CBCT dataset following a previous work25. The metal artifact image and metal 
artifact free image were selected randomly in our database, as shown in Table 1. The CBCT images were obtained 
between 2019 and 2020 from the C-arm CBCT attached to the VitalBeam LINAC (Varian Medical Systems/ 
Siemens Healthineers, CA, USA) in Seoul National University Hospital.

Metal artifact free (clean images) for synthetic 
data generation Metal artifact images for metal extraction

Metal artifact images 
for MAR performance 
test of trained model 
(inference)

The number of patients 7 24 34

The number of CBCT image slices 651 2232 3155

Table 1.  Description of the CBCT database for MAR model development and performance test.
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The overall synthetic data generation process is illustrated in Fig. 1. The segmentation of metal region was 
done through HU thresholding for extraction of metal region. We assumed the HU value of the metal is 8000. 
The erosion filter and Gaussian blur were applied for boundary smoothing. The position of metals segmented 
from the metal artifact image were slightly changed according to the anatomical structure of the clean (artifact 
free) image. Then the position-corrected metal images were converted into synthetic metal artifact CBCT 
images, as encompassing Radon transformation and inverse Radon transformation. During sinogram handling 
processing, various artifact strengths can be generated by multiplying values in an arbitrary range during the 
radon transform and inverse radon transform process. Position-corrected metal images were synthesized into 
clean images, and the synthesized images would be target images. Synthetic metal artifact images would be input 
images for the proposed MAR model. In this regard, we synthesized a paired data of metal artifact free CBCT 
images (i.e., ground truth) and metal artifact CBCT images. We generated the synthesized dataset focusing on 
producing the case of containing the oral cavity, since it is the most complex part and difficult for restoration due 
to its complex anatomy structure.

Architecture of MAR models
Single-encoder models
The first model is based on the UNet26 encoder (Fig. 2(a)), which is built for artifact removal, rather than the 
realistic restoration of the artifact-corrupted region. It consists of convolution layers and maxpooling layers. 
Maxpooling shows the effectiveness in detecting the artifact region and removing the artifact since the pixel 
values in artifact region is unusually high compared to the tissue and bone, which enabled maxpooling to detect 
and remove those regions well.

The second model is based on the FusionNet27 encoder (Fig. 2(b)), but several structures are modified for 
restoration of anatomic structures. For better restoration, the residual connection is added to each convolution 
layers, and the maxpooling is changed to the strided convolution layer. In this architecture, the characteristic 
of restoration is highly increased which makes a small-negative effect in artifact reduction, the model tries to 
preserve information in input as many as possible. The purpose of the second model is on anatomy restoration, 
not a radical artifact reduction. The decoder consists of upsampling layer and convolution layer with residual 
connection.

The third model is based on the modified UNet encoder by adding residual convolutional block to the first 
model (denoted as UNet/L, which indicates large encoder of UNet) (Fig. 2(c)).

The fourth model is based on the modified FusionNet by adding maxpooling layer and spatial attention layer 
to the second model (denoted as FusionNet/L, which indicates large encoder of FusionNet) (Fig. 2(d)). The 
third and fourth models are designed to merge the strengths of the UNet (i.e., artifact removal) and FusionNet 
(i.e., restoration of anatomic structure) into the single-encoder models. Since these models are combinations of 
UNet and FusionNet, convolutional and attentional features are extracted and linked to decoder through skip 
connections.

Fig. 1.  Overall workflow of generation of synthetic dataset for training the proposed MAR model.
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Dual-encoder models
Our proposed model architecture is based on the dual encoder–decoder architecture. The first encoder (encoder1 
of Fig. 3) is based on the UNet manipulated for the artifact removal, while the second encoder (encoder2 of 
Fig. 3) is based on the FusionNet manipulated for the restoration of metal artifact region. The basic structures 
for each encoder are the same as the UNet and FusionNet described as the first model and second model, 
respectively.

After each encoder produces convolutional feature and attentional feature, two features are mixed in regional 
proper way using the feature fusion. The convolutional feature is produced through convolution operation in 
a convolution block, and the attentional feature is produced through spatial and channel-wise attention28,29 
operations on the feature maps that are operated from the convolution block.

Our purpose is to add the anatomy restoration detail in radically-removed feature map. Therefore, three 
dual-encoder models are designed with respect to feature fusion methods in the decoder. The first dual-encoder 
model uses two convolutional features with a simple addition method (Fig.  3(a)). The second dual-encoder 
model uses one convolutional feature and one attentional feature with the spatial attention method (Fig. 3(b)). 
The third dual-encoder model reflects the convolutional feature and spatial attention feature to the decoder 
through channel wise attention operation (denoted as channel wise attention block in Fig. 3(c)). This is designed 
to provide high restoration performance by providing sufficient local (focusing where) and global (focusing 
what) information for the decoder restoration process through the attention operation of the information 
extracted from each encoder. The third model dual-encoder model is our final proposed model (ours) with the 
best performance in this task.

Since we proposed and experimented four single-encoder models and three dual-encoder models, the model 
structures were complicated. Therefore, we summarized the characteristics of each model in Table 2.

Fig. 2.  Model architectures of four single-encoder models (see the text for detailed descriptions of 
architecture).
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Loss function
Since we have the synthesized metal artifact dataset including metal artifact free CBCT images for labels, the 
supervised way of training is applied. Loss function is the combination of mean squared error (MSE)  loss, 
structural-similarity index (SSIM) loss, and auxiliary loss. MSE and SSIM losses are described in following 
Eqs. (1) and (2):

	
LMSE(y,ŷ) =

1

n

∑
(yi − ŷi)

2� (1)

	
LSSIM(x,y) = 1−
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2µ xµ y + C1

)
+ (2σ xy + C2)

(µ 2
x + µ 2

y + C1)(σ 2
x + σ 2

y + C2)
� (2)

No. of 
encoders

Encoder 1 Encoder 2 Decoder

Model
Residual 
block

Max 
pooling Model

Residual 
block

Max 
pooling Encoder1 skip info Encoder2 skip info

Feature fusion 
method

Single- 
encoder

UNet N/A O N/A N/A N/A N/A N/A N/A

FusionNet O N/A* N/A N/A N/A N/A N/A N/A

UNet/L O† O N/A N/A N/A Attentional feature N/A N/A

FusionNet/L O O‡ N/A N/A N/A Attentional feature N/A N/A

Dual- 
encoder

UNet N/A O FusionNet O N/A* Convolutional feature Convolutional feature Simple addition

UNet N/A O FusionNet O N/A* Convolutional feature Attentional feature Spatial attention

UNet N/A O FusionNet O N/A* Convolutional feature Attentional feature Spatial & channel 
wise attention

Table 2.  Characteristics of single-encoder and dual-encoder models. *Max pooling layer has been changed to 
convolutional layer. †Residual convolution block has been merged into a UNet/L encoder architecture. ‡Max 
pooling layer has been added to a FusionNet/L model.

 

Fig. 3.  Model architectures of three dual-encoder models (see the text for detailed descriptions of 
architecture).
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The FusionNet based encoder2 for anatomy restoration has over-preserved the metal artifact, so the direct loss 
between the middle encoder feature and the target (artifact removed) image using MSE as the auxiliary loss is 
added. This auxiliary loss has given the effect of leaving the metal artifact region while preserving the proper 
features. For this, we took a convolution layer to each layer’s encoder feature, and directly calculated the loss 
between the target and the convolution output.

Experiments
The total numbers of synthesized dataset for training, validation, and test are 29104, 3795, and 7201, respectively. 
The training was done for 100 epoch with batch size 32, and the random crop was used for data augmentation.

Quantitative evaluation
The following four evaluation indicators were used to quantitatively evaluate the performance of MAR. For each 
evaluation metrics, MSE is utilized to measure the difference in pixel values between input and output images, 
as Eq. (3). It is particularly useful for highlighting significant errors.

	
MSE(ŷ, y) =

1

n

∑
(yi − ŷi)

2.� (3)

The SSIM assesses the quality of MAR by comparing the luminance, contrast, and structural information 
between the input and output images, as Eq. (4). This metric is effective in evaluating how well essential details 
are preserved during artifact reduction.
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Peak signal-to-noise ratio (PSNR) evaluates the performance of MAR by measuring the ratio between the 
maximum possible signal and the noise introduced by the reduction process, as Eq. (5). It used for quantifying 
the extent to which the output image retains the quality of the target image after artifact removal.

	
PSNR(x, y) = 10log10

(
MAXI

2

√
MSE

)
,� (5)

and Pearson correlation coefficient (PCC) was used to check the linear relationship between images, as Eq. (6):
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Artifact index method
To evaluate the performance of MAR, the artifact index30 calculation was conducted. The artifact index 
calculation, as indicated by the green and red circles in Fig. 5 of the qualitative results, was performed using 
below Eq. (7):

	 Artifact Index =
√
SDgreen

2 − SDred
2.� (7)

The standard deviation (SD) of the green circle represents regions with high standard deviation, indicating 
significant metal artifacts and image distortion. In contrast, the SD of the red circle represents regions with the 
lowest standard deviation, suggesting minimal artifacts in each CT image.

Results
Quantitative evaluation
The quantitative evaluation was performed with our synthesized dataset. Quantitative result has been shown 
on Table  3. Our model, having dual-encoder and spatial and channel wise attention, showed the best result 
compared to the other single-encoder and dual-encoder models. The residual connection has the effect of over-
preserving, so the metrics of FusionNet is slightly lower than the UNet in single-encoder models.

In addition, the single-encoder models with large encoder architecture (i.e., UNet/L and FusionNet/L) did 
not show effective results. The single-encoder models having similar structures with dual-encoder models in a 
single merged encoder were observed to have low quantitative values compared to the dual-encoder models.

We also compared the feature fusion methods. The dual-encoder with simple addition showed the in-between 
performance of single-encoder UNet and FusionNet. And the method using spatial attention showed slightly 
higher numerical performance improvement compared to the method using only simple addition. By adding 
spatial and channel-wise attention, it can be observed that the performance increases. This model achieved the 
highest numerical evaluation results among all the models.

Artifact index
The artifact index demonstrated significant improvement across all models compared to the input image as 
shown in Fig. 4. Due to the varying characteristics of each deep learning model, the numerical differences were 
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minimal. Models based on FusionNet with residual connection blocks exhibited a wide range of values due to 
their over-preserving nature, while the single UNet-based models showed a relatively narrow value distribution. 
Our proposed model, utilizing spatial and channel-wise attention methods, effectively removed artifacts, 
resulting in the lowest mean index and the narrowest distribution.

Qualitative evaluation
The comparison was conducted between areas frequently subjected to adaptive RT within the oral cavity and 
regions with high occurrences of metal insertion in dental areas. Tissue restoration performance is indicated 
by the orange arrow, over-preservation of tissue is highlighted by the red arrow, and reduction of heavy streak 
artifacts is denoted by the purple arrow. Considering the high intensity of metal artifacts in the input images 
due to the insertion of high-density implants, The UNet removed the artifact region well but mostly makes 
the grayish and blurry tissue region (see orange arrows in Fig. 5). Unlike UNet, the FusionNet over-preserved 
the input image’s infromation (see red arrows in Fig. 5) and did not remove the metal artifact effectively, while 
preservation and restoration of artifact-corrupted region is better than UNet. In addition, the UNet/L and 
FusionNet/L models showed some improvements compared to the UNet and FusionNet model mentioned 
above, but they did not demonstrate effective results. The proposed architecture, which used dual encoder 
did two positive effect from each encoder, which effectively removes metal artifacts but also restores the tissue 
without blurring or making the new greish region (see in Fig. 5(a)). In particular, the tooth area indicated by the 
yellow arrow in Fig. 5(b) for patient 2 demonstrates noticeably good performance.

Figure  6 presents the comparison results for different feature fusion methods of dual-encoder models. 
Observing the red arrows in Fig. 6, the model that simply added convolutional features in the decoder failed 
to effectively removed streak artifacts from the input image. In contrast, the model using spatial attention 
demonstrates more effective streak artifacts removal. And as indicated by the orange arrow in Fig. 6(a) using 
spatial attention improved tissue restoration performance better than simple addition.

Our proposed model, which utilizes both spatial and channel-wise attention, demonstrated superior 
performance in streak artifact reduction and tissue restoration. The tissue area marked by the orange arrow was 
realistically restored, and streak artifacts (see red arrow in Fig. 6(a)) were also effectively removed. Particularly 

Fig. 4.  This includes the artifact index calculation results for the input image, along with quantitative results 
for seven models, comprising both single encoder and dual encoder architectures. The yellow line represents 
the mean value and the green triangle indicates the median value.

 

No. of encoders

Encoders

Feature fusion method

Evaluation metrics

Encoder 1 Encoder 2 PSNR MSE SSIM PCC

Single-encoder

UNet N/A N/A 41.003026 0.000107 0.991796 0.992719

Fusion Net N/A N/A 39.921392 0.000142 0.990347 0.991159

UNet/L N/A N/A 39.301266 0.000147 0.990335 0.990836

FusionNet/L N/A N/A 39.991436 0.000130 0.991024 0.991741

Dual-encoder

UNet FusionNet Simple addition 40.430324 0.000118 0.991504 0.992012

UNet FusionNet Spatial attention 40.726800 0.000113 0.992119 0.992379

UNet FusionNet Spatial and channel 
wise attention 41.859071 0.000086 0.993072 0.993681

Table 3.  Quantitative evaluation results depending on architectures.
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for severe metal artifacts case in Fig. 6(b), the models with simple addition and spatial attention left substantial 
streak artifacts (purple arrows in Fig. 6(b)) and failed to restore the tissue areas adequately (orange arrows in 
Fig. 6(b)). However, our proposed model effectively restored the tissue area (orange arrow in Fig.  6(b)) and 
exhibited high-performance severe streak artifacts reduction capabilities (purple arrow in Fig. 6(b)).

Fig. 5.  Comparison between the single-encoder models and dual-encoder incorporating with spatial & 
channel wise attention (our proposed model).
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Discussion
We developed and trained a synthetic dataset exclusively with kV-CBCT data. Our proposed model, which uses 
dual-encoder instead of a single-encoder, exhibited superior performance in reducing metal artifacts. The dual-
encoder facilitates more nuanced data processing and integration. Each encoder is tailored to different aspects of 
the imaging data, enhancing artifact reduction synergistically. The first encoder extracts fine details from images, 
while the second encoder focuses on identifying and mitigating noise and artifacts. This specialized approach 
ensures a thorough analysis of both the image structure and potential disruptions. Additionally, by employing 
an attention mechanism, we selectively utilized essential information, thereby improving the performance in 
MAR. This method has demonstrated potential to enhance the quality of the output images and provide benefits 
in clinical settings.

Despite the synthetic pCT’s accuracy via DIR, the deformation of structures in the oral cavity is discouraged. 
We noted geometric discrepancies between the deformed structures, attributed to the reduction of metal artifacts 
in CBCT. Moreover, we observed that the volumetric similarity between the deformed structures (from both 
the original and the MAR-enhanced CBCT) and the ground truth contour was actually less than that between 
the structure on the original pCT and the ground truth contour. Although the commercial MAR technique 
(O-MAR, Philips Healthcare, Netherlands) was applied to the pCT, pronounced streak artifacts remained. These 
residual metal artifacts on the pCT could hinder the generation of accurate deformed structures.

In future research, we plan to employ deep learning-based MAR techniques on both pCT and CBCT to create 
synthetic CT and deformed structures. Furthermore, future studies should explore direct dose calculation on 
CBCT, which was not addressed in our current study, to observe potential dose differences between the original 
and MAR-enhanced CBCT.

This study has some limitations to be discussed. Firstly, the dataset used in this study was acquired from 
a single institution. The performance of the model developed in this study was evaluated fairly using patient 
data not used in training, and it is expected to perform well even when data from other institutions is utilized. 
Although a sufficient number of data was used to evaluate the model’s performance, utilizing a larger dataset or 
data from other institutions in the future would greatly assist in enhancing the model’s performance. Secondly, 
various experiments were conducted to find the optimal model structure for this study using different CNN-
based architectures, but the latest structures introduced recently, such as Diffusion-based models, were not 
applied. As shown in Table 3, our model demonstrated exceptionally good performance metrics sufficient for 
clinical use. However, if there is a desire to further improve the MAR performance, it would be beneficial to 
apply the latest AI model structures in future work.

Conclusion
As the daily CBCT image acquisition became popular, the importance of CBCT images in adaptive RT became 
bigger. Acquisition of high-quality CBCT images, and artifact correction makes the more accurate synthetic 
planning CT and deformed structures. In addition, the accurate dose calculation on CBCT can be also available. 
In this study, we developed a dual encoder deep learning model for MAR for CBCT in head and neck RT It was 
shown that our proposed deep learning-based method has dramatically improved the image quality of CBCT. 

Fig. 6.  Comparison between the feature fusion methods adopted for dual-encoder models.
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By using the proposed MAR model to CBCT, it can achieve more accurate synthetic pCT for head and neck 
patients as well as better tissue recognition and structure delineation. For further improvements in adaptive RT 
for head and neck cancer patients, the implementation of deep learning-based MAR model to both the pCT and 
CBCT is required.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to policy 
of the Institutional Review Board of the Seoul National Hospital (SNUH) but are available from the correspond-
ing author on reasonable request.
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