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transmissions in RF-charging loT
networks
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This paper considers uplink and downlink transmissions in a network with radio frequency-powered
Internet of Things sensing devices. Unlike prior works, for uplinks, these devices use framed slotted
Aloha for channel access. Another key distinction is that it considers uplinks and downlinks scheduling
over multiple time slots using only causal information. As a result, the energy level of devices is coupled
across time slots, where downlink transmissions in a time slot affect their energy and data transfers

in future time slots. To this end, this paper proposes the first learning approach that allows a hybrid
access point to optimize its power allocation for downlinks and frame size used for uplinks. Similarly,
devices learn to optimize (1) their transmission probability and data slot in each uplink frame, and (2)
power split ratio, which determines their harvested energy and data rate. The results show our learning
approach achieved an average sum rate that is higher than non-learning approaches that employed
Aloha, time division multiple access, and round-robin to schedule downlinks or/and uplinks.

Future Internet of Things (IoT) networks will consist of low-power devices that sense their environment and
transmit data to a gateway'. The gateway may then use the data from devices to train a neural network?. Further,
a gateway may instruct devices to carry out sensing task(s)® or control an actuator. In these scenarios, channel
access is a key issue in order to facilitate uplinks and downlinks transmissions over the same channel. Moreover,
devices may experience collision when they upload their data to a gateway. Hence, a key issue is to determine
when a device accesses a channel given unknown number of contending devices.

Another key issue is managing the available energy of devices, where they rely on a hybrid access point
(HAP) for energy. Briefly, these devices are charged via far-field wireless charging; see” for an example prototype.
Specifically, radio frequency (RF)-charging takes advantage of the existing spectrum that is used for data
transmissions to also deliver energy. This fact has led to technologies such as Simultaneous Wireless Information
and Power Transfer (SWIPT)?’, where devices are able to receive both information and energy simultaneously. In
this respect, SWIPT supports time switching® and power splitting’. Specifically, with a power splitter, a receiver
divides the power of a received signal between its energy harvester and data decoder. This division of power is a
variable to be optimized by the receiver. In contrast, time switching has two phases. In the first phase, the HAP
charges devices. After that, in the following phase, devices are allocated a given time slot to transmit data. The
main variable to be optimized is the time allocated to each device for uplink transmission as well as the charging
phase duration used by the HAP®.

To address the aforementioned issues, this paper considers joint optimization of uplink and downlink data
communications in a RF-energy harvesting IoT network. Further, it takes advantage of non-orthogonal multiple
access (NOMA)? for downlink transmissions, where a HAP uses superposition coding to transfer information
to all devices. For uplinks, past works pre-assign time slots or sub-carriers for each user, which will cause slot
wastage when users run out of battery. Considering that users transmit opportunistically based on their energy
level, this paper adopts random channel access, framed slotted Aloha, to avoid wasting pre-assigned time
slots. Moreover, the HAP uses Successive Interference Cancellation (SIC) to decode concurrent transmissions
from devices. Note that NOMA allows for higher spectrum efficiency, and thus it is a key technology in future
networks!®. In terms of energy delivery, devices adopt power splitting. Note that there is a trade-off between the
harvested energy and information decoding, which affects uplink and downlink rates, respectively. Concretely,
less harvested energy results in less uplink transmission power which may impair the uplink rate. Accordingly,
less power directed to information decoding impairs the downlink rate. Thus, a key problem is to determine
a suitable power split ratio that maximizes the amount of harvested energy and sum rate during downlink
transmissions. Lastly, the HAP employs Frame Slotted Aloha (FSA) for uplink transmissions, meaning devices
are not allocated a fixed time slot. A key advantage of FSA is that an HAP does not have to allocate a fixed
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time slot to devices with insufficient energy to transmit. In this respect, the HAP can optimize its frame size in
accordance with the number of transmitting devices.

Figure 1 shows the downlink and energy delivery process in an example IoT network with RF-charging
devices. During downlink, the HAP simultaneously transmits data and RF energy to all devices, where the HAP
superposes its transmission to both devices. For ease of exposition, assume that the HAP uses 2 W and 1 W when
it transmits to Uy and Us, respectively. Further, assume the channel power gain between the HAP and devices
equals one. Lastly, each device has a power split ratio of 6. As shown in Fig. 1a, device Uz adopts a power split
ratio of @ = 0.8. Thus, a total of 0.8 x 3 = 2.4 W is sent to its information decoder. The remaining 20% of its
received power is sent to its energy harvester. Device U1 adopts a power split ratio of @ = 0.5. This means device
U, sends 1.5 W to its information decoder and the other 1.5 W to its energy harvester. By using SIC decoding,
device U; and Uy are able to iteratively decode the signal.

Figure 1b demonstrates downlink and uplink transmissions for two time frames. The HAP first superposes
all data together to all devices during the downlink period. After that, devices use their harvested energy to
transmit during the uplink period. To do so, in frame ¢ = 1, device U selects the first data slot while device U
selects the third data slot. In this case, both data transmissions are successful. However, in frame ¢ = 2, devices
selected the same data slot. In this case, due to SIC, their transmission is also successful.

There are a number of challenges. First, the uplink transmit power of devices is a function of their harvested
energy in prior time slots or downlinks from the HAP'!. Second, the energy level of devices depends on past
channel gains, power split ratio and transmissions. Third, information is causal, meaning both HAP and
devices know the current and past channel gains information only. Consequently, devices are unable to predict
their future channel states or future energy arrivals, which undoubtedly increases the difficulty for them in
making transmission decisions. Specifically, devices do not know whether they should reserve their precious
energy for future slots with better channel gains or should transmit immediately. Fourth, the HAP is unaware
of the number of contending devices and the energy level of devices. In practice, obtaining this information
involves signaling, which consumes the precious harvested energy of devices. To address these challenges, this
paper utilize Q-learning based approach to learn the system energy arrivals and channel condition variation.
Henceforth, this paper makes the following contributions:

o It studies an IoT network that uses NOMA and FSA. It addresses a novel problem that aims to jointly maxi-
mize uplink and downlink sum rates over multiple time frames using only causal information. To the best of
our knowledge, no prior works have considered a system that employs FSA for uplinks nor the same problem.
Further, they have not addressed the said challenges jointly; see “Related works” Section for details.

« It shows how the uplink and downlink transmission problem can be modeled as Markov Decision Process
(MDP). Advantageously, the MDP is model-free, meaning it does not require statistics of an environment
beforehand. This means it only needs to observe the current system state, and then executes an action as per
a learned policy. In this respect, to determine the optimal policy, this paper outlines Multi-Q; it is the first
reinforcement learning approach for the problem at hand and system. It yields a communication policy for
different channel conditions, where for each system state, it determines the HAP’s transmit power allocation
and frame size. Further, it trains devices to use the correct power split ratio that maximizes their harvested
energy and downlink sum rate. Lastly, devices use Multi-Q to determine a slot in a given frame and transmis-
sion probability.

It presents the first study of Multi-Q. The simulation results show that Multi-Q achieves an average sum rate

of 44 b/s/Hz which is 6x that of Aloha, 2.3% that of time division multiple access (TDMA), and 30% more

than round-robin.
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Fig. 1. An example of downlink and uplink data transmissions.
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Related works

In general, past works that consider downlink and uplink communications in RF-charging networks optimize
over one frame; i.e., they do not consider energy evolution and future channel gains of devices. These works
mainly consider two different kinds of frame structures. One frame structure, see e.g.,]z’”, is where the HAP
first transfers energy to all users. After that, each user is assigned a distinct time slot during downlink. The HAP
then sequentially sends data to each user. Works such as'® consider users that not only harvest energy during
downlinks via a time switching strategy, but they also harvest energy whenever there are uplink transmissions.
The work in'*"!7 considers users who harvest energy when the HAP transmits information to other users.
During their assigned slot, a user employs power splitting to harvest energy. Lastly, in reference'®, the authors
also consider an interfering source. Users harvest energy from both their HAP and interfering signals via power
splitting.

Some works consider an HAP that simultaneously sends data to all users using NOMA or multiple-input
multiple-output (MIMO) technologies. Example works include!®!°, where the HAP uses a MIMO system. Qin
et al.!® assume a fixed power split ratio and time division duplex. In a subsequent work, i.e.,'®, they optimize the
power split ratio for each user to maximize system throughput. References?’-?2 consider NOMA for downlink. Li
etal.? employ NOMA in both single-input single-output (SISO) and MIMO models. In the case of SISO-NOMA,
the authors optimize the power split ratio for each user. In the case of MIMO-NOMA, except for determining
the power split ratio at devices, the authors also optimize the time allocation for downlink and uplink duration
to enhance sum rate. Baidas et al.>! jointly optimize time switching and power allocation in a single-cell NOMA
system to maximize the sum rate of uplink and downlink while ensuring quality of service requirements of
users. In a subsequent work??, Baidas et al. further consider a NOMA system with clusters of users. The aim is
still to maximize the sum rate of uplink and downlink while ensuring quality of service requirements are met.
The authors jointly optimize time switching and power allocation of each cluster, and its sub-carrier assignment.

Another research direction is to adopt different sub-carriers for uplink and downlink communications. For
example, Rezvani et al.> consider a multi-user orthogonal frequency division multiple access (OFDMA)-based
system with one base station and one local access point, where the base station can offload data to a local access
point. The aim is to maximize uplink throughput subject to a minimum required downlink data rate of each
user. To do this, the authors optimize power split ratio at users, joint sub-carrier allocation, and transmit power
allocation. Na et al.?* categorize sub-carriers into two groups for information decoding and energy harvesting,
respectively. Xiong et al.? aim to jointly optimize the downlink and uplink energy efficiency and prolong system
lifetime in a Time Division Duplex (TDD) Orthogonal Frequency Division Multiple Access (OFDMA) system
with a power split strategy.

Table 1 highlights the novelties of our work. Briefly, many works have employed convex optimization and
solves a deterministic problem, i.e., they do not consider imperfect or stochastic channel gains. For example, the
work in!%1317-20 cagts or transforms their proposed maximization problem into a concave one and use convex
program. Some other works also consider Mixed-Integer Non-Linear Program (MINLP), e.g., reference?!-23.
To date, only the work in?® has considered multiple time slots with imperfect channel gains. Lastly, in%,

Non-
linear
energy | Energy
References | Working principle SWIPT | Downlink | Uplink model | evolution | Learning | Decision variables
12-14 HAP first clfarge§ users followed by TS TDD TDD X X X Time allpgatlon
data transmission to each user. Transmission power
1517 Users harvest energy whenever HAP s NOMA NOMA-TS X X X %;Zzlesili(s)sciitrllonower
transmits data to users. TDMA TDMA P
Beamformer
. . Beamformer
1819 HAP transmit energyand datain | pg TDD TDD X X X Time allocation
multiuser MIMO system. P o
ower split ratio
- HAP transmits energy and datato | PS Time allocation
20-22
users using NOMA. TS NOMA NOMA x X x Power splitting ratio
. . Subcarrier allocation
2 An OFDMA system with uplinks and | 5 FDD/TDD | FDD/TDD | X X X Transmission Power
downlinks sub-carriers. o )
Power splitting ratio
Different sub-carriers for energ Sub-carrier allocation
2 . energy N/A OFDM NOMA X X X Transmission Power
delivery and data transmissions. P o )
ower splitting ratio
2 Different sub-carriers for energy .
harvesting and data transmissions. N/A TDPD TbD x X x Transmit Power
2% High and low frequency bagds for N/A TDD TDD v X X Transmlt power
energy and data transmissions. Charging duration
Transmit power,
HAP transmits data and energy to Power split ratio,
This work | users using NOMA, and receives data | PS NOMA Aloha-SIC | v v v Transmit probability,
from devices over the same channel. Slot selection,
Frame size

Table 1. Comparison between joint uplink and downlink communication networks. TS and PS denote time
switching and power splitting, respectively.
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transmissions and receptions are carried out using TDD. A key innovation is the use of high and low frequency
bands for energy and data transmissions. Further, access point optimizes its beamforming weight according to
channel condition and energy at devices.

Our work fills a number of gaps. First, unlike past works that assume non-causal information and perfect
channel information, we consider the causal case, meaning the HAP and devices make decision without
requiring future channel gains information. Second, these works do not consider random channel access.
Specifically, they consider pre-assigned time slots or sub-carriers, see!?"1423-25 Thus, there will be wasted slots
due to device energy outage which will impair transmission efficiency and system throughput. In contrast, for
practical reasons, our devices employ slotted Aloha to transmit to a SIC-capable HAP. Slotted Aloha is a random
channel access method that enables flexible transmissions based on battery states. With SIC enabled, collisions
can be resolved to further improve system throughput. Third, they optimize resources over one slot. Specifically,
except for Yao et al.%¢, they do not consider energy evolution and future channel gains of devices nor the coupling
between energy level across time slots. We note that Yao et al.?° consider a known probability distribution of
channel and data arrivals. Further, they do not consider random channel access and do not aim to maximize
system throughput.

System model

A HAP serves N energy harvesting devices; each device is denoted as U;, where i € {1,2,..., N}. The HAP
uses NOMA in the downlink and devices employ FSA for uplinks, where devices select one of M slots to transmit
their packet. Time is divided into frames and indexed by t. At the beginning of each frame, the HAP will send
pilot symbols for channel estimation. After that, each frame is divided into a downlink and uplink period, which
respectively has length 74 and 7. During the downlink period, devices employ power splitting® to split received
power into two parts, namely energy harvesting and information decoding. After that, there are M time slots
for uplinks.

Channel model

We consider Rayleigh block fading channels?”’. The channel remains the same within one frame but varies
across frames. Let d; be the distance between U; and the HAP, n denotes the path loss exponent, A denotes an
exponential random variable with unity mean, and h! denotes the channel gain between user U; and the HAP
in time frame ¢. The channel power gain h; is defined as h} = Ad; "%,

From a practical point of view, we consider casual channel information. That means HAP and devices make
transmission decisions only with the current and past channel gains information. Consequently, even Rayleigh
fading drives the channel state variation, neither HAP nor devices are aware that state transitions are driven by
a Rayleigh distribution. Concretely, for a given time slot, devices cannot predict any future channel states or
energy arrivals. Hence it is hard for a device to decide whether it should use up its energy to transmit or it should
reserve its energy for future slots with a better channel state.

Downlink

During each downlink period, the HAP superposed all signals together and transmit the resulting composite
signal to all users'?, The HAP has a maximum transmit power of P, and the power allocated for user U; at time
frame t is p}, where 0 < p! < P. Moreover, the sum of transmit power to each user must not exceed P; formally,
Zf.v:l pi < P. Further, each user U; divides its received signal into two signals with a split ratio of 6, where

0 < 0 < 1. Let 0 denote the fraction of received power devoted to information decoding. The remaining 1 — 6
fraction of the received power is sent to an energy harvester.

Downlink information decoding

Users have a SIC decoder?. Briefly, each user U; starts its SIC decoding from the strongest signal by treating
other signals as interference. After having successfully decoded the strongest signal, user U; will subtract the
decoded signal from the composite signal and proceeds to decode the next strongest signal. This continues until
user U; decodes its signal.

An example is shown in Fig. 2, where the HAP transmits with more power to user Uz than U;. User Uy
decodes the signal designated for U> first and subtracts it from its received composite signal. After removing the
signal from Us, user U; decodes its signal. As for user Us, it directly decodes its signal by treating the signal of
user U as interference.

Let no denote the noise power and W denote the bandwidth. The achievable downlink rate for user U; at
time frame t is

Oh;p;

Rt =Wlog, |14+ ——
Ont > vl + o

(1)

Energy harvesting .

Each user is equipped with an RF-energy harvester, e.g., P2110B RF-energy harvester®. Let P/ denote the
received power at user U;. It is calculated as P} = h!P. It transfers (1 — 6) P} amount of power to its energy
harvester. Note that the RF-energy conversion process is non-linear, which is a function of the received power.
We consider a practical non-linear energy harvesting model*!. Denote the energy conversion efficiency as 7,
which has range [0, 1]. It is calculated as
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Fig. 2. An example of downlink and uplink transmission. There are two users and user Uz has poorer channel
condition and a higher transmit power. The left side of the figure shows downlink transmission, where the
HAP transmits energy and data to users. Users use power splitting to harvest energy. The right side of the
figure shows users transmit data via FSA in the uplink. The HAP uses SIC to decode information.

t
Xi
n= B (2)

where x! = (¥! — MQ)/(1 - Q), Q=1/(1+ ), Ul = M/(1 + efﬂ(ﬁit*b)). Here, M is the maximum

harvested power, and the value of a and b is as per a harvester’s circuit.
Denote & as the harvested energy of U; in time frame ¢. Formally, the harvested energy is

& =n(1—0)Pra (3)

Let vf denote the amount of energy consumed by U; for uplink transmission in frame ¢. Thus, each device has
energy level E! that evolves as per B! = E!~! + ¢! — v!. Moreover, each user has a battery capacity of Bz
. This means if a device’s battery is full, any subsequent energy arrival is lost. Consequently, the energy level of
user U; evolves as per

E; = min Bz, B; ' +& —vf). 4)

Uplink
Users use FSA for uplink transmissions. This means the HAP does not allocate a fixed time slot to a device.
Concretely, users will randomly select a time slot to access the channel when it has sufficient energy. In contrast,
if the time slot is pre-assigned to each device by the HAP, time slots may be wasted if any device experiences an
energy outage. Moreover, if the HAP pre-assigns time slots based on the energy level of each device, it requires
the HAP to gather energy level information. Consequently, it requires the HAP to poll devices, which is not
practical when there are many devices. Further, this also wastes the precious energy of devices. In contrast, FSA
provides energy harvesting nodes with more flexibility to report data. This means devices can transmit more
flexibly based on their energy level to avoid wasting slots. Transmission efficiency will be improved since fewer
time slots are wasted due to battery outages. For this reason, we adopt FSA, and have the HAP adjusts the frame
size used for uplink transmissions based on system states.

The HAP has SIC capability?®, meaning it is able to decode multiple transmissions within a time slot. Let &g
be the minimum energy used to transmit one packet. Thus, user U; will only transmit when its battery level E!
exceeds €g. Further, user U; will use up all its available energy to transmit. We denote the uplink transmission

+ t t E; . .
power of U; as y;. Then we calculate y; as per y; = T /AT where M is the frame size. For each user U;, we

record the number of transmissions in its selected slot as ®!. Therefore, the condition ®} < 1 represents the fact
that there are no other users transmitting in the same slot with user U;. Otherwise, the condition ®/ > 1 means
there are users transmitting in the same slot with user U;. Consequently, the achievable uplink transmission rate
for user U; is defined as

hiyy ¢
A W log, (1 + Eh;y;-ﬁ—n[)) , ®; > 1,
R} = htyt ; 5)
Wlog, (1+ ;iol , dl =1,

0, o! < 1.
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Problem
Given the aforementioned system, the goal is to optimize both uplink and downlink sum rate, i.e., summation
of downlink rate Rt and uplink rate R}. Here, the uplink rate R? and downlink rate Rt are calculated as per

Egs. (1) and (5), respectively. Moreover, in each time frame t, a policy 7 returns all the parameters used in
Egs. (1) and (5). Specifically, a policy 7 returns the downlink transmission power pt, uplink transmission
probability pf, uplink slot selection J7, frame size M, and power split ratio 6. Formally, a policy 7 is defined as
7 = [p}, pt, 6%, M, 0]. Thus, the joint sum rate is calculated as per Eq. (6):

R!(m) = R!(r) 4+ Ri(n). (6)

Define II = [m1, 72, .. .] as a collection of available policies. Our problem is to find the optimal policy 7* € II
that maximizes the following long-term cumulative joint uplink and downlink reward:

R(7") —argmax— [ZZRt )

mell t=1 i=1

7

To solve the optimal policy 7, we need to determine the following quantities: (1) Downlink transmission power
p’f of the HAP for each device U; in frame ¢, (2) Uplink transmission probability pﬁ of device Us, (3) Uplink slot
selected by device U;, namely 6% in each frame, (4) Frame size M, and (5) Power split ratio 6 of all devices.

MDP model and Q-leaning approach

We first show how the uplink and downlink process can be modeled as an MDP*. After that, we introduce
conventional Q-learning?®. Note that Q-learning is a sequential decision approach that learns the optimal policy
without using non-causal information. Advantageously, it is model-free, meaning they are able to learn the
optimal policy by only observing system states over time. Specifically, Q-learning allows the system to learn
the fact that channel state transitions are driven by Rayleigh distribution with only causal channel information.
Then we introduce stateless Q-learning®*. Finally, we outline Multi-Q and show how it allows a HAP and users
to use conventional Q-learning to learn the optimal policy that determines downlink power allocation, uplink
transmission probability and slot selection in each frame. Moreover, Multi-Q also employs stateless Q-learning
to determine the frame size for uplink transmissions and power split ratio of devices.

MDP model
To model the sequential decision process taken by the HAP and devices, we use an MDP model. It is defined
as a tuple [, &/, 7, Z]. Here, the state space is denoted as .¥. The action space 52{ includes a set of actions
a. A policy 7 returns the action a for state s. After an agent takes action a in state s, the system will transition
to a new state s'™! with a transition probability of .7 (s"T!|s?, 7(s")). In addition, the agent obtains a reward
R(s™]s m(s1).

Our downhnk MDP is defined as follows:

« State: A downlink state § € . includes the channel conditions of all devices. Each state is defined as
s = [hl, ]’L2 h N ]

o Action: The downhnkact10n spaceis defined as o = [G1,d2, .. .].Eachdownlinkactiond = [p1, p2,. .., PN]
represents the downlink NOMA power allocation for all users at the HAP.

o Transition probability: We consider a model-free MDP model. Hence, the transition probability is unknown.

o Reward: The reward function Z is the throughput of downlinks, see Eq. (1).

The uplink MDP is defined as follows:

« State: An uplink state §; € . includes the channel condition and battery level of user U;. Formally, a state of
user U; is defined as §; = [hq, E;).

o Action: An uplink action a € 27 includes time slot selection §; and transmission probability p;. Thus, an
uplink action is defined as d; = [d;, p;], which represents the fact that user U; selects the slot indexed by &;
and transmits with probability p;.

+ Transition probability: The transition probability between states is unknown.

o Reward: The reward function Z is the transmission rate of uplinks, see Eq. (5).

Q-learning

We employ two types of Q-learning methods, conventional Q-learning®® and stateless Q-learning*’. Both
conventional Q-learning and stateless Q-learning learn Q-values. However, conventional Q-learning learns
Q-value for action and state pairs, while stateless Q-learning learns Q-value just for actions without any states.

Conventional Q-learning

Q-learning learns the optimal policy based on a Q-table. A Q-table is indexed by a state-action pair (s¢, at),
and returns the corresponding Q-value Q(s¢, a¢). Each Q-value Q(s¢, at) represents the expected discounted
reward for taking action a; in state $¢23. The aim of Q-learning is to calculate Q(s¢, a;) for each action and state
pair. To learn the optimal policy, an agent first obtains its current state s;. Secondly, it looks up its Q-table to find
the corresponding Q-values for state s; and selects the action a; with the highest Q-value. After the agent selects
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action ay, the system will return a corresponding reward r(s¢, a¢). Then the agent observes its next state s;41
and finds the highest Q-value. Lastly, the agent updates its Q-table based on its obtained reward and the highest
Q-value for the next state. We denote « as the learning rate factor, -y as the discount factor, where o, vy € [0, 1].
Concretely, Q-learning uses Bellman’s equation to update its Q-table as per

Q(st,at) = (1 — @)Q(s¢, ar) + ar(se, ar)

< (8)
+ymax Q(s¢41,41))-

Stateless Q-learning

Stateless Q-learning® learns the optimal policy without any states. The stateless Q-table only contains the value

of actions. We denote A € [0, 1] as the stateless learning rate and the reward is denoted as r(a). Thus, stateless

Q-learning updates Q(a) using

Q(a) + Q(a) + A(r(a) — Q(a)). ©)
Under this stateless setting, an agent maintains a Probability Mass Function (PMF), denoted as
eQai)/T
Pr(a:) = S cQ@/T (10)

which calculates the probability of taking action a;.

Multi-Q learning

Now we are ready to outline our proposed Q-learning approach, named Multi-Q, to solve Problem (7). Multi-Q
is composed of three layers, namely the uplink, downlink, and stateless. Figure 3 shows the Multi-Q framework.
The downlink and uplink layer adopt conventional Q-learning while the stateless layer employs stateless
Q-learning. All layers use e-greedy for action selection. Thus, initially, each agent has € probability to randomly
select an action. After that, we decay the value of € to ensure convergence. Concretely, at the downlink layer, the
HAP is the agent to learn the downlink MDP action & = [p1, p2, - . . , ] which includes the power allocation
for each user. The HAP starts with randomly selected power allocation first. During this warm-up period, the
Q-table will update Q-values for each power allocation under each channel condition based on its corresponding
throughput. A certain power allocation will obtain a high Q-value if it achieves high downlink throughput. Each
time a power allocation is selected, its Q-value will be updated based on its past throughput, current throughput,
and predicted future throughput. After several epochs, the HAP will mostly select the power allocation with
the highest Q-value to pursue high downlink throughput. Consequently, with the convergence of the learning
process, for each given channel state, the best power allocation will achieve the highest Q-value. Thus, for each
downlink transmission, the HAP will learn the certain transmission power p; for each user to employ downlink
NOMA transmission. At the uplink layer, each IoT device is an agent that independently learns its uplink MDP
action d; = [0;, p;] which includes uplink transmission probability and slot selection. That means, in each
frame, each device will learn to select a certain uplink transmission slot and probability to transmit. Similar to
the downlink layer, the Q-table will update the Q-value for each action-state pair until converges. Therefore, for a
given channel state, the uplink transmission slot and transmission probability with the highest transmission rate
will obtain the highest Q-value. In the stateless layer, the system determines the uplink frame size and downlink
power split ratio. During the warm-up period, the system randomly determines the uplink frame size and the
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Fig. 3. Multi-Q includes downlink, uplink, and stateless layer. In the downlink layer, the HAP employs
Algorithm 1, which is denoted as A; in the figure, to learn downlink power allocation. In the uplink, each user
independently employs Algorithm 2, which is denoted as A3, to learn its own slot selection and transmission
probability. Then the stateless layer collects the reward of both uplink and downlink for one epoch and then
employs Algorithm 3 to determine the frame size and power split ratio.
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downlink power-splitting ratio. For each frame size and power splitting ratio, the Q-table will update the Q-value
based on the sum rate. After several epochs, the system will select the frame size and power-splitting ratio with
the highest Q-value. The frame size and power splitting ratio that obtains a high system sum rate will get a high
Q-value. Each time an action is selected, its Q-value will be updated based on its past reward, current reward,
and possible future reward. Until convergence, the best frame size and power-splitting ratio will have the highest
Q-value. Let & denote the number of epochs and ¢ denote the number of frames inside each epoch. Next, we
present how each layer works.

Downlink layer

In the downlink layer, the HAP performs conventional Q-learning®. Algorithm 1 demonstrates the steps of
this layer. Each learning phase consists of ¢ time frames. Firstly, the HAP initializes its Q-table and learning
parameter < and . During each time frame f, the HAP collects the channel condition hf of user U; to obtain
its downlink state S;, see line 5. After that, the HAP uses e-greedy to select an action A; which governs the
transmission power allocation for all users. Concretely, with probability (1 — €), the HAP selects the action A,
with the highest Q-value for state St, see line 10. After taking action Ay, each user collects its individual reward
rf and reports to the HAP. The HAP sums all rewards together to obtain the downlink reward Ry, see line 13.
Then, the HAP observes its next state and finds the highest Q-value for the next state to update its Q-table.

1 Initialize learning parameter o,y
2 Initialize each Q(S,A) randomly
3 for 1t € ¢ do

4 | HAP collects A} of all users
5 | Obtain downlink state: S; = {h,h,...,hy}
6 Generate a random number x
7 if x < € then
8 | Select an action randomly
9 else
10 ’ Select an action A; by solving: A,(S;) = argmax Q(S;,A)
Acg/d
11 end
12 Collect reward r} of each user
M
13 | Calculate downlink reward: R, = Y. r4
i=1
14 Obtain the next downlink state: S, = {h’]Jrl ,h’;‘l yoen ,h;\,“}
15 Find max, O(S/+1,A)
16 Update Q-value Q(S;,A,) as per Eq. (8)

17 end

Algorithm 1. Pseudocode for downlink Q-learning.

Uplink layer

In the uplink layer, each user acts as an agent to independently perform conventional Q-learning, see
Algorithm 2. In each time frame t € @, each user uses its channel condition h! and battery level E} as its current
state st = [h!, Ef], see line 5. Based on e-greedy, each user selects an action a! that governs its transmission
slot selection and transmission probability. Specifically, each user either selects an action randomly, see line 8,
or selects the action with the highest Q-value, see 10. After that, each user observes its next state sf“, see
line 13, and finds the corresponding highest Q-value, see 14. Then, each user updates its Q-table, and repeats the
aforementioned steps.
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1 Initialize learning parameter o,y
2 Initialize each Q(s,a) to arbitrary values.
3 for t € ¢ do

end

for useri € N do
Obtain current state s
Generate a random number x
if x < € then
| Select an action randomly
else
‘ Select an action a by solving: ai(s}) = argmax Q(s},a)
acat
end
Collect reward r;

Observe next state sﬁv*]

Find max 1 O(s."!, a)
Update the Q-value Q(s%,a’) as per Eq. (8)

07

end

Algorithm 2. Pseudocode for Uplink Q-learning.

Stateless layer

In the stateless layer, the learning phase consists of ® epochs, see Algorithm 3. At the beginning of each epoch
k, the system selects an action a,, = [M, 6] that governs the uplink frame size and downlink power split ratio.
With probability e, the system randomly selects an action, see line 5. Otherwise, the system will select an action
with the highest probability, see line 9. After that, the system collects the reward for uplink and downlink, see
line 11, 12, and accumulates downlink and uplink reward during epoch & to obtain stateless reward, see line 13.
Then, the system updates its Q-table and PME. It then repeats the said steps.

N - - T T

—
=)

11

Initialize learning parameter A
Initialize each Q(a) randomly

for

k€ ®do
Generate a random number x
if x < € then

Select an action randomly

else

| Select an action g, by solving: a, = argmaxPr(a)
end
Collect downlink reward during Kk epoch Rﬁ
Collect uplink reward during K epoch RL
Calculate joint reward: Ry = R,i( +R£
Update Q-value Q(a) as per Eq. (9)
Update PMF as per Eq. (10)

end

Algorithm 3. Pseudocode for Stateless Q-learning.

Evaluation
We conducted our simulation using Matlab running on a machine with 8-Core Intel Core i9 @2.3 GHz with
16 GB of RAM. The path loss at reference distance 1 m is — 20 dB¥. We fixed both the uplink length 7.,
and downlink length T4own to 1 s. We consider a packet size of L = 21 bytes as per the IPv4 standard, which
includes 20 bytes for header and one byte of data. The average energy consumption rate ¢ is 18 nJ/bit>>. Thus,
the minimum energy consumption for transmission is g = ¢ X L = 3.024 pJ. The battery capacity 2 of each
user is set to 5¢. According to the non-linear model in3!, we set the energy conversion efficiency parameters as
M =0.02 W, a=1500, and b = 0.0014.

We compare Multi-Q against round-robin, TDMA, and Aloha. The round-robin protocol is used for both
uplink and downlink transmissions; i.e., the HAP transmits downlink signals to each device in turn and devices
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transmit to the HAP in turn. As for TDMA and Aloha, these protocols are for uplink transmissions only. Both
these two protocols consider downlink NOMA with uniform power allocation. Then during uplink, TDMA
assigns a dedicated time slot to each device. As for Aloha, devices with sufficient energy contend for an uplink
time slot randomly. We measure and compare the performance of these protocols from three aspects including
average system sum rate, average downlink transmission rate, and average uplink transmission rate. Apart
from that, we study different HAP transmit power, device location, and power split ratio. Each simulation has
30,000 time frames. We collect the result in the last 300 frames after convergence, and plot the average of ten
simulation runs. In terms of computational complexity, Multi-Q involves three layers of Q-learning. We analyze
the computational complexity of each server at time t. For the downlink layer and uplink layer, each server needs
to determine the Q-value of a state-action pair. This Q-value is calculated as per (8), which takes O(1) time. For
the stateless layer, a server needs to determine the Q-value of an action which is calculated as per (9). For each
layer, the Q-value is updated only according to the reward of servers, which is calculated as per (5). Observe
that (8), (9), and (5) only involve multiplication and addition operations. Moreover, Multi-Q is able to suit
larger-scale networks. However, the downlink layer computational complexity may increase with a larger scale
since it calls for global information on the server.

Convergence

To study convergence, users are placed at a distance of 1, 5, and 9 m from the HAP. We run our simulator for 200
iterations and each iteration contains 150 frames. We plot both uplink and downlink rates in Fig. 4. There is a
warm-up period of 15,000 frames. Referring to Fig. 4, we can see that both uplink and downlink rates converged
after 140 iterations. Concretely, the downlink rate converged to around 34 b/s/Hz, and the uplink rate converged
to around 13.66 b/s/Hz.

Learning parameter

We now study learning parameters. Specifically, we study the uplink and downlink layer learning rate including
uplink learning rate «,, and downlink learning rate «q, the frame size and power ratio layer learning rate A,
discounting factor -4, and warm-up period. We can see from Fig. 5 that each learning parameter combination
converged to a different sum rate. With a short warm-up period, the system will experience more randomness
during convergence. The system converges faster when the frame size and power ratio layer uses a learning rate
of \.

HAP transmission power
We vary the transmission power of the HAP from 1 to 5 W. User are located at a distance of 1, 5, and 9 m to the
HAP. The frame size is three for Aloha and TDMA. The path loss exponent is n = 2.7%.

Figure 6a demonstrates the average sum rate of both uplink and downlink. The sum rate of uplink and
downlink increases with a higher HAP transmission power for all methods. Concretely, both uplink and
downlink rate increase with a higher HAP transmission power as shown in Fig. 6b. The reason for the increase
in uplink rate is because users harvest more energy with a higher HAP transmission power. Thus users are able to
transmit with a higher transmit power. Similarly, a higher HAP transmit power leads to a higher downlink rate.

35 T T T T T

30 -

Uplink Rate
Downlink Rate

Average uplink and downlink rate per frame (b/s/Hz)

0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 4. Convergence curve for uplink and downlink.
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Fig. 6. The impact of different HAP transmission powers on the (a) average sum rate per frame and (b)
average uplink rate and downlink rate per frame, respectively. The frame size for TDMA is three, and the path
loss exponent is n = 2.7.

Multi-Q performs best when we vary the HAP transmission power from 1 to 5 W. From Fig. 6a, It is clearly
that Multi-Q always reaches the highest sum rate from 1 to 5 W. Moreover, Multi-Q reaches an average of
44.3 b/s/Hz, which is 6X that of Aloha, 2.3X that of TDMA, and 30% more than round-robin. From Fig. 6b,
Multi-Q reaches an average downlink transmission rate of 31.9 b/s/Hz which is the highest among all methods
and achieves 6.6 b/s/Hz more than round-robin. TDMA and Aloha are even worse and just achieved zero
downlink rates. The reason is because both TDMA and Aloha adopt uniform power distribution for each user
during downlink. A uniform power distribution leads to decoding failures. Furthermore, Multi-Q performs
better than round-robin for both uplink and downlink. Concretely, Multi-Q achieves an average of 12.4 b/s/
Hz and 31.9 b/s/Hz rate for uplink and downlink, which is 6.6 b/s/Hz and 4.1 b/s/Hz more than that of round-
robin, respectively. This is because Multi-Q users utilize the whole downlink period to receive data. On the other
hand, for round-robin, users only receive data when it is polled by the HAP. In terms of downlink, round-robin
experiences idle slots when users do not harvest sufficient energy. However, Multi-Q is able to avoid idle slots
by dynamically adjusting the frame size and transmission probability based on the battery level and channel
condition of users. Overall, Multi-Q performs significant advantages in terms of sum rate which is 6 times of
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Aloha method. Simultaneously, Multi-Q also shows great advantages in terms of downlink rate which is 26%
more than Round Robin and 100% more than TDMA and Aloha.

User location

We set five groups of user locations and the total distance from each group of devices to HAP is 15 m. We start
from the group where each user is placed 5 m from the HAP. As channel gain disparity improves SIC decoding®’,
we move users to different locations to obtain different channel gain conditions. Specifically, we consider five
groups of user locations. The distance (in meters) of each user to the HAP is as follows: [5, 5, 5], [4, 5, 6], [3,
5,71, 12,5, 8], and [1, 5, 9]. The frame size is three for Aloha and TDMA. The path loss exponent is n = 2.7,

As shown in Fig. 7a, the average sum rate of both uplink and downlink increases when users have a more
significant distance difference. This is because when we place users at different distances to the HAP, users
experience significant differences in channel gains. Thus, the energy harvested by users vary considerably. This
also means there will be one user located close to the HAP who transmits at a high power while another user
located farther from the HAP that uses a low transmit power. This difference in transmit power helps increase
the number of SIC decoding successes.

Multi-Q outperforms all other methods, especially when the distance between users is large. Specifically,
Multi-Q achieves an average sum rate of 32 b/s/Hz for different locations. Simultaneously, Aloha, Round Robin,
and TDMA achieve an average sum rate of 2.5 b/s/Hz, 29 b/s/Hz, and 4 b/s/Hz, respectively. When users are
located at a distance of 1 m, 5 m, and 9 m to the HAP, Multi-Q achieves a sum rate of 44 b/s/Hz, which is six
times that of Aloha, three times higher than TDMA, and 30% more than round-robin. The reason why Multi-Q
performs better is because both Aloha and TDMA obtain zero downlink rate as shown in Fig. 7b. As both
Aloha and TDMA employ uniform power distribution in the downlink, they always experience failures during
downlink transmissions. When compared to round-robin, Multi-Q outperforms round-robin because Multi-Q
simultaneously learns the frame size and transmission probability that avoid idle slots. Overall, Multi-Q always
achieves the highest sum rate for different user locations which is an average of 11 times Aloha, 7 times TDMA
and 10% more than Round Robin. Besides, Multi-Q shows great advantages in terms of downlink rate which is
100% higher than TDMA and Aloha, and 5% higher than Round Robin.

Power split ratio

Users are located at a distance of 1, 5, and 9 m to the HAP. The HAP transmission power is 3 W and the path
loss exponent is n = 2.7. We vary the split ratio from zero to one with a step size of 0.1. Initially, the power split
ratio is zero, meaning all received power is for energy harvesting. After that, we increase the power split ratio to
0.1. Thus, there is 10% power redirected for data reception and the remaining 90% is used for energy harvesting.
Then we increase the power split ratio in steps of 0.1 until it reaches 1.0. Referring to Fig. 8a, Multi-Q achieves a
sum rate around 44 b/s/Hz; it is able to converge to the optimal power split ratio starting from any initial ratio.
The achieved sum rate of round-robin continues to rise until the power split ratio increases to 0.9. This is because
when we increase the power split ratio, there will be more power distributed for downlink data reception and less
power for energy harvesting. From Fig. 8b round-robin obtains an average of 25.3 b/s/Hz rate for downlink and
5.7 b/s/Hz for uplink. The downlink rate of round-robin is approximately 5X its uplink rate. Therefore, even if
the uplink rate of round-robin decreases, the sum rate increases since the downlink rate increases more than the
uplink rate. As the power split ratio increases from 0.9 to 1.0, the sum rate of round-robin decreases since there
is no power distributed for downlink rate. However, Aloha and TDMA experience a decrease when we increase
the power split ratio from 0 to 1.0. The reason is because users employ uniform power allocation for downlinks.
Thus each user fails to decode the received packet since there is no difference between the transmit for each
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Fig. 7. The impact of different user locations on the (a) average sum rate per frame and (b) average uplink rate
and downlink rate per frame, respectively. The HAP transmission power is 3 W. The frame size for TDMA and
Aloha is three, and the path loss exponent is n = 2.7.
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user. Further, for higher power split ratios, resulting in less harvested energy or transmit power, the uplink rate
is appreciably lower.

We have also studied the performance of different frame sizes for Aloha. As shown in Fig. 8a, Aloha achieves
its highest sum rate when the frame size is one. Although a larger frame size means fewer collisions, frame
size one performs better than a larger frame size since we consider SIC, which allows decoding of multiple
transmissions in the same slot. Moreover, a smaller frame size lengthens the transmission period, thus users are
able to transmit longer.

Among all methods, Multi-Q performs best. Multi-Q achieves an average of 44 b/s/Hz sum rate, which is 9.8
times more than TDMA, 6.5 times that of Aloha when the frame size is one, and 1.4 times higher than round-
robin. This is because Multi-Q simultaneously learns the power split ratio, frame size, uplink transmission
probability, uplink slot selection, and downlink power allocation for all users. Specifically, Multi-Q learns the
best frame size and slot selection to avoid uplink decoding failure and idle. Learning downlink power allocation
for each user enhances decoding success. It also learns the power split ratio to balance uplink and downlink
rates. Overall, Multi-Q shows great advantages in terms of sum rate over all other methods for different pre-set
split ratios. Moreover, Multi-Q always achieves the highest downlink rate and uplink rate, which is 31.5 b/s/Hz
and 12.5 b/s/Hz, respectively.

Conclusion

This paper has studied joint uplink and downlink transmissions in a wireless powered network that uses FSA and
NOMA. In this respect, it has outlined a novel solution called Multi-Q that allows an HAP and devices to learn
the optimal transmission policy. Specifically, for each system state, the HAP learns to optimize its transmit power
allocation and frame size for uplinks. Similarly, devices learn the optimal power split ratio and transmission
probability for each frame size. Advantageously, Multi-Q does not assume non-causal information and state
transition probability. The simulation results show that Multi-Q achieves an average sum rate of 44 b/s/Hz which
is 6x that of Aloha, 2.3 that of TDMA, and 30% more than round-robin. This is because our learning-based
method Multi-Q can flexibly schedule the system to respond to different network conditions. Consequently,
Multi-Q is able to obtain the best transmission strategy when compared to Aloha, TDMA, and so forth. Our
work can be effortlessly extended to real-world IoT deployments like smart agriculture, smart transportation,
smart cities, and so forth. This would better provide charging solutions and communications for agricultural
sensors, parking sensors, and the like. As future work, we also aim to investigate whether our approach can be
applied in multi-hop networks that include RF-energy harvesting relay nodes and extend our approach to be
suitable for moving end devices such as moving vehicles. Moreover, an interesting future work is to study the
performance of an approach based on deep Q-learning and/or an actor-critic.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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