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This paper considers uplink and downlink transmissions in a network with radio frequency-powered 
Internet of Things sensing devices. Unlike prior works, for uplinks, these devices use framed slotted 
Aloha for channel access. Another key distinction is that it considers uplinks and downlinks scheduling 
over multiple time slots using only causal information. As a result, the energy level of devices is coupled 
across time slots, where downlink transmissions in a time slot affect their energy and data transfers 
in future time slots. To this end, this paper proposes the first learning approach that allows a hybrid 
access point to optimize its power allocation for downlinks and frame size used for uplinks. Similarly, 
devices learn to optimize (1) their transmission probability and data slot in each uplink frame, and (2) 
power split ratio, which determines their harvested energy and data rate. The results show our learning 
approach achieved an average sum rate that is higher than non-learning approaches that employed 
Aloha, time division multiple access, and round-robin to schedule downlinks or/and uplinks.

Future Internet of Things (IoT) networks will consist of low-power devices that sense their environment and 
transmit data to a gateway1. The gateway may then use the data from devices to train a neural network2. Further, 
a gateway may instruct devices to carry out sensing task(s)3 or control an actuator. In these scenarios, channel 
access is a key issue in order to facilitate uplinks and downlinks transmissions over the same channel. Moreover, 
devices may experience collision when they upload their data to a gateway. Hence, a key issue is to determine 
when a device accesses a channel given unknown number of contending devices.

Another key issue is managing the available energy of devices, where they rely on a hybrid access point 
(HAP) for energy. Briefly, these devices are charged via far-field wireless charging; see4 for an example prototype. 
Specifically, radio frequency (RF)-charging takes advantage of the existing spectrum that is used for data 
transmissions to also deliver energy. This fact has led to technologies such as Simultaneous Wireless Information 
and Power Transfer (SWIPT)5, where devices are able to receive both information and energy simultaneously. In 
this respect, SWIPT supports time switching6 and power splitting7. Specifically, with a power splitter, a receiver 
divides the power of a received signal between its energy harvester and data decoder. This division of power is a 
variable to be optimized by the receiver. In contrast, time switching has two phases. In the first phase, the HAP 
charges devices. After that, in the following phase, devices are allocated a given time slot to transmit data. The 
main variable to be optimized is the time allocated to each device for uplink transmission as well as the charging 
phase duration used by the HAP8.

To address the aforementioned issues, this paper considers joint optimization of uplink and downlink data 
communications in a RF-energy harvesting IoT network. Further, it takes advantage of non-orthogonal multiple 
access (NOMA)9 for downlink transmissions, where a HAP uses superposition coding to transfer information 
to all devices. For uplinks, past works pre-assign time slots or sub-carriers for each user, which will cause slot 
wastage when users run out of battery. Considering that users transmit opportunistically based on their energy 
level, this paper adopts random channel access, framed slotted Aloha, to avoid wasting pre-assigned time 
slots. Moreover, the HAP uses Successive Interference Cancellation (SIC) to decode concurrent transmissions 
from devices. Note that NOMA allows for higher spectrum efficiency, and thus it is a key technology in future 
networks10. In terms of energy delivery, devices adopt power splitting. Note that there is a trade-off between the 
harvested energy and information decoding, which affects uplink and downlink rates, respectively. Concretely, 
less harvested energy results in less uplink transmission power which may impair the uplink rate. Accordingly, 
less power directed to information decoding impairs the downlink rate. Thus, a key problem is to determine 
a suitable power split ratio that maximizes the amount of harvested energy and sum rate during downlink 
transmissions. Lastly, the HAP employs Frame Slotted Aloha (FSA) for uplink transmissions, meaning devices 
are not allocated a fixed time slot. A key advantage of FSA is that an HAP does not have to allocate a fixed 
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time slot to devices with insufficient energy to transmit. In this respect, the HAP can optimize its frame size in 
accordance with the number of transmitting devices.

Figure  1 shows the downlink and energy delivery process in an example IoT network with RF-charging 
devices. During downlink, the HAP simultaneously transmits data and RF energy to all devices, where the HAP 
superposes its transmission to both devices. For ease of exposition, assume that the HAP uses 2 W and 1 W when 
it transmits to U1 and U2, respectively. Further, assume the channel power gain between the HAP and devices 
equals one. Lastly, each device has a power split ratio of θ. As shown in Fig. 1a, device U2 adopts a power split 
ratio of θ = 0.8. Thus, a total of 0.8 × 3 = 2.4 W is sent to its information decoder. The remaining 20% of its 
received power is sent to its energy harvester. Device U1 adopts a power split ratio of θ = 0.5. This means device 
U1 sends 1.5 W to its information decoder and the other 1.5 W to its energy harvester. By using SIC decoding, 
device U1 and U2 are able to iteratively decode the signal.

Figure 1b demonstrates downlink and uplink transmissions for two time frames. The HAP first superposes 
all data together to all devices during the downlink period. After that, devices use their harvested energy to 
transmit during the uplink period. To do so, in frame t = 1, device U2 selects the first data slot while device U1 
selects the third data slot. In this case, both data transmissions are successful. However, in frame t = 2, devices 
selected the same data slot. In this case, due to SIC, their transmission is also successful.

There are a number of challenges. First, the uplink transmit power of devices is a function of their harvested 
energy in prior time slots or downlinks from the HAP11. Second, the energy level of devices depends on past 
channel gains, power split ratio and transmissions. Third, information is causal, meaning both HAP and 
devices know the current and past channel gains information only. Consequently, devices are unable to predict 
their future channel states or future energy arrivals, which undoubtedly increases the difficulty for them in 
making transmission decisions. Specifically, devices do not know whether they should reserve their precious 
energy for future slots with better channel gains or should transmit immediately. Fourth, the HAP is unaware 
of the number of contending devices and the energy level of devices. In practice, obtaining this information 
involves signaling, which consumes the precious harvested energy of devices. To address these challenges, this 
paper utilize Q-learning based approach to learn the system energy arrivals and channel condition variation. 
Henceforth, this paper makes the following contributions:

•	 It studies an IoT network that uses NOMA and FSA. It addresses a novel problem that aims to jointly maxi-
mize uplink and downlink sum rates over multiple time frames using only causal information. To the best of 
our knowledge, no prior works have considered a system that employs FSA for uplinks nor the same problem. 
Further, they have not addressed the said challenges jointly; see “Related works” Section for details.

•	 It shows how the uplink and downlink transmission problem can be modeled as Markov Decision Process 
(MDP). Advantageously, the MDP is model-free, meaning it does not require statistics of an environment 
beforehand. This means it only needs to observe the current system state, and then executes an action as per 
a learned policy. In this respect, to determine the optimal policy, this paper outlines Multi-Q; it is the first 
reinforcement learning approach for the problem at hand and system. It yields a communication policy for 
different channel conditions, where for each system state, it determines the HAP’s transmit power allocation 
and frame size. Further, it trains devices to use the correct power split ratio that maximizes their harvested 
energy and downlink sum rate. Lastly, devices use Multi-Q to determine a slot in a given frame and transmis-
sion probability.

•	 It presents the first study of Multi-Q. The simulation results show that Multi-Q achieves an average sum rate 
of 44 b/s/Hz which is 6× that of Aloha, 2.3× that of time division multiple access (TDMA), and 30% more 
than round-robin.

Fig. 1.  An example of downlink and uplink data transmissions.
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Related works
In general, past works that consider downlink and uplink communications in RF-charging networks optimize 
over one frame; i.e., they do not consider energy evolution and future channel gains of devices. These works 
mainly consider two different kinds of frame structures. One frame structure, see e.g.,12–14, is where the HAP 
first transfers energy to all users. After that, each user is assigned a distinct time slot during downlink. The HAP 
then sequentially sends data to each user. Works such as13 consider users that not only harvest energy during 
downlinks via a time switching strategy, but they also harvest energy whenever there are uplink transmissions. 
The work in14–17 considers users who harvest energy when the HAP transmits information to other users. 
During their assigned slot, a user employs power splitting to harvest energy. Lastly, in reference15, the authors 
also consider an interfering source. Users harvest energy from both their HAP and interfering signals via power 
splitting.

Some works consider an HAP that simultaneously sends data to all users using NOMA or multiple-input 
multiple-output (MIMO) technologies. Example works include18,19, where the HAP uses a MIMO system. Qin 
et al.18 assume a fixed power split ratio and time division duplex. In a subsequent work, i.e.,19, they optimize the 
power split ratio for each user to maximize system throughput. References20–22 consider NOMA for downlink. Li 
et al.20 employ NOMA in both single-input single-output (SISO) and MIMO models. In the case of SISO-NOMA, 
the authors optimize the power split ratio for each user. In the case of MIMO-NOMA, except for determining 
the power split ratio at devices, the authors also optimize the time allocation for downlink and uplink duration 
to enhance sum rate. Baidas et al.21 jointly optimize time switching and power allocation in a single-cell NOMA 
system to maximize the sum rate of uplink and downlink while ensuring quality of service requirements of 
users. In a subsequent work22, Baidas et al. further consider a NOMA system with clusters of users. The aim is 
still to maximize the sum rate of uplink and downlink while ensuring quality of service requirements are met. 
The authors jointly optimize time switching and power allocation of each cluster, and its sub-carrier assignment.

Another research direction is to adopt different sub-carriers for uplink and downlink communications. For 
example, Rezvani et al.23 consider a multi-user orthogonal frequency division multiple access (OFDMA)-based 
system with one base station and one local access point, where the base station can offload data to a local access 
point. The aim is to maximize uplink throughput subject to a minimum required downlink data rate of each 
user. To do this, the authors optimize power split ratio at users, joint sub-carrier allocation, and transmit power 
allocation. Na et al.24 categorize sub-carriers into two groups for information decoding and energy harvesting, 
respectively. Xiong et al.25 aim to jointly optimize the downlink and uplink energy efficiency and prolong system 
lifetime in a Time Division Duplex (TDD) Orthogonal Frequency Division Multiple Access (OFDMA) system 
with a power split strategy.

Table 1 highlights the novelties of our work. Briefly, many works have employed convex optimization and 
solves a deterministic problem, i.e., they do not consider imperfect or stochastic channel gains. For example, the 
work in12,13,17–20 casts or transforms their proposed maximization problem into a concave one and use convex 
program. Some other works also consider Mixed-Integer Non-Linear Program (MINLP), e.g., reference21–23. 
To date, only the work in26 has considered multiple time slots with imperfect channel gains. Lastly, in26, 

References Working principle SWIPT Downlink Uplink

Non-
linear 
energy 
model

Energy 
evolution Learning Decision variables

12–14 HAP first charges users followed by 
data transmission to each user. TS TDD TDD ✗ ✗ ✗ Time allocation

Transmission power

15–17 Users harvest energy whenever HAP 
transmits data to users. PS NOMA

TDMA
NOMA-TS
TDMA ✗ ✗ ✗

Time allocation
Transmission power
Beamformer

18,19 HAP transmit energy and data in 
multiuser MIMO system. PS TDD TDD ✗ ✗ ✗

Beamformer
Time allocation
Power split ratio

20–22 HAP transmits energy and data to 
users using NOMA.

PS
TS NOMA NOMA ✗ ✗ ✗ Time allocation

Power splitting ratio

23 An OFDMA system with uplinks and 
downlinks sub-carriers. PS FDD/TDD FDD/TDD ✗ ✗ ✗

Subcarrier allocation
Transmission Power
Power splitting ratio

24 Different sub-carriers for energy 
delivery and data transmissions. N/A OFDM NOMA ✗ ✗ ✗

Sub-carrier allocation
Transmission Power
Power splitting ratio

25 Different sub-carriers for energy 
harvesting and data transmissions. N/A TDD TDD ✗ ✗ ✗ Transmit Power

26 High and low frequency bands for 
energy and data transmissions. N/A TDD TDD ✔ ✗ ✗ Transmit power

Charging duration

This work
HAP transmits data and energy to 

users using NOMA, and receives data 
from devices over the same channel.

PS NOMA Aloha-SIC ✔ ✔ ✔

Transmit power,
Power split ratio,
Transmit probability,
Slot selection,
Frame size

Table 1.  Comparison between joint uplink and downlink communication networks. TS and PS denote time 
switching and power splitting, respectively.
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transmissions and receptions are carried out using TDD. A key innovation is the use of high and low frequency 
bands for energy and data transmissions. Further, access point optimizes its beamforming weight according to 
channel condition and energy at devices.

Our work fills a number of gaps. First, unlike past works that assume non-causal information and perfect 
channel information, we consider the causal case, meaning the HAP and devices make decision without 
requiring future channel gains information. Second, these works do not consider random channel access. 
Specifically, they consider pre-assigned time slots or sub-carriers, see12–14,23–25. Thus, there will be wasted slots 
due to device energy outage which will impair transmission efficiency and system throughput. In contrast, for 
practical reasons, our devices employ slotted Aloha to transmit to a SIC-capable HAP. Slotted Aloha is a random 
channel access method that enables flexible transmissions based on battery states. With SIC enabled, collisions 
can be resolved to further improve system throughput. Third, they optimize resources over one slot. Specifically, 
except for Yao et al.26, they do not consider energy evolution and future channel gains of devices nor the coupling 
between energy level across time slots. We note that Yao et al.26 consider a known probability distribution of 
channel and data arrivals. Further, they do not consider random channel access and do not aim to maximize 
system throughput.

System model
A HAP serves N energy harvesting devices; each device is denoted as Ui, where i ∈ {1, 2, . . . , N}. The HAP 
uses NOMA in the downlink and devices employ FSA for uplinks, where devices select one of M slots to transmit 
their packet. Time is divided into frames and indexed by t. At the beginning of each frame, the HAP will send 
pilot symbols for channel estimation. After that, each frame is divided into a downlink and uplink period, which 
respectively has length τd and τu. During the downlink period, devices employ power splitting5 to split received 
power into two parts, namely energy harvesting and information decoding. After that, there are M time slots 
for uplinks.

Channel model
We consider Rayleigh block fading channels27. The channel remains the same within one frame but varies 
across frames. Let di be the distance between Ui and the HAP, n denotes the path loss exponent, λ denotes an 
exponential random variable with unity mean, and ht

i  denotes the channel gain between user Ui and the HAP 
in time frame t. The channel power gain hi is defined as ht

i = λdi
−n28.

From a practical point of view, we consider casual channel information. That means HAP and devices make 
transmission decisions only with the current and past channel gains information. Consequently, even Rayleigh 
fading drives the channel state variation, neither HAP nor devices are aware that state transitions are driven by 
a Rayleigh distribution. Concretely, for a given time slot, devices cannot predict any future channel states or 
energy arrivals. Hence it is hard for a device to decide whether it should use up its energy to transmit or it should 
reserve its energy for future slots with a better channel state.

Downlink
During each downlink period, the HAP superposed all signals together and transmit the resulting composite 
signal to all users10. The HAP has a maximum transmit power of P, and the power allocated for user Ui at time 
frame t is pt

i , where 0 ≤ pt
i ≤ P . Moreover, the sum of transmit power to each user must not exceed P; formally, ∑N

i=1 pt
i ≤ P . Further, each user Ui divides its received signal into two signals with a split ratio of θ, where 

0 ≤ θ ≤ 1. Let θ denote the fraction of received power devoted to information decoding. The remaining 1 − θ 
fraction of the received power is sent to an energy harvester.

Downlink information decoding
Users have a SIC decoder29. Briefly, each user Ui starts its SIC decoding from the strongest signal by treating 
other signals as interference. After having successfully decoded the strongest signal, user Ui will subtract the 
decoded signal from the composite signal and proceeds to decode the next strongest signal. This continues until 
user Ui decodes its signal.

An example is shown in Fig. 2, where the HAP transmits with more power to user U2 than U1. User U1 
decodes the signal designated for U2 first and subtracts it from its received composite signal. After removing the 
signal from U2, user U1 decodes its signal. As for user U2, it directly decodes its signal by treating the signal of 
user U1 as interference.

Let n0 denote the noise power and W denote the bandwidth. The achievable downlink rate for user Ui at 
time frame t is

	
Řt

i = W log2

[
1 + θht

ip
t
i

θht
i

∑N

j
pt

j + n0

]
.� (1)

Energy harvesting
Each user is equipped with an RF-energy harvester, e.g., P2110B RF-energy harvester30. Let P̌ t

i  denote the 
received power at user Ui. It is calculated as P̌ t

i = ht
iP . It transfers (1 − θ)P̌ t

i  amount of power to its energy 
harvester. Note that the RF-energy conversion process is non-linear, which is a function of the received power. 
We consider a practical non-linear energy harvesting model31. Denote the energy conversion efficiency as η, 
which has range [0, 1]. It is calculated as
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η = χt

i

P̌ t
i

,� (2)

where χt
i = (Ψt

i − MΩ)/(1 − Ω), Ω = 1/(1 + eab), Ψt
i = M/(1 + e−a(P̌ t

i −b)). Here, M is the maximum 
harvested power, and the value of a and b is as per a harvester’s circuit.

Denote ξt
i  as the harvested energy of Ui in time frame t. Formally, the harvested energy is

	 ξt
i = η(1 − θ)P̌ t

i τd.� (3)

Let υt
i  denote the amount of energy consumed by Ui for uplink transmission in frame t. Thus, each device has 

energy level Et
i  that evolves as per Et

i = Et−1
i + ξt

i − υt
i . Moreover, each user has a battery capacity of Bmax

. This means if a device’s battery is full, any subsequent energy arrival is lost. Consequently, the energy level of 
user Ui evolves as per

	 Et
i = min

(
Bmax, Et−1

i + ξt
i − υt

i

)
.� (4)

Uplink
Users use FSA for uplink transmissions. This means the HAP does not allocate a fixed time slot to a device. 
Concretely, users will randomly select a time slot to access the channel when it has sufficient energy. In contrast, 
if the time slot is pre-assigned to each device by the HAP, time slots may be wasted if any device experiences an 
energy outage. Moreover, if the HAP pre-assigns time slots based on the energy level of each device, it requires 
the HAP to gather energy level information. Consequently, it requires the HAP to poll devices, which is not 
practical when there are many devices. Further, this also wastes the precious energy of devices. In contrast, FSA 
provides energy harvesting nodes with more flexibility to report data. This means devices can transmit more 
flexibly based on their energy level to avoid wasting slots. Transmission efficiency will be improved since fewer 
time slots are wasted due to battery outages. For this reason, we adopt FSA, and have the HAP adjusts the frame 
size used for uplink transmissions based on system states.

The HAP has SIC capability29, meaning it is able to decode multiple transmissions within a time slot. Let ε0 
be the minimum energy used to transmit one packet. Thus, user Ui will only transmit when its battery level Et

i  
exceeds ε0. Further, user Ui will use up all its available energy to transmit. We denote the uplink transmission 
power of Ui as yt

i . Then we calculate yt
i  as per yt

i = Et
i

τup/M , where M is the frame size. For each user Ui, we 
record the number of transmissions in its selected slot as Φt

i . Therefore, the condition Φt
i ≤ 1 represents the fact 

that there are no other users transmitting in the same slot with user Ui. Otherwise, the condition Φt
i > 1 means 

there are users transmitting in the same slot with user Ui. Consequently, the achievable uplink transmission rate 
for user Ui is defined as

	

R̂t
i =




W log2

(
1 + ht

iyt
i∑

ht
j

yt
j

+n0

)
, Φt

i > 1,

W log2

(
1 + ht

iyt
i

n0

)
, Φt

i = 1,

0, Φt
i < 1.

� (5)

Fig. 2.  An example of downlink and uplink transmission. There are two users and user U2 has poorer channel 
condition and a higher transmit power. The left side of the figure shows downlink transmission, where the 
HAP transmits energy and data to users. Users use power splitting to harvest energy. The right side of the 
figure shows users transmit data via FSA in the uplink. The HAP uses SIC to decode information.
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Problem
Given the aforementioned system, the goal is to optimize both uplink and downlink sum rate, i.e., summation 
of downlink rate Řt

i  and uplink rate R̂t
i . Here, the uplink rate R̂t

i  and downlink rate Řt
i  are calculated as per 

Eqs.  (1) and (5), respectively. Moreover, in each time frame t, a policy π returns all the parameters used in 
Eqs.  (1) and (5). Specifically, a policy π returns the downlink transmission power pt

i , uplink transmission 
probability ρt

i , uplink slot selection δt
i , frame size M, and power split ratio θ. Formally, a policy π is defined as 

π = [pt
i, ρt

i, δt
i , M, θ]. Thus, the joint sum rate is calculated as per Eq. (6):

	 Rt
i(π) = R̂t

i(π) + Řt
i(π).� (6)

Define Π = [π1, π2, . . .] as a collection of available policies. Our problem is to find the optimal policy π∗ ∈ Π 
that maximizes the following long-term cumulative joint uplink and downlink reward:

	
R (π∗) = arg max

π∈Π

1
T

E

[
∞∑

t=1

N∑
i=1

Rt
i (π∗)

]
.� (7)

To solve the optimal policy π∗, we need to determine the following quantities: (1) Downlink transmission power 
pt

i  of the HAP for each device Ui in frame t, (2) Uplink transmission probability ρt
i  of device Ui, (3) Uplink slot 

selected by device Ui, namely δt
i  in each frame, (4) Frame size M, and (5) Power split ratio θ of all devices.

MDP model and Q-leaning approach
We first show how the uplink and downlink process can be modeled as an MDP32. After that, we introduce 
conventional Q-learning33. Note that Q-learning is a sequential decision approach that learns the optimal policy 
without using non-causal information. Advantageously, it is model-free, meaning they are able to learn the 
optimal policy by only observing system states over time. Specifically, Q-learning allows the system to learn 
the fact that channel state transitions are driven by Rayleigh distribution with only causal channel information. 
Then we introduce stateless Q-learning34. Finally, we outline Multi-Q and show how it allows a HAP and users 
to use conventional Q-learning to learn the optimal policy that determines downlink power allocation, uplink 
transmission probability and slot selection in each frame. Moreover, Multi-Q also employs stateless Q-learning 
to determine the frame size for uplink transmissions and power split ratio of devices.

MDP model
To model the sequential decision process taken by the HAP and devices, we use an MDP model. It is defined 
as a tuple [S , A , T , R]. Here, the state space is denoted as S . The action space A  includes a set of actions 
a. A policy π returns the action a for state s. After an agent takes action a in state st, the system will transition 
to a new state st+1 with a transition probability of T (st+1|st, π(st)). In addition, the agent obtains a reward 
R(st+1|st, π(st)).

Our downlink MDP is defined as follows:

•	 State: A downlink state š ∈ Š  includes the channel conditions of all devices. Each state is defined as 
š = [h1, h2, . . . , hN ].

•	 Action: The downlink action space is defined as Ǎ = [ǎ1, ǎ2, . . . ]. Each downlink action ̌a = [p1, p2, . . . , pN ] 
represents the downlink NOMA power allocation for all users at the HAP.

•	 Transition probability: We consider a model-free MDP model. Hence, the transition probability is unknown.
•	 Reward: The reward function Ř is the throughput of downlinks, see Eq. (1).

The uplink MDP is defined as follows:

•	 State: An uplink state ŝi ∈ Ŝ  includes the channel condition and battery level of user Ui. Formally, a state of 
user Ui is defined as ŝi = [hi, Ei].

•	 Action: An uplink action â ∈ Â  includes time slot selection δi and transmission probability ρi. Thus, an 
uplink action is defined as âi = [δi, ρi], which represents the fact that user Ui selects the slot indexed by δt

i  
and transmits with probability ρi.

•	 Transition probability: The transition probability between states is unknown.
•	 Reward: The reward function R̂ is the transmission rate of uplinks, see Eq. (5).

Q-learning
We employ two types of Q-learning methods, conventional Q-learning33 and stateless Q-learning34. Both 
conventional Q-learning and stateless Q-learning learn Q-values. However, conventional Q-learning learns 
Q-value for action and state pairs, while stateless Q-learning learns Q-value just for actions without any states.

Conventional Q-learning
Q-learning learns the optimal policy based on a Q-table. A Q-table is indexed by a state-action pair (st, at), 
and returns the corresponding Q-value Q(st, at). Each Q-value Q(st, at) represents the expected discounted 
reward for taking action at in state st

33. The aim of Q-learning is to calculate Q(st, at) for each action and state 
pair. To learn the optimal policy, an agent first obtains its current state st. Secondly, it looks up its Q-table to find 
the corresponding Q-values for state st and selects the action at with the highest Q-value. After the agent selects 
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action at, the system will return a corresponding reward r(st, at). Then the agent observes its next state st+1 
and finds the highest Q-value. Lastly, the agent updates its Q-table based on its obtained reward and the highest 
Q-value for the next state. We denote α as the learning rate factor, γ as the discount factor, where α, γ ∈ [0, 1]. 
Concretely, Q-learning uses Bellman’s equation to update its Q-table as per

	

Q(st, at) = (1 − α)Q(st, at) + α(r(st, at)
+ γ max Q̌(st+1, at+1)).

� (8)

Stateless Q-learning
Stateless Q-learning34 learns the optimal policy without any states. The stateless Q-table only contains the value 
of actions. We denote λ ∈ [0, 1] as the stateless learning rate and the reward is denoted as r(a). Thus, stateless 
Q-learning updates Q(a) using

	 Q(a) ← Q(a) + λ(r(a) − Q(a)).� (9)

Under this stateless setting, an agent maintains a Probability Mass Function (PMF), denoted as

	
Pr(ai) = eQ(ai)/T∑

a
eQ(a)/T

,� (10)

which calculates the probability of taking action ai.

Multi-Q learning
Now we are ready to outline our proposed Q-learning approach, named Multi-Q, to solve Problem (7). Multi-Q 
is composed of three layers, namely the uplink, downlink, and stateless. Figure 3 shows the Multi-Q framework. 
The downlink and uplink layer adopt conventional Q-learning while the stateless layer employs stateless 
Q-learning. All layers use ϵ-greedy for action selection. Thus, initially, each agent has ϵ probability to randomly 
select an action. After that, we decay the value of ϵ to ensure convergence. Concretely, at the downlink layer, the 
HAP is the agent to learn the downlink MDP action ǎ = [p1, p2, . . . , pN ] which includes the power allocation 
for each user. The HAP starts with randomly selected power allocation first. During this warm-up period, the 
Q-table will update Q-values for each power allocation under each channel condition based on its corresponding 
throughput. A certain power allocation will obtain a high Q-value if it achieves high downlink throughput. Each 
time a power allocation is selected, its Q-value will be updated based on its past throughput, current throughput, 
and predicted future throughput. After several epochs, the HAP will mostly select the power allocation with 
the highest Q-value to pursue high downlink throughput. Consequently, with the convergence of the learning 
process, for each given channel state, the best power allocation will achieve the highest Q-value. Thus, for each 
downlink transmission, the HAP will learn the certain transmission power pi for each user to employ downlink 
NOMA transmission. At the uplink layer, each IoT device is an agent that independently learns its uplink MDP 
action âi = [δi, ρi] which includes uplink transmission probability and slot selection. That means, in each 
frame, each device will learn to select a certain uplink transmission slot and probability to transmit. Similar to 
the downlink layer, the Q-table will update the Q-value for each action-state pair until converges. Therefore, for a 
given channel state, the uplink transmission slot and transmission probability with the highest transmission rate 
will obtain the highest Q-value. In the stateless layer, the system determines the uplink frame size and downlink 
power split ratio. During the warm-up period, the system randomly determines the uplink frame size and the 

Fig. 3.  Multi-Q includes downlink, uplink, and stateless layer. In the downlink layer, the HAP employs 
Algorithm 1, which is denoted as A1 in the figure, to learn downlink power allocation. In the uplink, each user 
independently employs Algorithm 2, which is denoted as A2, to learn its own slot selection and transmission 
probability. Then the stateless layer collects the reward of both uplink and downlink for one epoch and then 
employs Algorithm 3 to determine the frame size and power split ratio.
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downlink power-splitting ratio. For each frame size and power splitting ratio, the Q-table will update the Q-value 
based on the sum rate. After several epochs, the system will select the frame size and power-splitting ratio with 
the highest Q-value. The frame size and power splitting ratio that obtains a high system sum rate will get a high 
Q-value. Each time an action is selected, its Q-value will be updated based on its past reward, current reward, 
and possible future reward. Until convergence, the best frame size and power-splitting ratio will have the highest 
Q-value. Let Φ denote the number of epochs and ϕ denote the number of frames inside each epoch. Next, we 
present how each layer works.

Downlink layer
In the downlink layer, the HAP performs conventional Q-learning33. Algorithm  1 demonstrates the steps of 
this layer. Each learning phase consists of ϕ time frames. Firstly, the HAP initializes its Q-table and learning 
parameter α and γ. During each time frame t, the HAP collects the channel condition ht

i  of user Ui to obtain 
its downlink state St, see line 5. After that, the HAP uses ϵ-greedy to select an action At which governs the 
transmission power allocation for all users. Concretely, with probability (1 − ϵ), the HAP selects the action At 
with the highest Q-value for state St, see line 10. After taking action At, each user collects its individual reward 
rt

i  and reports to the HAP. The HAP sums all rewards together to obtain the downlink reward Rt, see line 13. 
Then, the HAP observes its next state and finds the highest Q-value for the next state to update its Q-table.

Algorithm 1.  Pseudocode for downlink Q-learning.

Uplink layer
In the uplink layer, each user acts as an agent to independently perform conventional Q-learning, see 
Algorithm 2. In each time frame t ∈ ϕ, each user uses its channel condition ht

i  and battery level Et
i  as its current 

state st
i = [ht

i, Et
i ], see line 5. Based on ϵ-greedy, each user selects an action at

i  that governs its transmission 
slot selection and transmission probability. Specifically, each user either selects an action randomly, see line 8, 
or selects the action with the highest Q-value, see  10. After that, each user observes its next state st+1

i , see 
line 13, and finds the corresponding highest Q-value, see 14. Then, each user updates its Q-table, and repeats the 
aforementioned steps.
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Algorithm 2.  Pseudocode for Uplink Q-learning.

Stateless layer
In the stateless layer, the learning phase consists of Φ epochs, see Algorithm 3. At the beginning of each epoch 
κ, the system selects an action aκ = [M, θ] that governs the uplink frame size and downlink power split ratio. 
With probability ϵ, the system randomly selects an action, see line 5. Otherwise, the system will select an action 
with the highest probability, see line 9. After that, the system collects the reward for uplink and downlink, see 
line 11, 12, and accumulates downlink and uplink reward during epoch κ to obtain stateless reward, see line 13. 
Then, the system updates its Q-table and PMF. It then repeats the said steps.

Algorithm 3.  Pseudocode for Stateless Q-learning.

Evaluation
We conducted our simulation using Matlab running on a machine with 8-Core Intel Core i9 @2.3 GHz with 
16  GB of RAM. The path loss at reference distance 1  m is −  20  dB27. We fixed both the uplink length τup 
and downlink length τdown to 1 s. We consider a packet size of L = 21 bytes as per the IPv4 standard, which 
includes 20 bytes for header and one byte of data. The average energy consumption rate ζ  is 18 nJ/bit35. Thus, 
the minimum energy consumption for transmission is ε0 = ζ × L = 3.024 µJ. The battery capacity B of each 
user is set to 5ε0. According to the non-linear model in31, we set the energy conversion efficiency parameters as 
M = 0.02 W, a = 1500, and b = 0.0014.

We compare Multi-Q against round-robin, TDMA, and Aloha. The round-robin protocol is used for both 
uplink and downlink transmissions; i.e., the HAP transmits downlink signals to each device in turn and devices 
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transmit to the HAP in turn. As for TDMA and Aloha, these protocols are for uplink transmissions only. Both 
these two protocols consider downlink NOMA with uniform power allocation. Then during uplink, TDMA 
assigns a dedicated time slot to each device. As for Aloha, devices with sufficient energy contend for an uplink 
time slot randomly. We measure and compare the performance of these protocols from three aspects including 
average system sum rate, average downlink transmission rate, and average uplink transmission rate. Apart 
from that, we study different HAP transmit power, device location, and power split ratio. Each simulation has 
30,000 time frames. We collect the result in the last 300 frames after convergence, and plot the average of ten 
simulation runs. In terms of computational complexity, Multi-Q involves three layers of Q-learning. We analyze 
the computational complexity of each server at time t. For the downlink layer and uplink layer, each server needs 
to determine the Q-value of a state-action pair. This Q-value is calculated as per (8), which takes O(1) time. For 
the stateless layer, a server needs to determine the Q-value of an action which is calculated as per (9). For each 
layer, the Q-value is updated only according to the reward of servers, which is calculated as per (5). Observe 
that  (8),  (9), and  (5) only involve multiplication and addition operations. Moreover, Multi-Q is able to suit 
larger-scale networks. However, the downlink layer computational complexity may increase with a larger scale 
since it calls for global information on the server.

Convergence
To study convergence, users are placed at a distance of 1, 5, and 9 m from the HAP. We run our simulator for 200 
iterations and each iteration contains 150 frames. We plot both uplink and downlink rates in Fig. 4. There is a 
warm-up period of 15,000 frames. Referring to Fig. 4, we can see that both uplink and downlink rates converged 
after 140 iterations. Concretely, the downlink rate converged to around 34 b/s/Hz, and the uplink rate converged 
to around 13.66 b/s/Hz.

Learning parameter
We now study learning parameters. Specifically, we study the uplink and downlink layer learning rate including 
uplink learning rate αu and downlink learning rate αd, the frame size and power ratio layer learning rate λ, 
discounting factor γd, and warm-up period. We can see from Fig. 5 that each learning parameter combination 
converged to a different sum rate. With a short warm-up period, the system will experience more randomness 
during convergence. The system converges faster when the frame size and power ratio layer uses a learning rate 
of λ.

HAP transmission power
We vary the transmission power of the HAP from 1 to 5 W. User are located at a distance of 1, 5, and 9 m to the 
HAP. The frame size is three for Aloha and TDMA. The path loss exponent is n = 2.736.

Figure  6a demonstrates the average sum rate of both uplink and downlink. The sum rate of uplink and 
downlink increases with a higher HAP transmission power for all methods. Concretely, both uplink and 
downlink rate increase with a higher HAP transmission power as shown in Fig. 6b. The reason for the increase 
in uplink rate is because users harvest more energy with a higher HAP transmission power. Thus users are able to 
transmit with a higher transmit power. Similarly, a higher HAP transmit power leads to a higher downlink rate.

Fig. 4.  Convergence curve for uplink and downlink.
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Multi-Q performs best when we vary the HAP transmission power from 1 to 5 W. From Fig. 6a, It is clearly 
that Multi-Q always reaches the highest sum rate from 1 to 5  W. Moreover, Multi-Q reaches an average of 
44.3 b/s/Hz, which is 6× that of Aloha, 2.3× that of TDMA, and 30% more than round-robin. From Fig. 6b, 
Multi-Q reaches an average downlink transmission rate of 31.9 b/s/Hz which is the highest among all methods 
and achieves 6.6  b/s/Hz more than round-robin. TDMA and Aloha are even worse and just achieved zero 
downlink rates. The reason is because both TDMA and Aloha adopt uniform power distribution for each user 
during downlink. A uniform power distribution leads to decoding failures. Furthermore, Multi-Q performs 
better than round-robin for both uplink and downlink. Concretely, Multi-Q achieves an average of 12.4 b/s/
Hz and 31.9 b/s/Hz rate for uplink and downlink, which is 6.6 b/s/Hz and 4.1 b/s/Hz more than that of round-
robin, respectively. This is because Multi-Q users utilize the whole downlink period to receive data. On the other 
hand, for round-robin, users only receive data when it is polled by the HAP. In terms of downlink, round-robin 
experiences idle slots when users do not harvest sufficient energy. However, Multi-Q is able to avoid idle slots 
by dynamically adjusting the frame size and transmission probability based on the battery level and channel 
condition of users. Overall, Multi-Q performs significant advantages in terms of sum rate which is 6 times of 

Fig. 6.  The impact of different HAP transmission powers on the (a) average sum rate per frame and (b) 
average uplink rate and downlink rate per frame, respectively. The frame size for TDMA is three, and the path 
loss exponent is n = 2.7.

 

Fig. 5.  Sum rate convergence curve for different learning parameters.
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Aloha method. Simultaneously, Multi-Q also shows great advantages in terms of downlink rate which is 26% 
more than Round Robin and 100% more than TDMA and Aloha.

User location
We set five groups of user locations and the total distance from each group of devices to HAP is 15 m. We start 
from the group where each user is placed 5 m from the HAP. As channel gain disparity improves SIC decoding37, 
we move users to different locations to obtain different channel gain conditions. Specifically, we consider five 
groups of user locations. The distance (in meters) of each user to the HAP is as follows: [5, 5, 5], [4, 5, 6], [3, 
5, 7], [2, 5, 8], and [1, 5, 9]. The frame size is three for Aloha and TDMA. The path loss exponent is n = 2.736.

As shown in Fig. 7a, the average sum rate of both uplink and downlink increases when users have a more 
significant distance difference. This is because when we place users at different distances to the HAP, users 
experience significant differences in channel gains. Thus, the energy harvested by users vary considerably. This 
also means there will be one user located close to the HAP who transmits at a high power while another user 
located farther from the HAP that uses a low transmit power. This difference in transmit power helps increase 
the number of SIC decoding successes.

Multi-Q outperforms all other methods, especially when the distance between users is large. Specifically, 
Multi-Q achieves an average sum rate of 32 b/s/Hz for different locations. Simultaneously, Aloha, Round Robin, 
and TDMA achieve an average sum rate of 2.5 b/s/Hz, 29 b/s/Hz, and 4 b/s/Hz, respectively. When users are 
located at a distance of 1 m, 5 m, and 9 m to the HAP, Multi-Q achieves a sum rate of 44 b/s/Hz, which is six 
times that of Aloha, three times higher than TDMA, and 30% more than round-robin. The reason why Multi-Q 
performs better is because both Aloha and TDMA obtain zero downlink rate as shown in Fig.  7b. As both 
Aloha and TDMA employ uniform power distribution in the downlink, they always experience failures during 
downlink transmissions. When compared to round-robin, Multi-Q outperforms round-robin because Multi-Q 
simultaneously learns the frame size and transmission probability that avoid idle slots. Overall, Multi-Q always 
achieves the highest sum rate for different user locations which is an average of 11 times Aloha, 7 times TDMA 
and 10% more than Round Robin. Besides, Multi-Q shows great advantages in terms of downlink rate which is 
100% higher than TDMA and Aloha, and 5% higher than Round Robin.

Power split ratio
Users are located at a distance of 1, 5, and 9 m to the HAP. The HAP transmission power is 3 W and the path 
loss exponent is n = 2.7. We vary the split ratio from zero to one with a step size of 0.1. Initially, the power split 
ratio is zero, meaning all received power is for energy harvesting. After that, we increase the power split ratio to 
0.1. Thus, there is 10% power redirected for data reception and the remaining 90% is used for energy harvesting. 
Then we increase the power split ratio in steps of 0.1 until it reaches 1.0. Referring to Fig. 8a, Multi-Q achieves a 
sum rate around 44 b/s/Hz; it is able to converge to the optimal power split ratio starting from any initial ratio. 
The achieved sum rate of round-robin continues to rise until the power split ratio increases to 0.9. This is because 
when we increase the power split ratio, there will be more power distributed for downlink data reception and less 
power for energy harvesting. From Fig. 8b round-robin obtains an average of 25.3 b/s/Hz rate for downlink and 
5.7  b/s/Hz for uplink. The downlink rate of round-robin is approximately 5× its uplink rate. Therefore, even if 
the uplink rate of round-robin decreases, the sum rate increases since the downlink rate increases more than the 
uplink rate. As the power split ratio increases from 0.9 to 1.0, the sum rate of round-robin decreases since there 
is no power distributed for downlink rate. However, Aloha and TDMA experience a decrease when we increase 
the power split ratio from 0 to 1.0. The reason is because users employ uniform power allocation for downlinks. 
Thus each user fails to decode the received packet since there is no difference between the transmit for each 

Fig. 7.  The impact of different user locations on the (a) average sum rate per frame and (b) average uplink rate 
and downlink rate per frame, respectively. The HAP transmission power is 3 W. The frame size for TDMA and 
Aloha is three, and the path loss exponent is n = 2.7.
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user. Further, for higher power split ratios, resulting in less harvested energy or transmit power, the uplink rate 
is appreciably lower.

We have also studied the performance of different frame sizes for Aloha. As shown in Fig. 8a, Aloha achieves 
its highest sum rate when the frame size is one. Although a larger frame size means fewer collisions, frame 
size one performs better than a larger frame size since we consider SIC, which allows decoding of multiple 
transmissions in the same slot. Moreover, a smaller frame size lengthens the transmission period, thus users are 
able to transmit longer.

Among all methods, Multi-Q performs best. Multi-Q achieves an average of 44 b/s/Hz sum rate, which is 9.8 
times more than TDMA, 6.5 times that of Aloha when the frame size is one, and 1.4 times higher than round-
robin. This is because Multi-Q simultaneously learns the power split ratio, frame size, uplink transmission 
probability, uplink slot selection, and downlink power allocation for all users. Specifically, Multi-Q learns the 
best frame size and slot selection to avoid uplink decoding failure and idle. Learning downlink power allocation 
for each user enhances decoding success. It also learns the power split ratio to balance uplink and downlink 
rates. Overall, Multi-Q shows great advantages in terms of sum rate over all other methods for different pre-set 
split ratios. Moreover, Multi-Q always achieves the highest downlink rate and uplink rate, which is 31.5 b/s/Hz 
and 12.5 b/s/Hz, respectively.

Conclusion
This paper has studied joint uplink and downlink transmissions in a wireless powered network that uses FSA and 
NOMA. In this respect, it has outlined a novel solution called Multi-Q that allows an HAP and devices to learn 
the optimal transmission policy. Specifically, for each system state, the HAP learns to optimize its transmit power 
allocation and frame size for uplinks. Similarly, devices learn the optimal power split ratio and transmission 
probability for each frame size. Advantageously, Multi-Q does not assume non-causal information and state 
transition probability. The simulation results show that Multi-Q achieves an average sum rate of 44 b/s/Hz which 
is 6× that of Aloha, 2.3× that of TDMA, and 30% more than round-robin. This is because our learning-based 
method Multi-Q can flexibly schedule the system to respond to different network conditions. Consequently, 
Multi-Q is able to obtain the best transmission strategy when compared to Aloha, TDMA, and so forth. Our 
work can be effortlessly extended to real-world IoT deployments like smart agriculture, smart transportation, 
smart cities, and so forth. This would better provide charging solutions and communications for agricultural 
sensors, parking sensors, and the like. As future work, we also aim to investigate whether our approach can be 
applied in multi-hop networks that include RF-energy harvesting relay nodes and extend our approach to be 
suitable for moving end devices such as moving vehicles. Moreover, an interesting future work is to study the 
performance of an approach based on deep Q-learning and/or an actor-critic.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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