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Reliable predictions of concrete strength can reduce construction time and labor costs, providing 
strong support for building construction quality inspection. To enhance the accuracy of concrete 
strength prediction, this paper introduces an interpretable framework for machine learning (ML) 
models to predict the compressive strength of high-performance concrete (HPC). By leveraging 
information from a concrete dataset, an additional six features were added as inputs in the training 
process of the random forest (RF), AdaBoost, XGBoost and LightGBM models, and the optimal 
hyperparameters of the models were determined using 5-fold cross-validation and random search 
methods. Four interpretable ML models for predicting the compressive strength of HPC, including 
the RF, AdaBoost, XGBoost and LightGBM models, which combine feature derivation and random 
search, were constructed. In addition, the SHapley Additive exPlanations (SHAP) method was applied 
to analyze the effects of the input features on the prediction results of the LightGBM model, which 
combines feature derivation and random search. The results showed that input features such as age, 
water/cement ratio, slag, and water were the key influences for predicting the compressive strength of 
HPC. Input features such as the superplastic/cement ratio, slag/cement ratio, and ash/cement ratio had 
nonsignificant impacts on the predicted compressive strength.

Keywords  Machine learning, Proportional features, Random search, Compressive strength prediction, 
SHapley Additive exPlanations

High-performance concrete (HPC) is a construction material that is composed of coarse aggregates (such as 
gravel), fine aggregates (such as sand), and bonding materials (such as cement and water). Moreover, HPC 
exhibits excellent compressive strength, plasticity and durability, making it widely used in the construction of 
houses, roads, and bridges1,2. The compressive strength of HPC is a key performance indicator. Insufficient 
compressive strength reduces the durability of buildings, affects the safety of building structures and even causes 
casualties. For example, on May 21, 2023, a nine-story self-built house in Hunan, China, collapsed due to the 
inadequate compressive strength of the concrete and masonry mortar used in its construction, which were far 
below the national standard. In addition, the poor construction quality, irrational structural design, and low 
load-bearing capacity resulted in a total of 54 deaths, 9 injuries, and a direct economic loss of up to 90,778,600 
yuan. Therefore, an accurate and convenient understanding of the compressive strength of HPC is highly 
important for project construction.

In engineering practice, determining the strength of HPC is largely based on empirical experiments. 
Usually, construction personnel use instruments to measure the compressive strength of concrete with different 
proportions within a certain period to determine the compressive strength3. However, this type of experiment 
has several disadvantages, including high labor costs, large manual errors, and long processing times. Therefore, 
during the initial stages of a project, on the basis of the existing input and output data of concrete, a robust and 
reliable predictive model for concrete compressive strength can be established. This model would help reduce 
the cost of compressive strength detection and shorten the detection cycle, effectively improving the quality 
and efficiency of project construction. In addition, early-stage prediction of concrete strength can provide the 
basis for construction safety assessment, structural health status diagnosis, and dynamic detection of structural 
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strength. However, in the process of predicting HPC strength, there exists a nonlinear relationship between 
the input concrete data and the specific strength. Establishing a one-to-one mapping relationship is difficult. 
Therefore, creating an accurate predictive model for HPC strength to guide engineering practice is extremely 
important and remains a challenging research hotspot.

In recent years, with the development of artificial intelligence technology, researchers have developed many 
ML-based regression prediction models and applied them to the study of material performance4–9. For example, 
the support vector machine (SVM)10,11, decision tree12, random forest (RF)13–16, and K-nearest neighbors17 ML 
models have been used for predicting the compressive strength of concrete. Ouyang et al.18 proposed an artificial 
neural network algorithm to predict compressive strength. Mengxi Zhang et al.19 proposed a decision regression 
tree algorithm to predict compressive strength. In addition, Marani et al. used three ML models—RF, extremely 
random trees, and extreme gradient boosting (XGBoost)—to predict compressive strength20. Xueqing Zhang 
et al.21 used nine ML methods, including linear, nonlinear and ensemble learning models, to predict the 7-day 
compressive strength of concrete. Hamdi et al.22 constructed an efficient concrete strength prediction hybrid 
model using a support vector machine and a genetic algorithm (SVM-GA).

The ultimate goal of the forecast models constructed in the above studies is to minimize the forecast error. 
Moreover, employing feature engineering and optimizing ML model hyperparameters can effectively reduce 
the forecasting errors of these models. Feature engineering methods are used to analyze and select an original 
dataset, effectively use the information, select the feature quantities that can best represent the performance 
of the sample, reasonably map the objective patterns of the sample, and ensure the accuracy and reliability of 
the prediction results23–25. For example, Xiaoning Cui et al.26 employed the feature recombination method to 
construct 10 datasets for data augmentation, thereby improving the utilization rate of concrete compressive 
strength data and the generalizability of the ML model. Fangming Deng et al.27 trained a regression model 
by using the deep features of the water/cement ratio, recycled coarse aggregate replacement rate, recycled fine 
aggregate replacement rate, fly ash content, and their combinations to improve the model accuracy. Ziyue Zeng 
et al.3 applied a deep convolutional neural network to predict compressive strength, and model input features 
were added on the basis of the feature derivation method. The above prediction models, which combine feature 
engineering and machine learning methods, have demonstrated good prediction accuracy, but there is still a 
need to incorporate more diverse interpretable features into prediction models28–33. For example, input features 
such as thermal properties34, strain rates35, soft-mode parameters36, and others could be considered, with the 
HPC as a basis for prediction. The performance of the HPC compressive strength prediction model can be 
further enhanced by screening features from the perspectives of microstructural evolution during curing and 
loading37,38, interactions between chemical composition and mechanical properties39, and nonmonotonic 
aging40,41.

The optimization algorithm mainly determines the optimal hyperparameters of the ML model, thereby 
improving the prediction accuracy of the model42–44. Yimiao Huang et al.45 used the SVM regression model 
to forecast the uniaxial compressive strength and flexural strength of concrete, and the hyperparameters of the 
SVM model were optimized and adjusted via the firefly algorithm (FA). A sensitivity analysis was conducted to 
determine the significance of input features on the output variables. Qing-Fu Li et al.46 used four ML models: 
AdaBoost, gradient-boosted decision trees (GBDTs), XGBoost and RF. The optimal parameters for these models 
were obtained via the grid search method, and the optimal strength prediction performance of the four models 
was determined. Hoang Nguyen et al.2 used four ML methods to predict the compressive and tensile strengths of 
concrete, and a random search algorithm was applied to determine the best model parameters.

However, the abovementioned studies on HPC strength prediction fail to explain the black-box nature of 
ML models in compressive strength prediction10–17,26,27,45,46. Understanding the interpretability of ML models 
is crucial for gaining deeper insights into their decision-making processes and the importance of feature 
variables. These insights are also important for improving and optimizing engineering practice and enhancing 
the credibility and transparency of ML models. The SHapley Additive exPlanations (SHAP) method serves as 
an approach for explaining ML models by attributing the prediction results of the model to specific features, 
thereby increasing the interpretability of predictive models47–50. Therefore, applying SHAP analysis can improve 
the applicability and reliability of prediction models for HPC compressive strength, which is of great practical 
significance for engineering construction.

To this end, this study introduces a framework for ML models that can accurately predict the compressive 
strength of HPC. By using concrete dataset information, additional input features were added to the training 
process of the ML model, 5-fold cross-validation was applied, and the optimal hyperparameters of the models 
were obtained via a random search method. Four interpretable ML models for predicting the compressive 
strength of HPC were constructed to analyze the effects of input parameters on the compressive strength of 
concrete and the interactions between dataset features.

The main contributions of this study are as follows:

•	 Six features were obtained. Fivefold cross-validation and random search methods were applied, and an ML 
model framework for accurately predicting the compressive strength of HPC was proposed.

•	 An interpretable model for HPC compressive strength using FR_RF, FR_AdaBoost, FR_XGBoost and FR_
LightGBM was constructed, and the evaluation was performed using four performance indicators, namely, 
the root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), 
and coefficient of determination (R2), demonstrating the superiority of the FR_LightGBM prediction model.

•	 The SHAP method was used to analyze the influence of the input features on the prediction results of the 
FR_LightGBM model.
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The main content of this paper is as follows. In Section “Interpretable ML model for HPC compressive strength 
prediction”, four ML models, RF, AdaBoost, XGBoost and LightGBM, are introduced, and an interpretable 
ML model is proposed to accurately predict the compressive strength of HPC. In Section  “Concrete dataset 
and feature engineering”, the analysis of the HPC dataset and the feature engineering method are presented. In 
Section “Model optimization and evaluation indicators”, optimization methods and evaluation indicators are 
proposed for four ML models. In Section “Experimental results”, the experimental results are analyzed, and an 
explanatory analysis of the optimal model is performed. Section “Conclusions” presents the conclusion.

Interpretable ML model for HPC compressive strength prediction
Basic principles of ML models
RF
RF51–53 is an ensemble learning algorithm based on a regression tree model. Multiple regression trees are formed 
via random sampling, and the results of the regression tree operations are subsequently combined to obtain 
the prediction results. The RF method selects the optimal features from the subspace of the total feature set, 
ensuring the independence and diversity of each decision tree, thus avoiding overfitting to a certain extent. The 
generalizability of the regression tree model is enhanced by the application of the bagging algorithm and the 
random eigenvalue subspace approach. The parameters that affect the predictive ability of the RF regression 
model are the number of decision tree models, the maximum number of features at the node and the maximum 
depth of the tree.

AdaBoost
AdaBoost54,55 is a popular meta-algorithm. The primary goal of AdaBoost is to generate and then aggregate a 
series of weak learners to form a strong learner. The main principle of the algorithm is as follows.

The training samples are defined as {xi, yi}ni=1, and the output regressor variable is denoted as G(x). The 
weight of the sample is represented as Dt. After t iterations, the formula for calculating the maximum error for 
the training set is

	 Et = max|yi −Gt(xi)|,� (1)

The relative error of the i-th sample is

	
eti = 1− exp

−|yi −Gt(xi)|
E2

t

,� (2)

where yi is the true value of the sample and Gt(xi) is a weak learner with t iterations.
The formula of Dt+1 is obtained after t + 1 iterations as follows:

	 Dt+1 = (ωt+1,1, ωt+1,2, · · · , ωt+1,n) ,� (3)

	
ωt+1,i =

ωti

Zt
α1−eti
t ,� (4)

where Zt is the normalization constant.
All weak learners are integrated, and the formula of the strong learner is

	
G∗(x) =

t=1∑
T

(
ln

1

αt

)
g(x)� (5)

where αt is the weight coefficient and where g(x) is the weighted median value of all weak learners.

XGBoost
XGBoost56 is as an efficient implementation of the gradient boosting regression tree (GBRT) approach. It employs 
second-order Taylor expansion of the loss function to optimize the computational process and introduces a 
regularization term into the objective function. These improvements greatly increase the scalability and training 
speed of the model, enabling XGBoost to achieve excellent performance in the field of regression prediction57. 
The core strategy of the algorithm is to construct an additive model iteratively, step by step, aiming to minimize 
a differentiable loss function. XGBoost combines the advantages of a tree model with those of a linear model 
and continuously introduces new models in an iterative manner to correct the prediction bias from the previous 
round. On the basis of the principle of gradient boosting, the formula for the sample predicted value ŷ

(n)
i  for the 

nth tree is shown below:

	

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...

ŷ
(n)
i = f1(xi) + · · · + ft−1(xi) + ft(xi) = ŷ

(n−1)
i + ft(xi)

� (6)
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where ŷ(t)i  is the prediction result of sample i after n iterations, ft(xi) is the model of the nth tree to be trained, 
and ŷ(t−1)

i  is the prediction result of the previous n-1 trees.

LightGBM
LightGBM58 is a state-of-the-art gradient boosting algorithm with fast training speed, high prediction accuracy, 
and good generalizability. As an enhanced gradient boosting method, LightGBM trains each subsequent weak 
learner (i.e., classification and regression tree (CART)) by fitting the residual gradient of the previous weak 
learner instead of training the subsequent weak learner with the weight-adjusted samples. By employing a 
gradient-based one-sided sampling method during the training process, samples with large gradients can be 
selected, while samples with small gradients can be ignored. At the same time, LightGBM segments the data by 
choosing the leaf with the highest information gain instead of segmenting the leaves on the same layer at the 
same time. The leaf algorithm tends to select the leaf with the largest loss difference. The training samples are set 
to {xi, yi}ni=1, and the gradient boosting decision tree is f (x). The estimate is a series of decision trees ht(x). The 
sum of the results of the LightGBM model can be expressed as:

	
f (x) =

T∑
t=1

ht(x)� (7)

where T  is the number of decision trees.

Interpretable ML model for HPC compressive strength prediction
The overall framework of the interpretable ML model for predicting HPC compressive strength is illustrated in 
Fig. 1. This framework is divided into four main modules: data provision, feature selection, model execution, 
and performance evaluation.

HPC compressive strength data samples were collected and collated to provide basic data for subsequent 
strength prediction and optimization, serving as the foundation for the entire ML framework. The databases 

Fig. 1.  Overall framework.
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were screened, and an HPC compressive strength dataset was found, providing the original data for training the 
prediction model.

Based on the data provision module, feature derivation was applied to the original datasets. Six additional 
features, including the water/cement ratio, coarse/fine aggregate ratio, aggregate/cement ratio, ash/cement ratio, 
slag/cement ratio, and superplastic/cement ratio, were derived from the original data. The Pearson correlation 
coefficient method was used to analyze the correlation between the additional features and the predicted target, 
and the derived dataset was input into the model.

In the model execution module, the HPC prediction models were trained and tested. Through dataset feature 
derivation, 5-fold cross-validation and random search methods, four models for predicting the compressive 
strength of HPC, the RF model that combines feature derivation and random search (FR_RF), the AdaBoost 
model that combines feature derivation and random search (FR_AdaBoost), the XGBoost model that combines 
feature derivation and random search (FR_XGBoost) and the LightGBM model that combines feature derivation 
and random search (FR_LightGBM), were proposed. 80% of the HPC dataset was used for training. The optimal 
hyperparameters of the four ML models were determined, and the remaining 20% of the HPC dataset was 
used for testing and validation. The compressive strength prediction performance between the ML models were 
compared and analyzed.

In the performance evaluation module, the compressive strength of HPC was evaluated and interpreted. The 
prediction results of four models, FR_RF, FR_AdaBoost, FR_XGBoost and FR_LightGBM, were analyzed and 
evaluated to determine the performance of the models in terms of predicting the compressive strength of HPC. 
Evaluation indicators were used to verify the practicality of the four ML models proposed in this paper. The 
SHAP method was used to interpret the ML models in terms of predicting the compressive strength of HPC, 
identifying the effect of input features on the compressive strength of HPC, and screening the key influencing 
factors.

Concrete dataset and feature engineering
Datasets
An HPC compressive strength dataset was collected from the UCI database2. This dataset includes a total of 1030 
samples. The distribution of values in this dataset is shown in Fig. 2. To extract more information regarding the 
correlation between all the features (X) and targets (Y), the Pearson correlation coefficient method was used to 
calculate the correlation coefficient, and the formula is shown below:

Fig. 2.  The distribution of values.
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ρ =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)
2∑

(Yi − Ȳ )
2
,� (8)

where ρ is the Pearson correlation coefficient, X  represents the features, Y  represents the targets, X̄  and Ȳ  
represent the mean values, and the subscript i represents the i-th observed value.

Equation (7) ensures that the value of the coefficient ρ lies within the range [-1, 1]. A value of 0 represents no 
correlation between the specific features, a value of 1 represents a complete positive correlation, and a value of 
-1 represents a complete negative correlation. A correlation closer to -1 or 1 indicates that a stronger correlation 
between features, with a greater influence on the prediction result.

The statistical correlations between the features (X) and targets (Y) of the datasets are shown in Fig.  3. 
The results suggest that the cement feature has the strongest correlation with the compressive strength, with 
a correlation coefficient of 0.5. The superplasticizer, age, and water features had moderate correlations with 
compressive strength, with correlation coefficients of 0.37, 0.33, and − 0.29, respectively. In addition, there was 
a weak correlation between the compressive strength of the fine aggregate, coarse aggregate, slag and ash, with 
correlation coefficients of -0.17, -0.16, 0.13, and − 0.11, respectively.

Feature engineering
The generation of additional features was considered as a facet of data preprocessing. Expanding input features 
on the basis of established material science principles leads to better trained models31. Among these principles, 
Abram’s law reveals the importance of water–cement ratio in concrete. Reasonable adjustments to the water-
cement ratio ensure that the concrete meets the strength requirements while maintaining good durability and 
construction performance to protect the quality and safety of the project59. The coarse–fine aggregate ratio is 
a key factor in the good performance of HPC in terms of workability, densification, and reduction in the void 
ratio60. In addition, the aggregate-to-cement ratio is an important factor affecting the mechanical properties 
of concrete blocks61. Bijen et al.62 explored the effect of the ash/cement ratio on the compressive strength of 
concrete. The slag/cement ratio is a significant factor affecting the workability of concrete63. In addition, the 
superplastic/cement ratio3 is considered in this paper.

During the training process of this study, six additional features were added to train the high-performance 
concrete compressive strength prediction model: the water/cement ratio, the coarse/fine aggregate ratio, the 
aggregate/cement ratio, the ash/cement ratio, the slag/cement ratio, and the superplastic/cement ratio. Table 2 
shows the data statistics of the derived features. Table 1 lists the statistical results of the derived features.

Figure 4 shows the feature correlation matrix of Dataset 1 after the above features were derived. The water/
cement ratio and aggregate/cement ratio were strongly correlated with the compressive strength, with coefficients 
of -0.5 and − 0.48, respectively. The ash/cement ratio and superplastic/cement ratio were moderately correlated 
with the compressive strength, with coefficients of -0.18 and 0.12, respectively. The coarse/fine aggregate ratio 
and slag/cement ratio were weakly correlated with the compressive strength, with correlation coefficients of 
0.049 and − 0.069, respectively. These results indicate that the derived features of the dataset have a strong 
correlation with the target (Y), and the feature derivation methods can make full use of the feature information 
of the original dataset.

Before data are input into an ML model, the Z score normalization process should be performed with the 
dataset. The aim of Z score standardization is to prevent the weight of the trained model from being too small 

Fig. 3.  Feature correlation matrix between the features of the dataset and the target.
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to cause instability in the numerical calculation and to enable the parameter optimization approach to converge 
at a faster speed.

The Z score normalization formula is as follows:

	
x′ =

x− µ

σ
,� (9)

where µ is the mean value of dataset x, σ is the standard deviation of the dataset elements, and x′ is the result 
after x normalization and tends to follow a standard normal distribution.

Model optimization and evaluation indicators
Optimizing model hyperparameters
This study employed K-fold cross-validation with K = 5 to avoid random sampling bias. Figure  5 shows a 
schematic diagram of the 5-fold cross-validation method. As shown in this figure, the training set was divided 
into five parts, with four parts used as training data and one part used as validation data to test the experimental 

Fig. 4.  Feature correlation matrix after feature derivation.

 

Feature Minimum Maximum Mean Standard deviation

Water/cement ratio 0.26 1.88 0.74 0.31

Coarse/fine aggregate ratio 0.85 1.87 1.27 0.18

Aggregate/cement ratio 3.09 17.93 7.19 2.88

Ash/cement ratio 0 1.42 0.25 0.34

Slag/cement ratio 0 1.58 0.34 0.46

Superplastic/cement ratio 0 0.12 0.02 0.02

Table 1.  Statistical analysis results of the derived features.
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training effect of the model. The method can be applied to estimate the range of approximate values of the model 
hyperparameters.

The grid search method has been used most frequently in hyperparametric optimization. When applied, 
the method explores all the candidate parameter combinations and selects the hyperparameters that make the 
model perform optimally. Nevertheless, the drawbacks of grid search are readily apparent; that is, its running 
speed is relatively slow, and its efficiency is lower than that when the parameter space is large. The purpose of a 
random search is to randomly test several possible parameter combinations to find the optimal combination. A 
random search can reduce the training time of the forecasting model and improve the computational efficiency. 
In addition, a random search is more efficient than a grid search. In this paper, the random search algorithm was 
chosen as the search algorithm to find the optimal hyperparameters of the ML model.

Evaluation indicators for the ML models
To evaluate the capability of the ML model proposed in this research, four indicators were considered, including 
the RMSE, MAPE, MAE and R2. These evaluation metrics are calculated as follows:

	
RMSE =

√√√√1

n
×

n∑
i=1

(yi − ŷi)
2,� (10)

	
MAPE =

1

n
×

n∑
i=1

∣∣∣∣
ŷi − yi
yi

∣∣∣∣× 100,� (11)

	
MAE =

1

n
×

n∑
i=1

|yi − ŷi|,� (12)

	
R2 = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)2

,� (13)

Fig. 5.  Schematic diagram of 5-fold cross-validation.
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where yi and ŷi are the actual and predicted values, respectively. ȳ represents the mean value of the actual values, 
n represents the number of test data samples, and i represents the ith sample.

Experimental results
Performance of the ML model
The HPC compressive strength dataset was used to train four independent ML models, FR_RF, FR_AdaBoost, 
FR_XGBoost and FR_LightGBM, and the hyperparameters of each ML model were randomly searched to 
determine the model with the best performance.

The hyperparameter spaces defined for the four ML models are as follows:
The hyperparameter space for FR_RF is as follows: n_estimators ∈  {1, 2, 3, …, 1000}; max depth ∈  {0, 1, 2, 

…, 50}; min_impurity_decrease ∈  {0,1,2,3,4,5}; and max_features {“log2”, “sqrt”, 2, 4, 6,“auto”}. min_i_d is the 
abbreviation for min_impurity_decrease.

The hyperparameter space for FR_AdaBoost is as follows: n_estimators ∈  {1, 2, 3, …, 100}; learning_rate ∈  
{0.05, 0.1, 0.15, …, 1}; and loss ∈  {‘linear’, ‘square’, ‘exponential’}.

The hyperparameter space for FR_XGBoost is as follows: n_estimators ∈  {1, 2, 3, …, 200}; max_bin ∈  {1, 2, 
3,…,100}; learning_rate ∈  {0.01, 0.02, 0.03, …, 0.3}; and n_estimators ∈  {1, 2, 3, …, 50}.

The hyperparameter space for FR_LightGBM is as follows: max_depth ∈  {1, 2, 3, …, 50}; num_leaves ∈  {1, 
2, 3,…,200}; max_bin ∈  {1, 2, 3, …, 100}; and n_estimators ∈  {1, 2, 3, …, 200}.

The optimal hyperparameters determined through 5-fold cross-validation and a random search method 
for four interpretable ML models for predicting the compressive strength of HPC are shown in Table 2. The 
simulation results of the training set and validation set are shown in Table 3.

To compare and analyze the effects of the hyperparameters on the ML models, the RMSEs of FR_RF, FR_
AdaBoost and FR_LightGBM were calculated under different hyperparameter configurations through multiple 
iterative experiments. Figure 6 shows the impact of n_estimators and max_depth on the RMSE of the FR_RF 
model. When n_estimators increased from 0 to 200 and max_depth increased from 0 to 5, the RMSE of the 
FR_RF prediction model decreased significantly. A reduction in the RMSE indicates that the model prediction 
error decreases. Figure 7 shows the impact n_estimators and learning_rate on the RMSE of the FR_AdaBoost 
model. When n_estimators increased between 30 and 80 and the learning_rate increased between 0.2 and 1, 
the performance of the AdaBoost model significantly improved. Figure  8 shows the impact of n_estimators 
and max_bin on the RMSE of the FR_XGBoost model. The results show that n_estimators had a small effect 
on the model performance, and max_bin in the range of 20–100 significantly improved the performance of 
the FR_XGBoost model. Figure 9 shows the impact of n_estimators and num_leaves on the RMSE of the FR_
LightGBM model. A smaller num_leaves tended to increase error in LightGBM error, while n_estimators had a 
lesser impact on the model performance (Fig. 9).

To accurately evaluate and analyze the interpretability of the ML models for predicting HPC compressive 
strength proposed in this paper, the performance of the four models was evaluated. The test set prediction results 

Model

Evaluation indicator

RMSE MAPE MAE R2

FR_RF
Training 2.15 5% 1.40 0.98

Validation 5.10 13% 3.60 0.90

FR_AdaBoost
Training 6.80 24% 6.80 0.83

Validation 7.61 25% 6.80 0.79

FR_XGBoost
Training 1.39 3% 0.72 0.99

Validation 4.62 11% 3.13 0.92

FR_LightGBM
Training 1.99 4% 1.28 0.99

Validation 4.69 11% 3.17 0.92

Table 3.  Simulation results for the training and validation sets.

 

Model Hyperparameter

FR_RF
n_estimators max_depth min_i_d max_features

827 46 0 6

FR_AdaBoost
n_estimators Learning_rate loss -

76 0.9 - -

FR_XGBoost
n_estimators max_bin Learning_rate n_estimators

86 60 0.27 5

FR_LightGBM
n_estimators max_depth max_bin num_leaves

178 22 17 61

Table 2.  Optimal model hyperparameters.
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for the four evaluation indicators, RMSE, MAPE, MAE, and R2, are shown in Table 4. In addition, for the same 
dataset, the results were compared with the results of models in other papers (Table 4).

The FR_RF model outperformed the SVR, GEP, M-GGP, ANN-SVR, and SFA-LSSVR models in terms of 
the RMSE and MAE. Compared with those of the original model, the RMSE and MAE of the FR_RF model 
decreased by 10.3% and 12.6%, respectively, the MAPE decreased by 1%, and the R2 increased by 1%. The 
prediction results of the FR_RF model with the test set are shown in Fig. 10a. Although FR_AdaBoost did not 
yield the best results, it outperformed the original model, and the overall performance of the FR_AdaBoost 
model was better than that of the M-GGP model. In this study, when the hyperparameters of the FR_AdaBoost 
model were n_estimators = 76 and learning_rate = 0.9, compared with those of the original model, the MAPE 
was the same, the MAE of the FR_AdaBoost model decreased by 6.5%, the R2 increased by 3.7%, and the RMSE 
decreased by 6.5%. The prediction results of the FR_AdaBoost model with the test set are shown in Fig. 10b.

The predicted values for the FR_XGBoost model test set are shown in Fig. 10c. The results are as follows: 
RMSE = 3.26, MAPE = 10%, MAE = 2.63, and R2 = 0.95. There was a 4.4% decrease in the RMSE relative to that 
of the original model. The FR_XGBoost model was better than FR_RF, FR_AdaBoost, SVR, MLP, and GEP are 
in terms of the RMSE, MAPE, MAE and R2. This result indicates that the FR_XGBoost model has high accuracy 
in predicting the compressive strength of HPC.

Fig. 7.  Impact of hyperparameters on the FR_AdaBoost model performance (RMSE).

 

Fig. 6.  Impact of hyperparameters on the FR_RF model performance (RMSE).
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In addition, the FR_LightGBM model outperformed the FR_XGBoost, FR_RF, FR_AdaBoost, LightGBM, 
SVR, MLP, GEP, M-GGP, ANN-SVR and SFA-LSSVR models in terms of the RMSE, MAPE, MAE and R2. 
Compared with those of FR_XGBoost, the RMSE and MAE of the FR_LightGBM model were reduced by 11.1% 
and 10.6%, respectively, the MAPE was reduced by 1%, and the R2 improved by 1%. Compared with those of the 
FR_RF model, the RMSE and MAE of the FR_LightGBM model decreased by 21.4% and 24.1%, respectively, the 
MAPE decreased by 3%, and the R2 increased by 2.1%. Compared with those of the M-GGP model, the RMSE 
and MAE of the FR_LightGBM model decreased by 55.4% and 57.1%, respectively, and the R2 increased by 6.6%. 
Compared with those of the MLP model, the comprehensive performance of the FR_LightGBM model was 
better. The RMSE and MAE decreased by 24.8% and 20.0%, respectively, and the MAPE decreased by 0.8%. The 

Fig. 9.  Impact of hyperparameters on the FR_LightGBM model performance (RMSE).

 

Fig. 8.  Impact of hyperparameters on the FR_XGBoost model performance (RMSE).
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Fig. 10.  Prediction results on the test set using the FR_RF, FR_AdaBoost and FR_LightGBM models.

 

Model

Evaluation indicator

RMSE MAPE MAE R2

SVR2 5.00 12.7% 3.79 0.95

MLP2 4.34 9.8% 2.94 0.96

GEP64 - - 5.2 0.91

M-GGP65 7.31 - 5.48 0.90

ANN-SVR66 6.17 15.2% 4.24 0.94

SFA-LSSVR67 5.62 12.2% 3.86 0.94

RF 4.63 13% 3.55 0.93

AdaBoost 7.55 27% 6.25 0.80

XGBoost 3.84 9% 2.62 0.95

LightGBM 3.80 10% 2.64 0.95

FR_RF 4.15 12% 3.10 0.94

FR_AdaBoost 7.06 27% 5.88 0.83

FR_XGBoost 3.67 10% 2.63 0.95

FR_LightGBM 3.26 9% 2.35 0.96

Table 4.  Experimental results with the test set. Significant values are in [bold].
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predicted values of the FR_LightGBM model with the test set are shown in Fig. 10d. The results are as follows: 
RMSE = 3.26, MAPE = 9%, MAE = 2.35, and R2 = 0.96. Compared with those of the original model, the RMSE 
and MAE of the FR_LightGBM model decreased by 14.2% and 10.9%, respectively, the MAPE decreased by 1%, 
and the R2 increased by 1%. The comparison of the experimental results quantified by the indicators reveals that 
the FR_LightGBM model based on the proposed method achieved high precision in predicting the compressive 
strength of HPC.

The performance of the FR_RF, FR_AdaBoost, FR_XGBoost and FR_LightGBM models are shown in 
Fig. 11. The performance of the FR_LightGBM model was better than that of the other two models, and the 
ranking of the prediction performance of the HPC compressive strength from high to low was FR_LightGBM, 
FR_XGBoost, FR_RF, and FR_AdaBoost.

Interpretive analysis
SHAP is a method of explaining ML models. The SHAP value indicates the relative influence and contribution of 
each input variable on the generation of the final output variable. Similar to the concept of parametric analysis, 
when one variable is changed, the other variables are kept constant to analyze the effect of the changed variable 
on the target attribute. In this section, the relative importance of each variable is discussed in terms of the HPC 
compressive strength, thus defining the effect of the input variables on the HPC compressive strength. In this 
paper, the optimal FR_LightGBM model is analyzed and explained.

Global analysis
The FR_LightGBM model was interpreted and analyzed via two global analysis methods. The first method 
involves the importance of the input features (Fig. 12). The feature importance values in Fig. 12 are calculated 
by averaging the SHAP values of the entire dataset. The features of age, water/cement ratio, slag, and water 
have significant impacts on concrete strength prediction. The addition of the aggregate/cement ratio, cement, 
superplasticizer, fine aggregate, coarse aggregate, ash, and coarse/fine aggregate ratio had a strong effect on the 
compressive strength of the concrete. The superplastic/cement ratio, slag/cement ratio, and ash/cement ratio 
had weak effects.

The second method involves examining the variation trend of the corresponding variables and the distribution 
of the SHAP value of a single feature (Fig. 13). The greater the eigentime value is, the greater the compressive 
strength of the concrete. Thus, the compressive strength of the concrete increases with time. A greater water/
cement ratio, water content, aggregate/cement ratio, fine aggregate content, and ash/cement ratio had a negative 
impact on the compressive strength of the concrete. In contrast, a larger slag, cement, superplasticizer, coarse 
aggregate, ash, coarse/fine aggregate ratio, superplastic/cement ratio, and slag/cement ratio led to a greater 
increase in the compressive strength of the concrete.

Interpretation of a single feature
An interpretive analysis was conducted on a single sample to study the influence of each feature on the forecast 
results (Fig. 14). The features were sorted according to their importance, and the most important features were 
identified. The base value represents the average value of the concrete strength in the dataset, that is, 35.73 MPa. 
The red features (fine aggregate, slag, age, cement, aggregate/cement ratio, etc.) increase the compressive strength 
of the HPC above the base value, whereas the blue features (water/cement ratio, superplastic/cement ratio) 

Fig. 11.  Comparison of the model performance.
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decrease the compressive strength. Finally, under the joint action of all the features, the predicted bond strength 
was 43.33 MPa.

Among the key features, the bonding force between the fine aggregate and the interfacial structure is stronger, 
improving the compressive strength of the concrete. Slag refines the pore size of the concrete, improving its pore 
structure, compactness and compressive strength of the concrete. The compressive strength of HPC is closely 
related to its age, and with increasing age, the compressive strength of concrete gradually increases. The cement 
content has a decisive influence on the compressive strength of HPC. The aggregate-to-cement ratio affects the 
overall mechanical properties of concrete. The water/cement ratio has an inverse relationship with the HPC 
compressive strength, and the water/cement ratio directly affects the cement paste structure and porosity within 
the concrete. The dosage of the superplasticizer should not be too high, as excessive amounts can adversely affect 
the performance of the concrete.

In this single prediction, the fine aggregate, slag, age, cement, aggregate/cement ratio, and water/cement ratio 
were identified as the main features affecting the compressive strength of HPC.

Fig. 13.  SHAP values of the FR_LightGBM model.

 

Fig. 12.  Feature importance.
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Conclusions
To increase the prediction accuracy of the HPC compressive strength prediction model, an interpretable ML 
model framework was proposed. Four independent ML models, FR_RF, FR_AdaBoost, FR_XGBoost and FR_
LightGBM, were developed using this framework, and the performance of the prediction model was evaluated by 
considering the RMSE, MAPE, MAE and R2. The aim was to explain the black-box nature of the ML models and 
accurately determine the influence of features on HPC compressive strength prediction. In a follow-up study, we 
will consider the influence of data distortion and data drift in data collected from actual engineering applications 
to construct a concrete sample set by combining feature derivation and dimensionality reduction methods and 
using an ensemble model and a deep learning model with better performance. A strength prediction model for 
high-performance compressive concrete that is resistant to the influence of interference will be used to provide 
timely and effective strength prediction services for project construction. On the basis of the simulation analysis 
results, the following conclusions were reached:

	(1)	� Six feature parameters, namely, the water/cement ratio, coarse/fine aggregate ratio, aggregate/cement ratio, 
ash/cement ratio, slag/cement ratio and superplastic/cement ratio, were used to increase the number of 
features in the dataset. Four HPC compressive strength prediction models, FR_RF, FR_AdaBoost, FR_XG-
Boost and FR_LightGBM, were constructed using 5-fold cross-validation and random search methods. 
Compared with that of the original model, the performance of the HPC compressive strength prediction 
model significantly improved.

	(2)	� The FR_LightGBM model was superior to the FR_RF, FR_AdaBoost and FR_XGBoost models in terms 
of predicting the compressive strength of HPC, and the performance of the FR_LightGBM, FR_XGBoost, 
FR_RF and FR_AdaBoost models were ranked from highest to lowest. The RMSE, MAPE, MAE and R2 
were 3.26, 9%, 2.35 and 0.96, respectively, for the FR_LightGBM model, 3.67, 10%, 2.63 and 0.95, respec-
tively, for the FR_XGBoost model, 4.15, 12%, 3.10 and 0.94, respectively, for the FR_RF model, and 7.06, 
27%, 5.88 and 0.83, respectively, for the FR_AdaBoost model.

	(3)	� The SHAP method was used to analyze the effects of the input features on the prediction results of the 
FR_LightGBM model. The results revealed that age, water/cement ratio, slag, and water features were the 
key influencing factors in predicting the compressive strength of HPC. Features such as the superplastic/
cement ratio, slag/cement ratio, and ash/cement ratio had nonsignificant impacts on the prediction results.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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