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Detecting glucose levels is crucial for diabetes patients as it enables timely and effective management, 
preventing complications and promoting overall health. In this endeavor, we have designed a novel, 
affordable point-of-care diagnostic device utilizing microfluidic principles, a smartphone camera, 
and established laboratory colorimetric methods for accurate glucose estimation. Our proposed 
microfluidic device comprises layers of adhesive poly-vinyl films stacked on a poly methyl methacrylate 
(PMMA) base sheet, with micro-channel contours precision-cut using a cutting printer. Employing the 
gold standard glucose-oxidase/peroxidase reaction on this microfluidic platform, we achieve enzymatic 
glucose determination. The resulting colored complex, formed by phenol and 4-aminoantipyrine in 
the presence of hydrogen peroxide generated during glucose oxidation, is captured at various glucose 
concentrations using a smartphone camera. Raw images are processed and utilized as input data for 
a 2-D convolutional neural network (CNN) deep learning classifier, demonstrating an impressive 95% 
overall accuracy against new images. The glucose predictions done by CNN are compared with ISO 
15197:2013/2015 gold standard norms. Furthermore, the classifier exhibits outstanding precision, 
recall, and F1 score of 94%, 93%, and 93%, respectively, as validated through our study, showcasing its 
exceptional predictive capability. Next, a user-friendly smartphone application named “GLUCOLENS 
AI” was developed to capture images, perform image processing, and communicate with cloud server 
containing the CNN classifier. The developed CNN model can be successfully used as a pre-trained 
model for future glucose concentration predictions.
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Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, is a major health concern, 
contributing to over 1.5 million deaths globally and acting as a significant factor in cardiovascular diseases like 
heart attacks and strokes1. Monitoring blood glucose is crucial for managing diabetes, especially since glucose 
levels fluctuate due to various factors, such as insulin administration or fasting2,3. A significant drawback of 
traditional home glucometers is their reliance on electrochemical principles, which can lead to discrepancies 
between blood and plasma glucose levels. Factors such as hematocrit variations, oxygen levels, and dehydration 
can result in inaccurate readings. While glucometers are useful for home monitoring, they exhibit deviations 
from the gold standard, with errors as high as 30–40%, far exceeding the acceptable 5% threshold. This highlights 
the need for improved methods that provide more reliable glucose estimations.

Colorimetric detection has gained prominence as an alternative approach for glucose measurement, where 
glucose concentration correlates with color intensity. Traditional methods involve separating plasma from 
blood, followed by an enzymatic reaction between glucose and glucose oxidase, producing gluconic acid and 

1Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of 
Higher Education, Manipal 576104, Karnataka, India. 2Department of Nuclear Medicine, Manipal College of Health 
Professions, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India. 3Department of Biomedical 
Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, 
India. email: omkar.powar@manipal.edu

OPEN

Scientific Reports |        (2024) 14:28377 1| https://doi.org/10.1038/s41598-024-79581-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-79581-y&domain=pdf&date_stamp=2024-11-16


hydrogen peroxide. The hydrogen peroxide reacts with peroxidase and a chromogenic indicator, forming a 
colored product4,5. The intensity of the color is measured spectrophotometrically, providing an accurate glucose 
concentration estimate6,7.

Recent advances in healthcare have introduced Point-of-Care (POC)8 devices employing microfluidic 
technologies, which offer rapid, efficient, and cost-effective platforms for diagnosis, especially in resource-
limited settings9,10. These devices minimize sample and reagent requirements while enhancing sensitivity. 
Specifically, the microfluidic device for enzymatic reactions should be a single-step fabrication process with 
direct indication, and the equipment used to measure color intensity must ensure accuracy and scalability. Paper-
based microfluidic devices (µPADs) have gained attention for their low cost, simplicity, and disposability11–14. 
Despite these features, issues such as washing effects15, where reagents and enzymes migrate toward the edges 
of the testing zone, and non-homogeneous color formation due to enzymes or spotted reagents failing to attach 
securely to the paper’s surface, pose significant challenges16. Other limitations include porosity, overflowing, 
and inconsistent color development, all of which affect the reliability of the results. Strategies like immobilizing 
reagents, treating paper with functionalized nanoparticles, and oxidation have been explored to address these 
challenges17–21. Nevertheless, paper-based devices often require multi-step fabrication processes, such as wax 
printing and thermal treatment, making them labour-intensive and time-consuming. Plastic-based microfluidic 
platforms, using materials like PDMS and polyester, provide advantages over paper-based devices by achieving 
color homogeneity and improved surface treatment, with polyester film devices favored for their single-step 
fabrication and capillary-driven fluid movement, applicable in PCR and colorimetric assays for glucose and 
proteins22–28. In point-of-care (POC) applications, methods like standard addition assays, flatbed scanners, 
and smartphones have been explored for color intensity analysis29; however, while scanners ensure consistent 
imaging, their lack of portability limits use30,31,32,33,34,35,36,3738. Smartphones offer a more practical solution but 
face challenges from variations in settings that can affect accuracy39–43. Although deep learning and machine 
learning models have been proposed to correct environmental variations, issues remain regarding robust dataset 
development and feature extraction39,40,44,45.

Despite advancements in microfluidic devices and colorimetric detection technologies, a significant need 
remains for a mass-producible, rapid, low-cost, portable POC device that accurately measures glucose levels 
without requiring additional instruments or trained personnel. This research presents a novel approach to 
glucose estimation using an affordable point-of-care diagnostic device that employs microfluidic principles 
and the gold standard glucose-oxidase/peroxidase (GOD/POD) reaction, operates independently of external 
calibration, enhancing both accuracy and sensitivity. The device can handle up to three plasma glucose samples 
simultaneously, using capillary action to propel the enzyme reaction for glucose detection. Our method 
improves upon traditional paper-based lateral flow strips by utilizing a three-dimensional microfluidic channel 
for more reliable enzyme reactions. It also addresses common issues such as inadequate blood samples, strip 
malfunctions, and contamination risks. The study uses a smartphone camera for real-time image capture, 
achieving a remarkable 95% overall accuracy with a 2-D CNN, alongside strong performance metrics. Enhanced 
image processing is accomplished through advanced CNN architectures fine-tuned for small sample size datasets 
typically encountered in this type of research, resulting in improved accuracy in detecting subtle colour changes 
in images, especially under varying environmental conditions. Furthermore, the user-friendly smartphone 
application, “GLUCOLENS AI,” facilitates seamless interaction and data communication, making the solution 
accessible and practical for non-specialists. Leveraging a deep-learning model for colorimetric detection ensures 
accurate glucose monitoring in various settings without requiring trained personnel, laboratory equipment, or 
additional instrumentation. An overview of the present study is provided in Fig. 1.

Experimental work
Chemicals and assay standardization
In our research, the Mybio Glucose Test Kit from Mylab Discovery Solutions Pvt. Ltd., India, was employed. This 
kit comprised a Glucose enzyme reagent, consisting of Phosphate buffer, glucose oxidase, Peroxidase, 4-amino 
antipyrine, and Phenol, along with a Glucose standard. The fundamental operational principle of the test kit is 
based on the GOD/POD method (glucose oxidase-peroxidase coupled method) for glucose detection. To adhere 
to the established normal range of glucose levels in healthy individuals, specifically 70 to 110 mg/dL (fasting) and 
up to 130 mg/dL (post-prandial), a series of standard laboratory glucose solutions (D-galactose, SRL chemicals, 
India) were meticulously prepared. These solutions ranged from 50 mg/dL to 200 mg/dL, with an incremental 
concentration difference of 10  mg/dL, resulting in a total of 16 samples. To ensure precision and minimize 
experimental errors, all procedures were executed using calibrated micropipettes with volumes ranging from 
1.0 µL to 10 µL and 100 µL to 1000 µL. Spectrophotometric analysis was employed to confirm the accuracy of 
the prepared glucose solutions (50 mg/dL to 200 mg/dL) with the specified test kit. Subsequently, following 
confirmation, we proceeded to assess the levels of these samples using our microfluidic device46–48.

Fabrication of the microfluidic device
The microfluidic device used in this study is constructed from layers of adhesive-coated poly-vinyl (PVC) films 
stacked atop each other as shown in Fig. 2. The layout and design of the microfluidic channel are crafted using 
Coral Draw software and provided as a drawing or input file to the cutting plotter. A 5 mm-thick PMMA sheet is 
manually cut into a rectangular shape measuring 40 mm x 50 mm, serving as the baseplate for the microfluidic 
setup. The baseplate provides good support for the microfluidic channel and helps maintain a rigid flat surface 
for the channel. The fabrication involves the use of adhesive-coated PVC films in black, white, and transparent 
colors. To initiate the process, the white PVC film is fed into the cutting plotter, which then precisely cuts the 
outer boundary according to the PMMA sheet dimensions. The resulting cut white PVC film is affixed to one 
side (bottom) of the PMMA sheet. Given the transparent nature of PMMA sheets, the white film serves as 
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Fig. 2.  The fabrication steps involved in the development of adhesive-coated poly-vinyl films stacked on poly 
methyl methacrylate (PMMA) baseplate microfluidic device. Four layers that make up the microfluidic device 
are shown. (1) A single layer of white color poly-vinyl film affixed to the bottom of the PMMA base thus 
serving as background during image capture. (2) PMMA transparent baseplate having its top side affixed with 
poly-vinyl films. (3) Single or multi-layered (depending upon the required channel depth) adhesive-coated 
black vinyl films on which microfluidic channels are cut out using a cutting printer. (4) The adhesive-coated 
transparent vinyl film containing the openings for inlet and outlet wells thus sealing the microfluidic channel.

 

Fig. 1.  The overview of the present study. A PMMA base plate multi-layered adhesive-coated poly-vinyl 
film microfluidic device is shown in the middle. The Glucose Oxidase-Peroxidase reaction for colorimetric 
estimation of glucose is carried out in the device. The output color intensity for glucose samples is captured 
with the help of a smartphone containing the “GLUCOLENS AI” application. The processed images are 
classified using a Convolution-Neural Network (CNN) deep learning classifier and the resulting glucose 
concentration is displayed in the application.
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an optimal background for image capture. Subsequently, the black PVC film is fed into the cutter. The plotter 
pierces the black film and proceeds to shape the inner contours of the microfluidic device. A large 10 mm x 
10 mm well is cut, acting as the inlet. From this larger well, three-way channels are drawn, connecting to three 
smaller outlet wells, each measuring 5 mm x 5 mm. The channels that link the inlet and outlet wells have a width 
of 25 mm. The black PVC film, featuring the slotted inlet, channel, and outlet portions, is then attached to the top 
portion of the PMMA baseplate. The depth of the microchannel is determined by the number of layers of black 
PVC film stacked on top of each other. In our study, we stacked two layers to achieve a microfluidic channel with 
an approximate depth of 200 μm.

Finally, a transparent PVC film is fed into the cutting plotter. The plotter cuts the inlet and outlet openings for 
the device. The transparent adhesive layer is firmly placed on top of the black film, with openings provided for the 
inlet and outlet, while the rest of the channel portion is completely sealed as shown in Fig. 2. The resulting device 
was checked for any fluid leakages between the adhesive films and also underwent testing to verify whether the 
glucose enzyme could traverse from the inlet to the outlet. The enzyme successfully traversed the microfluidic 
channels through capillary action, reaching the outlet within an average time of 25 s.

Image capture procedure
Deep learning approaches require training with an initial dataset to achieve optimal classification performance. 
The effectiveness of the classifier is directly impacted by the dataset’s quality, and improvements can be made 
by increasing the volume of input data, considering factors such as ambient illumination and camera optics. As 
a result, a dataset was carefully assembled using a variety of smartphones to recreate and emulate these adverse 
effects.

Numerous studies have utilized enclosed setups to uphold a fixed distance between the smartphone and 
the microfluidic device, ensuring a consistent angle of incidence. In our pursuit of maintaining realism, 
we deliberately omitted artificial illumination and refrained from capturing images within a closed box. 
Nevertheless, to amass a substantial dataset, we captured images under diverse conditions. The experimental 
laboratory space benefited from ample natural light through windows and was additionally illuminated by two 
fluorescent tube lights (Wipro 20 W LED). Three equally spaced locations within the laboratory were designated 
for placing the microfluidic device to acquire a variety of images. The images were taken under both natural 
light (fluorescent lights off) and artificial light (fluorescent lights on) using three smartphones from different 
brands, each with distinct camera optics detailed in Table 1. Focusing on the device outlet region (Fig. 3b), the 
images were captured in auto mode without any filters, maintaining a consistent distance of approximately 10 cm 
between the microfluidic device and the smartphone. Given the unique camera setups, optics, and imaging 
software of each smartphone, the resulting images exhibited considerable diversity. In total, encompassing 16 
glucose concentrations, two lighting conditions, three room locations, three smartphone brands, and five images 
clicked for each instance, we successfully generated a comprehensive dataset comprising 1440 images.

Convolution neural network (CNN)
Deep learning, particularly Convolutional Neural Networks (CNNs), has played a pivotal role in advancing 
medical image classification and segmentation, thereby ushering in a transformative era for diagnostic accuracy 
and efficiency. In the realm of medical imaging, where intricate patterns and subtle anomalies are critical for 
diagnosis, CNNs have excelled in automatically extracting hierarchical features from complex images. Their 
ability to successfully categorize medical images into distinct classes has found relevance in various applications 
such as medical image pattern recognition49, detection of brain tumour50, diagnosis of breast cancer51, COVID-19 
testing52, etc. The sophisticated architecture of CNNs has allowed superior image representation, enabling more 
accurate and nuanced results compared to traditional methods. Moreover, as medical datasets continued to grow 
in size and diversity, CNNs exhibited exceptional adaptability, handling vast amounts of data to ensure robust 
model training.

Figure 4 illustrates our CNN model for image classification, which includes two convolutional layers with 
ReLU activation and batch normalization, followed by fully connected layers, dropout for regularization, and a 
SoftMax layer for classification. The accompanying data details the output shape and trainable parameters for each 
layer, highlighting that the model has over 75 million trainable parameters, enabling it to capture image features 
effectively and achieve high accuracy. The initial layer functions as the input layer, handling the processing of 
the image dataset. Following this, the 2D convolution layer is implemented, generating a convolution kernel to 
produce an output tensor. Subsequently, a Rectified Linear Unit layer (ReLU) is applied, featuring an activation 
function denoted by f (x) = max(0, x). ReLUs aid the model in accommodating interaction and non-linear 
effects. A batch normalization layer is then introduced, strategically positioned between layers to expedite the 
training process and enable a higher learning rate.

The model’s performance is further optimized through the incorporation of successive layers, consisting of 
2D convolution, ReLU, and batch normalization layers. These layers are provided to successfully mitigate any 

Brand Image resolution Focal length Optics

iPhone XR 3024 × 4032 4 mm f/1.8

Moto g62 5G 2296 × 4080 4 mm f/1.8

Pixel 6a 2268 × 4032 4 mm f/1.7

Table 1.  The optic details of various smartphones used to capture raw images from the microfluidic device.
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overfitting aspect related to classifier prediction. After completing this sequence, a Softmax layer is included, 
employing a Softmax or normalized exponential function to further normalize the output from the two sets of 
convolution layers. Semantic segmentation is subsequently conducted through a fully connected layer, followed 
by the placement of a Softmax layer and a classification layer, facilitating the necessary image predictions. For 
training and testing purposes, the model utilizes 80% of the entire dataset for training and reserves the remaining 
20% for testing.

Results and discussion
The detection of glucose in our study relies on the glucose oxidase/peroxidase (GOD-POD) reaction. As shown 
in Fig. 3a, the inlet well serves as the fixed insertion point, where 57 µL of the glucose enzyme reagent (supplied 

Fig. 4.  CNN architecture for image classification, showing two convolutional layers with ReLU and batch 
normalization, followed by fully connected and SoftMax layers. The table provides the output shape and 
trainable parameters for each layer.

 

Fig. 3.  Glucose enzyme insertion point (inlet) and test sample placement point (outlet) in the microfluidic 
device. (a) The insertion points where glucose enzyme containing phosphate buffer, glucose oxidase, peroxide, 
and Phenol reagents are placed. The image capture region where the glucose test sample is placed. The enzyme 
traverses along the channel and reaches the outlet well to undergo GOD/POD reaction leading to formation 
of PINK coloured quinonimine complex. Subsequently, images are captured with the help of smartphone. (b) 
The top view of the fabricated microfluidic device with inlet opening also called the insertion point and output 
wells (image capture region). The arrow indicates the direction of fluid motion.
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in the test kit) is introduced. In the outlet well, 1.0 µL of the glucose test solution is positioned. With three outlets 
available, we can test three glucose samples simultaneously. The glucose enzyme travels through the branched 
channel and reaches the outlet wells. After the reagent reaches the outlet test wells, the microfluidic chip is lightly 
shaken (2–3 times) to ensure proper mixing of the test sample and reagent, followed by an incubation period of 
10–15 min at room temperature. During the reaction, glucose in the sample undergoes oxidation, resulting in the 
production of gluconic acid and hydrogen peroxide in the presence of glucose oxidase. The enzyme peroxidase 
facilitates the oxidative coupling of 4-aminoantipyrine with phenol, generating a pink-colored quinonimine 
complex. The absorbance of this complex is directly proportional to the concentration of glucose in the sample. 
Post-reaction, the test samples exhibit consistent color homogeneity and uniformity, distinguishing them from 
paper-based devices. Following the reaction, images were captured for different concentration values as shown 
in Fig. 5a.

To enhance image quality, the RGB images were converted to grayscale. The resulting grayscale images were 
subjected to contrast adjustment and were ultimately resized to maintain a fixed pixel size as shown in Fig. 5b. 
These processed images were organized into folders, each labeled with the corresponding glucose concentration 
values (ranging from 50  mg/dL to 200  mg/dL). Subsequently, these organized images were utilized as input 
for the deep learning classifier (Fig. 5c). The CNN deep learning classifier was trained as per the input images 
provided. The confusion matrix shown in Fig. 6 evaluates the model’s performance by comparing true labels 
(y-axis) to predicted labels (x-axis). The model demonstrates high accuracy, as seen by the strong diagonal, with 
most classes achieving perfect predictions. However, slight misclassifications are observed in Classes 10 and 11, 
indicating areas for potential improvement. The use of 10-fold cross-validation ensures the model’s robustness 
by minimizing overfitting and providing a reliable estimate of its accuracy.

Figure  7 shows the training and validation loss curves over 35 epochs for the model. The blue curve 
represents the loss on the training dataset (80% of data), while the yellow curve tracks the loss on the validation 
dataset (20% of data). Initially, both losses start at a high value and decrease rapidly during the first few epochs, 
demonstrating significant learning progress. By epoch 5, both curves stabilize, with the training loss continuing 
to decrease gradually while the validation loss shows a slight improvement. The relatively stable behaviour of the 
validation loss after epoch 10 suggests that the model is not overfitting, as the validation loss does not increase 
dramatically. This indicates that the model has generalized well to unseen data and has achieved a satisfactory 
fit after about 5 epochs, with further improvements in both training and validation loss tapering off after that 

Fig. 5.  (a) Schematic representation of image captured by the smartphone. (b) The raw images captured from 
the smartphone are subjected to three-stage image processing. First, the RBG image is converted to grayscale. 
Second, the grayscale image is adjusted for contrast. The image is saturated to the bottom 1% and top 1% of 
pixel values. Third, the saturated images are resized to 100 × 100 pixels to provide consistent input image size 
for the classifier. (c) The processed images are given as input datasets for the Convolution Neural Network 
(CNN) deep learning classifier and trained. (c) Image credit: Bob Holzer.
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point. The final convergence around a loss close to zero suggests that the model can effectively predict outcomes 
on both the training and validation sets.

The smartphone application “GLUCOLENS AI” has been developed to employ digital colorimetric techniques 
for the detection of glucose. Figure 8 elucidates the sequential steps involved in the glucose detection process. 
Initially, upon opening the application, users are presented with its icon. Upon selecting the glucose detection 
feature, users are guided through various stages, beginning with the placement of enzymes into the insertion 
area and the test sample into outlet wells. Furthermore, the application is capable of identifying the proximity of 
the microfluidic device and prompts users to adjust the distance between the camera and the device accordingly. 
Once the optimal distance is achieved, the application captures an image. Subsequently, the application identifies 
the location of the image within the three wells based on markers positioned on the microfluidic device. These 
images are then processed and transmitted to the CNN classifier for computation. The results are subsequently 
relayed back to the smartphone via a cloud-based server and an active internet connection. Finally, the application 
presents the detected glucose concentration levels to the user.

Classifier validation
To further evaluate the performance of the classifier, four classifier performance parameters were determined. 
Equations (1)–(4) are used to calculate these parameters.

	
Accuracy =

TP + TN
TP + TN + FP + FN

� (1)

	
Recall =

TP
TP + FN

� (2)

	
Precision =

TP
TP + FP

� (3)

Fig. 6.  Confusion Matrix from 10-fold cross-validation showing strong classification performance for test set.
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F1 score = 2× Precision × Recall

Precision + Recall
� (4)

Where TP (True Positive) and TN (True Negative) signify the number of accurately predicted positive and 
negative outcomes, respectively. On the other hand, FP (False Positive) and FN (False Negative) represent the 
instances of erroneously predicted positive and negative outputs, respectively. Precision, recall, and the F1 score 
serve as statistical metrics for assessing classifier performance. They involve calculating the ratio of predicted 
positive and negative outputs. Precision is determined by the ratio of correctly predicted positives to the total 
positive predictions, while recall is calculated as the ratio of correctly predicted positives to the sum of true 
positives and false negatives. The F1 score, obtained through the harmonic mean of precision and recall, ranges 
between 0 and 1, with 1 indicating optimal performance and 0 representing the lowest performance level.

The classifier was evaluated for various performance parameters and details regarding precision, recall, and 
F1 score are tabulated in Table 2. The overall accuracy reported for the trained classifier against new images is 
95%. Similarly, the overall Precision, Recall, and F1 score are 94%, 93% and 93% respectively. Figure 9 shows 
the prediction capability of the CNN deep learning classifier for low and high glucose concentration values 
compared with ISO 15197:2013/2015 gold standard norms. The upper and lower limits are depicted by blue 
dashed lines. According to ISO standards, it is required that 95% of the results fall within a range of ± 15 mg/dL 
for glucose concentrations less than 100 mg/dL, and within a range of ± 15% for glucose levels equal to or greater 
than 100 mg/dL, in comparison to the gold standard result. The actual versus predicted values are plotted and 
corresponding regression data is obtained for both low and high glucose concentration values. The predictions 
for low-concentration glucose values produce R2 = 0.9363 (Orange dotted circle) and for high concentration the 
R2 = 0.974 (red dotted circle), both within permissible ISO limits. This collectively signifies the classifier’s overall 
exceptional prediction capability.

The primary limitation of the current study lies in its failure to account for the impact of hematocrit content 
on the sampled specimens during glucose estimation. There is also a need to incorporate a membrane filtration 
system that effectively separates hematocrit content and plasma from blood samples if hematocrit contents are to 

Fig. 7.  Training (blue) and validation (yellow) loss curves over 35 epochs, showing rapid initial decline and 
stabilization, with both losses converging near zero, indicating effective model performance.
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Sample Precision Recall F1 -score

50 1 0.93 0.97

60 1 1 1

70 1 1 1

80 1 1 1

90 1 0.85 0.91

100 1 0.85 0.91

110 1 1 1

120 1 1 1

130 1 1 1

140 1 0.92 0.96

150 1 0.85 0.91

160 1 1 1

170 1 1 1

180 1 0.7 0.83

190 1 0.85 0.91

200 1 0.92 0.96

Table 2.  Performance evaluation of CNN classifier based on Precision, recall, and F1 score.

 

Fig. 8.  The various stages of digital glucose colorimetric estimation using the “GLUCOLENS AI” smartphone 
application. In Fig. 1. The application opening stage, 2. The Home page to initiate the glucose test with settings 
and information buttons, 3. Placing reagent in inlet well, 4. Adding glucose test samples to outlet wells, 5. The 
application asks the user to place the smartphone camera on top of the device at well-defined distance, 6. The 
application captures the image of the test device, 7. Processing page and 8. Result display page.
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be considered. The methodology employed in this investigation mainly involves the initial creation of a dataset 
comprising samples with predetermined glucose concentrations. Subsequently, these samples are utilized to 
train deep learning models, leveraging the feature engineering capabilities of deep neural networks to extract 
pertinent features from images that will be obtained from actual patient test samples.

Finally, our study involves a comparison and summarization of our results with recent literature pertinent 
to glucose estimation, as illustrated in Table 3. We examined reduction, non-enzymatic, and enzymatic-based 
glucose detection strategies for this purpose. Table 3 reveals that the majority of studies have gathered images 
in a controlled environment by placing the test device within a well-regulated illumination box or setting. 
Additionally, many studies utilized an additional instrument to support the smartphone and test device. In 
contrast, our study does not capture images under controlled illumination settings and is truly instrument-
free in its usage. Regarding image analysis, most studies rely on manual feature extraction from the image 
properties, whereas our study utilizes CNN, which automatically extracts features from the input data provided. 
The performance of CNN is deemed reasonable compared to recent classifiers such as random forest regression 
(RFR), linear discriminate analysis (LDA), multi-linear regression (MLR), and ensemble bagging classifier 

Analyte Principle

Detection 
range 
(mg/dL)

Multiple 
smartphones 
utilized

Illumination 
controlled* Instrument#

Feature 
extraction

Machine 
learning 
model

Best 
performance 
(%) References

D + Glucose Polyaniline nanoparticle reduction 0–1080 NO YES FIXED MANUAL RFR 92.2 41

D + Glucose Gold nanoparticle, Non-enzymatic 9–162 NO YES FIXED MANUAL LDA 93.63 42

Glucose-Artificial 
saliva

GOX-HRP enzyme reaction with 
TMB/KI/KI + Chi 0–180 YES YES FIXED MANUAL LDA 98.24 (TMB) 40

Blood plasma GOX-HRP/KI 50–400 YES YES FIXED MANUAL MLR 98.11 39

Glucose solution GOX-HRP/C11H13N3O, C7H6O3 10–400 NO YES FIXED MANUAL MLR 96.96 43

Plasma glucose GOX-HRP with TMB/KI 0–540 YES NO FREE MANUAL EBC 95.41 (TMB) 53

Glucose solution GOX-HRP/C11H13N3O, C7H6O 50–200 YES NO FREE AUTOMATIC CNN 95.00 Present 
study

Table 3.  Comparison of glucose estimation studies carried out by previous researchers and present studies for 
different conditions. *Illumination is provided inside an enclosed box/setting. #The smartphone and test device 
are either attached to an illumination box (FIXED) or not attached (FREE).

 

Fig. 9.  Prediction capability of CNN deep learning classifier for low and high glucose concentration values 
compared with ISO 15197:2013/2015 gold standard norms given in blue dashed lines. The predictions for 
low-concentration glucose values produce R2 = 0.9363 (Orange dotted circle) and for high concentration the 
R2 = 0.974 (red dotted circle), both within permissible ISO limits.
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(EBC). It’s noteworthy that with continued image capture and data collection, the accuracy of this pre-trained 
CNN classifier is anticipated to experience significant improvement over time.

Cost estimation
In addition to evaluating the scientific effectiveness, we also determined the cost per test by carefully considering 
both business-related factors and technical aspects, consulting experts in the field for insights. The breakdown 
of costs per test was projected by analyzing the individual components. Notably, the only consumable required 
for the test is a ready-to-use adhesive-coated poly-vinyl film stacked on a PMMA sheet microfluidic device. 
This consumable must be used for each test and then disposed of following appropriate biosafety protocols. It is 
assumed that individual users or community-based users will have access to at least one pre-owned smartphone 
with a built-in camera. Factoring in various cost elements inherent to the business supply chain, the estimated 
cost per test is approximately 0.1 USD.

Conclusion
In this study, a novel microfluidic device was constructed by layering adhesive poly-vinyl films having micro-
channel contours precision cut using a cutter printer and placed on a poly methyl methacrylate (PMMA) base-
sheet. In our investigation, glucose detection hinges on the glucose oxidase/peroxidase (GOD-POD) reaction. 
The inlet well functions as the designated entry point, where 57 µL of the glucose enzyme reagent (provided 
in the test kit) is introduced. The reagent is divided into 3 parts (19 µL each). Positioned in the outlet well 
is a volume of 1 µL of the glucose test solution. With three outlets at disposal, simultaneous testing of three 
glucose samples becomes feasible. Capillary action propels the enzyme, aiding its interaction with the glucose 
sample through the GOD/POD reaction, replicating the conditions of the gold standard laboratory test, and 
generating a pink-colored quinonimine complex. The absorbance of this complex is directly proportional to the 
concentration of glucose in the sample. Three evenly distributed positions within the laboratory were assigned 
for the placement of the microfluidic device to capture a diverse range of images. The photographs were captured 
under both natural light (with fluorescent lights turned off) and artificial light (with fluorescent lights turned 
on) using three smartphones from different brands, each equipped with unique camera optics. The processed 
images were systematically arranged into folders, with each labeled according to the corresponding glucose 
concentration values, spanning from 50 mg/dL to 200 mg/dL. These meticulously organized images were then 
employed as input for the CNN deep learning classifier. The CNN deep learning classifier underwent training 
based on the provided input images. The validation of the trained network was carried out with new images and 
performance tests against various parameters. The trained classifier exhibited an overall accuracy of 95% when 
tested against new images. Likewise, the overall Precision, Recall, and F1 scores achieved were 94%, 93%, and 
93%, respectively. The correlation between the true labels and predicted labels was determined by comparing 
with ISO standard norms. The predictions for low-concentration glucose values produce R2 = 0.9363 and that 
for high concentration is R2 = 0.974. Collectively, this indicated the overall exceptional prediction capability 
of the classifier. To make the entire glucose colorimetric detection user-friendly and take into consideration 
the POC aspect, a smartphone application called “GLUCOLENS AI” was developed that performed various 
tasks like providing users instruction, image capture, image processing, and communication with CNN classifier 
embedded in cloud-based platform. It is important to note that with the continued capture of images and 
collection of data, the accuracy of this pre-trained classifier is expected to witness a substantial improvement 
over time.

With this, we conclude that our microfluidic device characterized by affordability, portability, and user-
friendly design, stands out as an accessible and convenient solution for POC applications. The system required 
no specialized training and functioned seamlessly without the need for skilled professionals. Employing a self-
contained colorimetric detection method based on a smartphone camera, the device is genuinely instrument-free 
and eliminates dependencies on additional components like casings, plastic boxes, or mobile holding platforms. 
With the incorporation of deep-learning models trained on current and future datasets, accurate gold-standard 
colorimetric detection on smartphones is possible with minimal computational demand, ensuring glucose 
estimation independently of external calibration curves developed in controlled settings. Finally, this system 
can consistently deliver accurate and reliable glucose estimations within established standards as proved in our 
study.

Data availability
Data sets generated during the current study are available from the corresponding author upon reasonable re-
quest.
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