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Traditional Proportional-Integral-Derivative (PID) control systems often encounter challenges related
to nonlinearity and time-variability. Original dung beetle optimizer (DBO) offers fast convergence

and strong local exploitation capabilities. However, they are limited by poor exploration capabilities,
imbalance between exploration and exploitation phases, and insufficient precision in global search.
This paper proposes a novel adaptive PID control algorithm based on enhanced dung beetle optimizer
(EDBO) and back propagation neural network (BPNN). Firstly, the diversity of exploration is increased
by incorporating a merit-oriented mechanism into the rolling behavior. Then, a sine learning factor

is introduced to balance the global exploration and local exploitation capabilities. Additionally, a
dynamic spiral search strategy and adaptive ¢-distribution disturbance are presented to enhance search
precision and global search capability. The BPNN is employed to fine-tune both PID and network
parameters, leveraging its powerful generalization and learning ability to model nonlinear system
dynamics. In the simplified motor experiments, the proposed controller achieved the lowest overshoot
(0.5%) and the shortest response time (0.012 s), with a settling time of 0.02 s and a steady-state

error of just 0.0010. In another set of experiments, the proposed controller recorded an overshoot

and response time of 0.7% and 0.0010 s, across five DC motor tests. These results demonstrate the
proposed adaptive PID control algorithm has superior performance in optimizing control system
parameters, as well as improving system robustness and stability.

Keywords Heuristic algorithms, Neural networks, Optimization methods, Proportional control, Parameter
estimation

Literature review

The PID control algorithm has been used in industrial process control applications for many years'. Although
the PID control algorithm has existed for a long time?, it is still the most popular control algorithm in the
process and manufacturing industry today>. While effective in various industrial applications?, the traditional
PID algorithm faces challenges with complex and nonlinear systems®. Parameter tuning often relies on trial and
error®. Additionally, it lacks stability and robustness against disturbances and parameter changes’. In the context
of DC motor control, traditional PI controllers have been widely applied and studied. However, traditional PI
controllers also have limitations in managing nonlinearity and dynamic uncertainty, such as overshoot, response
time delay, and difficulty in adjusting control parameters. These issues become more prominent in complex
systems with different loads and speeds®.

Several studies have focused on improving the structure of the traditional PID controller by integrating
neural networks and other advanced methodologies. Zhu et al. developed a hybrid-optimized BP neural
network PID controller for agricultural applications, improving control performance by enhancing the efficiency
of initial weights®. Maraba and Kuzucuoglu introduced a PID neural network controller for speed control of
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asynchronous motors, combining the benefits of artificial neural networks with the strengths of the classic
PID controller!®. Cong and Liang developed a nonlinear adaptive PID-like neural network controller using
a mix of locally recurrent neural networks, enhancing the controller’s ability to adapt to nonlinear and time-
variant system dynamics!!. Ambroziak and Chojecki designed a PID controller optimized for air handling units
(AHUs) by combining nonlinear autoregressive models, fuzzy logic, and FST-PSO metaheuristics, achieving
superior performance in HVAC systems'2. Aygun et al. presented a PSO-PID controller for regulating the bed
temperature in a circulating fluidized bed boiler, leveraging the strengths of particle swarm optimization (PSO)
to improve control precision'®. Dahiya et al. proposed a hybrid gravitational search algorithm optimized PID and
fractional-order PID (FOPID) controller to address the automatic generation control problem, demonstrating
enhanced system stability and performance!®. In recent years, several advanced PID variants have also been
developed to handle nonlinear and complex systems. Suid and Ahmad designed a sigmoid-based PID (SPID)
controller for the Automatic Voltage Regulator (AVR) system, employing a Nonlinear Sine Cosine Algorithm
(NSCA) to optimize its parameters, which significantly improved the transient response and steady-state errors
of the AVR system!>. Sahin et al. proposed a sigmoid-based fractional-order PID (SFOPID) controller for the
Automatic Voltage Regulator (AVR) system!®. Ghazali et al. proposed a multiple-node hormone regulation
neuroendocrine-PID (MnHR-NEPID) controller for nonlinear MIMO systems, improving control accuracy by
introducing interactions between hormone regulation nodes based on adaptive safe experimentation dynamics
(ASED)". Kumar and Hote proposed a PIDA controller design using an improved coefficient diagram method
(CDM) for load frequency control (LFC) of an isolated microgrid, enhancing control stability through maximum
sensitivity constraints'®.

Various optimization tools have been developed to dynamically adjust PID parameters for improved control
performance. Shi et al. introduced the RBF-NPID algorithm, utilizing radial basis function (RBF) neural
networks to dynamically adjust PID parameters, leading to more effective contrsol in complex systems!®. Hanna
et al. developed an adaptive PID algorithm (APIDC-QNN) that uses quantum neural networks combined with
Lyapunov stability criteria for stable parameter optimization, enhancing system robustness?’. Zhao and Gu
proposed an adaptive PID method for car suspensions, where a radial basis function neural network is used
to fine-tune the PID parameters, improving ride quality and suspension control?!. Kebari et al. optimized PID
parameter values based on real-time task demand and the cumulative sum of previous demands, providing a
more responsive control system??. Similarly, Gupta et al. employed a hybrid swarm intelligence algorithm to
adjust PID gains for stabilizing the active magnetic bearing (AMB) system under unstable conditions?*. Faria
et al. found that a PSO-based PID tuning strategy offers a practical solution for enhancing the effectiveness
of radiofrequency ablation (RFA) techniques, demonstrating the utility of swarm intelligence in medical
applications?*. Nanyan et al. proposed an improved Sine Cosine Algorithm (ISCA) to optimize PID controllers
for DC-DC buck converters, demonstrating enhanced transient response and robustness compared to
traditional algorithms®. Mourtas et al. utilized the beetle antennae search (BAS) algorithm for robust tuning
of PID controllers, achieving superior performance in stabilizing feedback control systems with significantly
reduced computational time?®. Ghith and Tolba introduced a hybrid Arithmetic Optimization Algorithm (AOA)
and Artificial Gorilla Troop Optimization (GTO) for tuning PID controllers in micro-robotics systems®.

Recent swarm intelligence algorithms?*~3* have shown superior performance compared to traditional genetic
algorithms and particle swarm optimization®. These novel algorithms effectively balance global exploration
and local exploitation, featuring fast convergence and high solution accuracy, making them suitable for
optimizing PID algorithm parameters driven by neural network models**-*°. While significant advancements
have been made in PID variants like the sigmoid-based fractional-order PID'® and multiple-node hormone
regulation neuroendocrine-PID (MnHR-NEPID)', which excel in specific application scenarios, the proposed
control algorithm extends these capabilities by providing dynamic, real-time adjustments in complex control
systems. This combination of enhanced search strategies and neural network integration allows for superior
performance in scenarios that demand rapid responses and robust stability under parameter variations. The
enhanced DBO incorporates a novel search state adjustment mechanism oriented towards preferred positions
to enhance exploration diversity. It also introduces a sinusoidal learning factor to balance global exploration
and local exploitation and adopts a dynamic spiral search method to improve search efficiency. To enhance
population diversity and search accuracy, an adaptive ¢-distribution disturbance is used for more effective
global search capabilities. In comparison to the conventional PI controllers, which often rely on fixed parameter
settings and exhibit sensitivity to parameter uncertainties®, the proposed PID control algorithm offers dynamic
adjustment capabilities and improved robustness. Through the incorporation of adaptive tuning mechanisms
such as the merit-oriented search and sine learning factor, our approach addresses the overshoot, long response
times, and tuning difficulties associated with traditional PI control methods. Additionally, the hybrid integration
of the enhanced Dung Beetle Optimizer (EDBO) with Back Propagation Neural Network (BPNN) allows the
system to handle nonlinear system dynamics more effectively, achieving faster response and lower steady-state
errors in complex control systems such as DC motors.

Innovative contributions

Many controllers have been developed for industrial control processes in the existing literature and this study
introduces new aspects that set it apart from the rest of the literature. The main contributions of this paper are
as follows:

« Hybrid optimization algorithm framework. This study proposes a unique combination of the enhanced Dung
Beetle Optimizer (EDBO) and Back Propagation Neural Network (BPNN) to optimize PID control param-
eters. This hybrid approach leverages the strengths of both heuristic algorithms and neural networks to en-
hance the optimization process.
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o Development of an enhanced Dung Beetle Optimizer. This study develops an enhanced DBO with a novel
multi-strategy combined location update mechanism that addresses the limitations of traditional Dung Beetle
Optimizer (DBO) by improving global search capability, local exploitation, and search precision.

« Multistrategy innovations. EDBO incorporates a merit-oriented mechanism, a sine learning factor, a dynamic
spiral search strategy, and adaptive ¢-distribution disturbance. These improvements ensure that EDBO is effi-
cient and reliable when addressing complex optimization problems.

BPNN PID control algorithm

PID control

As a linear control method, PID control has the advantages of simple structure and easy implementation. The
PID control law consists of three links: proportional control, integral control, and differential control, which is
expressed as follows:

(1)

u(t) = K, { (t) + %/e(t)dt +1a dt

de(t)}
2
where K, is the proportional coefficient, T; is the integration time constant, and T} is the differential time
constant. e(t) is the deviation signal of the system. u(t) is the control quantity of the system.

In actual operation, the control law is usually implemented using the incremental PID control algorithm. The
basic structure of the PID control system is shown in Fig. 1.

The incremental PID control algorithm is expressed as follows:

Au(k) = K [e(k) — e(k — 1)] + Ke(k)+ 2

Kqile(k) — 2e(k — 1) + e(k — 2)]
where e(k) is the deviation value of the control system at the k-th sampling time. e(k — 1)is the deviation
value of the control system at the & — 1st sampling time. K, is the proportional coefficient. K; is the integral
coefficient, and K is the differential coeflicient. Au(k) is the difference between the control quantity at the &
-th sampling time and the &£ — 1st sampling time. The PID control law’s performance heavily depends on the
tuning of its parameters. Traditional tuning methods, while effective, often require trade-offs between stability,
responsiveness, and robustness.

According to the basic principles of PID control, proportional control accelerates the system’s response by
reflecting the magnitude of the current error, enabling real-time adjustments that bring the system closer to the
desired value. Integral control reduces accumulated past errors, thereby eliminating steady-state errors. The
derivative term predicts future error trends, accelerating response times and minimizing overshoot. These three
control actions combine to form a closed-loop PID control, which stabilizes the system. Accurate tuning of these
parameters is key to ensuring controller stability. Therefore, this study focuses on optimizing these parameters
to enhance system robustness and stability.

BPNN PID control

Back propagation neural network (BPNN) is one of the most utilized neural network models currently. BPNN
deals with the arbitrary nonlinear relation between input and output variables by simulating the human brain’s
intelligence. It shows incomparable advantages in complex model fitting and distribution approximation over
the traditional statistical methods. The underlying reason may be that BPNN has self-learning and generalization
ability, which constitute its high prediction accuracy, simple structure, self-organization, and self-adaptive
capabilities. BP neural network can learn the system performance according to the operating status of the
controlled system to achieve optimal PID control. The block diagram of the PID control structure based on
BPNN is shown in Fig. 2.

The input signal 7(k), deviation signal e(k), and actual output signal y(k) of the control system are used as
the input of the BPNN. After being trained by the BPNN, the three parameters K, K; and K, are sent to the
control system. Then, the u(k) is sent to the controlled object to realize the real-time online adjustment of three
parameters. The BPNN structure is shown in Fig. 3.

In the figure, j represents the input layer, i represents the hidden layer, and [ represents the output layer. The
input layer neurons are r(k), e(k), and y (k). The output layer neurons are the three parameters of PID control k),
, K; and K. The output of each neuron in the input layer of the neural network ()‘51) (k) is expressed as follows:

..
Differential

Fig. 1. Basic structure of PID control system.
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Fig. 3. Design of BPNN structure.

OW(k) =2(j) j =1,2,3 3)

The input netf)(k) and output OEZ)(/@) of each neuron in the hidden layer are represented as follows:

3
netP(k) =3 w; POV (k)
. (4)
O (k) = fnetP (k) i=1,2,---.8

i

where w;;?) is the weight connecting the input layer neurons and the hidden layer neurons. f(x) is the activation
function in the hidden layer, which is expressed as follows:

et — 7
z) = tanh(z) = 5
o) = o) = S ®
The input net?g) (k) and output ()1(3) (k) of each neuron in the output layer are represented as follows:
8
71,(3t§3)(k) = Z u;}?OE”(l{:) ©)
i=1

O (k) = gnet® (k) 1 = 1,2,3
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0 (k) = K; )
O (k) = K4

where wl(l?’) is the weight connecting the hidden layer neurons and the output layer neurons. g(x) is the activation

function in the output layer.
The three output nodes of the output layer respectively correspond to K, K; and K. The activation function
g(x) is expressed as follows:

PT

1
o) = 501+ tanh(z)) = ——— ®)
The performance index function of the control system is defined as follows:
1 .
E(k) = 5(r(k) = y(k))’ ©)

The weights of the neural network are adjusted using the gradient descent method, which iteratively updates the
weights to minimize the error between the predicted and actual outputs.

Additionally, an inertia term is included in the weight adjustment process to accelerate convergence. The
weight adjustment from the hidden layer to the output layer can be expressed as follows:

778E( 0)

waz )

Al (k) = —

+adw) (k- 1) (10)

where 7 is the learning rate and « is the inertia coefficient. According to the chain rule of derivatives, the gradient
descent can be expressed as follows:

OE(k) _ OE(k) y(k) Ou(k)
ow® — y(k) dulk) g0 (k)

] 11
0P (k) onet!® (k) (1)
871(f§3)(k) 3w,7 (8)
81("3()"7) = e(k) —e(k — 1)
00,7 (k)
Ou(k
O _ ey (12
90,7 (k)
du(k)
A =e(k) —2e(k —1)+e(k—2)
90" (k)
Finally, the learning algorithm for the weights of the output layer and hidden layer is obtained as follows:
AP (k) = adwP (k — 1) + 6 OP (k)
51(3) = e(k) sgn (ay M) au( ) g’(n()tgs)(k‘))
du(k)) 90/ (k)
(13)

Awf) (k) = atwf? (k- )+775201(k)

3
51(2) n(f 2 Zél w[[
=1

where ¢'(z) = g(x)(1 — g(z)), f(z) = (1 — f*(z))/2, n is the learning rate of neural network and « is the
inertia coefficient of neural network.

Dung beetle optimizer
Basic dung beetle optimizer
The dung beetle optimizer (DBO) is a novel population based technique. It is inspired by the ball-rolling,
dancing, foraging, stealing, and reproduction behaviors of dung beetles. The DBO algorithm considers both
global exploration and local exploitation, thereby having the characteristics of a fast convergence rate and
satisfactory solution accuracy in complex optimization problems across various research domains.

(1) Rolling behavior.

During the rolling process, the position of the ball-rolling dung beetle is updated and can be expressed as
follows:
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Fig. 4. Conceptual model of rolling behavior.
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Fig. 5. Conceptual model of the tangent function and the dance behavior.

{T/i(t-l—l)xi(t)—&-a X kxz(t—1)+bx Az 14

Az = |z;(t) — X

where ¢ represents the current iteration number, z;(¢) denotes the position information of the ith dung beetle
at the ¢th iteration, k € (0, 0.2] denotes a constant value which indicates the deflection coeflicient, bindicates a
constant value belonging to (0, 1), « is a natural coeflicient which is assigned —1 or 1, X indicates the global
worst position, Az is used to simulate changes of light intensity. A conceptual model of a dung beetle’s rolling
behavior is shown in Fig. 4.

(2) Dancing behavior.

To mimic the dance behavior, the tangent function is used to get the new rolling direction. The position of
the ball-rolling dung beetle is updated and defined as follows:

zi(t + 1) = (L) + tan(0)|z;(t) — 2:(t — 1)| (15)

where 0 is the deflection angle belonging to [0, 7]. Conceptual model of the tangent function and the dance
behavior of a dung beetle is shown in Fig. 5. Once the dung beetle has successfully determined a new orientation,
it should continue to roll the ball backward.

(3) Reproduction behavior.

A boundary selection strategy is proposed to simulate the areas where female dung beetles lay their eggs,
which is defined by:
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16
Ub* = min(X* x (14 R),Ub) (19

{Lb* = max(X* x (1 — R), Lb)
where X* denotes the current local best position, Lb*and Ub* mean the lower and upper bounds of the spawning
area respectively, R = 1 — t/Tmax and Tjax indicate the maximum iteration number, Lb and U represent the
lower and upper bounds of the optimization problem, respectively. As shown in Fig. 6, the current local best
position X* is indicated by using a large circle, while the small circles around X* indicate the brood balls. In
addition, the small red circles represent the upper and lower bounds of the boundary.

The position of the brood ball is also dynamic in the iteration process, which is defined by:

Bi(t+1)=X"+b x (Bi(t) — Lb") + by x (By(t) — Ub") (17)

where B;(t) is the position information of the ith brood ball at the ¢th iteration, b; andborepresent two
independent random vectors by size 1 x D, D indicates the dimension of the optimization problem.

(4) Foraging behavior.

The boundary of the optimal foraging area is defined as follows:

The position of the brood ball is also dynamic in the iteration process, which is defined by:

18
U’ = min(X® x (14 R),Ub) (18)

{Lbb = max(X” x (1 — R), Lb)
where X? denotes the global best position, Lb* and Ub’ mean the lower and upper bounds of the optimal
foraging area respectively. Therefore, the position of the small dung beetle is updated as follows:

l’j(t + 1) = T7<t) + 01 X (1‘1<t> — Lbb> + CQ X (1‘;“) — Ubb> (19)

where z;(t) indicates the position information of the ith small dung beetle at the ¢th iteration, C represents a
random number that follows normally distributed, and C, denotes a random vector belonging to (0, 1).

(5) Stealing behavior.

During the iteration process, the position information of the thief is updated and can be described as follows:

it +1) = X'+ 8 x g x (|z;(t) = X*| + |zi(t) — X|) (20)

where ;(t) denotes the position information of the ith thief at the ith iteration, ¢ is a random vector by size
1 x D that follows normally distributed, and S indicates a constant value.

Enhanced dung beetle optimizer

While the Basic Dung Beetle Optimizer (DBO) provides a foundation for global exploration and local exploitation,
certain limitations such as susceptibility to local optima require enhancement for complex optimization tasks.
To address these limitations, the Enhanced Dung Beetle Optimizer (EDBO) introduces advanced strategies that
significantly improve performance and reliability.

The rolling behavior plays an important role in the DBO algorithm, but the dung beetle cannot communicate
with other dung beetles when rolling the ball, which makes it easy to fall into a local optimal situation. Based on
the original rolling ball behavior, a merit-oriented mechanism is introduced. When the dung beetle rolls the ball,
it will select a nearby excellent position based on the current position as a guide for the rolling ball path. The new
position of the ball-rolling dung beetle is defined as:

it +1) = z;(t) + h x (z°(¢) — I x 2;(t)) (21)

Fig. 6. Conceptual model of the boundary selection strategy.
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where h is a uniformly distributed random number with & € (0, 1). 2;;° denotes the excellent position information
of the ith dung beetle at the ¢th iteration, and i is a random number in the set {1,2}. The conceptual model of
merit-oriented mechanism is shown in Fig. 7. The blue arrow indicates the final rolling direction.

Dancing behavior is an important exploration mechanism. To balance the ability of global exploration and
local development, a sine learning factor r is introduced in the position update of dancing behavior. In the early
iteration, the sine factor r can promote global exploration, whereas in the later iteration, it helps to refine local
development and optimize search behavior at different stages. The sine learning factor and the new position
equation for the dancing behavior are defined as:

Tt
THI ax

it +1) =7 x z;(t) + (1 — r) tan(0)|z;(¢) — z;(t — 1) (23)

) (22)

7= Ty + ("Tmax — rpip) X sin(

where riax is the maximum value. 7,5, is the minimum value. ¢ represents the current iteration number, and
Tmax represents the maximum iteration number.

To ensure the convergence speed of the algorithm and increase the diversity of individuals in the population,
a dynamic spiral search method is proposed to improve the original breeding behavior. As the iteration proceeds,
the shape of the spiral changes dynamically from large to small, and the dynamic nonlinear search mode helps to
improve the population diversity and search accuracy of the entire search process. The proposed dynamic spiral
search method is defined as follows:

g = ¢ Tmax) (24)

Bi(t +1) = X* + et x cos(27l) x by x (By(t) — Lb*) + ¢ 55

x cos(2ml) X by X (By(t) — Ub") (25)

where ¢ is the spiral factor used to adjust the intensity of spiral search, [ is a uniformly distributed random

number with [ € (—1, 1). The conceptual model of the dynamic spiral search method is shown in Fig. 8. The
curves of the sine learning factor r and the spiral factor g are shown in Fig. 9.

In order to adapt to complex search spaces or multimodal problems, adaptive ¢-distribution disturbances
with heavier tails than normal distributions are introduced. It is a probability distribution that achieves a smooth
transition from Gaussian distribution to Cauchy distribution by adjusting its degree of freedom parameters. This
adaptive approach enables the algorithm to dynamically adjust its search behavior, providing a more effective
exploration of the solution space. The foraging behavior based on adaptive ¢-distributed disturbance is defined
as follows:

zi(t+1) = x4(t) + Oy x (24(t) — Lb) if rand < 0.5
+(Cy X (I,(t) — Ubb) (26)
2
oo
zi(t+1) = X"+ X" x trnd(e\ \Tmax// ) else
where trnd is t-distribution function, the degrees of freedom in the distribution function represent disturbance
probability, which changes dynamically with the number of iterations.
Astheiteration proceeds, the concentration of the probability density reduces the variability of the perturbation
values, and the perturbations are mainly generated around the current best solution. The probability density

distribution heatmap and corresponding distribution function images of adaptive ¢-distribution disturbance at
different iterations are shown in Fig. 10.
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Fig. 7. Conceptual model of merit-oriented mechanism.
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Fig. 8. Conceptual model of dynamic spiral search.

o

3
————— r
i, R = g
25r¢ Y
\
\
27 \
\
H \
E‘ 1.5 \ [
N
1 P Nl e
o"/' N T ~ \~\~\
0.5 < S SN
/¢/ \‘— -
"’ \5\
ol : : : : >
0 20 40 60 80 100
Iterations

Fig. 9. Sine learning factor and spiral factor.

EDBO-BP hybrid optimization

Building upon the improvements introduced by the enhanced dung beetle optimizer, the integration with a
BPNN further refines the optimization process. This hybrid approach leverages the strengths of both the EDBO
and BP to deliver superior adaptability and precision in PID control systems.

To balance the speed and stability of the BPNN learning process, this paper employs the EDBO to globally
optimize the learning rate and inertia coeflicient. Hybrid optimization combining EDBO and BPNN is designed
based on the BPNN PID control. The PID control structure optimized by the hybrid algorithm is shown in
Fig. 11.

Application of EDBO-BP to tune the PID controller
BP neural networks (BPNN) have certain advantages in tuning PID controllers. Through the forward propagation
of its input, hidden, and output layers, the values of K, K;, and K, can be obtained. After applying the gradient
descent algorithm, the weight coefficients of the neurons in each layer are adjusted through backpropagation,
and then forward propagation is used again to obtain a new set of values. However, setting the learning rate
and inertia coefficient is challenging, as these parameters significantly affect optimization results. In simulation
experiments, it was found that these two parameters had a considerable impact on the results, which is why
the Enhanced Dung Beetle Optimizer (EDBO) was introduced to adjust these two parameters of the BP neural
network, forming the EDBO-BP-PID method. This method allows the algorithm to quickly find an optimal set
of K, K;, and K, which are then fed into the simulation model for ITAE (Integral of Time-weighted Absolute
Error) analysis. Based on changes in the fitness value, the superiority of the algorithm can be demonstrated.
The proposed algorithm formulates a mathematical model for the PID control system and defines its
optimization objective. The optimization problem is centered around enhancing the PID control algorithm
through the integration of EDBO and BPNN. The topology of the BPNN is determined. The EDBO algorithm
initializes the network parameters. Then, parameter combinations are iteratively optimized. The EDBO algorithm
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Fig. 11. The PID control structure based on EDBO-BP hybrid algorithm.
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adapts to real-time network performance. Finally, the BPNN and EDBO algorithms are applied alternately to
globally optimize the PID parameter set. This hybrid optimization combines model-based optimization and
data-driven learning. After defining the structure and optimization process of the BPNN, the fitness function
of the EDBO is linked to the ITAE (Integral of Time-weighted Absolute Error) as the objective function of the
algorithm. During the optimization process, the position of the dung beetle corresponds to the PID parameters
and network parameters to be optimized. The flowchart of the PID control algorithm with EDBO-BP is shown
in Fig. 12.

In order to obtain satisfactory dynamic characteristics of the transition process, the system performance
evaluation index ITAE is introduced as the objective function of the algorithm. ITAE is a widely accepted
performance index for control systems. The discrete equation of the ITAE is expressed as follows:

n

ITAE =" |e(kT)| - kT - T 27)
k=0

where T is the sampling period and K is the sampling time.

Experiments and result analysis

EDBO performance test

Comparison of convergence curves

To show the convergence effect of each algorithm in test functions, the corresponding algorithm convergence
curves were drawn according to the generated data. Figure 13 shows the fitness curves of EDBO and other
algorithms in the optimization process of the partial benchmark functions. The comparison algorithm includes
dung beetle optimizer (DBO), dwarf mongoose optimization algorithm (DMOA), marine predator algorithm
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Fig. 12. Flowchart of PID control algorithm with hybrid optimization of EDBO-BP.
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Fig. 13. Convergence curves on test function.

(MPA), gazelle optimization algorithm (GOA), and particle swarm optimization (PSO). It can be seen that the
EDBO was superior to other algorithms in terms of optimization speed and convergence accuracy.

Wilcoxon sign rank test
To further compare the differences between the EDBO and other optimization algorithms, a statistical test
called the Wilcoxon signed-rank test was conducted. The significance of the statistical results was determined
by calculating the p-value. If the p-value was <0.05, it was concluded that there was a significant difference
between the two algorithms. The results of the calculation are shown in Table 1. Table 1 presents the performance
differences between EDBO and other optimization algorithms, including dung beetle optimizer (DBO), dwarf
mongoose optimization algorithm (DMOA), marine predator algorithm (MPA), gazelle optimization algorithm
(GOA), and particle swarm optimization (PSO), across 23 benchmark functions. DBO, DMOA, MPA, and GOA
are optimization algorithms recently proposed for addressing optimization problems, while PSO is a widely used
classic optimization algorithm.

The results indicate that the proposed EDBO algorithm has a lower similarity in search outcomes compared
to its competitors. Therefore, the optimization performance of the proposed EDBO across the 23 benchmark
functions shows significant differences from other metaheuristic algorithms.

DC motor control system
The motor control system represents a quintessential and widely adopted paradigm within the realm of industrial
control systems. To rigorously discuss and validate the efficacy of the control algorithm proposed in this paper,
a DC motor control system has been selected as the controlled object for the simulation experiment. This choice
is predicated on the DC motor’s prevalent application in various industrial scenarios due to its simplicity and
robustness. The simplified DC motor model utilized is shown in Fig. 14.
The DC motor transfer function with armature voltage as input and speed as output can be expressed as:

“o) &

L] 2, RJ
Tiin® +klk2s+1

(28)
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Function | DBO DMOA | MPA GOA PSO

F1 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12
F2 2.63E-11 | 2.63E-11 | 2.63E-11 | 2.63E-11 | 2.63E-11
F3 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12 | 1.21E-12
F4 2.95E-11 | 2.95E-11 | 2.95E-11 | 2.95E-11 | 2.95E-11
F5 4.08E-11 | 3.02E-11 | 0.019112 | 0.020681 | 3.02E-11
F6 3.02E-11 | 3.02E-11 | 0.005084 | 3.02E-11 | 3.02E-11
F7 2.57E-07 | 3.02E-11 | 1.69E-09 | 6.70E-11 | 3.02E-11
F8 3.2E-09 | 3.02E-11 | 1.96E-10 | 4.50E-11 | 3.02E-11
F9 0.160802 | 1.21E-12 | NaN 0.021577 | 1.21E-12
F10 NaN 1.21E-12 | 7.42E-13 | 2.07E-13 | 1.21E-12
F11 NaN 1.21E-12 | NaN NaN 1.21E-12
F12 5.97E-09 | 3.02E-11 | 0.958731 | 5.57E-10 | 3.02E-11
F13 1.01E-08 | 3.02E-11 | 0.876635 | 0.000655 | 3.02E-11
F14 0.430495 | 3.38E-11 | 0.009343 | 0.237113 | 0.362794
F15 6.52E-09 | 3.02E-11 | 3.02E-11 | 3.82E-10 | 5.57E-10
F16 0.190957 | 1.01E-11 | 3.71E-05 | 0.000100 | 3.68E-11
F17 NaN 1.21E-12 | 0.081493 | 1.30E-07 | 5.71E-09
F18 0.201687 | 7.39E-11 | 0.863672 | 0.070997 | 5.1E-10
F19 0.065941 | 1.01E-11 | 0.569127 | 0.118950 | 1.01E-11
F20 0.000272 | 4.10E-12 | 4.10E-12 | 4.10E-12 | 4.10E-12
F21 5.09E-09 | 9.27E-12 | 1.06E-08 | 3.48E-09 | 1.34E-10
F22 0.069909 | 7.87E-12 | 1.69E-06 | 5.31E-07 | 8.54E-11
F23 0.000472 | 1.96E-11 | 2.64E-08 | 6.12E-09 | 5.09E-10

Table 1. Wilcoxon sign rank test.
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Fig. 14. Simplified DC motor model.

The specific parameters of the DC motor mathematical model are shown in Table 2. Finally, the DC motor
transfer function can be calculated as:

20

Gls) = ———
()= Sor 165 7 1

(29)

Results and analysis

The BP neural network takes r(k), e(k), and y(k) as inputs and predicts successive values of PID parameters.
In the training process of the BPNN, data collection is first performed, including 7(k), e(k), and y(k), and the
optimal K, Kj;, and K, values under various conditions. Then the BPNN is initialized with random weights,
followed by backpropagation to compute the output of the network for each training sample. After that, error
computation is carried out to measure the errors between the predicted and the actual optimal parameters of
the PID parameters. Finally, the weights are adjusted using the gradient descent method to minimize the error.
In the EDBO optimization process, a random location representing the candidate solution is initialized. The
optimization is performed by multiple search strategies. BPNN and EDBO are used alternately to iteratively find
the optimal PID parameters under different conditions.

The simulation scheme consists of implementing the BPNN and EDBO algorithms to optimize the PID
parameters of the DC motor control system and simulating and testing the performance under various conditions
including disturbances, step changes, and noise variations. The PID control system is modeled by Simulink.
The BPNN structure for predicting the PID parameters is defined through .m files and the EDBO algorithm is
implemented through .m files to optimize the BPNN. These codes work together to iteratively improve the PID
parameters and the performance of the control system.
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Parameter name Symbol | Unit Parameter value
Rotor moment of inertia | J kg/qz 0.01
Current-torque constant | f; N.m / A |005
Voltage-speed constant | ko Rad/s/v 0.05

Armature resistance R 9} 1.5

Armature inductance L H 0.01

Table 2. Mathematical model of DC motor.

DBO

0.1
0.099 |
0.098 o
. = L ]
(4
0.097 | 2w, .
K, ‘
0.096 | _—
° o ° °
0095 9,°

Fig. 15. Particle optimization trajectories for DBO.

For the control group, the particle swarm optimization (PSO) and dung beetle optimizer (DBO) were selected
as comparison targets. PSO is easy to implement and performs well in the optimal design of neural networks and
PID control. Additionally, DBO serves as the foundation for the EDBO proposed in this paper. By comparing the
performance of the control system optimized by the traditional DBO, the superiority of the proposed method
can be verified.

Particle optimization trajectories for DBO and EDBO

This section aims to illustrate the improvements made by the EDBO in tuning PID parameters by comparing
the optimization trajectories. By plotting the three-dimensional optimization trajectories of particles for the PID
controller parameters K, K;, and Ky, it visually explains why the original DBO tends to get trapped in local
optima and how EDBO addresses this limitation. Representative runs of both the DBO and EDBO optimization
algorithms were selected, each running for 100 iterations, with particle trajectories recorded in the K, K, and
K parameter space during each iteration. Three-dimensional scatter plots were then generated to showcase the
differences in exploration and exploitation behaviors between the two algorithms.

From the three-dimensional trajectory plot of DBO, it is clear that the optimization particles quickly
converge around K; = 4, indicating that DBO tends to get trapped in local optima. This premature convergence
reduces the search range and limits the algorithm’s ability to find better solutions in the global search space. This
behavior demonstrates the imbalance between the exploration and exploitation phases in the original DBO.
In contrast, the optimization trajectory of EDBO shows a much broader search range, covering more areas
in the parameter space. The particles do not converge prematurely at local optima, and the global exploration
capability is significantly enhanced. The wider search range indicates that EDBO can overcome the local optima
problem and significantly improve global optimization performance. The particle optimization trajectory of
DBO is shown in Fig. 15, while that of EDBO is shown in Fig. 16.

Fitness convergence results

The ITAE fitness curve represents the cumulative weighted value of the error between the system output and the
expected reference signal over time. By calculating the integral of the error and weighting it according to time,
the overall performance of the control system can be comprehensively evaluated. The fitness value convergence
curves are shown in Fig. 17.

DBO has the fastest initial convergence speed and quickly achieves a decrease in the value of the fitness
function in the first five rounds of the search. In addition, as the number of iterations increases, EDBO can
continue to identify new solutions that are better than the previous stage solution, which is manifested in the
fitness value convergence curve sloping toward the lower right corner. The statistical results of the optimal,
worst, mean, and standard deviation values of the fitness for each algorithm are given in Table 3.

Scientific Reports |

(2024) 14:28276 | https://doi.org/10.1038/s41598-024-79653-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

EDBO

0.1
0.099 —
0.098 —
0.097 —

d
0.096 —
0.095 —

0.094 —

| —)

0 20 40 60 80 100
Iterations

Fig. 17. Convergence curve of fitness value.

Algorithm | Best Worst Mean Standard deviation
EDBO 0.000280 | 0.000776 | 0.000308 | 0.000055
DBO 0.000424 | 0.001223 | 0.000435 | 0.000081
PSO 0.000729 | 0.001262 | 0.000746 | 0.000092

Table 3. Comparison results of fitness.

EDBO achieved the smallest fitness value of 0.00028, followed by DBO with an optimal fitness of 0.00424.
PSO obtained the highest fitness value. In terms of the worst fitness value, the worst fitness of the EDBO is
0.000776, which is significantly smaller than DBO and PSO. The above results show that the EDBO can achieve
better control performance and stability than DBO and PSO in terms of global optimal solution identification
ability, convergence speed, and performance robustness.

Parameter optimization results

Table 4 presents the tuning results of the three output layer parameters and the hyperparameters across 20 rounds
of repeated experiments. By examining the best, worst, mean, and standard deviation values, the differences and
performances of different algorithms in parameter optimization are highlighted.

Under the EDBO-BP-PID algorithm, the standard deviation of each parameter is relatively smaller, indicating
that this algorithm can achieve more precise parameter tuning during the optimization process. In contrast, the
DBO-BP-PID and PSO-BP-PID algorithms exhibit larger standard deviations, suggesting greater variability in
their optimization processes. The reduced standard deviation in EDBO-BP-PID demonstrates its capability to
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Algorithm Parameters | Best Worst | Mean | Standard deviation
K, 30.0000 | 29.9309 | 29.9967 | 0.0117
K; 6.0237 | 8.1161 | 7.1638 | 0.6725
EDBO-BP-PID | [(, 0.0171 | 0.1415 | 0.0421 | 0.0427
n 0.0491 | 0.0697 | 0.0626 | 0.0056
o 0.0296 | 0.2883 | 0.0983 | 0.1292
K, 25.0000 | 20.9121 | 24.9591 | 0.4087
K; 4.2536 | 3.3388 | 4.2387 | 0.1133
DBO-BP-PID | [, 0.0100 | 0.1986 | 0.0220 | 0.0364
n 0.0948 | 0.0394 | 0.0936 | 0.0083
o 0.0025 | 0.0217 | 0.0046 | 0.0056
K, 25.0000 | 23.3558 | 24.9815 | 0.1654
K; 4.1027 | 25.0000 | 24.9815 | 0.1654
PSO-BP-PID | [, 0.0100 | 25.0000 | 24.9815 | 0.1654
n 0.0014 | 0.0826 | 0.0045 | 0.0119
o 0.0787 | 0.1661 | 0.0773 | 0.0136
K, 30.0000 | 26.5768 | 28.1226 | 0.4887
EDBO-PID K; 5.0018 | 5.2710 | 5.0037 | 0.0276
Ky 0.1335 | 0.2000 | 0.1373 | 0.0102
K, 30.0000 | 24.6680 | 29.9466 | 0.5331
DBO-PID K; 5.1040 | 3.8568 | 5.0864 |0.1301
Ky 0.2000 | 0.1647 | 0.1996 | 0.0035
K, 25.0000 | 22.5365 | 24.7527 | 0.7787
PSO- PID K; 4.1674 | 3.7249 | 4.1275 | 0.1421
Ky 0.0847 | 0.1048 | 0.0848 | 0.0076
K, 25.0000 | 19.5365 | 20.7527 | 0.8425
BP- PID K; 4.1971 | 32258 | 4.1985 | 0.2674
Ky 0.1267 | 0.1022 | 0.0957 | 0.0121

Table 4. Output results of neural networks optimized by different algorithms.

consistently find parameter combinations close to the global optimum across multiple experiments, further
proving its superior tuning performance.

Figures 18 and 19 respectively illustrate the tuning processes of PID parameters and neural network
parameters over 100 iterations for the three algorithms. As shown in the figures, the EDBO-BP-PID algorithm
quickly converges and maintains stability in the early stages of iteration. In contrast, while the DBO-BP-PID
and PSO-BP-PID algorithms also converge rapidly initially, they exhibit significant fluctuations in parameter
adjustments as iterations increase, making further optimization difficult.

In real industrial production processes, the stability, accuracy, and responsiveness of control systems are
crucial. Due to its precise parameter adjustments during tuning, the EDBO-BP-PID algorithm better adapts to
the demands of actual working environments and enhances the overall performance of the system. Specifically,
by optimizing the hyperparameters of the neural network, the EDBO-BP-PID algorithm not only ensures control
accuracy but also improves the system’s response speed and robustness, maintaining high control performance
even in the face of disturbances and parameter variations.

EDBO-BP-PID algorithm achieves optimal tuning of the control system by seeking a balance among multiple
performance indices. The principles of the ESO method are reflected in the EDBO-BP-PID’s optimization
strategy, where a systematic adjustment mechanism ensures that the control system consistently delivers superior
performance in complex and variable industrial environments.

Sensitivity analysis
Sensitivity analysis is the study of uncertainty in the output of a mathematical model and how it is divided and
assigned to different sources of uncertainty in the input. During the simulation experiment data is recorded
and sensitivity analysis is performed, after traversing the two parameters such as learning rate 1 and inertia
coefficient «v in the BP neural network, both of which are taken from 0 to 0.2, the relationship between the two
parameters and the adaptation value is obtained and the sensitivity analysis graph of the parameters is shown
in Fig. 20.

Therefore, the two parameters have a greater influence on the whole control system, and if they are set to a
fixed value, it reduces the algorithm’s optimization-seeking effect, so we chose to adjust the parameters of the BP
neural network with EDBO.
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Fig. 18. Comparison of PID parameters tuning. (a) EDBO-BP-PID. (b) DBO-BP-PID. (c) PSO-BP-PID.

Control system performance results

In order to more fully verify the performance of the control algorithm in this paper, a series of performance
evaluation experiments are further set up. Under the settings of the nondisturbance experiment, disturbance
experiment, step change experiment, and noise variation experiment, the performance of the control algorithm
such as step response state and error distribution are observed.

1) In this experiment, the control system is only affected by the predetermined set value, excluding all
external disturbances, to observe the performance of the control strategy under ideal conditions. The step output
response curve of the control system under the nondisturbance experimental setting is shown in Fig. 21. The
error curve of the control system is shown in Fig. 22.

Table 5 shows the performance metrics of various control algorithms applied to the control system. These
performance indicators are typical indicators used to evaluate the effectiveness of control systems.

In the EDBO-BP-PID control algorithms, the system can obtain the lowest overshoot value (0.5), the lowest
rising time value (0.012), the lowest settling time value (0.02), the lowest peak value (1.005) and the lowest
state error value (0.001), and in these five evaluation dimensions, the results of the remaining control groups
are significantly different from the optimal results. Its peak time is slightly longer than DBO-BP-PID and PSO-
BP-PID, indicating that although it may take longer to reach peak response, it can self-correct faster and have
smaller overall errors.

Figures 21 and 22, and Table 5 show that the system under the EDBO-BP-PID control algorithm has better
response speed, stability, and accuracy. It can achieve control requirements more effectively and improve control
quality.

2) The amplitude of this disturbance is set to 20% of the system’ stable output value to represent a moderately
strong external disturbance. The selection of this disturbance is based on some real industrial processes, such as
chemical reactors and power systems, where disturbances of similar proportions may be experienced. Figures 23
and 24 show the results of the output response curve and error curve of different control algorithms in the
control system when a disturbance is added.

Traditional PID control shows a large deviation. This is because traditional PID control is designed based on
the mathematical model of the system. When external disturbances interfere with the system, traditional PID
control cannot adjust the control quantity in a timely and accurate manner, causing the system to deviate from
the desired trajectory. In contrast, the control algorithm proposed in this paper shows a more stable and accurate
control effect.
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Fig. 19. Comparison of neural network parameters tuning. (a) EDBO-BP-PID. (b) DBO-BP-PID. (c) PSO-BP-
PID.

Fig. 20. Sensitivity analysis graph of the parameters.

The EDBO-BP-PID algorithm demonstrates optimal steady-state response and rapid error correction. After
the disturbance, the system output shows minimal deviation from the setpoint and quickly returns to the desired
output, highlighting its excellent disturbance rejection and system stability. In contrast, traditional PID and BP-
PID algorithms exhibit larger overshoot and longer recovery times, with noticeable oscillations, especially in the
PID controller, indicating its vulnerability to external disturbances.

While the PSO-BP-PID and DBO-BP-PID algorithms improve stability and recovery speed to some extent,
they still fall short of the EDBO-BP-PID’s performance. These algorithms show some fluctuations in output
response and less smooth error correction, indicating limited effectiveness in handling external disturbances.

3) In order to further evaluate the tracking ability of the control system to external changes and the robustness
of the control algorithm, a step change experiment was set up on the system’s step response. Set the control
system to simulate a step change at the 1st and 2nd seconds respectively. The input of the given system is 1. The
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Fig. 21. System output curve.
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Fig. 22. System error curve.

Control algorithm | Overshoot (%) | Rising time (s) | Settling time (s) | Peak time (s) | Peak | Steady-state error
EDBO-BP-PID 0.5 0.012 0.02 0.032 1.005 | 0.0010
DBO-BP-PID 2.8 0.016 0.15 0.050 1.280 | 0.0018
PSO-BP-PID 5.0 0.024 0.25 0.045 1.050 | 0.0017
BP-PID 7.1 0.040 0.40 0.100 1.071 | 0.0018
PID 11.0 0.076 0.56 0.220 1.110 | 0.0025

Table 5. Comparison of control algorithm performance metrics.

dynamic behavior of the system output under different PID control algorithms when the system input undergoes
a predetermined step change is shown in Fig. 25.

As shown in Fig. 25, there are significant differences in the dynamic behavior of the system output under
various PID control algorithms when the system input undergoes step changes. The EDBO-BP-PID algorithm
demonstrates the fastest response and the smallest overshoot at each step change point. The system output
almost immediately follows the setpoint adjustment and stabilizes within a short time, showcasing its excellent
tracking ability and strong robustness in response to external changes.

In contrast, traditional PID and BP-PID algorithms exhibit noticeable overshoots and oscillations when the
step changes occur, particularly at the 1-second and 2-second step change points. The output signal shows a
significant overshoot and takes longer to return to a stable state, indicating slower response speed and poorer
stability when dealing with rapidly changing external inputs. While the PSO-BP-PID and DBO-BP-PID
algorithms somewhat improve the overshoot issue, their response speed and final stability still do not match that
of the EDBO-BP-PID algorithm.
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Fig. 23. System output curve at 20% disturbance.
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Fig. 24. System error curve at 20% disturbance.

4) In real industrial environments, control systems often need to operate in changing and unpredictable
environments. Therefore, noise variation experiments are crucial to verify the effectiveness and robustness of
control strategies. Introduce random noise signals into the control system to simulate the random interference
that the control system may encounter in actual working conditions, and further evaluate the performance of
the PID controller under nonideal and nondeterministic conditions. The noise signal is set to white noise with
known statistical characteristics. The noise amplitude varies within the range of [0.95, 1.05]. The sampling time
of the noise fluctuation is 0.001 s, and the simulation time of the entire system is set to 1 s. The system input after
adding the external noise signal is shown in Fig. 26.

In Fig. 27, the system output performance under the influence of noise is shown for different PID control
algorithms. The EDBO-BP-PID control algorithm demonstrates the smallest disturbance error when dealing
with external noise, indicating its significant advantages in control accuracy and stability. Despite the noise
interference, the system output quickly approaches the reference input value and maintains high stability.
In contrast, other control algorithms, such as PID, BP-PID, PSO-BP-PID, and DBO-BP-PID, exhibit greater
fluctuations under noise, with the traditional PID algorithm showing the most noticeable deviation.

Study case of DC motor with parameter uncertainties
Based on the previous model, the transfer function is replaced with a brushless DC motor simulation model. This
model is characterized by nonlinearity and a complex control system, which is convenient to test the robustness
of the proposed algorithm in this paper. Uncertainties such as changes in the desired speed of the motor and
changes in the load of the motor are also introduced in the later experiments to analyze the following of the
motor speed in this case. The brushless DC motor in this model is driven by an H-bridge, and four power tubes
and an inductor are used to form an inverter circuit, with each phase of the windings being independent of each
other, which can flexibly change the current size and direction of the windings.

After building the simulation model of a brushless DC motor, the effects of three algorithms such as BP-PID,
DBO-BP-PID, and EDBO-BP-PID are compared. No-load acceleration and deceleration experiments, loaded
acceleration and deceleration experiments, and uniform speed loading and unloading experiments of the motor
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Fig. 29. Speed response curve of motor no-load deceleration experiment.

were carried out to compare the motor speed following the three algorithms. The motor speed response curves
of the controllers are shown in Figs. 28, 29, 30, 31 and 32. It can be concluded from the simulation experiments
of the brushless DC motor that the motor speed response under the EDBO-BP-PID algorithm is faster and the
overshoot is minimized, and the robustness is better than the other two algorithms.
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Fig. 32. Speed response curve of motor uniform speed loading and unloading experiments.

A concise quantitative and qualitative comparative analysis of the experimental results is shown in Table 6.
The quantitative analysis of five simulation experiments on DC motors concludes that the EDBO-BP-PID
algorithm provides the best optimization of the PID controller parameters, with the lowest overshoot and the

shortest response time of the control system.

Conclusions

This paper presents a PID control algorithm based on the hybrid optimization of the EDBO and BPNN. Unlike
existing PID control systems, the proposed algorithm uses BPNN to identify parameter combinations without
prior information on the PID control parameters. To alleviate overfitting and improve the generalization ability
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Control algorithm | Type of experiment Overshoot (%) | Rising time (s)
No-load acceleration 0.7 0.0010
No-load deceleration 1.6 0.0028
EDBO-BP-PID Acceleration under load 1.9 0.0037
Deceleration under load 0.6 0.0019
Loading and unloading at constant speed | 2.0 0.0016
No-load acceleration 5.4 0.0050
No-load deceleration 16 0.0100
DBO-BP-PID Acceleration under load 4.0 0.0100
Deceleration under load 133 0.0200
Loading and unloading at constant speed | 60. 0.0070
No-load acceleration 16 0.0100
No-load deceleration 33 0.0200
PSO-BP-PID Acceleration under load 10 0.0200
Deceleration under load 20 0.0150
Loading and unloading at constant speed | 6.0 0.0100

Table 6. Quantitative and qualitative comparative analysis of five experiments on DC motor.

of the optimal parameter combination, EDBO incorporates enhanced strategies into the DBO. This approach
optimizes the neural network parameters, enhancing the effectiveness and robustness of the overall optimization
mechanism. Simulation experiment results demonstrate that the proposed algorithm offers faster and more
accurate adjustment capabilities, improved control robustness, and greater practical usability.

The proposed adaptive PID control algorithm has broad application potential in industrial systems, robotics,
and energy management. It can adjust PID parameters in real time to adapt to complex, nonlinear systems. This
approach enhances precision in robotic motor control, allows for real-time adjustments in industrial automation,
and ensures load frequency control in microgrids, providing robustness and stability under changing conditions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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