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The US opioid overdose epidemic has been a major public health concern in recent decades. There

has been increasing recognition that its etiology is rooted in part in the social contexts that mediate
substance use and access; however, reliable statistical measures of social influence are lacking in the
literature. We use Facebook’s social connectedness index (SCl) as a proxy for real-life social networks
across diverse spatial regions that help quantify social connectivity across different spatial units. This
is a measure of the relative probability of connections between localities that offers a unique lens

to understand the effects of social networks on health outcomes. We use SCl to develop a variable,
called “deaths in social proximity”, to measure the influence of social networks on opioid overdose
deaths (OODs) in US counties. Our results show a statistically significant effect size for deaths in
social proximity on OODs in counties in the United States, controlling for spatial proximity, as well

as demographic and clinical covariates. The effect size of standardized deaths in social proximity

in our cluster-robust linear regression model indicates that a one-standard-deviation increase,

equal to 11.70 more deaths per 100,000 population in the social proximity of ego counties in the
contiguous United States, is associated with thirteen more deaths per 100, 000 population in ego
counties. To further validate our findings, we performed a series of robustness checks using a network
autocorrelation model to account for social network effects, a spatial autocorrelation model to
capture spatial dependencies, and a two-way fixed-effect model to control for unobserved spatial

and time-invariant characteristics. These checks consistently provide statistically robust evidence of
positive social influence on OODs in US counties. Our analysis provides a pathway for public health
interventions informed by social network structures. The statistical robustness of our primary variable
of interest, deaths in social proximity, supports the hypothesis of a social network effect on OODs.
Using agent-based modeling (ABM) to simulate social networks can offer an effective method to design
interventions that incorporate the dynamics of social networks for maximum impact.

The opioid overdose epidemic is a major public health crisis in the US, with an exponentially increasing number
of drug overdose deaths in the last four decades"?. Alpert et al.> report that opioid overdose deaths (OODs)
account for 75% of the increase in drug overdose deaths. Addressing this crisis requires planned interventions
that focus on supply-side regulations and the dynamics of social connections. The rate of initiation of opioid
misuse is known to increase due to social influence®. Costello et al.’ report that of the 370 participants who
entered an opioid withdrawal program, 97% identified knowing the individual with whom they initiated opioid
use, with friendship being the most reported relationship between participants and their initiation partners.
Similarly, Rigg et al.® note that two-thirds of misused drugs are obtained from friends and family. Guarino et al.”
study of 539 young adults who misuse opioids and heroin indicates that their first experiences with the misuse
of prescription opioids typically occur in a social setting with peers. The misuse of prescription opioids has been
growing among young people®. Syvertsen et al.” make similar observations about young people who experiment
with drugs and the initiation of drug use. Social networks can have positive and negative impacts on substance
use. Empirical results have indicated that peer networks with subjects who do not use substances have a positive
influence on curbing drug abuse; however, networks consisting of more substance users are likely to increase
substance use!®. In intervention designs, recovery support strategies, including peer recovery, have shown
encouraging results. Peer workers who have completed their recovery help others in recovery from substance
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addiction. This form of peer-supported recovery is found to be more effective in reducing the prevalence of
opioid use disorder (OUD)!.

Providing reliable measures of social influence on the opioid epidemic is complicated by the confounding
factors that influence opioid misuse and social interactions, on the one hand, and the ethical barriers to
randomized experiments, on the other. Studies measuring social influence use complex systems-based
generative models to understand these phenomena in areas such as voting contagion!?. Specifically, Braha and
Aguiar'? use a generalized social voter model combined with spatial-statistical analysis to examine how social
influence has shaped voting behavior in the US presidential election over the past century. They distinguish
between social contagion and external influences (e.g., media and opinion leaders) to assess their impact on
county-level vote share distributions over time and geography. By analyzing spatial patterns, they demonstrate
that social influence is geographically clustered and spreads like a contagion across county borders. In contrast,
applying similar modeling techniques to the opioid epidemic to design targeted interventions has encountered
certain limitations. Homer et al.!* discuss the complexity of modeling OUD and highlight the limitations of
their models in accurately capturing real-life scenarios due to their simplicity. Recognizing the complexities
of modeling the opioid epidemic through generative processes, our research aims to address these gaps using
controlled regressions.

From the traditional setting to the new digital era of social networks, we have witnessed a significant shift
in informal social interactions. Facebook is the largest informal online social network globally, with 2.1 billion
active users and 239 million active users in the US and Canada. Given its broad reach and prevalence, Facebook
connections can provide insight into real-life social networks in many geographical regions. Facebook has
released a social connectedness index dataset that measures how intensely geographical locations are connected
according to the relative probability of connections'®. In Supplementary Information section S1 we provide a
review of SCI use cases as a proxy for real-life social connections in public health, epidemiology, economics
and development applications. In the following paragraph, we justify our use of SCI for measuring the network
dynamics of OODs in the US.

We use SCI to construct a measure of OODs in the social proximity of counties in the United States
and investigate the statistical significance of its effect on county-level OODs after controlling for clinical,
spatiotemporal, and socioeconomic confounders. Our analysis seeks to provide information on the role of social
influence on OODs. Using SCI to represent the intensity of interpersonal networks between counties reflects
the possibility of physical interactions between county residents. Bailey et al.!1>!¢ show that SCI is predictive
of travel patterns within urban areas and throughout Europe. Coven et al.'” show that counties with higher
social connections to New York City are the most preferred destinations for those moving away from the city
during the pandemic, highlighting the association of physical interaction with SCL Kuchler et al.!® use SCI to
show that COVID-19 is more likely to spread between regions with stronger social networks and highlighted
the potential of SCI to improve the prediction of epidemics. Although SCI provides a robust measure of social
connectedness, some studies have explored alternative data sources, such as social media platforms, to examine
trends in the context of the opioid epidemic. However, these approaches have faced significant challenges due
to demographics and other data limitations'®-?!. For example, Pandrekar et al.?’ use Reddit data to analyze
psychological categories and patterns of opioid abuse on a national scale. A major limitation of their study is that
the data collected through the Reddit API do not provide access to user location information. In addition, the
Reddit data do not indicate whether users are friends, which restricts the ability to analyze the structure of social
networks and their association with OODs.

In contrast, SCI offers distinct advantages. SCI is location-based and provides detailed information about
the structure of social networks in US counties. SCI measures friendship networks, serving as a proxy for
real-world social connections. Unlike Reddit data, SCI allows for the analysis of location-specific friendship
networks, which makes it particularly useful for studying how social networks influence the opioid epidemic
on a population scale. Our choice of SCI as the network measure is informed by previous use cases that reflect
the real-life dynamics of social connections in different domains such as education?? and public health'®. Our
objective is to measure how these social connections contribute to heterogeneous patterns of opioid overdose
deaths in US counties.

In our study, we present a novel perspective on analyzing the association between friendship networks
and opioid overdose deaths at the population level in counties within three distinct geographical regions: the
eastern United States, the central and western United States, and the entire contiguous United States. We provide
statistical evidence linking the geographical spread of OODs with the structure of social connections.

To achieve this, we use a range of statistical methodologies. We use cluster-robust linear regression to account
for intra-cluster correlation between counties within the same states, network and spatial autocorrelation
methods to address the autocorrelation in error terms arising from unobserved factors shared among spatially
or socially connected units, and two-way fixed effects models to control for unobserved spatial and temporal
heterogeneities. Additionally, we perform robustness checks to account for the distance decay of proximity
weights and apply a two-stage least squares method to jointly address spatial and network effects, discussed in
the Supplementary Information sections S5 and S4.5. Our multifaceted statistical analysis demonstrates that our
variable of interest, deaths in social proximity, is statistically significant across the three distinct geographical
regions.

Understanding the role of social networks is important in designing interventions to combat opioid misuse
behavior. Research measuring the network dynamics of opioid overdose death on the US population scale and
at the resolution of counties remains limited, with the exception of?324 that measure social network drivers of
the opioid epidemic and use natural experiments to support their claims. Mickle and Reunzi?* examine changes
in county-level overdose deaths due to the reformulation of OxyContin and the must-access Prescription Drug
Monitoring Program (PDMP). They analyze policy-induced shocks to estimate the indirect effect of friendship
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networks (measured by SCI) on OODs. Their analysis includes the correlation of “social proximity” with
OODs by using a two-way fixed-effects model. Compared to Mickle and Reunzi?®, our study differs in the
methodological approach. Along with cluster-robust linear regression and two-way fixed effects, our analysis
uses a network and spatial autocorrelation model to account for autocorrelation in error terms, which Méckle
and Reunzi®®* do not consider when investigating the association of “social proximity” with OODs. We also
include a robustness check to account for spatial and network autocorrelation together and provide evidence
that the statistical significance of the “deaths in social proximity” variable is not sensitive to the choice of distance
decay function. Furthermore, our regression includes domain-specific covariates such as availability of naloxone
and buprenorphine, opioid dispensing rate, mental health distress rate and state-level fentanyl and analog seizure
data to account for illicit opioids which Mackle and Reunzi?® do not consider when investigating the association
between “social proximity” and OOD. Furthermore, Méckle and Reunzi (2023) use the National Vital Statistics
System (NVSS) public database and employ a backout procedure to recover mortality data points that the NVSS
otherwise suppresses if the county has fewer than ten deaths. In contrast, our study uses mortality data from
the National Center for Health Statistics (NCHS) which provides access to these suppressed data points. In
this regard, our results complement their findings, as their coefficient for “social proximity” is also statistically
significant. Concurrently with our work, Cuttler and Donahoe? have explored the dynamics of opioid death
rates, focusing on SCI and the distance between counties to analyze spillovers. They posit that the increase in
opioid demand is endogenous, resulting from spillovers between affected populations. Their study underscores
the importance of social and spatial spillovers in estimating opioid demand, which is correlated with increased
mortality rates. However, our work differs in its methodological approach, concentrating on constructing a
socially lagged variable to assess the impact of social influence on overdose death rates.

In the following section, we formally introduce our variable of interest, “deaths in social proximity”. The
descriptive statistics serve as a starting point for later estimating the effect size of deaths in social proximity in
the “Results” section.

OOD rates in social and spatial proximity

The root of the opioid epidemic is partially associated with social contexts that mediate substance use and
accessibility. Existing studies integrating social network analysis with the geographical spread of overdose deaths
have demonstrated how social characteristics influence the trajectory of substance use, for example, geographic
discordance, which means that the community in which the overdose death occurs is different from the
community of residence?. Using data on overdose deaths from 2017 to 2020 in Milwaukee County, Wisconsin,
Forati et al.?> build a social-spatial network framework to detect network interaction hotspots for overdose
deaths and analyze their geographical discordance. However, their study is limited to Milwaukee County and
does not extend to US population scales.

As discussed in the Introduction, the significant contribution of social influence in initiating substance use is
well documented in the literature. Researchers have highlighted the impact of social networks on the regulation
of substance use patterns based on the ego network?®. However, applying these findings to a geographical context
presents challenges, as geographical proximity substantially influences social connections and communication
patterns across varying distances?’. In our model, we control for the inherent spatial patterns of geographical
proximity to refine our estimate of the effect of social networks on OODs.

Assessing the strength of social ties within every individual’s network in a wide geographical area is very
resource-intensive. To address this challenge, one potential approach is to aggregate and estimate the social
networks of metapopulations residing in different localities, such as ZIP codes or counties in the United States.
This offers a broader perspective and alleviates some of the constraints associated with individual-level analysis.
In 2018, Meta Platforms, which operates the Facebook social network, released a data set that measures the
distribution of social ties of location-specific networks globally. SCI is a surrogate for real-life friendship
networks between registered Facebook users at each location!®. It quantifies the strength of friendship ties in
various locations using relative probability and is available at the ZIP code and county level for the United States.
Formally, the SCI between two locations i and j is defined as follows'*:

Facebook Connections;;
Facebook Users; x Facebook Usersj'

SCL; =

Here, Facebook Users; represents the number of Facebook users in the county i. Facebook Connections;;
is the total number of Facebook friendship connections between individuals in counties i and j.

Building on the established link between SCI and real-world social connections, we introduce two variables,
“deaths in social proximity” and “deaths in spatial proximity”, to capture the influence of social and spatial factors
on the distribution of OOD rates in counties in the United States. The term “deaths in social proximity” indicates
the average number of death rates in alter locations weighted by their SCI to the focal node, also known as “ego”.
This variable operates as a socially lagged variable, accounting for the influence of death rates in “alter” locations,
referring to the direct connections of the ego. On the other hand, “deaths in spatial proximity” measures the
average number of death rates in the alters weighted by their inverse geographical distance to the ego. Unlike
the socially lagged variable, this is a spatially lagged variable to account for the effects of deaths in the spatial
vicinity of the ego. These factors work together to provide a comprehensive picture of how deaths are distributed
and influenced by social and geographical factors in a given location. Quantitatively, deaths in social and spatial
proximity, denoted by s_; and d_; for an ego location i, are defined as follows:
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S_; = Zwijyj7 and d_; = Zaijyn

J# J#i

where y; is OOD rate in US county i. The social and spatial proximity weights (w;; and a;;) are defined as
follows:

1
n; SCL; L+ 3

2 pi T SClLk D ki (1 + ﬁ)

where n; is the population of county j and d;; is the distance between county locations i and j. Using 1 + 1/d;;
instead of 1/d;; in the definition of a;; improves numerical stability when dealing with long distances (large
d;j values) but does not change the decreasing nature of the spatial proximity weights with the increasing
distances. To capture the effect of far away counties that would be otherwise down-weighted heavily by 1/d;;
, in Supplementary Information section S5 we repeat our analysis with a slowly decaying distance function
(1/ d; j/ 10) and observe that our main conclusions remain unchanged and are not sensitive to the choice of
the distance decay function. To visualize the social and spatial adjacency weights across the United States,
we aggregate the county-level data to the state level. This aggregation allows us to effectively depict the dense
networks. We give the details of the state level aggregation in Supplementary Information section S2. It is
important to note that our analysis of estimating the effect of “deaths in social proximity” on OODs is still
conducted at the county level. The visualization of the proximity weights and proximity values, however, is
presented at the state level to help understand the geographical dispersion of the social and spatial proximity
weights in relation to OOD rates. For comparison, in Supplementary Information section S2 we give the county-
level visualization of social and spatial adjacency weights in Pennsylvania (PA). Figure 1A illustrates the state-
level social network, measured by the social proximity weights (w.) in the contiguous United States. Figure 1B
and C show the spatial dispersion of the proximity weights for the socially and spatially lagged variables for two
ego states, California (1B) and Pennsylvania (1C), in the contiguous US.

Having formally introduced the socially and spatially lagged variables, we use mortality data from the
National Center for Health Statistics (NCHS) for 2018-2019 to measure the state-level OOD rates. Figure 2 shows
the state-level spatial distributions of our main variables of interest in the contiguous US: OOD rates (Fig. 2A),
deaths in social proximity (Fig. 2B), deaths in spatial proximity (Fig. 2C), and their differences (Fig. 2D). Figure 3
shows the scatter plots of death rates (y;), deaths in social proximity (s—;), and deaths in spatial proximity (d—;
) for all counties in the contiguous US. The scatter plot matrix reveals a moderate linear dependence between
death rates and spatially and socially lagged variables. In addition, there is a strong correlation between spatial
and social proximity. However, the histograms that represent the distribution of these two variables exhibit
differences. This contrast helps us identify the spatial effects of social influence on OOD and estimate an effect
size for social proximity using controlled regressions described in the Results. Our choice of controls comes
from domain knowledge consisting of clinical covariates and factors of social determinants of health (SDOH).
The SDOH covariates are selected using the least absolute shrinkage and selection operator (LASSO) from an
array of 17 variables. The details of SDOH and clinical covariates are in “Methods”

Results

Estimating the effect size of “Deaths in Social Proximity” variable

Our outcome of interest is the county-level OOD rates that we measure using NCHS data from 2018 to 2019. We
use cluster-robust linear regression to estimate the coefficient of the socially lagged variable. Robust estimators
and clustering by state help us correct for correlation among counties, which might be higher for counties in the
same state than between different states. Figure 4 shows the significant coefficient of the socially lagged variable
and provides statistical evidence for the effect of social networks on the spatial spread of OOD rates. The estimate
of the effect size of the socially lagged variables is statistically significant across the eastern, western-central,
and the entire contiguous US. The positive coefficient aligns with the theoretical proposition of the literature
on the importance of social influence in the opioid epidemic’. The positive and significant magnitude of this
effect size can originate from the dissemination of information through social networks about the initiation
of use and availability of substances, leading to more OODs. The effect sizes for s_; and d_;, derived from the
cluster-robust standard error model, along with other covariates, are in Supplementary Tables S2, S3 and S4 for
the eastern, western-central, and contiguous US.

We standardize s_; and d_; prior to regression analysis. Consequently, the effect size for s_; indicates that an
increase of one standard deviation, equal to 11.69523 and 12.2417 more “deaths in social proximity” per 100, 000
population in the contiguous and eastern United States, respectively, is associated with an increase of nine
deaths per 100, 000 population in ego counties within the eastern United States and thirteen deaths per 100, 000
population in the contiguous United States. For counties in the western and central United States, a similar
increase of one standard deviation, equal to 5.7145 more deaths per 100, 000 population in the social proximity
of ego counties, corresponds to six more deaths per 100, 000 population in ego counties. Despite observing a
significant effect for the socially lagged variable on OOD rates, it is crucial to address potential issues arising
from the inherent nature of the primary variable of interest. We recognize the methodological challenges due to
correlated residuals when using statistical models to analyze social and spatial effects and perform robustness
checks using network and spatial autocorrelation, as well as fixed-effects models to substantiate our findings.

Scientific Reports |

(2024) 14:29563 | https://doi.org/10.1038/s41598-024-80627-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

45N

40N

50°N

45°N

40°N

35°N

30°N

25°N

1200W

1200W

10w

1MW

Death Rates

|

| 60
40

20

120°W 110°W 100°W 90°W 80°W 70°W

Social
Adjacency
020 20N

015
0.10
35N
005
000

100°W 20°W 80°W 70°W 120W 10°W 100°W oW 80°W 70°W

Social
Adjacency

0.10
005
000

Spatial
Adjacency

0.002
0001 i
0.000

Spatial
Adjacency
0.004

0.003
0.002
0.001
0.000

12000 10°W 100°W 90w 80°W 7000

100°W 90°W 80°W 700

Fig. 1. (A) The spatial distribution of overdose death rates per 100,000 population in contiguous US from
2018 to 2019. Superimposed on this map is a social network diagram with edge widths representing the state-
level social proximity weights. (B) The two middle maps show the social proximity weights of alter states to
California (on the left) and Pennsylvania (on the right). (C) The bottom two maps show the spatial proximity
weights of alter states to California (on the left) and Pennsylvania (on the right). Maps generated using R
version 4.2.2 (2022-10-31, available at https://cran.r-project.org. Network diagram created using Gephi 0.10.1
(2023-01-17), available at https://gephi.org. Image editing performed with Adobe Illustrator 27.9.5.

Given that lag variables have a social and spatial component, we expect the error terms in our regression
model to be correlated. To address this, we implemented a spatial error model (SEM) to test and correct for
network and spatial autocorrelations in error terms. The autocorrelation in error terms arises from unobserved
factors shared among spatially or socially connected units. Cluster-robust linear regression may not capture these
autocorrelations originating from unobserved factors, which may lead to bias and inefficient estimates. Hence,
to add robustness to our analysis, we utilize spatial and network aurocorrelation models. The methodological
frameworks for the network and spatial autocorrelation models are explained in Supplementary Information
sections S4.2 and S4.3. Supplementary Tables S5, S6 and S7 provide the SEM regression results for the network
and spatial autocorrelation models for the eastern, western-central and contiguous United States, in which we
find statistical evidence for correlated error. It is important to note that we performed two distinct models to
test and correct for correlated error terms originating from both spatial and network dependence separately.
Network autocorrelation might come from the structure of the socially lagged variable s_;, while spatially
correlated error terms could be attributed to the spatially lagged variable d_;. Our autocorrelation models
provide statistical evidence for the significance of social proximity in OODs.
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Fig. 2. (A) The top left map shows the spatial spread of state-level opioid overdose death rates in the
contiguous US. (B) The top right map shows the spatial dispersion of “deaths in social proximity” for states in
the contiguous US. (C) The bottom left map shows the geographical spread of “deaths in spatial proximity”. (D)
The bottom right map shows the difference between deaths in social and spatial proximity from top right and
bottom left maps. Maps generated using R version 4.2.2 (2022-10-31, available at https://cran.r-project.org).
Image editing performed with Adobe Illustrator 27.9.5.
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Fig. 3. The figure shows the distribution and relationships between the primary variables of interest (death
rates y;, deaths in social proximity s_;, and deaths in spatial proximity d_;). The histograms on the main
diagonal depict the distributions of y;, s_;, and d_;. Moving to the upper triangle, we observe the degree

of linear dependence between these variables, while the lower triangle displays scatter plots. Scatter plot
matrix generated using the R version 4.2.2 (2022-10-31, available at https://cran.r-project.org). Image editing
performed with Adobe Illustrator 27.9.5.
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Fig. 4. (A) The plot shows the coefficient confidence interval plots for western and central US counties.

The coefficient for s_; for cluster-robust linear regression (Supplementary Table S3), network and spatial
autocorrelation (Supplementary Table S6), and two-way fixed effects model (Supplementary Table S9), all
indicate a positive, significant (p < 0.001) coefficient for s_;. (B). Shows the coefficient plot for social and
spatial proximity for counties in the contiguous US. The coefficient for s_; for cluster-robust linear regression
(Supplementary Table S4), network and spatial autocorrelation (Supplementary Table S7), and two-way fixed
effects models (Supplementary Table S10) are all positive and significant (p< 0.001). (C) Shows the coefficient
plot for s_; and d_; for counties in the eastern US. The coefficient for s_; for cluster-robust linear regression
(Supplementary Table S2), network and spatial autocorrelation models (Supplementary Table S5), and two-way
fixed effects models (Supplementary Table S8) are all positive and significant (p < 0.001). The effect sizes for
standardized s_; in the cluster-robust linear regression models indicate that a one-standard-deviation increase,
equal to 11.69523, 12.2417, and 5.7145 more deaths per 100, 000 population in the social proximity of the ego
counties in contiguous, eastern and western-central United States, respectively, is associated with thirteen more
deaths per 100, 000 population in contiguous and nine more deaths eastern and six more deaths in western-
central US counties.

To address spatial and temporal heterogeneity and enhance robustness, we employed a two-way fixed-effects
model. Specifically, we included state-fixed effects to control for unobserved state-specific characteristics, such
as regulations and policy environments, that are constant over time, but vary between states. We also incorporate
year-fixed effects to absorb nationwide shocks or trends that could influence our outcome of interest. This
modeling strategy enables us to robustly assess the statistical significance of “deaths in social proximity” while
accounting for unobserved spatial and temporal confounders. The results of this model are in Supplementary
Tables S8, S9 and S10 for the eastern, western-central and contiguous United States. Our findings consistently
demonstrate a significant positive effect size for “deaths in social proximity”. For a detailed explanation of the
two-way fixed effect model, refer to Supplementary Information section S4.4.

Figure 4 shows the confidence intervals (CI) for the cluster-robust standard error linear model, network
autocorrelation, spatial autocorrelation, and the two-way, fixed-effects models. We consistently observe a positive
and significant coefficient for s_;, indicating the effect of social influence on the spread of OOD, while the effect
size for d_; has a varying CI, changes sign, and is not always significant. We also observe cluster-robust linear
regression has a broader confidence interval compared to the other models, it is primarily because cluster-robust
standard errors adjust for the intra-cluster correlation by accounting for the fact that there is less independent
information than the total number of observations suggests. This adjustment often results in larger standard
errors compared to conventional ones, reflecting the reduced amount of independent information. There is also
aloss of statistical power when doing this analysis, as the effective sample size becomes closer to the number of
clusters rather than the total number of observations. However, despite accounting for intra-cluster correlation,
we observe a statistically significant coefficient for “deaths in social proximity”. A key takeaway from this result
is that social connections are predominantly more significant than the effect of spatial proximity on OOD rates.
This robustness check adds to the consistency of our statistical evidence for the size of the effect of “deaths in
social proximity”. In our analysis, given the network and spatial configurations inherent in s_; and d_;, we
suspected and addressed the correlated errors that stem from the endogeneity of both variables simultaneously,
using a two-stage least squares approach. The results of our implementation are discussed in the Supplementary
Information section S4.5 and confirm the positive and significant effect size of our social proximity variable in
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the eastern, western-central and entire contiguous United States (Supplementary Figure S3 and Supplementary
Table S11). To end our analysis, we show the robustness of the effect of “deaths in social proximity” by accounting
for the rate at which spatial adjacency weights decay with increasing distance. By accounting for the “deaths
in spatial proximity” decay rate, we allow the effect of distant counties far from the focal county to be more
pronounced. We use cluster-robust linear regression to test the significance of the coefficient s_;. We observe a
statistically significant effect for the coeflicient of “deaths in social proximity” between counties in the eastern,
western-central, and contiguous United States. The results of this implementation are discussed in Supplementary
Information section S5. The confidence interval plot for the model is illustrated in Supplementary Figure S4 and
the effect sizes are shown in Supplementary Tables S12, S13 and S14.

Discussion

Our research underscores that social influence, measured by the coeflicient of s_;, exhibits a statistically
significant impact on the spatial spread of OOD rates in US counties. This finding paves the way for a more
in-depth exploration of the mechanisms driving the opioid epidemic, specifically within the social contagion
framework. Harmon et al.?® and Braha and Aguiar!? have utilized complex generative modeling to understand
social contagion in the context of economic crises and voting behavior. Building on their work in modeling
social contagion, future studies can adopt a similar framework to model peer influence in the opioid epidemic
using SCI data.

Our analysis demonstrates that deaths in social proximity, as measured by the SCI, are associated with opioid
overdose deaths in counties in the United States. Although previous studies recognize the tendency for OODs
to occur in isolated spaces®?, data from the CDC’s State Unintentional Drug Overdose Reporting System
(SUDORS) (https://www.cdc.gov/overdose-prevention/data-research/facts-stats/sudors-dashboard-fatal-overd
ose-data.html) indicate that almost half of overdose deaths had a potential bystander present, suggesting that the
occurrence of OODs in isolation may be less pronounced than previously thought.

Furthermore, our measure of social influence is based on the social connections derived from the social
network structure of Facebook’s SCI across US counties and serves as a proxy for aggregated friendship network
structures and their association with OODs; however, it does not capture the strength of individual friendship
ties among Facebook users in the counties. Focusing on these social connections and their relation to the spatial
patterns of OODs, such as geographic discordance (the community in which overdose death occurs being
different from the community of residence), can provide novel insights into the complex interplay of social and
spatial factors in perpetuating this public health crisis.

In addressing the opioid epidemic, accounting for social networks is crucial in understanding and predicting
OOD patterns at the community level to aid policy intervention. Studies using complex generative models
with spatial clustering have yielded valuable insight into the dynamics of social influence and can be crucial to
designing targeted interventions. For example, Braha and Aguiar!? use such models to identify spatial clusters
of voting contagion. In the context of the opioid epidemic, Liao et al.*! introduce the Spatio-TEMporal Mutually
Exciting Point Process (STEMMED) model to quantify the interconnections between historical and future
events, reflecting space-time clustering in OODs across various communities. This methodological approach can
improve the prediction of OOD trends within localized settings by modeling unique community-specific OOD
event streams, considering spatial and social influences. Our research complements this perspective by bridging
the gap in understanding the role of social influence within these dynamics. Although STEMMED captures
the spatiotemporal clustering of OOD events, our approach highlights the importance of social structures in
shaping these patterns. By estimating the coeflicient of the socially lagged variable, we measure the effect of
social interactions in different counties in the US, which in conjunction with the spatial focus of Liao et al.3! can
offer a more comprehensive view of the factors driving OOD clusters. For policymakers, this comprehensive
approach can provide a solid foundation for designing targeted interventions that address both the spatial and
social dimensions of the opioid epidemic.

One of our motivations for this study was to facilitate the creation of proxy networks for social interactions
in agent-based models of the US population based on SCI data. Agent-based models with SCI-calibrated social
networks can provide valuable information about peer effects in the initiation of opioid use and the development
of use disorder. When used in conjunction with powerful agent-based modeling tools such as FRED (Framework
for Reconstructing Epidemic Dynamics)®, such models can enable epidemiologists and policymakers to
simulate the spread of the opioid epidemic in great mechanistic detail and evaluate interventions. Chu et al.*}
use FRED to study social contagion in the use of e-cigarettes, showing the potential of FRED to simulate social
contagion of addictive behaviors. We expect that SCI-calibrated social networks, combined with agent-based
models of OUD progression in FRED (cf,, e.g.,*¥), can reveal important mechanistic details about the opioid
epidemic in the US. Our results may be particularly useful for calibrating social contagion parameters. The
contagion parameters can be tuned so that they reflect the same association between “deaths in social proximity”
and OODs as we measure in the mortality data.

SCI can also help design and evaluate intervention strategies based on social networks. Macmadu et al.3*
highlight the need for interventions tailored to social networks. Their research shows that after an overdose,
network members exhibit observable behavioral changes, including increased risk taking to manage feelings of
bereavement and trauma, protective actions, and some cases showing no change in drug use behavior. Based on
these findings, opioid reduction efforts can be optimized in areas with greater social connectivity. Measurement
of the effects of social networks across locations can also help optimize the allocation of limited medications,
such as naloxone, buprenorphine, and methadone. In all these cases, social network-based strategies offer
important opportunities for policy makers to mitigate the spread of the opioid epidemic.

We acknowledge the limitations of using mortality data to measure the spread of this critical health crisis
and propose to strengthen these findings with other OUD-related outcomes. Details on the limitations of the
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Mortality Data

Buprenorphine

mortality data are discussed in the “Methods”. Future work can use SCI to investigate the social contagion of
the opioid epidemic in mechanistic agent-based models and structural causal models for causal discovery and
inference. We also plan to use SCI to improve our predictive accuracy in detecting OOD hotspots in the US. We
have used SCI to measure the dynamics of social networks and their effect on the opioid epidemic. Our choice
of SCI is guided by existing literature and our objective to study network effects at the population scale. We
recognize the limitations of using SCI because Facebook users are not the same as the general population. SCI
only acts as a proxy for real-life friendship networks, and it may not be a true representative of real-life friendship
connections and their association with opioid use behavior. Other datasets that capture real-world interactions
within a social network framework can also be valuable to understand the effects of social networks in the opioid
epidemic. For example, the Add Health dataset (https://data.cpc.unc.edu/projects/2/view#public_li), which
includes information on best friends during high school and opioid misuse in adulthood (14 years later), offers
an alternative means of measuring these effects. Although this dataset allows analysis within the age-specific
bracket of 25 to 35 years, potential problems of population selection bias may limit the generalizability of the
findings to the broader population.

Methods
Data pipeline and preprocessing
Our data sources are shown in Fig. 5 and are explained in detail in the following paragraphs.

Mortality data and census demographics. We measure the OOD rate from mortality data obtained from
the National Center for Health Statistics (NCHS) for the years 2018-2019. This data set includes demographic
details of individuals who have lost their lives to opioid-related overdoses. To first identify overdose related
deaths we utilise the following International Classification of Disease (ICD) codes “X407,“X41”, “X42”, “X43”,
“X447,°X60%, “X617, “X627,X63”, “X64”, “X85%, “Y107, “Y11%, “Y12%, “Y13”, “Y14”. The X and Y codes provide
information about deaths that have occurred due to substance overdose. Furthermore, to specifically target
opioid overdose deaths we use the ICD T codes “T400%, “T401%, “T402”, “T403”, “T404”, and “T406”. The T codes
determine the cause of death in the specification of opioids from other substances. Despite the comprehensive
nature of the NCHS mortality data and the use of specific ICD codes to identify opioid overdose deaths, there
are important limitations associated with this dataset. Death certificates may not always specify the drugs
involved in an overdose, and some overdose deaths involve multiple drugs, making it difficult to determine
which substance was primarily responsible. In addition, the analysis also incorporates demographic data on the
broader population of the United States of America. The data is stratified at the county levels. To extract this
information, we utilize the R package “tidycensus” to systematically retrieve data from data.census.gov.

Clinical and mental health covariates. Clinical factors such as the opioid dispensing rate (ODR), availability
of naloxone, and the access to buprenorphine for the treatment of opioid use disorder are used as controls in our
regression. Morgan et al.’® underscore the role of naloxone in reducing opioid-related harm, while Pendergrass
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Fig. 5. The diagram depicts the data pipeline for our analysis, including the data streams for the primary
variable of interests, s_; and d_;, as well as the relevant socioeconomic and clinical covariates. It also outlines
our regression models for estimating the effect of peer influence as measured by SCI on county-level OOD
outcomes.
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et al.’” emphasize the importance of buprenorphine availability in mitigating overdose fatalities. The data source
for clinical factors such as naloxone, buprenorphine, and ODR is the IQVIA Xponent database, which provides
the number of prescriptions for naloxone and buprenorphine distributed throughout counties in the US through
retail pharmacy channels. The ODR, which captures the total number of opioid doses dispensed, is measured as
morphine milligram equivalents (MME). The current wave of the opioid epidemic from 2013 to the present has
witnessed an increase in the illicit use of synthetic opioids such as fentanyl. Furthermore, Kuehn?® discuses the
impact of fentanyl on overdose deaths, particularly among adolescents. Pergolizzi et al.*® also discuss the role
of fentanyl in exacerbating the opioid epidemic. To control for the supply of illegal substances that contribute
to OODs, we incorporate state-level fentanyl and analog seizure data from the National Forensic Laboratory
Information System as a control variable. Our selection of clinical and illicit-supply covariates is comprehensive
based on the data sources available to us. In addition, several studies have shown associations between mental
health and opioid overdose deaths'*-*2. Thus, we used data on frequent mental health distress from County
Health Rankings and Roadmaps (CHRR). Frequent mental distress is the percentage of adults who reported
poor mental health for more than 14 days in response to the question “How many days during the past 30 days
was your mental health not good?”**. We use this measure to control for the effect of mental health-related issues
in counties.

Population density and political affiliation. We also control for population density and political affiliation that
are identified in the literature on the opioid epidemic and the structure of social networks. To account for the
heterogeneity associated with SCI and opioid use among populations residing in urban and rural counties, we
include population density in our regression model'>*. The risk status of opioid misuse is also associated with
the political affiliations and liberal status of states**. Therefore, we control for the effect of political affiliation in
our regression by accounting for counties’ political leanings using 2016 general election data at the county level.

SCI data. SCI is available at the ZIP code and county levels in the United States. We chose counties as our
analysis unit instead of ZIP codes because the latter had significant limitations. A considerable number of ZIP
codes have missing SCI data. Typically, ZIP codes without SCI data are those with low populations or those
designated exclusively for institutions. Institutional ZIP codes are assigned to areas predominantly occupied
by specific institutions, such as hospitals, universities, or military bases. These institutional ZIP codes can also
introduce spatial bias; for example, ZIP codes with hospitals are more likely to report higher overdose death
rates. To ensure a more continuous and representative spatial framework, we use counties as our unit of analysis.
This approach mitigates the issues of missing data and spatial bias, providing a more robust basis for analysis.

Social determinants of health. Socioeconomic factors shape social structures and ties; therefore, incorporating
these factors is essential to interpret the influence of social networks on OOD. Shared socioeconomic conditions
can also influence behaviors that mirror peer influence, and therefore, we include socioeconomic covariates
as controls in our analysis to mitigate the risk of bias due to missing confounders when estimating the effect
size of our deaths in the social proximity variable (s_;). Social determinants of health (SDOH) encompass
aspects of physical infrastructure, economic context, healthcare context, and social environment of counties.
Our selection of SDOH covariates is based on socioeconomic predictors of the opioid epidemic. Liu et al.*6
demonstrate the effects of SDOH measures on drug overdose death locations. Therefore, we use SDOH variables
to control for socioeconomic factors that may confound the impact of s_; on county-level OOD rates. These
covariates are selected from a pool of SDOH variables using the Least Absolute Shrinkage and Selection Operator
(LASSO) technique to avoid multicollinearity issues. We select a subset of covariates from an array of 17 SDOH
variables that are listed in Supplementary Table S1. We provide details of the LASSO selection process in the
Supplementary Information section S3.

Statistical models. The model coefficients are evaluated for statistical significance at p < 0.05 level. Using
county-level opioid overdose death rates as the outcome variable, we set up regression models to test the
significance of deaths in social proximity to explain the county-level death rate after controlling for deaths in
spatial proximity, clinical (mental health, availability of naloxone and buprenorphine and opioid dispensing
rates in pharmacies) and fentanyl covariates, and socioeconomic covariates selected using LASSO from SDOH
variables, as well as population density and political affiliation covariates. Linear regression and cluster-robust
linear regression are analyzed for statistical significance (details in Supplementary Information section S4.1).
The residuals in the regression are weighted by population size of the counties, so that the inference is reflecting
the population residing in the counties across the US. To account for correlated error terms from the spatial
and network structure of the variables s_; and d_;, respectively, we use network and spatial autocorrelation
models (details in Supplementary Information sections S4.2 and S4.3). To account for unobserved space- and
time-invariant characteristics that might be associated with the covariates in our regression, we use a two-way
fixed-effects model. This model includes fixed temporal effects for 2018 and 2019 and fixed spatial effects for
states in the eastern United States, the western and central United States, and the contiguous United States
(details in Supplementary Information section S4.4). As a robustness check, we also use a two-stage least squares
regression to account for correlated error terms that arise from the simultaneous estimation of effects from s_;
and d_; (details in the Supplementary Information section S4.5). As a final robustness check, we use distance
decay weight to account for the effect of faraway counties from the focal county (details in the Supplementary
Information section S5).

Data availability

Mortality data was obtained from the National Center for Health Statistics (NCHS). Due to confidentiality con-
cerns, this data set is not publicly accessible, but can be requested from NCHS at https://www.cdc.gov/nchs/n
vss/nvss-restricted-data.htm. The clinical covariates were sourced from the IQVIA Xponent database, which is
also not publicly available. Access can be requested through IQVIA at https://www.iqvia.com/insights/the-iqvi
a-institute/available-iqvia-data. Data on illicit fentanyl-related drugs were obtained from the National Forensic
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Laboratory Information System (NFLIS) and can be accessed at https://www.nflis.deadiversion.usdoj.gov/. Data
on frequent mental health distress are obtained from the County Health Rankings and Roadmaps (CHRR) at
https://www.countyhealthrankings.org/sites/default/files/media/document/analytic_data2019. The 2016 Gen-
eral Election data can be accessed at https://raw.githubusercontent.com/tonmcg/US_County_Level_Election_
Results_08-20/master/2016_US_County_Level_Presidential_Results. The social determinants of health covari-
ates are available from the Agency for Healthcare Research and Quality (AHRQ) at https://www.ahrq.gov/sdoh/
data-analytics/sdoh-data.html. The SCI data can be accessed using the Facebook Data for Good tools at https://
dataforgood.facebook.com/dfg/tools/social-connectedness-index. Data on drug overdose deaths used in our
LASSO covariate selection are available from the Bureau of Health Statistics and Registries of the Department
of Health of the Commonwealth of Pennsylvania and can be requested as follows: https://www.pa.gov/content/
dam/copapwp-pagov/en/health/documents/topics/documents/reporting-registries/vr-govt-researchers/Applic
ation%20for%20Access%20to%20Protected%20Data%20for%20Government%20Agencies%20-%20Request%2
OForm.doc. No new data has been collected in this study. All data availability questions can be addressed to K.T.
(kut20@pitt.edu) or M.A.R. (rahimian@pitt.edu).

Code availability

Analysis code to reproduce figures and tables in the paper is available at https://gith
ub.com/kut97/ood-sci.
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