
Ship path planning based on 
improved multi-scale A* algorithm 
of collision risk function
Chunyu Song, Teer Guo & Jianghua Sui

To improve the safety of ship navigation in complex sea areas and reduce planning time while 
achieving optimal path planning. The paper proposes an improved A* algorithm that incorporates 
ship collision risk assessment. The paper utilizes multi-scale raster maps to divide the sea chart 
in the context of complex sea areas, and combines the Line-of-sight (LOS) algorithm to solve the 
zigzag paths that may appear in this planning context. Moreover, in order to improve the efficiency 
of optimal path planning in the context of complex sea areas while ensuring path safety, the paper 
proposes a collision risk function to optimize the determination of the cost of A* algorithm nodes, 
thereby enhancing the heuristic function of the A* algorithm. The improved A* algorithm can consider 
both path length and collision risk to plan the optimal path and to enhance the overall quality of 
the planning results. To verify the advantages of the improved algorithm proposed in the paper, the 
Zhoushan Islands sea area with complex environment is selected as the planning background for 
simulation study. The results show that the improved algorithm with the introduction of the collision 
risk function reduces the path planning time, the number of expanded nodes, and the path length by 
30%, 11%, and 5.8%, respectively, compared with the original algorithm, which can effectively reduce 
the computational burden of the algorithm. This study provides a relatively complete and scientific 
route planning strategy for the study of the safe navigation of smart ships in complex sea areas.

Keywords  Optimal path planning, Improved A* algorithm, Collision risk function, Multi-scale nautical 
charts, Safety of navigation in complex sea areas

Nowadays, the development and application of intelligent ships is a field of considerable scope and potential. The 
study of intelligent ship technology has also become the focus of researchers. Moreover, as a pivotal technology 
in the domain of intelligent ships, the ship’s path planning task has been a subject of intense scrutiny and 
investigation by numerous scholars1. The path planning task of the intelligent ship refers to the given starting 
point and end point of the ship. Make it find a suitable path that is safe to navigate, least time-consuming, and 
shortest distance under the constraints of the specified sea environment2. The core of path planning control is 
the selection of algorithms, and the commonly used path planning algorithms in the academic field include 
the artificial potential field (APF), model predictive control algorithms, deep learning algorithms, ant colony 
algorithm, Dijkstra’s algorithm, and A* algorithm, etc. Bayat3 aims at the mobile robot path planning problem 
in the presence of scattered obstacles, and constructs a synthetic potential field by the APF method to plan the 
optimal path to avoid the specified region. Wang4 proposes an improved artificial potential field for the local 
minimum problem of the traditional artificial potential field method, and then designs the collision avoidance 
path for wave gliders. The above path planning algorithm can plan a smoother path and the algorithm is 
simple and robust, which facilitates the underlying real-time control. However, such methods suffer from the 
disadvantage of local optimization and the path planning effect depends on the gravitational field design.

Traditional path planning algorithms can effectively deal with local planning to avoid collisions, but still have 
limitations for global path planning tasks. And the research on path planning based on artificial intelligence 
(AI) provides new ideas for global intelligent obstacle avoidance and trajectory tracking control of ships. 
Lyridis5 designed an improved fuzzy ant colony optimization algorithm to deal with path planning in dynamic 
environments, focusing on the movement of unmanned surface vessels (USVs) in complex environments that 
require multi-objective optimization and multi-modal constraints. Hsu6 proposed an improved ant colony 
system algorithm to improve the global search capability for the problem of local path optimization in traditional 
path planning algorithms. Moreover, deep learning is a prominent algorithmic approach in the domain of AI-
based path planning. It entails the utilization of neural networks to discern the intrinsic principles governing the 
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behavior of path samples, thereby facilitating the generation of viable trajectories for maritime vessels. Wu7 used 
convolutional neural networks and residual units to design a deep learning prediction algorithm and proposed a 
gridded path planning method by acquiring spatial-temporal characteristics of vehicular traffic. Gao8 optimized 
the reward function, mesh structure, and observation state for the path planning problem of deep learning 
robots to achieve path planning for three-dimensional scenes. Guo9 proposed an autonomous path planning 
model based on deep reinforcement learning, which effectively realizes intelligent path planning for USVs in 
unknown environments through deep learning algorithms. Above studies are conducted based on AI, which can 
adapt to the needs of environments with different levels of complexity and simple evaluation strategies. But there 
is the problem of overestimation due to excessive data volume and storage consumption as well.

The geometric model-based path planning algorithm is most popular and used by the scholars in path planning 
study nowadays. Unlike traditional path planning algorithms as well as AI-based path planning algorithms, 
these algorithms respond quickly to the environment and search for paths in a simple and straightforward 
manner. Deng10 proposed a generalized Dijkstra’s algorithm to solve the shortest path problem and improved it 
by fuzzy numerical mean integration for different traffic environments. Wang11 proposed a three-dimensional 
Dijkstra optimization algorithm, which can effectively achieve the optimal path planning under non-rough sea 
conditions, and realize multi-objective voyage optimization. The above algorithm is simple to apply, but it also 
suffers from the disadvantages of many extended nodes and low search efficiency. The emergence of the A* 
algorithm effectively solves this problem, and the A* algorithm was first proposed by Peter Hart in 1968 based 
on Dijkstra’s algorithm12. It retains the advantages of Dijkstra’s algorithm and reduces the number of expansion 
nodes. Since the emergence of the A* algorithm, many scholars have continuously improved it to make its 
function increasingly perfect, and its application scenarios are also wider. Liu13 solves the planning problem of 
smooth paths for robots by combining the A* algorithm, APF method, and the least squares algorithm, to avoid 
the planning algorithm from falling into the dilemma of local optimality. He14 introduced the dynamic window 
method to improve the A* algorithm for the problems of low search efficiency, uneven paths, and inability to 
adapt to unknown environments. It makes the local part follow the global part and realizes the fusion of the two 
algorithms to meet the complex planning task. The above studies realized global path planning by combining the 
A* algorithm with the rest of the algorithms, while more scholars tried to improve the algorithm itself. Zhang15 
improved the heuristic function of the A* algorithm for the problem that the planning path of the A* algorithm 
contains unnecessary turning points and not smooth enough. Tang16 considers the reliability of UAV flights in 
urban environments, introduces obstacle risk, death risk, and property loss risk to improve the A* algorithm, 
and designs a min-cost A* algorithm based on urban risk assessment.

Motivated by the above discussion, the authors introduce an innovative collision function into the improved 
A* algorithm, which is used for optimal path planning research in the context of stationary obstacles including 
land, reefs and shallow water areas. The traditional A* algorithm only considers the path length for node cost 
determination. However, when facing the scenario of many obstacles and dense distribution in the chart, it 
may lead to the wrong determination of the optimal path and has the limitations of long planning time and 
heavy computational burden. The introduction of the collision function ensures that the path is optimal, while 
considering the path length and collision risk relationship, which in turn guarantee the navigation safety and 
reduce the planning time. Meanwhile, the designed collision function architecture is simplified to reduce the 
computational burden of the algorithm. The main contributions of this paper are reflected in the following areas:

	1.	� Multi-scale nautical charts are created to solve the problem of the equal-scale raster chart generating too 
many nodes in complex environmental waters, thereby increasing the computational burden of the algo-
rithm.

	2.	� Using multi-scale A* functions and constraining the curvature of paths with Bezier curves, thereby solving 
the problem of the zigzag path that occurs with the traditional A* function in the context of multi-scale nau-
tical charts.

	3.	� Analyzing the collision risk of ship navigation while introducing collision risk weight factor to design the 
collision function to further optimize the decision rule of node cost of A* algorithm. This addresses the issue 
of collision risk during optimal path planning in complex marine environments.

The remainder of this work was organized as follows: The second section presents an analysis of the principle 
of multi-scale nautical charts and introduces the concept of multi-scale connectivity charts in the context of 
the Zhoushan Islands. In “Path planning based on multi-scale A* algorithm” section, optimal path planning is 
conducted based on the established multi-scale nautical charts. To address the issue of zigzag planning paths 
under multi-scale nautical charts, a multi-scale A* algorithm is developed. In “Path planning with multiscale A* 
algorithms considering collision risks” section, a collision risk function is designed to further improve the multi-
scale A* algorithm, and the basic indexes of the three A* algorithms are compared and analyzed.  “Discussions” 
section contains a discussion and analysis of the full text of the work. “Conclusions” section concludes the entire 
work.

Establishment of multi-scale nautical charts
The scenario set up in this paper is the path planning of a ship traversing a complex sea area. Since there are 
many islands and reefs in the complex sea and densely distributed, the path planning needs to be carefully 
delineated on the charts to ensure the safety of navigation. Based on this condition, the authors apply the finite-
depth quadtree algorithm for the segmentation of the chart. Compared with ordinary quadtree algorithms, 
finite-depth quadtrees provide flexible rasterized segmentation of charts by analyzing the obstacles present in the 
charts17,18. Consider the location and size of obstacles in the divided raster. If regions with dense distribution of 
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obstacles, perform small raster divisions. And if the regions are without obstacles or the distribution of obstacles 
is sparse, perform a large raster division. Schematic diagram of a finite-depth quadtree structure is in Fig. 1.

When rasterizing a nautical chart, it is usually desired that each raster region be in the smallest possible size 
to improve the representativeness of regional nodes. However, too dense nodes will bring great difficulties to the 
algorithm calculation, so multi-scale nautical charts are used to divide the region to solve the problem19. The 
authors selected the sea area of Zhoushan Islands, Zhejiang Province, China, as the background of path planning 
for simulation verification, and its chart area is shown in Fig. 2.

As shown in Fig. 2, the selected Zhoushan Islands sea area has a more complex nautical chart environment, 
with both the relatively open area and the area of dense islands with a high risk of passage. The region is rasterized 
at multiple scales, taking the maximum division depth as 8 layers, and the rasterized multi-scale connectivity 
map is shown in Fig. 3.

The selection criteria for the obstacle area in this study are land and reef areas that are prone to collisions and 
shallow water areas prone to aground. The blue curve in the figure represents the obstacle edge, the contained area 
is defined as the obstacle region, and its contained nodes are all non-navigable obstacle nodes. The construction 
of multi-scale nautical charts with a maximum depth of 8 layers lays a feasible foundation for the optimal path 
planning task in a complex harbors’ environment.

Remark 1  The authors construct multi-scale nautical charts with a maximum depth of 8 layers. The small-scale 
raster division of the dense obstacle distribution region and the large-scale raster division of the sparse obstacle 
region effectively reduce the computational load of the algorithm.

Path planning based on multi-scale A* algorithm
The traditional A* algorithm determines the optimal child node based on the move cost which can be expressed 
by Eq. (1). g (S)is the cost of the move corresponding to moving from the starting point to the intermediate 
point S, and h (S) is the heuristic cost of moving from the intermediate point S to the end point20.

	 F (S) = g (S) + h (S)� (1)

The application of A* algorithm for path planning is based on analyzing the connection relationship between 
nodes20, thus it is not only applicable to uniform raster division, but also applicable to non-uniform raster 
division. However, uneven grids will likely result in different sizes between neighboring raster compared to 
uniform grids. Thus, applying the traditional A* algorithm to connect the center points of each mesh will lead 
to the appearance of extra zigzag paths, resulting in unnecessary resource loss and possible safety hazards at the 
same time. In the previous section, the authors used a corner of Zhoushan Islands to build a multi-scale raster 
map as shown in Fig. 3 to assist planning. It is proposed to set the starting point of the ship’s path as (1650, 2500) 
and the end point as (5400, 600) to carry out the study of optimal path planning for ships crossing the complex 
sea area. The optimal path planning under the application of the traditional A* algorithm is shown in Fig. 4.

Fig. 1.  Schematic diagram of finite-depth quadtree structure.
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In Fig. 4, the simulation results show that the traditional A* algorithm plans the path by strictly traversing 
each expanded node on the optimal path, and the raster scale is not uniformly divided, so the planned path 
is dominated by zigzag lines. To solve this problem, the authors improve the traditional A* algorithm to be 
applicable to multi-scale nautical charts. By constructing a point node region near the current node, building 
search points around the edges of the region and searching neighboring regions. The neighbor nodes can be 
found in multi-scale nautical charts by deleting duplicate entries.

It is typically assumed that “path validity” between two nodes signifies that the connecting lines do not 
traverse the region encompassed by the obstructing node. However, the detection of a straight line is challenging 
to achieve within the program. In accordance with the LOS method, an improvement method is to use a series 
of continuous detection points on the LOS instead of the LOS itself. Furthermore, the LOS of the forward path 
can be discretized with a smaller step size Land the points after discretization are called detection points. If the 
detection point is within the same grid as the obstacle divided, the detection point is at risk of collision and is 
defined as a risk node, and the path can be judged to be obstructed. Find non-risk nodes and analyze the parents 
of their neighboring nodes, if unobstructed, assign the current node’s parent node as the parent node of the 
adjacent nodes, and the process is repeated until the end21. The improved scheme of the multi-scale A* algorithm 
is shown in Fig. 5.

In addition, in order to make the path more consistent with the ship kinematics, the curvature constraints of 
the path are imposed by Bezier curves, which makes the planned path smoother in the turns22,23. The optimal 
path planning applying the multi-scale A* algorithm is shown in Fig. 6.

As shown in Fig.  6, the improved multi-scale A* algorithm effectively solves the problem of zigzag path 
planning. Under the curvature constraint, the planned path is smoother and more consistent with the actual 
ship trajectory. Combined with Figs. 4 and 6, the actual performance indexes of planning paths after the A* 
algorithm improvement are compared. Comprehensive analysis of the planning path lengths, planning times 
and the number of expanded nodes before and after the algorithm improvement is shown in Table 1.

Analyzing the performance indexes shown in Table 1, compared with the traditional A* algorithm, the multi-
scale A* algorithm has an increased planning time, but its planning path length and the number of expanded 
nodes has been significantly improved. In addition, compared with the path planned by the traditional A* 
algorithm, the path planned by the multi-scale A* algorithm is smoother and more consistent with the actual 
path, thus making it the optimal path. Furthermore, it can be concluded that the evaluation criteria for the 
“optimal path” in this paper is: a path with improved path length and node number indicators while ensuring 
safety and conforming to the actual movement trajectory of the ship.

Fig. 2.  A part of Zhoushan Islands simulation planning nautical chart background (The chart is cited on the 
Chart Online website, Copyright © 2010–2024 www.enclive.cn. Edited and modified in software MATLAB 
R2021b, © 1994–2024 The MathWorks, Inc., https://ww2.mathworks.cn/).
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Remark 2  The authors design a multi-scale improvement strategy to improve the traditional A* algorithm to 
solve the “zigzag path” phenomenon of the traditional algorithm under multi-scale nautical charts, so that the 
planned path is more consistent with the actual ship trajectory.

Path planning with multiscale A* algorithms considering collision risks
In the previous study, the authors applied the LOS algorithm as well as Bezier curves to improve the traditional 
A* algorithm. Then, the optimal path planning scenario of a ship crossing the sea area of Zhoushan Islands 
is considered, and the simulation effect is relatively well. In this section the authors will further improve the 
algorithm based on the multi-scale A* algorithm, introducing the collision risk function to design the A* 
algorithm. Chapter 3 mentioned that the A* algorithm determines the optimal child node based on a performance 
index. The performance metric refers to the total move cost F (S) of the A* algorithm, which is determined by 
considering only the path length. The risk of ship collision is higher in more complex environments, that there 
are some limitations in determining the cost of movement by path length only24,25.

To optimize the performance index and thus the strategy for determining the optimal child node, the authors 
optimize the heuristic cost of moving the current node to the end point. The detailed idea is to introduce collision 
risk weight factors and calculate the collision risk performance index of each expanded node by designing a 
collision risk function, which is combined into a heuristic function. The high collision risk weight factor of 
this node indicates its high collision risk, after which the node is discarded26. Conversely, it indicates that the 
node has a low risk of collision and can be included in the OPEN-List for subsequent planning tasks. At this 
point in the A* algorithm the path length and collision risk are combined when evaluating nodes by node cost. 
By adjusting the collision risk weight factor, the level of influence of collision risk on path planning can be 
controlled, thus obtaining both safe and efficient path planning results.

Design of collision risk function
Define the collision risk cost function L (S), which is used to measure the collision risk in the path from the 
current node to the end point, the collision risk cost function is shown in Eq. (2).

	
L (S) = ε (S) + λ

∑
ni∈N(S)

ε (ni)� (2)

Fig. 3.  Multi-scale connectivity map of Zhoushan Islands (maximum depth of 8 layers) (The chart is cited on 
the Chart Online website, Copyright © 2010–2024 www.enclive.cn. Edited and modified in software MATLAB 
R2021b, © 1994–2024 The MathWorks, Inc., https://ww2.mathworks.cn/).
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where ε (S) is risk weight for the current node. It is determined by the distance of such node from the obstacle, 
the closer it is to the obstacle the higher its risk and conversely the lower it is. N (S) is the set of neighbor nodes 
ni of the current node, ε (ni) is risk weights for neighbor nodes. The regulation parameter λ is determined by 
the contribution of the risk value of the neighbor node of this node to the total risk of the global path planning. 
In this study, the closer the area to an obstacle, the denser the grid division. Therefore, if there is an obstacle 
around the current node, the number of its neighbor nodes is relatively large, and the adjustment parameter 
is increased accordingly. On the contrary, if the current node is in open water, the grid division is sparse, the 
number of neighbor nodes is small, the risk of collision is low, and the adjustment parameter is reduced.

As the path planning progresses, the closer to the obstacle node, the greater the risk of collision. Since there 
are irregularly shaped obstacles, the risk near the obstacle node increases exponentially. The collision risk weight 
factor can be approximated by Eq. (3).

	 ε (N) = e
1
r − 1� (3)

where e is the natural constant, r represents the distance between node N  and the neighboring obstacle node, as 
shown in Fig. 7. If there is an obstacle in the divided grid, the center of the grid is the obstacle node. Therefore, 
the closer to the obstacle node, the higher the risk of collision, and there is even a situation where the current 
node has already collided with the obstacle before it has even approached the obstacle node, so the risk weight 
factor of the current node grows rapidly as r decreases.

Combining the designed collision risk cost function with the traditional heuristic function results in a 
comprehensive heuristic function that considers collision risk and path length is shown in Eq. (4), and the move 
cost of the A* algorithm can be expressed by Eq. (5).

	 h′ (S) = h (S) + ω · L (S)� (4)

	 F ′ (S) = g (S) + h′ (S)� (5)

The weight parameter ω is determined by the weight between the current node path length and the collision risk 
weight factor. The collision risk weight factor is increased in areas with dense obstacles and decreased in areas 

Fig. 4.  Optimal path planning in Zhoushan islands under traditional A* algorithm.
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with fewer obstacles. The overall technology roadmap of the A* algorithm considering collision risk is shown in 
Fig. 8, and the algorithm flowchart is shown in Fig. 9.

Path planning considering collision risk
After adding the effect of collision risk to the multi-scale A* algorithm, the same simulation conditions are 
selected for the simulation to verify the advantage of the improved algorithm over the original algorithm. Still 
taking the Zhoushan Islands as the planning background for the path planning study. It is proposed to set the 
starting point of the ship’s path as (1650, 2500) and the end point as (5400, 600)to carry out the study of optimal 
path planning for ships crossing the complex sea area. The optimal path under the planning of the A* algorithm 
considering collision risk is in Fig. 10.

In the multiscale A* algorithm, the node cost considers only the path lengths. However, in the A* algorithm 
with collision risk weight factors, the collision risk cost can be added to the path length cost to form the total cost 
of the node. This time, the search process prioritizes low-risk nodes and produces paths with lower collision risk. 
Compared to the multi-scale A* algorithm mentioned in  “Path planning based on multi-scale A* algorithm” 
section, the A* algorithm considering collision risk has a more significant improvement in terms of planning 

Fig. 5.  Multi-scale A* algorithm improvement scheme.
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path lengths, planning times, and number of expanded nodes. The comparison of the actual performance 
indexes of the algorithms is in Table 2.

Comparative analysis of Figs. 6 and 10, and Table 2 shows that the A* algorithm considering collision risk 
reduces the path length by 5.8% compared to the original algorithm, and reduces the planning time and the 
number of expanded nodes by 30% and 11% compared to the multi-scale A* algorithm, respectively. The multi-
scale A* algorithm and the A* algorithm considering the collision risk both guarantee the “optimal path” of the 
path planning algorithm, thereby achieving optimal path planning and similar planning path lengths. However, 
the A* algorithm considering collision risk exhibits notable improvements in planning times and the number of 
expanded nodes, which can effectively reduce planning times and the computational burden of the algorithm. 
The greater the complexity of the sea space conditions involved in path planning, the greater the risk of collision. 
Therefore, the application of the A* algorithm for path planning, which considers the risk of collision, will result 
in a more pronounced effect. Furthermore, it demonstrates a robust capacity for generalization in path planning 
studies across diverse marine environments.

Remark 3  The authors innovatively designed a collision risk function to further improve the A* algorithm. 
Dynamically adjusting the weight factor of path length and collision risk between nodes, thus controlling the 

Traditional A* algorithm Multi-scale A* algorithm

Planning path lengths (m) 4457.404 4205.433

Planning times (s) 57.468 98.763

Number of nodes (pcs) 8053 7942

Optimal paths No Yes

Table 1.  Comparison of performance indexes of A* algorithm before and after improvement.

 

Fig. 6.  Optimal path planning for Zhoushan Islands under multi-scale A* algorithm.
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influence level of collision risk on path planning. The improved algorithm has better generalization ability for 
different sea areas under various geomorphic conditions.

Discussions
This paper studies the optimal path planning problem for ships in complex environmental sea areas where 
shipwrecks, aground and collisions may occur. The optimal path is planned by constructing multi-scale nautical 
charts and utilizing an improved A* algorithm. In processing the nautical charts, this paper uses the “quadtree” 
algorithm for raster construction, which is the same as most studies nowadays. However, the difference is that 
most studies divide the raster into equal scales, while this paper adopts multi-scale raster division to avoid 
detailed raster division in large areas without obstacles, which increases the computational burden of the 
algorithm. For the selection of the path planning algorithm, the A* algorithm is used by most scholars due to the 
characteristics of its accuracy and efficiency. It is also constantly being improved by scholars since it is inspiring 
and extensible. Some scholars optimize global path planning by applying the A* algorithm in combination 
with the rest of the algorithms13,14,27, and this kind of research can simplify the computation process while 
guaranteeing the path accuracy. In the process of combining different algorithms with the A* algorithm, the 
research on global path planning will be more refined in terms of breadth and depth, however, it does not 
improve the A* algorithm itself. In order to deepen the study of the A* algorithm itself, scholars have carried 
out more research. Some scholars have improved the heuristic cost by considering the obstacle information to 
improve the heuristic function of the A* algorithm, which improves the efficiency of the algorithm execution 
while reducing the number of turning points15,16. There are studies on predicted trajectories that decompose 
the predicted trajectories generated by the mathematical model into a series of waypoints on a grid map, and 
then execute the A* algorithm to search for methods to improve search efficiency and accuracy28. There is also 
literature on optimization of expanded nodes of A* algorithm, where the design function removes redundant 
nodes thereby reducing the computational burden of the algorithm and smoothing the planning path29.

Fig. 7.  The distance between the current node and the neighboring obstacle nodes.
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Compared to the above existing studies, this paper also improves the A* algorithm by designing a 
comprehensive heuristic function. As compared to the traditional A* algorithm where only the path length is 
considered in the heuristic function, the combined heuristic function considers both the “path length” and the 
“collision risk”. Considering the characteristics of a complex environment with a sea area with many obstacles 
and a dense distribution, the author designs a collision risk function to optimize the heuristic cost of the A* 
algorithm, thereby further optimizing the A* algorithm’s measurement of the relationship between the “shortest 
path” and the “safe path”. This reduces the length of the planned path and the computational cost of the algorithm, 

Fig. 8.  Technology roadmap of A* algorithm considering collision risk.
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while maintaining safety. In contrast to the earlier literature, this study equalized its parameters in different water 
environments with better generalization ability.

This paper presents research ideas for the construction of raster-based complex environment maps and the 
enhancement of the heuristic function of the A* algorithm. Additionally, it contributes to the research on the 
optimal path planning for the safe navigation of ships in complex sea areas. This paper also has some limitations 
that require further research. The algorithm is implemented without considering the interference of external sea 
conditions, and the simulation is conducted under ideal conditions. In addition, the paper’s scope is limited to 
reefs, land, and shallow water areas in the selection of obstacles, with no consideration given to obstacles such 
as buoys and offshore platforms. This is since the position of these types of obstacles may be subject to change 
due to human intervention. It thus follows that the analysis of these types of obstacles, as well as other dynamic 
obstacles such as ships, necessitates the real-time updating of nautical chart data. This is a direction of further 
research for the author.

Conclusions
In this paper, the following conclusions are drawn through theoretical analysis and simulation experiments for 
the collision avoidance problem of ship navigation under complex geomorphic conditions:

	1.	� Innovative design of a collision function by analyzing the collision risk of ship navigation, and combining it 
with the heuristic function of the A* algorithm optimizes the determination of node costs.

	2.	� Applying the A* algorithm considering collision risk for path planning study, the proposed improved algo-
rithm is proved to accomplish the optimal path planning task under complex sea space conditions by simu-
lating the scenario of a ship crossing the Zhoushan Islands sea area.

	3.	� Simulation of A* algorithm considering collision risk with conventional A* algorithm. Under the planning 
premise of guaranteeing the “optimal path”, the improved algorithm considering the risk of collision has 
significantly improved all the practical performance indexes.

Fig. 9.  Flowchart of A* algorithm considering collision risk.
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The proposed method in this paper provides an innovative point for the study of optimal path planning for safe 
navigation of ships in complex sea environments. In the future, the authors will also attempt to acquire collision 
risk information in the environment in real time and design autonomous collision avoidance algorithms for 
ships adapted to dynamic environments. To assist in the study of unmanned, autonomous and safe navigation 
tasks for smart ships.

Data availability
If you want to request the the experimental information and data presented from this study, please contact the 
corresponding author.
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Fig. 10.  Optimal path planning for Zhoushan Islands considering collision risk.
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