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Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things 
(IoT) technology is an advanced technique that is quickly increasing owing to the development of 
a network of organized online devices. In today’s digital era, the IoT is considered one of the most 
robust technologies. However, attackers can effortlessly hack the IoT devices employed to generate 
botnets, and it is applied to present distributed denial of service (DDoS) attacks beside networks. The 
DDoS attack is the foremost attack on the system that causes the complete network to go down. Thus, 
average consumers may need help to get the services they need from the server. The compromised 
or attackers IoT devices want to be perceived well in the system. So, presently, Deep Learning (DL) 
plays a prominent part in forecasting end-users’ behaviour by extracting features and identifying the 
adversary in the network. This paper proposes a Synergistic Swarm Optimization and Differential 
Evolution with Graph Convolutional Network Cyberattack Detection and Mitigation (SSODE-GCNDM) 
technique in the IoT environment. The main intention of the SSODE-GCNDM method is to recognize 
the presence of DDoS attack behaviour in IoT platforms. Primarily, the SSODE-GCNDM technique 
utilizes Z-score normalization to scale the input data into a uniform format. The presented SSODE-
GCNDM approach utilizes synergistic swarm optimization with a differential evolution (SSO-DE) 
approach for the feature selection. Moreover, the graph convolutional network (GCN) method 
recognizes and mitigates attacks. Finally, the presented SSODE-GCNDM technique implements the 
northern goshawk optimization (NGO) method to fine-tune the hyperparameters involved in the GCN 
method. An extensive range of experimentation analyses occur, and the outcomes are observed using 
numerous features. The experimental validation of the SSODE-GCNDM technique portrayed a superior 
accuracy value of 99.62% compared to existing approaches.
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The industrialized achievement of the IoT presents various military and civilian applications for developing the 
connectivity of millions of novel smart devices. These millions of risky internet-connected smart devices cause 
a dangerous security risk in the existence of uncountable cyberattacks. These insecurely protected devices are 
the doorways for hackers’ intrusion and cause problems with the industrialized achievement of IoT1. These 
IoT-prepared devices devise hotspots for attackers to initiate volumetric attacks in the system of Denial-of-
Service (DoS), Distributed DoS (DDoS), spamming, click fraud, etc. Among these cyberattacks, DDoS is the 
most well-known attack created with the help of botnets equipped with unprotected IoT devices2. DDoS attacks 
are often undergone owing to the development of botnets that affect millions of IoT devices. DDoS security 
attacks constantly threaten organizations and individual and company service providers. A DDoS attack utilizes 
various computers to unveil the distributed attack against one or more targets. The dispersed nature of the attack 
upsurges its actual ability and is very hard to identify3. Figure 1exemplifies the general structure of DDoS attacks 
in IoT platforms. With the developments of cloud computing (CC), Artificial Intelligence (AI), and IoT, attackers 
could launch huge-scale DDoS attacks at a lower cost. It is very challenging to identify and protect DDoS attacks. 
In many cases, DDoS network traffic is comparable to the usual one4. Thus, identifying and detecting DDoS from 
massive network traffic is challenging. Many standard mechanisms to identify and inhibit DDoS include attack 
reaction, attack prevention, and attack detection. Network intrusion detection system (NIDS) has become an 
essential module of security creation5.

It identifies unusual system utilization by observing and analyzing the behaviour of a system to identify the 
attack. There are dual kinds of NIDS, specifically, Anomaly-based NIDS and Signature-based NIDS. Signature-
based recognition identifies attacks by gathering and identifying whether there is a particular signature or pattern 
of previous attacks in traffic. However, it could be more effective in DDoS attack recognition because attackers 
frequently change the methods and kinds of attacks. Therefore, it is challenging to identify the signature or pattern 
of an attack6. When a DDoS attack arises on a system, the related traffic will result in unusual system behaviour. 
Therefore, NIDS could attain the equivalent attacks. To overwhelm the limits of these dual techniques, hybrid 
solutions based on either Anomaly-based or Signature-based methods are presented7. Research has presented 
numerous methods for handling DDoS attacks. The common methods utilize multiple machine learning (ML) 
methods to conquer DDoS attacks. Furthermore, hybrid solutions that integrate the two or more ML methods 
are presented. ML models are measured to be a feasible method of identifying DDoS attacks. These methods 
study the patterns behind attacks to identify them before network resources become inaccessible8. Current 
security methods use ML and other detection methods containing host-based IDS (HIDS) and IDS to respond 
to intricate cyber-attacks like DDoS attacks efficiently. The rapid proliferation of smart devices in diverse sectors 
has created unprecedented opportunities for innovation, but it also exposes critical vulnerabilities in network 
security9. As these interconnected devices become integral to daily operations, the potential for cyber threats, 
specifically DDoS attacks, intensifies. These attacks can disrupt services and compromise sensitive data, resulting 
in substantial financial and operational losses. Therefore, enhancing detection and mitigation strategies for such 
threats is crucial to safeguard the integrity of IoT ecosystems. Addressing these threats protects organizations 
and fosters trust in the ongoing adoption of smart technologies10.

This paper proposes a Synergistic Swarm Optimization and Differential Evolution with Graph Convolutional 
Network Cyberattack Detection and Mitigation (SSODE-GCNDM) technique in the IoT environment. The 
main intention of the SSODE-GCNDM method is to recognize the presence of DDoS attack behaviour in IoT 
platforms. Primarily, the SSODE-GCNDM technique utilizes Z-score normalization to scale the input data into 
a uniform format. The presented SSODE-GCNDM approach utilizes synergistic swarm optimization with a 
differential evolution (SSO-DE) approach for the feature selection. Moreover, the graph convolutional network 
(GCN) method recognizes and mitigates attacks. Finally, the presented SSODE-GCNDM technique implements 
the northern goshawk optimization (NGO) method to fine-tune the hyperparameters involved in the GCN 
method. An extensive range of experimentation analyses occur, and the outcomes are observed under numerous 
features. The major contribution of the SSODE-GCNDM technique is listed below.

•	 The SSODE-GCNDM model employs Z-score normalization to standardize input data, which improves the 
technique’s performance and stability. This approach allows for improved comparability among features, ul-
timately enhancing the overall efficiency of the model. Confirming that data is uniformly scaled eases more 
accurate training and evaluation.

•	 The SSODE-GCNDM technique utilizes the SSO-DE for efficient feature selection, substantially improving 
the chosen features’ relevance. This methodology allows the model to concentrate on the most impactful data, 
enhancing its predictive accuracy. Employing the merits of both optimization methods effectively streamlines 
the feature selection process.

•	 The SSODE-GCNDM method effectively utilizes the GCN model to detect and reduce potential attacks, in-
tegrating the merits of graph-based learning. This enables the model to capture intrinsic relationships within 
the data, resulting in enhanced detection accuracy. By employing GCN, the technique improves its capability 
to detect patterns indicative of attacks, thereby strengthening overall safety measures.

•	 The SSODE-GCNDM technique implements the NGO method to fine-tune hyperparameters in the GCN, 
resulting in improved model performance and precision. This optimization method assists in systematically 
exploring the hyperparameter space, resulting in more effective learning results. By enhancing the tuning 
process, the technique substantially improves the capability of the GCN model to handle complex attack 
scenarios.
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•	 Incorporating SSO-DE for feature selection and NGO for hyperparameter tuning within a GCN framework 
underscores a novel and cohesive strategy for improving attack detection accuracy. This novel integration 
employs the merits of diverse optimization techniques, confirming both relevant feature detection and opti-
mal model performance. By synergizing these methods, the approach enhances detection rates and sets a new 
standard for tackling complex security threats in network data analysis.

Review of literature
Sanlı11 proposes a novel approach for mitigating and detecting DoS attacks in IoT systems. The presented 
technique is executed on an FPGA-based platform and tested for performance against various DoS attacks. Abid 
et al.12present a new technique for identifying and classifying DDoS attacks, which is enhanced significantly 
for this atmosphere. As part of the method, the author incorporates CNNs and LSTM methods into a multi-
level deep neural network (DNN) model. With this hybrid structure, intricate temporal and spatial forms are 
spontaneously extracted from raw network traffic data to enable the widespread study and precise recognition 
of DDoS attacks. Kumar and Kumar Keshri13 developed a smart GT-AS numerical method to maximize the 
DDoS attack mitigation efficiency. Furthermore, this tactic could intensely develop the five parameters: memory, 
intruder, hybrid, and energy channel. These could attain a strong security position against DDoS attacks from 
the recently devised IoT. Subsequently, the RB method is advanced to categorize the nodes into dual classes, 
such as malicious and trusted. Furthermore, the presented methods analyze how defence efficiency and energy 
consumption interrelate while estimating the adaptable security methods. Nisa et al.14propose a new method 
named TwophaseVerification for Attack Recognition, which aims to improve SDN security by mitigating 
DoS attacks. The method also contains the execution of packet filtration and ML classifier methods that are 
consequently monitored by the pursued limit of malicious network traffic. Rather than entirely disabling the 
host, the prominence reclines on averting dangerous communication. SVM and K-NN methods are used for 
effectual recognition on the CICDoS 2017 dataset. The method has been used in an atmosphere intended for 
threat recognition in SDN. Kavitha and Ramalakshmi15 propose an effectual DDoS attack recognition and 
inhibition methodology utilizing ML methods. The study analyses the SDN’s performance in IoT networks, 
integrating a massive group of computation devices which utilize multi-controllers.

Musa et al.16 proposed tackling the intrinsic security susceptibilities of SDN atmospheres and emerging 
automatic methods for identifying and mitigating system attacks. Traditional network measuring methods have 
been restricted in the context of SDNs, and the goal of the presented DL and ML methods is to overcome 
these restrictions by offering more precise and effective mitigation and detection of DDoS attacks. This study 
aims to provide a complete analysis of associated studies in SDN anomaly detection current developments, 
classified into dual classes by DLand ML techniques. Aslam et al.17 present an AMLSDM method. The presented 
AMLSDM method advances an SDN-enabled security mechanism for IoT devices with the help of an adaptable 
ML classifier method to attain the effective mitigation and recognition of DDoS attacks. The proposed structure 
uses ML techniques in an adaptable multi-layered feed-forwarding system to effectively recognize DDoS 

Fig. 1.  General structure of DDoS attack in IoT.
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attacks by inspecting the static features of the studied network traffic. Ahmim et al.18 presented method goals to 
identify all DDoS attacks with their particular subgroup. This hybrid method integrates the various categories 
of DL methods, containing CNNs, LSTM, Deep AE, and DNNs. The presented method is composed of dual 
vital levels. The initial one comprises various equivalent sub-NN trained with particular methods. The next 
level utilizes the unmoving initial output integrated with the first data as input. Al Hwaitat and Fakhouri et 
al.19propose a novel Multi-Layer Perceptron (MLP) trainer that utilizes evolutionary computation methods. 
Benlloch-Caballero, Wang, and Calero20 present a new cognitive closed-loop system to present distributed dual-
layer self-protection capabilities to battle against DDoS attacks. Huang et al.21propose BDE-IDS, a bidirectional 
differential evolution-based system for unknown cyberattack detection. This work presents an intelligent Game 
Theory-based Adaptive Security (GT-AS) model to enhance DDoS attack mitigation. Sureshkumar, Venkatesan, 
and Santhosh22 introduce a technique by using Density Peak Clustering Algorithms (DPCAs) to partition 
training sets for size and imbalance reduction.

Anoop et al.23present an Optimized Graph Transformer with a Molecule Attention Network (OGTMAN), 
which incorporates Secure Multi-party Computation (SMC) and differential privacy for enhanced security. The 
model utilizes min-max normalization, N-Tuple Contrastive Learning for feature extraction, and optimized 
feature selection using chi-square statistics. Al-Dunainawi, Al-Kaseem, and Al-Raweshidy24introduce an 
optimized model by using Mininet, Ryu controller, and a 1D-Convolutional Neural Network (1D-CNN) to detect 
and reduce DDoS attacks in SDN environments. Hekmati and Krishnamachari25 introduce a robust solution by 
utilizing the capabilities of GCN. The study also presents a detection mechanism capable of operating efficiently 
even in lossy network environments. Various graph topologies are introduced for modelling IoT networks and 
evaluating them to detect tunable futuristic DDoS attacks. Ali et al.26 present a reactive recovery strategy for link 
failures using a TOPSIS module in an SDN controller to choose alternative paths based on multiple criteria. A 
DDoS detection and mitigation mechanism are also presented by employing blockchain (BC) and ML in SD-
IoT. Rizvi et al.27propose an innovative and highly efficient approach that integrates diverse classification models 
comprising Random Forest (RF), Decision Tree (DT), Gradient Boosting, Linear SVM, Logistics, K-nearest 
neighbours (KNN), and AdaBoost for DDoS attack detection. Kostas, Just, and Lones28 present a model for IoT 
attack detection. This method uses isolated train and test datasets, evaluates various ML models, and applies 
explainable AI to identify key detection features. Sadhwani et al.29 present a scalable system that integrates ML 
and DL methods with optimized data processing to secure IoT devices against DDoS attacks. Aswad et al.30 
propose integrating three deep DL methods, namely recurrent neural network (RNN), LSTM-RNN, and CNN, 
to build a bidirectional CNN-BiLSTM DDoS detection model. Pawar et al.31investigate attacks in IoT and SDN 
environments, exploring the incorporation of BC for enhanced security. The model also utilizes Attention-based 
Convolutional LSTM (At-C-L) to improve detection capabilities. Oladele and Jimoh32 analyze six DNN models, 
exhibiting that LSTM outperforms the other algorithms.

Ma et al.33 provide a comprehensive survey on DDoS defense solutions in Multi-access Edge Computing 
(MEC) networks, exploring security threats, attack types, and current defense strategies. Vincent et al.34 proposes 
a GCN framework to detect FDI attacks by analyzing power network topology and fluctuating state estimations. 
Yang et al.35 propose STMIR, a secure and traceable multikey image retrieval system utilizing privacy-preserving 
Mahalanobis distance comparison, CNN-based feature extraction, and encrypted watermarking for secure 
retrieval and user tracking. Feng et al.36 introduces a learning-based DDoS detection approach using an 
enhanced k-nearest neighbors (KNN) approach with a k-dimensional (KD)-tree for faster detection and fine-
grained classification of DDoS sources by IP risk level. Chen et al.37 propose an efficient and secure content-
based image retrieval scheme for Cloud-assisted IoT, utilizing lattice-based homomorphic encryption, CKKS 
batch processing, and Private Information Retrieval to improve privacy and reduce computational overhead, 
with proven security and efficiency. Lo et al.38 proposes XG-BoT, an explainable deep GNN for botnet node 
detection. It also utilizes a reversible residual connection and graph isomorphism network for accurate detection 
and includes an explainer for automatic forensics, highlighting suspicious network flows and botnet nodes. Ma 
et al.39 presents a DDoS defense using a Graph Convolutional Neural Network (GCNN) for accurate attack 
detection and dynamic whitelist-based reduction with fast traffic rerouting to ensure service continuity. Li et al.40 
presents AT-GCN, a DDoS attack path tracing system using a knowledge base and GCN, with a Tracing-Sample 
algorithm and dynamic traceability algorithm recommendations based on user needs. Qian et al.41proposes 
a distributed botnet detection methodology by using graph partitioning and GCNs, with METIS for efficient 
traffic division and diagonal enhancement to ensure accurate detection. Jemal, Cheikhrouhou, and Haddar42 
improves IoT security by using CNNs to detect and counter DDoS and DoS attacks. Abinesh et al.43 introduces 
a Deep GCNN for effectually botnet detection, particularly for Mirai and Bashlite attacks, which are similar to 
DDoS attacks.

Lee and Han44propose a causal attention graph convolutional network (CAGCN) that utilizes node and 
neighbor attention to reduce bias from attacks, ensuring robust performance even under stronger attacks. 
Sanap and Aher45 proposes a DCNN-based SVMAK for DDoS detection and mitigation, utilizing WSMOTE 
to address data imbalance and HGSO for feature selection. Khalid Alkahtani et al.46 presents an Optimal 
GCNN based Ransomware Detection (OGCNN-RWD) technique for IoT environments, using learning 
enthusiasm for teaching learning-based optimization (LETLBO) for feature selection and the GCNN model 
with hyperparameters optimized by harmony search algorithm (HSA). Saunders et al.47 presents the design of 
a GCN-based DDoS detection system. Kisanga et al.48 introduces an Activity and Event Network (AEN)-based 
supervised Graph Convolutional Network (GCN) model. Altaf et al.49introduces a GGCN framework for botnet 
detection in IoT networks, employing time-stamped multi-edge graphs and a gated graph model to capture 
temporal patterns in network traffic. Alhayani and Murphy50presents an efficient ML-based DDoS detection 
approach by employing chi-square for feature selection to ensure efficiency with minimal input features. Thota, 
Prathibhavani, and Venugopal51 present a new hybrid approach, called GNN-WGAN, to efficiently detect bots 
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in IoT-based smart city networks by integrating Graph Neural Network (GNN) and Wasserstein Generative 
Adversarial Network (WGAN). Barsellotti et al.52 introduces a two-level hierarchical graph representation and 
GNN method to integrate traffic- and flow-level relationships, maximizing information from the traffic structure 
without needing stateful features.

The existing studies for mitigating and detecting DDoS attacks portray diverse limitations. One model 
employs an FPGA-based platform, which may deter scalability and adaptability across several IoT environments, 
concentrating primarily on DoS attacks while neglecting other potential threats. A hybrid model incorporating 
CNNs and LSTMs may be computationally intensive, impacting real-time detection capabilities. Moreover, 
reliance on a limited set of parameters might oversimplify mitigation strategies, and specific methods could face 
difficulty with high volumes of malevolent traffic, resulting in false negatives. The complexity of some hybrid 
models may result in longer training times and extensive resource requirements. Additionally, conventional 
measurement methods may only effectually address some security vulnerabilities in dynamic conditions, and the 
efficiency of specific models could diminish when faced with growing DDoS attack strategies. Lastly, while some 
approaches underscore multi-criteria decision-making, they risk oversimplifying intrinsic scenarios, potentially 
resulting in suboptimal outcomes. Despite enhancements in DDoS attack detection and mitigation, crucial 
research gaps remain in the adaptability and scalability of these methods across various IoT environments. 
Many existing approaches concentrate on specific attack vectors or depend on limited parameters, which can 
oversimplify complex threat landscapes. Additionally, there is a need for more robust models that effectually 
balance computational efficiency with high detection accuracy in real-time scenarios. Enhanced integration of 
explainable AI techniques could also improve trust and transparency in detection mechanisms.

Proposed Method
This manuscript proposes the SSODE-GCNDM methodology in the IoT environment. The main intention 
of the SSODE-GCNDM method is to recognize the presence of DDoS attack behaviour in IoT platforms. It 
encompasses four phases: data normalization, feature selection, classification, and parameter tuning, as 
demonstrated in Fig. 2.

Phase I: Z-score normalization
Primarily, the SSODE-GCNDM technique involves Z-score normalization to scale the input data into a uniform 
format53. The Z-score normalization is a powerful technique for standardizing data, as it converts features to have 
a mean of zero and a standard deviation (SD) of one. This method is specifically beneficial when dealing with 
datasets that exhibit varying scales, confirming that all features contribute equally to the model’s performance. 
By reducing the influence of outliers, Z-score normalization improves optimization algorithms’ stability and 
convergence speed. Compared to other normalization methods, namely min-max scaling, Z-score normalization 
is less sensitive to extreme values, making it a more robust choice in various applications. Its capability to 
facilitate better interpretability of results also assists in more precise insights during model evaluation. Overall, 

Fig. 2.  Overall process of SSODE-GCNDM technique.
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its efficiency in preparing data for complex models makes it an excellent choice in scenarios needing precision 
and reliability.

Z-score normalization is an arithmetical model employed to regulate data by converting it into a mutual 
scale, usually with a mean of 0 and an SD of 1. Z-score normalization aids in equating and examining network 
traffic patterns by removing the effects of opposing units and scales. This procedure includes deducting the 
mean of the data and isolating it by its SD, permitting a more uniform depiction of traffic features. Using Z-score 
normalization, anomalous behaviour indicative of DDoS attacks is more easily identified as deviations from 
the norm. This technique enhances the effectiveness of anomaly detection algorithms by providing a consistent 
basis for comparison across diverse IoT devices and network conditions. Consequently, it aids in improving the 
overall accuracy and efficiency of DDoS recognition and mitigation strategies.

Phase II: feature selection
For the feature selection process, the presented SSODE-GCNDM technique utilizes the SSO-DE approach54. 
This method presents a unique merit by integrating the strengths of both optimization models. The SSO model 
effectually explores the solution space through collaborative swarm intelligence, endorsing diversity and 
adaptability, while Differential Evolution (DE) improves convergence speed and robustness in finding optimal 
feature subsets. This hybrid approach is specifically useful for high-dimensional datasets, where conventional 
techniques may need to assist computational efficiency and overfitting difficulty. Compared to other feature 
selection methods, SSO-DE balances exploration and exploitation, resulting in more relevant and compact 
feature sets. Its capacity to dynamically adjust to the data landscape confirms a more tailored feature selection 
process, ultimately enhancing the model’s performance. This synergy enhances predictive accuracy and simplifies 
model interpretation and implementation. Figure 3 illustrates the structure of the SSO-DE model.

Natural swarms’ synergistic and cooperative behaviour stimulates the advanced optimization approach 
SSOA. This model utilizes an agent swarm that collaborates to solve complex issues successfully. The key process 
of the suggested SSOA approach is presented below. The optimization process begins with selecting candidate 
solutions in Eq. (1).

Fig. 3.  Structure of the SSO-DE model.
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	 X = rand (N, Dim) * (UB − LB) + LB� (1) 

Equation (1) makes a matrix X  of size (NxDim) with randomly generated values inside known ranges. The 
framework of these matrices is assumed in Eq. (2)

	

X =




x1,1 . . . x1,Dim

...
. . .

...
xN,1 . . . xN,Dim


� (2)

 

whereas N  characterizes solutions or particles, Dim symbolizes variables or dimensions of the known problem, 
and UB and LB represent upper and lower limit vectors for every problem space dimension.

The candidate solutions (X) are upgraded using the Eq. (3).

	 Xnew (i, j) = X (i, j) + v (i, j)� (3) 

Now, Xnew(i, j) signifies the original optimization position j of the ith candidate solution, X (i, j) stands 
for present position j of the ith candidate solution, v (i, j) characterizes the position j of the ith value of the 
candidate solution.

Additionally, the velocity updated equation introduces a dynamic attraction equation that impacts the 
particles’ movement near more favourable areas of the search space. These equations are calculated to adaptably 
guide the particles depending on the global and local attraction of the positions.

	 vnew (i, j) = IW V + P BC + GBC + DAC + ANIC + MDC � (4) 

The subsequent equations design the vnew(i, j) values. The inertia weight value (IWV) is computed in the 
following:

	 IW V = w (t) *v (i, j)� (5) 

Here, w represents an adaptable method for controlling the balance between dynamical exploitation and 
exploration using the inertia weight parameter (w).

The adaptable neighbourhood communication equation encourages a concentrated search space exploration 
by providing more weight to particles with greater fitness, permitting the swarm to meet more powerfully. 
Present an equation that dynamically adjusts the interaction power between particles depending on their fitness 
values. This equation allows particles with superior fitness to have a robust inspiration for the movement of their 
neighbours. The inertia weight is upgraded at every iteration via an adaptable equation: 

	 w (t + 1) = w (t) * (1 − exp (−k*t))� (6) 

Now, k denotes the constant that regulates the decline in the inertia weight rate, and t symbolizes the present 
iteration. This model slowly moves from exploration to exploitation by decreasing the inertia weight on time, 
encouraging convergence, and fine-tuning near the optimum solution. The personal best coefficient (PBC) is 
computed in the following:

	 P BC = r1* (eps*rand (pbest) − Xi)� (7) 

Here, r1 represents a value of random, eps provides a smaller value, rand (pbest) denotes a random solution 
from the present candidate solutions, and Xi offerings the i th solution number. The global best coefficient 
(GBC) is computed in the following:

	 GBC = r2*gbestt − Xi� (8) 

Whereas r2 denotes random value, gbestt signifies the globally best solution (at several iterations t), and Xi 
gives the number of solutions. Consists of a diverse conservation equation that inspires the exploration of varied 
areas inside the search space. The dynamic attraction coefficient (DAC) is computed in the following:

	
DAC = r3*

attracti

c1 − Xi� (9)
 

Here, r3 represents randomized value, attracti characterizes the position with the greater local attraction value 
inside the neighbourhood of the particle i, cl denotes the added acceleration coefficient for the dynamically 
attracted word, and Xi provides the number of solutions i. The dynamically attracted word leader’s particles 
near high attracted positions, endorsing fast convergence near optimum solutions. The adaptive neighbourhood 
interaction coefficient (ANIC) is computed in the following:

	 ANIC = r4*rand (bestf) − bestfi� (10) 

Now, r4 signifies a randomly generated value, rand (bestf) denotes a randomly selected fitness value from the 
present fitness solutions, and bestfi represents the fitness value of the ith solution. The diversity maintenance 
coefficient (DMC) is measured as below:
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DMC = r5*

diversityi

c2 − Xi� (11)
 

Whereas r5 stands for randomly formed value, c2 is an added accelerated coefficient for the term of diversity. 
diversityi characterizes a position inside the swarm that increases the diversity during the ith particle 
neighbourhood.

DE Model.
The DE model presented by Storn and Price is an efficient and robust search model intended to challenge 

complicated, constant, non-linear functions55. The Conventional DE (method begins by initializing a population 
of N  individuals signified as vector 

−→
X i, whereas 

−→
X i = (Xi1, Xi2, Xi3, . . . , Xin) , i = 1,2, 3, . . . , N , and 

n represent the dimension of the problem. The DEA technique has integrated three main operators: crossover, 
selection, and mutation. The mutation and crossover operators are used to give new candidate vectors. 
Simultaneously, a selection approach has been applied to control the survival of both the parent and the offspring 
in the following generation.

Stage of mutation
An individual with genetic mutations has been characterized based on Eq. (12) whereas 

−→
V i = (vi1, vi2, vi3, vin) 

and is made using a mutation operator. Numerous mutation models are recognized in this work. A unique often 
applied operator is ‘DE/best/1’, which is described as:

	
−→
V i (t) =

−→
X

*
(t) + F

(−→
X α (t) − −→

V β (t)
)

� (12)
 

Where t characterizes the present iteration, 
−→
X

*
(t) symbolizes the finest individual with the lower f

(−→
X

)∗
. 

Now, α  and β  are two indices selected at random between the range [1, N ], whereas a, b, and i are all distinct 
from one another α ̸= β ̸= i ∈ 1 . . . , N ). In addition, F ∈ [0,1] characterizes a mutation scaling factor 
manipulating the discrepancy variation among two individuals.

Stage of crossover
The crossover parameter has been applied to every mutation individual, and it is related to a targeted individual −→
X i to offer an experimental vector, 

−→
U i = (ui1, ui2, ui3, . . . , ui,n). Binomial and exponential crossovers are 

regularly used crossover tactics. The binomial crossover has been stated based on Eq. (13):

	
ui,j (t) =

{
vi,j (t) , if rj ≤ CR or j = R;
xi, j (t) , Otherwise � (13)

 

The index R symbolizes a dimensionally selected random number from the set 1, 2, . . . , n. This is completed 
to promise that at the smallest one dimension from 

−→
V i (t), current is current in the individual 

−→
U i, which 

varies from its targeted vector, 
−→
V i. The crossover rate (CR) represents the value ranging between 0 and 1, and 

rj ∈ [0,1] stands for a randomly formed number distributed uniformly among 0 and 1.

Stage of selection
A one-to-one greedier selection has been applied in DE to regulate when the experimental individual 

−→
U i (t) will 

be incorporated into the targeted population for the following generation. The one-to‐one selection approach 
controls by defining the survival of the more suitable person among the experimental individual 

−→
U i (t) and its 

targeted counterpart 
−→
X i. The expression for minimization problems has been based on Eq. (14):

	

−→
X i (t + 1) =

{ −→
U i (t) , if f

(−→
U i (t)

)
≤ f

(−→
X i (t)

)
−→
X i (t) , otherwise

� (14)
 

Here, f  denotes the function of the objective. The process mentioned above is iterated till an end requirement 
is attained.

The SSOA integration with DE influences the balancing powers of both models to improve optimization 
performance. SSO outshines exploring the searching space using the cooperative interaction and behaviour 
of swarm agents, which allows efficient exploration of different areas. DE, alternatively, concentrates on 
developing these areas over crossover operations and differential mutation. SSO is initially applied to recognize 
and encourage search space regions during this hybrid model. After identifying this region, DE has been used 
to fine-tune the solutions. This grouping increases the exploration or exploitation stages, leading to a more 
effectual searching method and improved optimizer outcomes. The incorporation is mathematically defined in 
the following:

Updating the position of all agents in the swarm using:

	 xi (t + 1) = xi (t) + α · (xbest (t) − xi (t)) + β · (xj (t) − xk (t)) ,� (15) 
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Here, xi (t) represents the position of the i − th agent at time t, xbest (t) denotes the best position founded by 
the swarm, xj (t) and xk (t) are positions of agents selected at random, and α  and β  are coefficients adjusting 
the impact of the best agent and the changes among other agents.

Afterwards, exploration of SSO, use DE for local refinement:

	 vi = xr1 + F · (xr2 − xr3) ,� (16) 

Here, vi ​represents the mutant vector for the i − th individual, xr1, xr2, and xr3 are individuals selected 
randomly from the population, and F  represents a scaling factor. Create the experimental vector ui ​ using 
crossover and choose the best individuals for the following generation. These hybrid models associate the wide-
ranging searching abilities of SSO with the accurate optimization algorithms of DE, resulting in an efficient and 
robust technique for composite optimizer difficulties.

In the SSO-DE method, the objectives are combined into a solitary objective formula such that a current 
weight classifies every objective’s importance. In this study, a fitness function (FF) that incorporates both 
objectives of FS is utilized and shown in Eq. (17).

	
F itness (X) = α · E (X) + β ∗

(
1 − |R|

|N |

)
� (17)

 

Whereas Fitness(X) signifies the fitness rate of subset X, E (X) denotes the classification rate of error by 
utilizing the chosen features within the X subset. |R| and |N | are the counts of selected features and novel 
features within the dataset. Correspondingly, α  and β  are the weights of the classification error and the 
decrease ratio, α ∈ [0,1] and β = (1 − α ).

Phase III: attack detection using GCN technique
Moreover, the GCN technique recognizes and mitigates DDoS attacks56. This model for attack detection utilizes 
the ability to model complex relationships and dependencies in data, which is particularly advantageous in 
network security contexts. GCNs capture the structural data inherent in graph-structured data, allowing them 
to detect patterns and anomalies that may indicate potential attacks. Unlike conventional techniques that treat 
features independently, GCNs integrate the interconnections between data points, giving a richer understanding 
of the overall system. This capability enhances detection rates, mainly in scenarios with intricate attack patterns. 
Moreover, GCNs are adaptable to varying data types and can scale well with increasing data complexity. Their 
performance extracting meaningful insights from relational data makes GCNs a superior option for enhancing 
security measures in dynamic environments. Figure 4 depicts the architecture of the GCN model.

Fig. 4.  Structure of GCN.
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During these studies, layers of GCN were selected according to the graphical convolution operator. The 
operator was presented to extract features from molecular fingerprints. GCNs are notorious for their capacity 
to make node embeddings that take necessary structural information from the graph. This is mainly helpful in 
tasks requiring understanding objects’ connections and relationships. GCNs use a convolution process similar to 
traditional CNNs to combine information from adjacent nodes but also slot in distanced information of the local 
area. The sharing of parameters enables the GCN scalability, for the parameters are shared uniformly through 
each node. The operator of GCN follows the layer-to-layer rule of propagation that is described as:

	
H(l+1) = σ

(
∼
D

− 1
2 ∼

A
∼
D

− 1
2

H(l)W (l)
)

� (18)
 

Here, H(l) signifies the input graph by l th layer, and H(l+1) symbolizes the output by the l + 1 th layer. The 
matrix 

∼
A= A + IN  is the adjacent matrix with additional self-loops to every node. The matrix 

∼
D signifies a 

diagonal matrix delineated as 
∼
Dii = Σ j

(∼
A

)
. The training matrix precise to the layer is denoted as W (l), and 

σ  symbolizes the activation function implementation. Equation (18) is inspired by an initial‐order estimate of 
training local spectral filters gθ  on graphs. A spectral convolution (meant as *) from the input graph 

∼
x using a 

filter gθ  parametrized by θ  within the Fourier domain is specified as:

	 gθ *x = Ugθ UTX � (19) 

Now, U  symbolizes the eigenvectors matrix, with its eigenvalues signified as Λ , gained from 
L = IN − D− 1

2 AD− 1
2 = UΛ U , whereas Dii =

∑
j
(A) denotes the diagonal matrix. By stating gθ  

for Λ  function and estimating it over Chebyshev polynomials truncation equal to the Kth order, the L 
eigendecomposition is calculated, resulting in:

	
gθ *x ≈

∑ K

k=0
θ ′

kTk

(∼
L

)
x� (20)

 

Here, θ ′  denotes the Chebyshev coefficients vector, and Tk

(∼
L

)
 represents the kth Chebyshev polynomial 

utilized to 
∼
L= 2

λ max
L − IN  with λ max indicating the maximal matrix eigenvalue Λ .

Decreasing the parameter counts helps address streamlining and overfitting operations in each layer. By 
limiting the order of Chebyshev to K = 1 and estimating the λ max value to 2 (assuming that neural network 
parameters regulate these scale changes in training), Eq. (20) facilitates:

	
gθ *x ≈ θ

(
IN + D− 1

2 AD− 1
2

)
x� (21)

 

Continual implementation of these operators can lead to numerical variabilities, producing both vanishing 
gradients and exploding, mainly in connection with DNN techniques. Renormalization habits have been 
suggested to address these problems. Over continuous pooling operation applications, information from a node 
is transmitted over progressively different areas. For example, with kl concatenation layers of GCN, inspiration 
is extended to the kth

l -order area near node i. Finally, the GCN layer output is served over an activation function 
σ  to present non-linearity. Hence, the operation at every layer l contains the operator of GCN in Eq. (18) using 
the PReLU operator applied by the activation function:

	
fa (y) =

{
y if y ≥ 0
β y if y < 0 � (22)

 

Phase IV: NGO-based parameter tuning
Finally, the presented SSODE-GCNDM model implements the NGO method to fine-tune the hyperparameters 
involved in the GCN method57. This method is an efficient parameter-tuning technique motivated by goshawks’ 
hunting behaviours, enabling it to explore the solution space effectively. Its adaptive search mechanism is 
specifically beneficial for optimizing hyperparameters in complex models, resulting in improved performance 
and accuracy. The capability of the NGO model to balance exploration and exploitation assists in preventing 
premature convergence, a general problem in conventional optimization methods. Compared to other 
techniques, namely grid or random search, NGO presents a more systematic and intelligent approach, often 
needing fewer evaluations to attain optimal settings. This efficiency not only saves computational resources but 
also accelerates the tuning process. Moreover, NGOs can be easily integrated with diverse ML models, making it 
a versatile choice for diverse applications in model optimization. Its efficiency in attaining high-quality solutions 
distinguishes it from conventional tuning methods. Figure 5 demonstrates the structure of the NGO model.

Stimulated by the predatory behaviour of the northern goshawk, the NGO captures every northern goshawk 
as an individual of a population and extracts the predatory behaviour into 2 phases. The initial phase is to attack 
and explore prey that replicates the group behaviour by recognizing the location of the present best solution 
and inducing every individual to update their position over the optimal solution, demonstrating the global 
exploration abilities. The next phase represents the escaping behaviour of prey, implying the local exploitation 
abilities.
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Initialization.
NGO believes every northern goshawk is an individual of a population that is a possible solution, searching 

for the finest value in the potential solution space by transferring. Similarly, in swarm intelligence algorithms 
(SIA), NGO makes initial populations by randomly generating earlier populations. During the mathematical 
approach, every individual symbolizes a D-dimensional vector, N individuals establish the complete population, 
and the population is an N × D matrix. The population’s mathematical technique is depicted in the following 
equation.

Fig. 5.  Architecture of the NGO approach.
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X =




X1
...

Xi

...
XN




N× M

=




x1,1 · · · x1,j · · · x1,M

...
. . .

...
. . .

...
xi,1 · · · xi,j · · · xi,M

...
. . .

...
. . .

...
xi,1 · · · xi,j · · · xi,M




N× M

� (23)

 

Now, the population N  and the individual’s position are characterized by X  and Xi. Individually, Xi and j  
represent the value of the jth dimension, and M  denotes individual counts and the larger dimension. The FF 
signifies the objective function.

Attack and Identification of Prey.
The prey attack and search is the primary phase of the NGO in every iteration, which pretends the optimal 

solution as prey and every individual presents the attack. During these phases, each individual recognizes 
the position of the present best solution and upgrades their position depending on these optimum solutions. 
The leading resolution is to allow the northern goshawk individual to more commonly hunt the possible 
solution space. Hence, a global search has been performed. Eqs. (24) − (26) characterize the mathematical 
representation for the first stage.

	 Pi = XZ � (24) 

	
xnew1

i,j = {xi,j +r(pi,j −I∗xi,j),Fpi
<Fi

xi,j +r(xi,j −pi,j),Fpi
≥ Fi

� (25)
 

	
Xi = {xnew1

i ,F new1
i <Fi

Xi,F new1
i

≥ Fi
� (26)

 

Here, i = 1,2, · · · , N , I  value is 1 or 2, and r = rand ( 0,1).Pi denotes the candidate solution. FPi  represents 
the value of an objective function. xnew1

i  symbolizes the new position of the initial phase and xnew1
i,j  is its jth 

dimension. F new1
i  characterizes the value of the objective function of the initial phase.

Operation of Escape and Chase.
The 2nd phase represents escaping and chasing prey, and the local exploitation is performed by mimicking the 

local actions of prey to affect the individual position of the northern goshawk. The position updating equation 
of the 2nd phase has been exposed in Eqs. (27) − (28):

	 xnew2
i,j = xi,j + R (2r − 1) xi,j � (27) 

	
Xi = {xnew2

i ,F new2
i <Fi

Xi,F new2
i

≥ Fi
Z = 1,2, · · · I, · · · N � (28)

 

Now, xnew2
i  stands for an original position in the 2nd phase and xnew2

i.j  represents its value in the jth 
dimension. F new2

i  characterizes the value of the objective function of 2nd phase. R denotes the searching 
radius. The R expression is shown below

	
R = 0.02

(
1 − t

T

)
� (29)

 

whereas t signifies the number of iterations, T  indicates the maximum number. R should reduce as the number 
of iterations upsurges, demonstrating that the searching radius of the NGO bonds in the advanced iteration 
phases, thus improving the model’s local exploitation proficiency. These methods have been essential to NGOs’ 
achieving better optimization accuracy than others. Every iteration of the NGO process includes these two 
stages. Upon accomplishment of the maximal iteration boundary, the algorithm ends.

Fitness selection is a substantial feature that induces the performance of the NGO method. The hyperparameter 
choice process includes the encoding methodology to assess the efficiency of the candidate results. In this study, 
the NGO method studies precision as the primary criterion for designing the FF.

	 F itness = max (P )� (30) 

	
P = T P

T P + F P
� (31)

 

T P  implies the true positive, and F P  signifies the false positive value.

Performance validation
The simulation validation of the SSODE-GCNDM technique is studied utilizing the dataset58. The dataset 
contains 1600 samples under dual-class labels, as represented in Table 1. The ten features are Represents the total 
duration of the captured packets (tot_dur), Placeholder for nanoseconds part of the duration (dur_nse), Time 
difference between consecutive packets (dt), Duration between consecutive packets (dur), received kilobits per 
second (rx_kbps), Determines the packet protocol (Protocol), Transmitted kilobits per second (tx_kbps), Rate of 
packet arrival per second (pktrate), Total kilobits per second (tot_kbps), and Port number (port_no). But, only 
six features are selected: Time difference between consecutive packets (dt), Rate of packet arrival per second 
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(pktrae), Total kilobits per second (tot_kbps), Duration between consecutive packets (dur), Transmitted kilobits 
per second (tx_kbps), and received kilobits per second (rx_kbps).

The suggested technique is simulated using the Python 3.6.5 tool on a PC with an i5-8600k, 250GB SSD, 
GeForce 1050Ti 4GB, 16GB RAM, and 1 TB HDD. The parameter settings are learning rate: 0.01, activation: 
ReLU, epoch count 50, dropout: 0.5, and batch size: 5.

Figure 6 reports a set of confusion matrices produced by the SSODE-GCNDM method on different epochs. 
On 500 epochs, the SSODE-GCNDM model has identified 991 samples as DDoS attacks and 579 samples 
as normal. In addition, on 1000 epochs, the SSODE-GCNDM method has identified 999 samples as DDoS 
attacks and 596 samples as normal. Followed by, on 1500 epochs, the SSODE-GCNDM model has identified 994 
samples into DDoS attack and 587 samples as normal. Finally, on 2500 epochs, the SSODE-GCNDM technique 
has approached 994 samples into DDoS attack and 591 samples into normal.

The DDoS recognition outcomes of the SSODE-GCNDM method are determined under distinct epochs in 
Table 2; Fig. 7. The table values state that the SSODE-GCNDM method correctly recognized DDoS attacks and 
normal samples. On 500 epochs, the SSODE-GCNDM method provides an average accuy  of 97.80%, precn of 
98.20%, recal of 97.80%, Fmeasure of 97.99%, and GMeans of 98.00%. Likewise, on 1000 epochs, the SSODE-
GCNDM methodology offers an average accuy  of 99.62%, precn of 99.72%, recal of 99.62%, Fmeasure 
of 99.67%, and GMeans of 99.67%. Moreover, on 1500 epochs, the SSODE-GCNDM methodology gains an 
average accuy  of 98.62%, precn of 98.85%, recal of 98.62%, Fmeasure of 98.73%, and GMeans of 98.73%. 

Fig. 6.  Confusion matrices of SSODE-GCNDM technique (a-f) Epochs 500–3000.

 

Class No. of Samples

DDoS Attack 1000

Normal 600

Total Samples 1600

Table 1.  Details of dataset.
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Finally, on 3000 epochs, the SSODE-GCNDM methodology provides an average accuy  of 98.05%, precn of 
98.35%, recal of 98.05%, Fmeasure of 98.19%, and GMeans of 98.20%.

In Fig. 8, the training (TRA) and validation (VLA) accuracy outcomes of the SSODE-GCNDM approach 
under epoch 1000 are displayed. The accuracy values are computed for 0–1000 epochs. The figure highlighted 
that the TRA and VLA accuracy values display a rising tendency, which indicates the ability of the SSODE-
GCNDM model to improve performance over several iterations. Also, the TRA and VLA accuracy remains 
closer over the epochs, showing low minimal overfitting and enhanced performance of the SSODE-GCNDM 
model, guaranteeing consistent prediction on unseen samples.

Figure 9 displays the TRA and VLA loss graph of the SSODE-GCNDM model at epoch 1000. The loss rates are 
computed for 0–1000 epochs. It is signified that the TRA and VLA accuracy rates display a lower trend, notifying 
the ability of the SSODE-GCNDM method to balance a trade-off between data fitting and generalization. The 
continual reduction in loss values guarantees the enhanced performance of the SSODE-GCNDM methodology 
and tunes the prediction results over time.

In Fig.  10, the precision-recall (PR) curve analysis of the SSODE-GCNDM approach under epoch 1000 
interprets its performance by plotting Precision against Recall for all the classes. The figure shows that the SSODE-
GCNDM approach continuously accomplishes improved PR values across different class labels, representing 
its capability to maintain a significant portion of true positive predictions amongst each positive prediction 
(precision) while capturing a large proportion of actual positives (recall). The steady rise in PR results among all 
classes depicts the effectiveness of the SSODE-GCNDM technique in the classification process.

In Fig. 11, the ROC curve of the SSODE-GCNDM model is studied. The outcomes imply that the SSODE-
GCNDM model reaches enhanced ROC outcomes over each class under epoch 1000, representing a significant 
ability to discriminate the classes. This reliable tendency of improved ROC values over various classes indicates 
the efficient performance of the SSODE-GCNDM approach in predicting classes, emphasizing the robust nature 
of the classification process.

The comparative analysis of the SSODE-GCNDM methodology with existing approaches is illustrated in 
Table 3; Fig. 1259–63. The simulation result indicated that the SSODE-GCNDM approach outperformed better 
performances. Regarding accuy , the SSODE-GCNDM approach has a better accuy  of 99.62%. In contrast, the 
Logistic Regression (LR), KNN, RF, DT, AdaBoost, XGBoost, Multi-Layer Perceptron (MLP), and DNN, Quantum 
CNN (QCNN), global search strategy of the coyote optimization algorithm with Improved deep neural network 
(COA-GS-IDNN), Grey Wolf Optimizer and Long Short-Term Memory (GWO-LSTM), and Autoencoder (AE) 
methods have the lowest accuy  of 91.10%, 97.00%, 98.54%, 98.36%, 98.09%, 98.34%, 98.98%, 99.37%, 99.25%, 
98.71%, 99.10%, and 98.95%, correspondingly. Likewise, for precn, the SSODE-GCNDM method has a high 
precn of 99.72%, while the LR, KNN, RF, DT, AdaBoost, XGBoost, MLP, DNN, QCNN, COA-GS-IDNN, 
GWO-LSTM, and AE methodologies have minimal precn of 91.00%, 97.00%, 98.52%, 98.64%, 98.08%, 98.65%, 

Class Accuy P recn Recal F measure GMeans

Epoch − 500

DDoS Attack 99.10 97.92 99.10 98.51 98.51

Normal 96.50 98.47 96.50 97.47 97.48

Average 97.80 98.20 97.80 97.99 98.00

Epoch − 1000

DDoS Attack 99.90 99.60 99.90 99.75 99.75

Normal 99.33 99.83 99.33 99.58 99.58

Average 99.62 99.72 99.62 99.67 99.67

Epoch − 1500

DDoS Attack 99.40 98.71 99.40 99.05 99.05

Normal 97.83 98.99 97.83 98.41 98.41

Average 98.62 98.85 98.62 98.73 98.73

Epoch − 2000

DDoS Attack 99.30 97.83 99.30 98.56 98.56

Normal 96.33 98.80 96.33 97.55 97.56

Average 97.82 98.32 97.82 98.06 98.06

Epoch − 2500

DDoS Attack 99.40 99.10 99.40 99.25 99.25

Normal 98.50 98.99 98.50 98.75 98.75

Average 98.95 99.05 98.95 99.00 99.00

Epoch − 3000

DDoS Attack 99.10 98.22 99.10 98.66 98.66

Normal 97.00 98.48 97.00 97.73 97.74

Average 98.05 98.35 98.05 98.19 98.20

Table 2.  DDoS attack recognition outcome of SSODE-GCNDM technique under distinct epochs.
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98.67%, 99.17%, 99.12%, 99.41%, 98.87%, and 98.82%, respectively. Finally, based on Fmeasure, the SSODE-
GCNDM method has superior Fmeasure of 99.67% while the LR, KNN, RF, DT, AdaBoost, XGBoost, MLP, 
DNN, QCNN, COA-GS-IDNN, GWO-LSTM, and AE techniques exhibited the lowest Fmeasure of 91.00%, 
97.00%, 98.79%, 97.82%, 98.35%, 98.46%, 98.61%, 98.82%, 98.59%, 98.70%, 98.82%, and 98.82%, respectively.

In Table  4; Fig.  13, the comparative results of the SSODE-GCNDM approach are specified in terms of 
computational time (CT). The outcomes suggest that the SSODE-GCNDM approach gets better performance. 

Fig. 7.  Average outcome of SSODE-GCNDM technique (a) Epochs 500, (b) Epochs 1000, (c) Epochs 1500, (d) 
Epochs 2000, (e) Epochs 2500, (f) Epochs 3000.
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Based on CT, the SSODE-GCNDM approach offers a reduced CT of 05.92s whereas the LR, KNN, RF, DT, 
AdaBoost, XGBoost, MLP, DNN, QCNN, COA-GS-IDNN, GWO-LSTM, and AE models attain better CT values 
of 11.68s, 10.61s, 14.17s, 09.91s, 07.42s, 11.96s, 11.14s, 12.45s, 10.07s, 09.12s, 13.11s, and 12.20s, correspondingly.

Conclusion
This manuscript proposes the SSODE-GCNDM technique in the IoT environment. The main intention of the 
SSODE-GCNDM method is to recognize the presence of DDoS attack behaviour in IoT platforms. Primarily, 
the SSODE-GCNDM technique involves Z-score normalization to scale the input data into a uniform format. 
The presented SSODE-GCNDM technique utilizes the SSO-DE method for the feature selection process. 
Moreover, the GCN technique is employed to recognize and mitigate attacks. Finally, the presented SSODE-
GCNDM model implements the NGO method to fine-tune the parameters involved in the GCN method. 
A wide range of experimentation analyses occur, and the outcomes are observed in numerous aspects. The 
experimental validation of the SSODE-GCNDM technique portrayed a superior accuracy value of 99.62% 
compared to existing approaches. The presented SSODE-GCNDM approach has limitations, such as sensitivity 
to data quality and potential overfitting when working with high-dimensional datasets. The reliance on specific 
optimization algorithms may also restrict adaptability to diverse problem domains. Future work should focus 
on enhancing model robustness through enhanced data preprocessing and combining ensemble techniques to 
reduce overfitting. Furthermore, exploring unsupervised learning methods could give valuable insights when 
labelled data is scarce. Examining the transfer learning (TL) model application may improve performance across 
varying contexts. Expanding the framework to accommodate real-time attack detection could enhance practical 
applicability in dynamic environments.

Fig. 8.  Accuy  curve of SSODE-GCNDM technique on Epoch 1000.
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Fig. 9.  Loss curve of SSODE-GCNDM technique on Epoch 1000.
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Fig. 10.  PR curve of SSODE-GCNDM technique on Epoch 1000.
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Classifiers Accuy P recn Recal F measure

LR 91.10 91.00 91.00 91.00

KNN 97.00 97.00 97.00 97.00

RF 98.54 98.52 98.22 98.79

DT 98.36 98.64 98.24 97.82

AdaBoost 98.09 98.08 98.24 98.35

XGBoost 98.34 98.65 98.51 98.46

MLP Classifier 98.98 98.67 98.47 98.61

DNN 99.37 99.17 98.97 98.82

QCNN 99.25 99.12 99.15 98.59

COA-GS-IDNN 98.71 99.41 98.48 98.70

GWO-LSTM 99.10 98.87 98.70 98.82

AE 98.95 98.82 99.17 98.82

SSODE-GCNDM 99.62 99.72 99.62 99.67

Table 3.  Comparative analysis of SSODE-GCNDM approach with recent models59–63.

 

Fig. 11.  ROC curve of SSODE-GCNDM technique on Epoch 1000.
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Classifiers CT (sec)

LR 11.68

KNN 10.61

RF 14.17

DT 09.91

AdaBoost 07.42

XGBoost 11.96

MLP Classifier 11.14

DNN 12.45

QCNN 10.07

COA-GS-IDNN 09.12

GWO-LSTM 13.11

AE 12.20

SSODE-GCNDM 05.92

Table 4.  CT outcome of SSODE-GCNDM method with recent models.

 

Fig. 12.  Comparative analysis of SSODE-GCNDM approach with recent models.
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