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Clustering plays a crucial role in data mining and pattern recognition, but the interpretation of 
clustering results is often challenging. Existing interpretation methods usually lack an intuitive and 
accurate description of irregular shapes and high dimensional datas. This paper proposes a novel 
clustering explanation method based on a Multi-HyperRectangle(MHR), for extracting post hoc 
explanations of clustering results. MHR first generates initial hyperrectangles to cover each cluster, 
and then these hyper-rectangles are gradually merged until the optimal shape is obtained to fit the 
cluster. The advantage of this method is that it recognizes the shape of irregular clusters and finds the 
optimal number of hyper-rectangles based on the hierarchical tree structure, which discovers structural 
relationships between rectangles. Furthermore, we propose a refinement method to improve the 
tightness of the hyperrectangles, resulting in more precise and comprehensible explanations. 
Experimental results demonstrate that MHR significantly outperforms existing methods in both 
the tightness and accuracy of cluster interpretation, highlighting its effectiveness and innovation in 
addressing the challenges of clustering interpretation.

The advancement of technology brings artificial intelligence (AI) closer to people, playing significant support 
roles across various domains. Machine learning algorithms are prevalent in healthcare, credit lending, and 
fraud detection. However, these algorithms are often black boxes1 producing excellent results but with opaque 
decision-making processes that are difficult to understand. Transparency and interpretability are crucial in many 
applications, especially as researchers introduce AI into high-sensitivity and high-risk environments. Users 
increasingly must understand the information conveyed by AI decision-making processes. The interpretability 
and comprehensibility of outcomes are closely linked to the explanations of their resukts provided by models. 
Despite the growing usefulness of AI systems and their numerous benefits, the lack of explanations for decisions 
and actions hinders their adoption, causing users to view them as untrustworthy. The challenge is to enhance the 
interpretability of AI, build user trust, and facilitate user comprehension and management of AI outcomes. Not 
all AI models are immune to this interpretation. Some simpler models are inherently interpretable, albeit less 
accurate, but more favorable to users. Many approaches such as attribute grouping, for example, are designed 
to meet machine learning’s need for transparency and interpretability, helping users understand which features 
influence decisions. Therefore, trust and understanding are the keys to increasing users’ adoption of AI models2.

Clustering is a data mining method that combines similar data points. Cluster analysis divides a set of objects 
into several homogeneous subgroups based on a similarity measure, ensuring that the similarity among objects 
within the same subgroup exceeds that among objects belonging to different subgroups. In clustering, attribute 
grouping usually refers to the grouping of features in a dataset based on similarity or correlation for better 
understanding and processing of data3. Traditional clustering analysis methods fall into several categories such 
as partitioning, hierarchical, density-based, grid-based, and model-based methods. Clustering algorithms have 
various practical applications. In business, clustering assists market analysts in identifying various customer 
segments from customer groups and describing the characteristics of different customer segments using 
purchasing patterns4. Biology uses clustering to infer the classification of plants and animals, classify genes, and 
gain an understanding of inherent structures within populations5–8. Clustering also classifies documents on the 
web to search for information9.

Interpretative clustering is the ability to interpret the obtained clustering results after performing a cluster 
analysis10. Clustering is an unsupervised learning task, its goal is to classify objects into clusters based on 
similarity without category labeling. However, the goal of interpretative clustering is to provide a way for even 
non-expert users to understand how clusters are formed and why certain data points are grouped into the same 
category11. This can be accomplished by using simple geometric shapes, such as hyper-rectangles, that map 
directly into the original feature space and are easy to understand and interpret.

The demand for interpretability in machine learning arises not only from practical needs but also from legal 
regulations12. The General Data Protection Regulation (GDPR)13, which became effective in May 2018 in the 
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European Union, states that decisions made by machines about individuals must adhere to interpretability 
requirements.

This paper focuses on cluster explanation description. Given a fixed cluster partition of a set of data points 
with real or integer coordinates, there are several methods to generate humanly describable rules14. Existing 
work on clustering description concerns employing interpretable supervised learning methods to predict cluster 
labels. Common categorizations showcase decision patterns of clustering algorithms through forms such as 
decision trees, rules, and rectangular boxes, among others. One of the methods for explainable clustering is 
identifying axis-aligned hyperrectangles15 in the data because simple rules can easily describe hyperrectangle 
boundaries. The illustration of interpretive classification appears in Fig. 1, The detailed description is as follows.

Rule-based interpretation of clustering
Most samples in clusters can be represented by one or more rules, which reflects the interpretability of the 
algorithm. Depending on the partitioning methods of rule premises, rule-based algorithms can be divided into 
adaptive partitioning or fixed grid partitioning. S. Sandhya16 proposed an adaptive partitioning method, which 
enhances the interpretability of the clustering results of the k-means algorithm and adjusts samples in clusters 
that do not meet interpretability requirements. The interpretability of each cluster appears in the proportion of 
the same feature values with the highest frequency among samples within the cluster. Wang et al.17 proposed a 
rule-based soft clustering method. The distinctive feature of this paper is the integration of information provided 
by the dataset into the traditional triangular membership function and the alteration of the fuzzy division. After 
normalization, based on the specified number of clusters K, the method selects K-1 points as intersection points 
for two membership functions at equal distances (at this point, the membership of two membership functions 
is 0.5).Then the average value of samples within each interval is taken as the vertex of the membership function 
in that interval (i.e., the membership is 1). This approach enables fuzzy partitioning of each attribute. However, 
it fails to ensure that the sum of sample membership degrees for all fuzzy sets equals 1, which may affect its 
interpretability. For fixed grid partitioning rule interpretation, E G. Mansoori18 used triangular membership 
functions as the partitioning method. Injecting randomly generated auxiliary data into the original dataset to 
form a two-class problem transforms the clustering problem into a classification problem. Using a classification 
algorithm to create rules is an innovative rule-generation approach. Moreover, users do not need to provide 
additional information, making the algorithm highly applicable. Rule-based clustering explanation19–21 
sometimes generates unnecessary rules, which diminishes the explanation of the algorithm.

Rectangular boxes interpretation of clustering
Rectangular bounding boxes generate clustering explanations by feature dimensions. D. Pelleg22 proposed a 
soft clustering method using hyperrectangles as boundaries for the cluster. Since these hyperrectangles may 
overlap, he introduced a Gaussian function to generate a soft “tail” to compute the affiliation of the samples to 
the different rectangles. The model proposed by J. Chen23 is the Discriminative Rectangular Mixture (DReaM) 
model. DReaM uses only the rule-generating functions to construct clustering rules, and the cluster-preserving 
functions to find the clustering structure. In addition, the model can integrate prior knowledge to determine the 
distribution of boundaries of hyperrectangles. For rectangle-based clustering explanation, there is a lack of valid 
solutions for irregularly shaped clusters.

Decision tree interpretation of clustering
Top-down binary trees are popular methods for clustering and classification24,25. They classify the dataset through 
feature selection and cut-point selection at each node. Their interpretability can be reflected by the selection of 
split points. G. Badih26 made modifications to traditional information gain. Uniformly adding auxiliary samples 
to the sample space generates class labels for calculating information gain. This paper fully exploits the role of 
low-density regions, selecting split points that produce low-density regions as final split points, allowing samples 
near the original split point that may be misclassified to enter the correct area, thereby optimizing the traditional 
decision tree algorithm. Dasgupta et al.27 proposed utilizing labels provided by the k-means algorithm. The 
algorithm is a top-down binary decision tree that traverses all partition nodes, finding the partition method with 
the lowest relative class label error rate compared to k-means and dividing it until the class labels of samples in 

Fig. 1.  Classification of explanation methods.
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the child nodes are consistent and marking them as leaf nodes. This algorithm increases the interpretability of 
clustering results without changing traditional clustering results. For decision tree-based clustering explanation, 
it is easy to create problems with more branches and too deep leaves28,29.

Among these three methods of interpretation, researchers have studied the rules and decision trees 
thoroughly. The studies concerning the interpretation of clustering based on rectangular boxes show that 
uniformly distributed datasets are most used for traditional rectangular box description clustering, making 
it challenging to achieve good interpretive results for irregular and high-dimensional datasets. Therefore, this 
paper intends to conduct further research based on the interpretation form of multi-hyperrectangle.

This paper introduces a new cluster description method that identifies the geometric convex hull points 
of the dataset and creates multiple polyhedral hyperrectangles around each cluster. Hence, it is named Multi-
Hyperrectangle Description. Initially, each hyper-rectangle forms using two adjacent convex hull points. 
Considering that the excessive number of hyperrectangles generated by the initial convex points complicates the 
interpretation, we introduce a rectangle merging algorithm to improve the quality of the interpretation. Whether 
the interpretability of these hyperrectangles meets the balance between complexity and efficiency depends on 
the cluster’s average hyperrectangle density. It is the ratio of the number of data points in the dataset covered by 
the hyperrectangles to the average area or volume of the hyperrectangles.

We are studying the description of the interpretation after clustering. In this scenario, we establish a link 
between features and cluster labels through hyperrectangles. The explanation provided by hyperrectangles can 
be interpreted as several rules connected by AND and OR operators, which fit the data distribution in terms of 
optimal quantity and scope, ultimately deriving easily understandable explanations.

Main contributions
We summarize our main contributions as follows:

•	 We introduce the method of multi-hyperrectangle explained clustering, aimed at explaining clusters by con-
structing axis-aligned hyperrectangles around them.

•	 We formulate the hyperrectangles generation problem as a convex hull algorithm search problem. Convex 
hull points that form the vertices of hyperrectangles can tightly cover datasets with irregular distribution.

•	 We conduct numerical experiments on several real-world clustering datasets, demonstrating that our method 
performs well compared to other rectangular box interpretation clustering methods.The remainder of this pa-
per is as follows: “Proposed method” section provides a formal description of the hyperrectangle generation 
problem and proposes a dendrogram-based method merging hyperrectangles and a refinement process to 
construct clustered optimal explanatory descriptions. “Experimental results and comparisons” section pre-
sents numerical results on commonly used UCI clustering datasets. Finally, “Discussion” section concludes 
the paper.

Proposed method
Overview
In this section, we present the details of the proposed multi-hyperrectangle based interpretation algorithm(MHR), 
of which the primary intuition is from multi-prototype based clustering. In multi-prototype clustering, each 
cluster can consist of multiple prototypes (e.g., means, centroids, etc.) rather than just a single prototype. 
When faced with the complexity of a class structure, multiple prototypes are more closely covered than a single 
prototype.

Before the details, we formulate the explanation problem as follows. Suppose the input data consists 
of n data points, denoted as X = {x1, x2, ..., xi, ..., xn}, of which each data point has m features, i.e., 
xi = (xi1, xi2, ..., xij , ..., xim)T ∈ Rm. For a given clustering algorithm, X is partitioned into k clusters, 
which are denoted by C1, C2, ..., Ck . To interpret a cluster Ci, one must find an optimal set of hyperrectangles, 
R1, ..., RK , to cover Ci tightly.

When we would explain clustering, we find that one hyperrectangle cannot handle complex cluster structures. 
Next, we choose the multi-hyperrectangle clustering interpretation algorithm, which assigns data points to their 
nearest hyperrectangles. Each hyperrectangle represents an interpretation. Multiple hyperrectangles can cover 
a cluster. It can capture the complex structure and distribution of the data more flexibly, paying attention to 
running the algorithm on a well-clustered dataset. In our approach, the interpretation process comprises the 
following three steps, which appear in Fig. 2.

Step 1. Initialize the hyperrectangle cover

•	 Cluster the dataset X into C1, ..., Ck .
•	 Collect the convex points Ui corresponding to Ci for each cluster.
•	 Construct the initial hyperrectangles based on features of data points in Ui and assign the data points to the 

corresponding hyperrectangles.Step 2. Merge the hyperrectangles
•	
•	 Calculate the similarity between hyperrectangles: For each pair of neighboring hyperrectangles, design a new 

similarity metric to iteratively merge the most similar hyperrectangle pairs. Eventually, it presents a dendro-
gram of merging hyperrectangles.

•	 Observe the optimal number of rectangles by a similarity line chart.
•	 Merge the hyperrectangle according to the stopping criterion above and plot the result on the clusters.Step 3. 

Refine hyperrectangles and obtain the final interpretation result
•	
•	 Find the redundant area of the hyperrectangle by density difference.
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•	 Prune the redundant area of hyperrectangles for better interpretation.

Initialization of hyperrectangles
In the past there were several ways to find the rectangle that covers the data. One traditional method is the 
Minimum Bounding Rectangle (MBR) algorithm30. When the boundaries of an object are known, it is easy to 
use the dimensions of its outer rectangle to characterize its basic shape. When the condition of parallelism of the 
axes of the rectangular frame is not considered, more efficient algorithms like the Rotating Calipers Algorithm31 
may be necessary. It first finds the convex hull points of the data and then selects the individual edges of the convex 
hull to construct all possible boundaries. However, when applying them to clustering explanations, the quality of 
the explanation needs to be considered. A rectangle covering the complex dataset will inevitably produce many 
redundant areas, which is a challenge for interpretation. Therefore, this paper proposes an algorithm that divides 
the clusters into various rectangles in conjunction with the geometric convex hull algorithm, which covers all the 
points while fitting the arbitrary shape of the clusters with hyperrectangles. It ensures that neighboring points 
are in the same rectangle (as much as possible) and different groups of hyperrectangles surround those points 
in other clusters.

Considering the diverse shapes of clusters, attempting to decompose shapes based on their structure is a 
highly complex and time-consuming task. Therefore, our method does not make any assumptions about the 
shape of regions that it must refine. For example, oblique impacts, reflected impacts, etc., can form regions with 
diagonal lines or “S” or “U” shapes. Our algorithm is entirely general-purpose.

Many computational geometry methods rely on the convex hull (CH)32. The convex hull algorithm solves 
the problem of finding a polygon that covers a given set of points, with its vertices composed of these points. 
When applying the clustering interpretation, a convex hull point is the class of points furthest from the cluster 
center, which is more conducive to interpretation using the dimensional coordinates of these points. Popular 
convex hull algorithms include Quick Hull, Graham’s Scan, and Gift Wrapping. These algorithms efficiently 
discover contour points based on the shape of clusters. We apply the Quick Hull algorithm to our method 
implementation and adopt a divide-and-conquer approach by recursively dividing the point set into smaller 
subsets to construct the convex hull. We can use it in both low and high dimensions. The time complexity of the 
Quick Hull algorithm depends on the shape of the convex hull, with the worst-case time complexity of O

(
n2)

 
and the average-case time complexity of O(nlogn)33, where n is the number of points. The set of extreme points 
(vertices) of a convex hull is defined as follows:

Definition 1  The convex hull of X is the smallest convex set containing X, defined as:

	
P = H(X) =

{
v|v =

n∑
i=1

xiλi;
n∑

i=1

λi = 1; λi ≥ 0; xi ∈ X

}
;� (1)

where xi is a vector, λi are non-negative scalar coefficients.

P is a subset of X. In particular, the set of vertices in P constructs a frame of X, which is the intersection of all the 
half-planes containing X. The shape of P is a polygon.

Definition 2  A point o of P is an extreme point if there are no other two points p and q in P such that o lies on 
the line segment pq. o is defined as

	 o /∈ pq; (∀p, q ∈ P ; p ̸= o; q ̸= o; p ̸= q; )� (2)

When we obtain all the extreme points, they form the convex hull of X. We find that the vertices of P describing 
the convex hull are precisely the extreme points of the convex hull set enclosing the points of X.

Next we describe the detailed procedure of the algorithm to find the convex hull points of X, which appears 
in Fig. 3. In our implementation of Quick Hull we followed the guidelines given by Eddy34 (the space-efficient 
alternative):

Fig. 2.  The example dataset for the algorithm is a 2D moonshape dataset. (a) A clustered moon dataset. 
(b) Find the convex points by Quick hull convex algorithm. (c) The initial hyperrectangles are generated by 
connecting neighboring convex hull points according to the principal dimension. (d) Generate a dendrogram 
by treating hyperrectangles as leaf nodes. (e) Find the stop criterion. (f) Merge neighboring hyperrectangles to 
generate an optimal number of hyperrectangles. (g) Find the cut line. (h) Cut redundant areas. (i) Results of 
interpretable hyperrectangles.
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•	 Find the two poles of datasets by one scan, the west pole p and the east pole q, which appears in Fig. 3a.
•	 Partition the remaining points between p and q into upper-hull and lower-hull candidates: Q1 contains those 

points that lie above or on the line segment pq and Q2 contains those that lie below it, as shown in Fig. 3b.
•	 Find the extreme point o in Q1 which is furthest from pq and connect the o, p, q to form a triangular region 

in Fig. 3c.
•	 Eliminate the points inside the triangular region. Partition the points line above the op as new upper-hull 

candidates and find the new extreme point o′, as illustrated in Fig. 3d.
•	 Fig. 3e is the recursive operation on the other upper-hull region to eliminate all interior points and find all 

extreme points.
•	 Equally, apply the recursive operation for the lower-hull candidates Q2 in Fig. 3f. Now, you have found all the 

extreme points, which are the convex hull points of X.Algorithm 1 outlines theis subroutine.

Algorithm 1.  Convex hull.

After applying the Quick Hull algorithm to each cluster, it identifies the convex hull points.

Definition 3  Let Ui be the set of convex hull points of cluster Ci:

Fig. 3.  A visualization of the general recursive steps in QUICK HULL.
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	 Ui = {x1, x2, ...xu}� (3)

where Ui ⊆ Ci, |Ui| = u.

Then, another consideration arises of how to use these convex hull points to generate hyperrectangles. Simply 
connecting any adjacent two points to form hyperrectangles may result in a complex set of rectangles, of which the 
dimensional intervals of these rectangles overlap and increase the complexity of interpretation. So, we choose to 
collect the coordinates of these points and calculate the difference between the maximum and minimum values 
for each feature to ensure human-understandable explanations. Then, we identify the dimension corresponding 
to the feature with the largest difference (i.e., the dimension with the greatest variation), defining this dimension 
as the cluster’s primary dimension. The formula is as follows, which appears in Fig. 4.

	
dm = argmax

m∑
i=1

(X(i)
max − X

(i)
min)� (4)

Hyperrectangles in the primary dimension must not overlap to avoid complicating the interpretation. Once the 
primary dimension is determined, we can construct initial hyperrectangles after sorting the convex hull points 
based on the feature values of the primary dimension.

Definition 4  Let Rank (Ui) be an ordered list sorted on the dm dimension as in

	 Rank (Ui) = ⟨x1, x2, ..., xu⟩dm
� (5)

Definition 5  Let Ri be the rectangle generated by joining two neighboring points of Rank (Ui) as in

	 Ri =
{

(xi1, ..xidm , ..xim) ,
(
x(i+1)1, ..x(i+1)dm , ..x(i+1)m

)}
� (6)

At this point, the initial hyperrectangle construction is complete. We construct each hyperrectangle between 
two adjacent convex hull points and the number of hyperrectangles is u − 1. Figure 5 illustrates the convex hull 
algorithm on a moon-shaped dataset.

Fig. 5.  The dataset is shown in (a). The convex hull points of datasets are labeled in (b). Merge adjacent pairs 
of sorted points to small rectangles, which are represented by red rectangle boxes in (c).

 

Fig. 4.  Generate hyperrectangles by principal dimension. The principal dimension in (a) is the vertical axis 
and the principal dimension in (b) is the horizontal axis.
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Dendrogram-based merging of hyperrectangles
Due to the nature of the Quick Hull algorithm, which does not allow users to specify the number of convex hull 
points generated, the initial number of hyperrectangles may be enormous. Each hyperrectangle may cover too 
few points, resulting in an increased complexity of interpretation due to the proliferation of “AND” conditions. 
The next step is to perform hyperrectangle merging operations.

Merge process
We get the idea from the agglomerative hierarchical algorithm. We treat each hyperrectangle in the cluster as a 
separate leaf node of a binary tree, defined as the set T = {R1, R2, ...Ru−1}.

Essentially, this process constructs a hierarchical structure of binary trees, starting from the data elements 
stored in the leaves (interpreted as singleton sets) and continuing to merge pairwise the closest subsets (stored in 
nodes) until it reaches the root of the tree containing all elements of X. Using the primary dimension as the base 
axis, we sequentially calculate the similarity between adjacent hyperrectangles. Since these hyperrectangles are 
adjacent, we design a new similarity rule.

Definition 6  Let define the similarity between hyperrectangles as follows:

	
ρi = |Ri|∏m

l=1Lil
� (7)

	
S(Ri, Rj) = 1

ρ(Ri◦Rj)
=

∏m

l=1L(i+j)l

|Ri| + |Rj | � (8)

where |Ri| represent the number of points in the i − th hyperrectangle, Lid represent the edge length of the 
i − th hyperrectangle in dimension d.

The density value is the ratio of the number of points in the hyperrectangle to the area (volume) of the 
hyperrectangle, referring to equation (7). Considering that the density value decreases after the hyperrectangles 
are merged while the tree graph generally has the coordinates of the parent node higher than the child nodes, we 
make the inverse of the density in equation (8) as the definition of the hyperrectangles distance. The smaller the 
reciprocal density value, the closer the hyperrectangles, and the higher the priority for merging.

Then, based on the similarity of these hyperrectangles, we merge the most similar pair of hyperrectangles 
and form a new layer Ti of the binary tree with the remaining hyperrectangles, of which the merging process 
appears in equation (9). We construct a complete binary tree by repeating the merging process until only one 
hyperrectangle remains, which is the root of the binary tree.

	 Ti = Ti+1 \ {Ri, Rj} ∪ Tmerge(Ri ◦ Rj)� (9)

where Tmerge(Ri ◦ Rj) is which obtained by merging Ri and Rj , ◦ is concatenate operator, used to merge two 
adjacent hyperrectangles.

In Fig. 6, we assume that each data point occupies 1 unit of space. The three rectangles in Fig. 6a are saturated 
with data points, so the area is the number of points. The area of the redundant region is the number of evenly 
placed full data points.

Fig. 6.  Merge neighboring hyperrectangles: In (a) dataset is surrounded by three rectangles, and (b,c) show 
two different merging results, respectively.
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The similarity values of the two merging approaches are calculated separately by the distance formula 
proposed above. Where the new rectangle distance value for (b) is 4/3 (48/36) and for (c) is 8/7 (48/42). Therefore, 
we choose (c) with the smallest similarity value as the final merged result.

In the merging process, we identify the rectangles with the smallest distance and merge them iteratively until 
only one rectangle (the root node) remains. We draw a complete dendrogram based on the merging operations 
and the corresponding distance values. Conceptually, Fig. 7 illustrates a dendrogram of the 2D moon-shaped 
dataset.

Stop criterion
We propose a stopping criterion to determine the optimal number of hyperrectangles in the dendrogram of 
merging rectangles: The farther the vertical lines are, the greater the distance between rectangles. We find the 
layer of child nodes with the largest distance between nodes in the dendrogram. Its height indicates the optimal 
number of rectangles covering the cluster. Of course we can represent it visually. We set the similarity of the 
hyperrectangles as the horizontal coordinate and the number of hyperrectangles as the vertical coordinate. 
Plot the similarity between the two hyperrectangles merged in each round and the corresponding number of 
hyperrectangles as coordinate points and connect them to form a line graph, representing the trend change in 
the distance of the merged hyperrectangles. Figure 8 illustrates the specific workflow.

Fig. 8.  A line graph showing the distance values of the nodes on the dendrogram:We choose the width to 
cut the dendrogram. For a given width, we get a corresponding count of rectangles (i.e., the entire cluster 
is partitioned by the selected number of rectangular boxes). Here, we show the optimal cutting path, for 
Rectangles Count = 3.

 

Fig. 7.  Dendrogram of merging hyperrectangles: The leaf nodes represent the initial rectangles and the height 
represents the similarity between the rectangles.
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Definition 7  Let K be the number of rectangles with the maximum difference between S(Ti) and S(Ti+1):

	
K = argmax

|T |∑
i=1

(S (Ti+1) − S (Ti))� (10)

where S (Ti) is the similarity value corresponding to the i − th level of the tree.
When a span of the horizontal axis between two nodes is too large, it indicates that the hyperrectangles are 

no longer suitable for merging at this point. We use the vertical coordinate corresponding to the node before 
merging as the final number of hyperrectangles. To reduce the complexity of interpretation, we assume that the 
number of rectangles covering an arbitrarily shaped cluster is no more than 5. If K exceeds the typical optimal 
solution, failing to mention the structure of the cluster, we set K=1. When K rectangles meet the density criteria, 
we can generate the final interpretation result.

The pruning of hyperrectangles
During the process of merging hyperrectangles, some issues may arise, which may produce a redundant area 
leading to a degradation in the quality of the interpretation. Figure 9 depicts two problems. One potential issue is 
the excessive presence of empty areas within the hyperrectangles shown in Fig. 9a. When a long hyperrectangle 
encounters a short one, the difference in height between them influences the poor interpretative effectiveness 
of the new hyperrectangle. Moreover, noise points within the hyperrectangles pose another challenge, as 
shown in Fig. 9b. Within a cluster, several points are often distant from the other points. While this may not 
pose a significant problem when observed locally, the harm caused by noise points becomes evident when 
multiple hyperrectangles merge into a whole. In such cases, a few data points may occupy a large portion of 
the hyperrectangle, while other densely clustered data points occupy another part. This situation is unfair to 
compact datasets and requires excessive space to interpret the area where the noise points exist.

We reduce unintended rectangular areas by designing a post-processing mechanism to further prune the 
hyperrectangles after the merging process based on the hierarchical tree structure. Before performing the 
pruning operation, we must ensure that we do not apply it along the primary dimension. Thus, the interpretation 
after pruning is continuous in the main feature interval. If not done so, it may cut through adjacent regions of the 
hyperrectangles, leading to discontinuous interpretation intervals, which is not in line with the interpretation 
requirements. Figure 10 illustrates this situation.

In Fig. 10, where (b) is the solution proposed by our algorithm, (c) seems to work as well as b but leads 
to discontinuous interpretation intervals. Next, (d) seems to work better but also leads to discontinuous 
interpretation intervals as well as in high dimensional space. If it cuts the hyperrectangles from multiple 
dimensions simultaneously, it may lead to many non-noise points being cut outside the box. It draws conclusions 
that ensure feature intervals on the primary dimension for interpretation are continuous. Before pruning the 
hyperrectangles, we first need to mark and exclude the primary dimension of the hyperrectangle, defined as dm

. Then, we perform the following operations on the other dimensions:

•	 Sort the dataset within the hyperrectangle according to the currently selected dimension d. 

	
Rank (X ∈ Ri) =

⟨
x

′
1, x

′
2, ..., x

′
n

⟩
d

� (11)

 where n represents the number of data points.

Fig. 9.  Factors affecting the effectiveness of the merger. Where (a) demonstrates the problem of redundant 
areas generated by the height difference and (b) demonstrates the effect of noise points on the merge.
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•	 Assume a cutting line is generated on the feature values along the dth dimension, dividing the hyperrectangle 
into two intervals, r1i and rin, as in Fig. 11.

•	 Calculate the data density values for the two intervals, as per Formula (8).
•	 Calculate the numerical difference between the two intervals and store it in absolute value. 

	 △ρi = |ρ (r1i) − ρ (rin)|� (12)

•	 After calculating the results for all points and dimensions, identify the point with the maximum absolute 
value of the density value difference, representing the optimal dimension and cutting point. 

	
l, x

′
i ← argmax

m∑
l=1,l̸=dm

n∑
i=1

△ρil� (13)
Formula (13) 

embodies the algorithm’s logic to find the optimal dimension l and cutting point x
′
i. It enables us to split the 

hyperrectangle into a dense and a sparse interval. The sparse interval may contain very few discarded points, 
minimizing losses to the overall cluster interpretation.

Sometimes, it is better to prune multiple dimensions simultaneously, depending on the situation. In lower-
dimensional spaces, we can apply the optimal cutting line for each dimension to the current hyperrectangle. 
However, we found excessive dimension cutting in high-dimensional data removes almost all data, leaving 
behind a very small hypercube. Therefore, after completing these procedures for each dimension except the 
primary dimension, we must select the dimension with the fewest cut data points. Then, we prune the hypercube 
according to its cutting line. This method ensures the efficiency of interpretation while preserving most of the 
dataset.

Fig. 11.  The cut line translates across the rectangle, which divides the rectangle into two smaller rectangles. (a) 
shows the example that cut line across the first point, and (b) is the next point. The cut line corresponds to the 
coordinates of a point until the last point in (c).

 

Fig. 10.  The pruning of hyperrectangles. (a) shows the rectangle to be cut, (b) indicates cutting from the non-
dominant dimension, (c) indicates cutting from the dominant dimension, and (d) indicates cutting from both 
dimensions simultaneously.
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At this point, this paper has described each step of the algorithm in detail. Pseudocode and related details of 
the MHR appear in Algorithm 2.

Algorithm 2.  Generate explanable hyperrectangles for clusters.

Experimental results and comparisons
This section presents the experimental results of our proposed hyperrectangles clustering interpretation method. 
To evaluate the performance of the algorithm, we conducted a series of experiments on both synthetic and 
real-world datasets to demonstrate its effectiveness in providing interpretable clustering results. We compared 
the results with existing rectangular box clustering interpretation algorithms to highlight improvements in 
interpretability and robustness. During the experiments, we ensure that each set of experiments is run under 
the same conditions, including the same hardware environment and software configuration. In addition, we 
performed multiple experimental runs on each dataset to assess the consistency and stability of the algorithm.

Experimental Setup: We implemented our method using the Python programming language and leveraged 
popular libraries such as NumPy, SciPy, and scikit-learn. We implemented the convex hull algorithm for 
generating hyperrectangles in the algorithm using the SciPy. spatial library. The experiments ran on a computer 
with 8 GB RAM and a 2.3 GHz processor.

Synthetic dataset
We generated synthetic datasets with varying complexities to thoroughly evaluate the algorithm’s robustness, 
scalability, and capability to handle different shapes of cluster structures:

We selected four 2-dimensional datasets and generated corresponding plots of the hyperrectangle results 
to visualize the interpretation results better. To illustrate the entire process of the proposed algorithm, we first 
considered the moon-shaped dataset shown in Fig. 2. This dataset consists of two curved clusters resembling 
crescent moons. We generated the dataset using the make_moons function with 200 samples and a noise 
parameter of 0.08. We employed the DBSCAN algorithm to model the clustering effectively, setting the 
parameters eps to 0.2 and min_samples to 5. For the convex hull algorithm, we choose Quick Hull because it 
provides faster and more stable characterization of convex hull points in various dimensional datasets.

Taking the moon-shaped cluster as an example, In the first stage of the algorithm, by means of the convex hull 
algorithm, we identified twelve convex hull points. After calculating the main dimension as the x-axis, eleven 
neighboring rectangles were generated by connecting the convex hull points along the main dimension. In the 
second stage, we calculated the similarity between neighboring rectangles and plotted the dendrogram shown 
in Fig. 7. In the line graph of the stopping criterion in Fig. 8, we can find that the vertical distance between the 
leaf nodes of the second and third layers is the maximum. Therefore, we selected the nodes from the third layer 
as the final rectangles, resulting in three rectangles. At this point, we find that three rectangles covering the 
cluster is the perfect result, not only fitting the shape of the dataset but also reducing consumption of rectangles. 
In the final stage, in response to the extra space complexity caused by the discrete points in the rectangles, 
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we pruned the three rectangles in the clusters and further refined the interpretation rules, thus improving the 
cluster interpretation score. Due to the similarity in shape between the two clusters in the dataset, the steps of 
the algorithm for the other cluster are the same, and finally the three rectangles ultimately covered each cluster 
to complete the interpretation.

In addition, we applied our proposed algorithm to three other 2-dimensional datasets commonly used to test 
clustering algorithms: Flame, Smileface, and T4.8k. Figure 12 illustrates the clustering and interpretation results 
for these datasets. Flame consists of two connected clusters, one with a uniformly distributed elliptical structure 
and the other with a crescent moon shape, which was selected to test the algorithm’s ability to differentiate 
between clusters of varying densities and shapes. Smileface resembles a smiley face image and comprises four 
clusters. T4.8k is a dataset containing 8000 data points, composed of seven density clusters of various shapes 
nested within each other and contaminated with many noise points. The algorithm provided optimal sets of 
rectangle interpretations for these datasets with varying shapes and sizes. The interpretation results for the 
highly complex dataset T4.8k demonstrate that the algorithm effectively handles complex clusters. The algorithm 
displayed its robustness by successfully identifying these irregular data structures.

Real dataset
We further evaluate our approach by running experiments on five different clustered datasets from the UCI 
Machine Learning Repository35. The Iris dataset is a widely used benchmark dataset containing samples of Iris 
with four features. The Liver Disorders dataset has seven attributes, and we use its first five variables on blood 
tests. Ecoli contains protein localization sites and seven attributes. Seeds measures the geometric properties of 
wheat grains belonging to three different wheat varieties. Wholesale refers to clients of a wholesale distributor, 
which includes the annual spending in monetary units (m.u.) on diverse product categories. Glass Identification 
from the USA Forensic Science Service has six types of glass. The wine dataset divides 13 attributes and 178 data 
into three categories. These datasets have different feature dimensions and distributional properties, enabling a 
comprehensive assessment of the performance of our method relative to other rectangular box interpretation 
clustering methods. These five datasets appear in Table 1.

To ensure that the convex hull algorithm runs successfully on high-dimensional datasets, we use a correlation 
filter on the dataset to ensure that the number of clusters in each cluster meets the requirements of the convex 
hull algorithm. For high dimensionality, when the amount of data in a single cluster is less than the number of 
dimensions or located in a plane where the convex hull algorithm cannot be applied, we choose to generate a 
single hyperrectangle based on the coordinates of these points, directly used as the interpretable result of the 
rectangular box.

The example of explanations
The hyperrectangles obtained by MHR find regular decision boundaries for each cluster and generate the 
explanation for each cluster. The paper selects an example from the synthetic and the real dataset to show the 
explanation results. Table 2 shows the explanation of each cluster in the moon-shaped dataset. The explanations 
corresponding to the rectangles in each cluster are joined in the table using the ’∪’ operator. Table 3 shows the 
explanation of each cluster in the Iris dataset. The corresponding categories of Iris can be distinguished by the 
distribution of sepal length and width and the distribution of petal length and width.

Iris Liver Disorders(bupa) Ecoli Seeds Wholesale Glass Identification Wine

Data size 150 345 336 210 440 214 178

Dimension 4 5 7 7 7 9 13

Table 1.  The description of five datasets.

 

Fig. 12.  The clustering results obtained by the proposed algorithm on these 2-dimensional datasets are 
illustrated. For Flame, Smileface, and T4.8k, the total number of rectangles obtained for modeling the clusters 
is 4, 6, and 14, respectively. From these numbers, we can observe that the proposed algorithm successfully 
identified the clustering structures present in these datasets.
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Assessment of indicators
We use a variety of evaluation metrics to assess the performance of our method and compare it to other 
interpretive methods. These metrics include:

Accuracy
It assesses the extent to which the clustering algorithm correctly classifies the samples. It evaluates the 
performance of supervised clustering, which compares the clustering results with the true labels. It is calculated 
by matching each clustered cluster with its corresponding true label and then calculating the ratio of correctly 
classified samples to the total number of samples36. The formula is:

	
Accuracy = Number of correctly classified samples

Total sample size
� (14)

NMI (Normalized Mutual Information)
NMI is an evaluation index comparing the clustering results with the real labels37, considering the consistency 
and completeness between the clustering results and the real labels. The specific calculation measures the 
correlation between the two by calculating and standardizing their mutual information. The value of NMI ranges 
from 0 to 1, and the higher the value, the more consistent the clustering results are with the real labels38. The 
formula for calculating NMI is more complicated and usually uses matrix operation.

FM (Fowlkes-Mallows Index)
FM is a metric used to evaluate the accuracy of a clustering algorithm39. It combines the true positives, false 
positives and false negatives in the clustering results. The FM index is the ratio of the number of true positives 
to all pairs of samples in the clustering results, where true positives indicate that samples belonging to the same 
category in the true labels also belong to the same clusters in the clustering results. The specific calculation 
formula is:

	
F M = T P√

(T P + F P ) · (T P + F N) � (15)

where TP denotes true positives (number of sample pairs with the same category in both the clustering result 
and the true label), FP denotes false positives (number of sample pairs misclassified in the clustering result), and 
FN denotes false negatives (number of sample pairs with the same category in the true label but misclassified in 
the clustering result).

Accuracy, NMI, and FM are metrics used to evaluate the performance of clustering algorithms, where the method 
uses Accuracy when samples have real labels. It evaluates the performance of the algorithm by comparing the 
clustering results with the real labels. NMI and FM are more applicable when the samples do not have real labels 
available. They evaluate the performance of the algorithm based on the similarity between the clustering results.

Interpretability score
Considering that the rectangular box interpretation method currently has no article proposing a corresponding 
interpretation score formula, this paper proposes a specific hyperrectangle interpretation score guideline. When 

Clusters Rule

Cluster1 [4.9 ≤ sepal length ≤ 5.8, 2.3 ≤ sepal width ≤ 3, 3 ≤ petal length ≤ 4.5, 1 ≤ petal width ≤ 1.5]
∪ [5.8 ≤ sepal length ≤ 7, 2.2 ≤ sepal width ≤ 3.4, 3.9 ≤ petal length ≤ 5.1, 1.2 ≤ petal width ≤ 1.8]

Cluster2
[4.3 ≤ sepal length ≤ 5, 2.3 ≤ sepal width ≤ 3.2, 1.1 ≤ petal length ≤ 1.6, 0.1 ≤ petal width ≤ 0.2]
∪ [4.4 ≤ sepal length ≤ 5.4, 3.2 ≤ sepal width ≤ 3.8, 1 ≤ petal length ≤ 1.9, 0.1 ≤ petal width ≤ 0.6]
∪ [5.1 ≤ sepal length ≤ 5.8, 3.8 ≤ sepal width ≤ 4.4, 1.2 ≤ petal length ≤ 1.9, 0.1 ≤ petal width ≤ 0.4]

Cluster3 [4.9 ≤ sepal length ≤ 7.4, 2.5 ≤ sepal width ≤ 3.6, 4.5 ≤ petal length ≤ 6.3, 1.4 ≤ petal width ≤ 2.5]
∪ [7.4 ≤ sepal length ≤ 7.9, 2.6 ≤ sepal width ≤ 3.8, 6.1 ≤ petal length ≤ 6.9, 1.9 ≤ petal width ≤ 2.3]

Table 3.  Explanations for each cluster in Iris dataset.

 

Clusters Rule

Cluster1
[−1.12 ≤ x1 ≤ −0.827, −0.14 ≤ x2 ≤ 0.55]
∪ [−0.82 ≤ x1 ≤ 0.55, 0.63 ≤ x2 ≤ 1.13]
∪ [0.56 ≤ x1 ≤ 1.05, −0.04 ≤ x2 ≤ 0.99]

Cluster2
[−0.21 ≤ x1 ≤ 0.37, −0.29 ≤ x2 ≤ 0.56]
∪ [0.37 ≤ x1 ≤ 1.68, −0.65 ≤ x2 ≤ −0.19]
∪ [1.68 ≤ x1 ≤ 2.04, 0.42 ≤ x2 ≤ 0.53]

Table 2.  Explanations for each cluster in moon-shaped dataset.
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using the hyperrectangles to explain clustering, two situations affect the results. The first is the box density. The 
denser the data, the fewer redundant areas when the explanation is better. The second is the hyperrectangle 
overlap rate when the hyperrectangle crosses and overlaps to cover a data point simultaneously. The interpretation 
of this data point is fuzzy and unclear. We can interpret a dataset correctly only when a hyperrectangle frames it.

Considering these two cases together, we utilize the density formula mentioned above to calculate the average 
density value of the entire dataset in a single hyperrectangle. Together with the hyperrectangle overlap rate, 
we construct the interpretable score algorithm. Our method can qualitatively assess the interpretability of the 
generated hyperrectangle clusters more efficiently than other interpretation methods. The value of IS is between 
0 and 1. The smaller the value, the denser the data and the less overlapping rectangular area, so the clustering 
interpretation is the best. The following is the interpretability score formula:

	
m (x) =

{1, x = 1;
0, otherwise; � (16)

	
IS =

∑s

i=1

∑n

j=1
m(z(xj))
n

· ρi

s
� (17)

where z (xi) denotes the number of hyperrectangles that contain xi, i denotes the ith hyper-rectangle, and j 
denotes the jth data point in the hyperrectangle. In Equation (17), s denotes the total number of hyperrectangles 
explaining the clustered dataset, n denotes the total number of data points in the current hyperrectangle, and ρi 
denotes the density of the ith hyperrectangle, mentioned in Formula (7).

TPR (True Positive Rate)
TPR is also known as Sensitivity or Recall and measures the proportion of actual positive samples correctly 
identified as positive by a classification model. It is the ratio of True Positives (TP) to the sum of True Positives 
and False Negatives (FN). TPR quantifies the ability of a model to identify positive samples from the total actual 
positive samples. A higher TPR indicates better performance in correctly identifying positive samples. The 
formula is:

	
T P R = T P

T P + F N
� (18)

FPR (False Positive Rate)
It quantifies the proportion of negative samples that are incorrectly classified as positive by a classification model. 
It is the ratio of False Positives (FP) to the sum of False Positives and True Negatives (TN). FPR measures 
the model’s tendency to classify negative samples as positive. Lower FPR values indicate better performance in 
avoiding misclassification of negative samples. The formula is:

	
F P R = F P

F P + T N
� (19)

We consider two explanatory clustering algorithms, DReaM23 and ExKMC40, and the traditional CART41. In 
addition, to demonstrate the importance of pruning, we deliberately split the algorithm into un-MHR and MHR 
to compute the metrics separately. Where un-MHR denotes the result without a pruning operation and MHR is 
the algorithm with the complete process. We use the same fixed algorithmic parameters for all methods, and the 
same dbscan clusters or true labels as the reference cluster assignments we want to explain.

DReaM interprets clusters by establishing rules. One of its advantages is that two types of features can be 
randomly specified, rule-generated features and cluster structure-preserving features. In the DReaM model, 
rule-generated features generate explanations of clusters, while cluster structure-preserving features identify 
cluster structures. In addition, the model allows combining prior knowledge to adjust the final hyperrectangular 
decision boundary.

ExKMC interprets clusters with an IMM tree with k leaves. Subsequently, these k nodes expand to k0 nodes 
through a greedy search process. It minimizes the cost at each split and uses each node of the tree as the final 
explanations.

CART is an algorithm that builds decision trees for classification and regression tasks. It divides data into 
subsets based on feature values, creating a tree structure in which each node represents a decision rule that leads 
to predictions at the leaf nodes.

The following Tables 4, 5, 6, 7, 8, 9 show the metrics performance of our algorithm and other explanatory 
algorithms on different datasets, and the best experimental result values are bolded in the table.

Our empirical results on the different datasets offer insight into MHR’s performance against existing methods, 
including traditional approaches such as k-means, density-based, and hierarchical algorithms42. We also report 
results concerning other interpretable methods. Overall, our proposed method outperforms most algorithms 
on different verification criteria. Our experiments demonstrate that our newly proposed framework achieves 
comparable performance to the state-of-the-art clustering algorithms regarding clustering quality metrics while 
enabling the explicit characterization of cluster membership. Our model is robust to noisy or incomplete data 
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while interpreting clusters. For discrete points in a rectangle that deviate from the data center, the model always 
finds an optimal cut line to perform a pruning operation on the rectangle. Thus, un-MHR is mostly optimal on 
clustering metrics, while MHR is the highest on interpretive scores. Therefore, we accept a slight reduction in the 
clustering criteria in exchange for increased interpretability, which is critical in many settings.

Discussion
MHR uses hyperrectangles that provide explicit separations of the data on the original feature set. It creates 
interpretable models with real-world applicability to a wide range of settings. From healthcare to revenue 
management to macroeconomics, our algorithm can significantly benefit practitioners who find value in 
unsupervised learning techniques.

FM DReaM ExKMC CART un-MHR MHR

Moon 0.691 0.6213 0.4951 1 0.97

Flame 0.8 0.7407 0.7095 0.9922 0.9724

Smile face 0.8485 0.7214 0.968 1 0.988

T4.8k 0.5567 0.6099 0.979 0.979 0.977

Iris 0.828 0.8208 0.8566 0.912 0.8773

Bupa 0.7927 0.9893 0.9756 0.9964 0.99

Ecoli 0.4914 0.8353 0.6588 0.8163 0.8002

Seeds 0.8851 0.8637 8729 0.9799 0.9653

Wholesale 0.9693 0.9519 0.734 0.991 0.991

Glass 0.5725 0.9155 0.8207 0.991 0.991

Wine 0.8932 0.6591 0.9878 0.9781 0.9707

Table 6.  Evaluation of metrics FM.

 

NMI DReaM ExKMC CART un-MHR MHR

Moon 0.312 0.1888 0.5 1 0.899

Flame 0.5223 0.45 0.2393 0.963 0.909

Smile face 0.816 0.6589 0.933 1 0.9697

T4.8k 0.6111 0.6282 0.9571 0.967 0.959

Iris 0.8612 0.7582 0.7808 0.8738 0.8137

Bupa 0.2931 0.8684 0.7378 0.9514 0.9045

Ecoli 0.4246 0.8163 0.5969 0.8438 0.8001

Seeds 0.7876 0.9071 0.8084 0.9598 0.9264

Wholesale 0.5842 0.8952 0.8522 0.9549 0.9549

Glass 0.4845 0.8302 0.5934 0.9807 0.9807

Wine 0.833 0.4259 0.9732 0.9547 0.9308

Table 5.  Evaluation of metrics NMI.

 

Accuracy DReaM ExKMC CART un-MHR MHR

Moon 0.8 0.75 0.5 1 0.97

Flame 0.8613 0.8403 0.7983 0.9958 0.979

Smile face 0.4705 0.7484 0.983 1 0.9876

T4.8k 0.4186 0.495 0.9859 0.987 0.985

Iris 0.94 0.8933 0.92 0.9533 0.92

Bupa 0.8116 0.9913 0.9797 0.9971 0.9913

Ecoli 0.5268 0.9137 0.7946 0.8958 0.8571

Seeds 0.9116 0.7992 0.8125 0.9905 0.9762

Wholesale 0.9268 0.8471 0.8946 0.9932 0.9932

Glass 0.4346 0.9439 0.729 0.9953 0.9953

Wine 0.9213 0.2809 0.9944 0.9888 0.9719

Table 4.  Evaluation of metrics accuracy.
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We observe significant improvements in MHR relative to other interpretable methods. The multi-
hyperrectangle interpretation algorithm better recognizes the shape of irregular clusters and finds the optimal 
number of hyperrectangles based on the hierarchical tree structure. It demonstrates the practicality of our 
approach rather than simply employing existing tree-based methods on a posteriori clustered data. Furthermore, 
our algorithmic approach improves existing work on interpretable clustering and makes a new contribution to 
the field.

Data availability
The data used in this paper includes both synthetic and real datasets, where the synthetic dataset can be obtained 
from https://cs.uef.fi/sipu/datasets/ and the real dataset from the UCI data web page https://archive.ics.uci.edu/.

FPR DReaM ExKMC CART un-MHR MHR

Moon 0.22 0.24 0.49 0 0

Flame 0.2941 0.0992 0.3529 0.0065 0

Smile face 0.0037 0.1303 0.0073 0 0

T4.8k 0.027 0.1112 0.0025 0.0013 0.0019

Iris 0.01 0.02 0.05 0 0

Bupa 0.1688 0.0473 0.0065 0 0

Ecoli 0.1279 0.0185 0.0889 0.0227 0.0266

Seeds 0.1192 0.025 0.0291 0.0049 0.0123

Wholesale 0.0517 0.0186 0.0278 0.0004 0.0004

Glass 0.3145 0.0106 0.0998 0.0065 0.0065

Wine 0.0459 0.0692 0.0086 0.0041 0.0149

Table 9.  Evaluation of metrics FPR.

 

TPR DReaM ExKMC CART un-MHR MHR

Moon 0.87 0.74 0.49 1 0.96

Flame 0.9477 0.8403 0.8824 0.9942 0.9673

Smile face 0.9899 0.8778 0.9697 0.9942 0.99

T4.8k 0.8085 0.495 0.9917 0.9868 0.9847

Iris 0.94 0.72 0.84 0.86 0.94

Bupa 0.9459 0.9914 0.8649 0.973 0.9935

Ecoli 0.5268 0.803 0.7727 0.9151 0.9195

Seeds 0.8625 0.8931 0.9527 0.9907 0.9905

Wholesale 0.6549 0.8355 0.5614 0.9932 0.9932

Glass 0.4346 0.9615 0.7009 0.9955 0.9955

Wine 0.9754 0.7292 0.9945 0.9583 0.9718

Table 8.  Evaluation of metrics TPR.

 

IS DReaM ExKMC CART un-MHR MHR

Moon 0.0278 0.0228 0.0086 0.0162 0.0014

Flame 0.4082 0.3215 0.2386 0.3522 0.3394

Smile face 0.008 0.0061 0.0057 0.0054 0.0049

T4.8k 0.9673 0.6077 0.6202 0.9251 0.9224

Iris 0.1784 0.0818 0.0778 0.0292 0.0247

Bupa 0.9626 0.9108 0.7741 0.001 0.0009

Ecoli 0.8053 0.381 0.1509 0.2114 0.0973

Seeds 5.622e-11 8.159e-7 5.459e-6 3.888e-16 3.562e-18

Wholesale 0.8173 0.5813 0.8746 0.1054 0.1054

Glass 0.0611 0.029 0.1417 0.0169 0.0169

Wine 0.9661 0.3636 0.9999 0.9186 0.8995

Table 7.  Evaluation of metrics IS.
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