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Adaptive dynamic crayfish
algorithm with multi-enhanced
strategy for global high-
dimensional optimization and real-
engineering problems
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The Crayfish Optimization Algorithm (COA) is a recent powerful algorithm that is sometimes

plagued by poor convergence speed and a tendency to rapidly converge to the local optimum. This
study introduces a variation of the COA called Adaptive Dynamic COA with a Locally enhanced
escape operator (AD-COA-L) to tackle these issues. Firstly, the algorithm utilizes the Bernoulli map
initialization strategy to quickly establish a high-quality population that is evenly distributed. This
helps the algorithm to promptly reach the proper search area. Additionally, in order to mitigate

the likelihood of getting trapped in local optima and improve the quality of the obtained solution,

an Adaptive Lens Opposition-Based Learning (ALOBL) mechanism is applied. Moreover, the local
escape operator (LEO) is utilized to aggressively discourage the adoption of isolated solutions and
encourage the sharing of information within the search area. Finally, a new inertia weight is suggested
to improve the search capability of COA and prevent it from being stuck in local optima by enhancing
the exploitation capability of COA. AD-COA-L is evaluated against eight advanced state-of-the-art
variations and ten classical and recent metaheuristic algorithms on 29 benchmark functions from
CEC2017 of varying dimensions (50 and 100). AD-COA-L demonstrates superior accuracy, balanced
exploration-exploitation and convergence speed, compared to other algorithms across most
benchmark functions. Furthermore, we evaluated the proficiency of AD-COA-L in tackling seven
demanding real-world and restricted engineering optimization challenges. The experimental findings
clearly illustrate the competitiveness and advantages of the proposed AD-COA-L algorithm.
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With the development of Artificial Intelligence (AI), optimization has become a crucial mathematical
methodology to find an optimum solution among complex problems in all walks of life. Optimization has
gained wide applications in fault diagnosis', service composition?, the agriculture field®, path planning?, image
segmentation, intrusion detection®’, feature selection®, and parameter identification of photovoltaic models™.
Most of these optimization tasks involve high complexity due to large-scale dimensionality, non-linearity, and
non-convexity, which are computationally challenging!!. It is well known that single-objective optimization,
dealing with the optimal solution for a single performance criterion, often faces complex landscapes. In contrast
to multi-objective optimization, where a set of non-dominated solutions represented by a Pareto front is
produced, the present study deals exclusively with single-objective optimization!2. The challenge is increased
due to the scale and complexity of the problem at hand.

Traditional methods for solving optimization problems include classical techniques such as linear
programming'?, Newtons method!4, and conjugate gradient methods'>. While these methods might work quite
well for small or relatively simple problems, they often tend to break down when real-world applications involving
thousands of variables and a multitude of constraints are considered. These traditional methods are highly time-

consuming and also tend to converge prematurely to local optima, especially in non-convex problem spaces!®.
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Therefore, in more realistic high-dimensional optimization settings, these methods usually cannot produce a
solution that would be satisfactory.

Therefore, in the last few decades, many researchers have been developing Metaheuristic Algorithms (MAs)
in order to surmount the limitations of the classical methods, by allowing greater flexibility and robustness while
handling complex optimization problems!”. MAs represent a class of stochastic optimization techniques that
do not use gradient information for the optimization process; hence, it is also suitable for solving nonlinear,
nonconvex, high-dimensional problems. Unlike in the case of classical methods, these metaheuristics are
superior to them because they can handle complex search spaces by effectively combining global and local search
strategies that enable them to avoid local optima and reach near-optimal solutions with efficiency. Their ability to
balance exploration and exploitation has made them highly popular in diverse optimization tasks'®.

MAs are typically inspired by many natural phenomena, including physical principles biological behaviors,
human habits, and more. Various categories of MAs are present in the literature. In'?, the authors classify MAs
into two main groups: evolutionary algorithms and swarm intelligence algorithms. Furthermore, in?’, the
authors classify MAs into three distinct categories: evolutionary algorithms, swarm intelligence algorithms,
and physical algorithms. On the other hand, the authors in?! categorize MAs as either single- or population-
based solutions. Generally, there is no widely agreed upon criterion for categorizing metaheuristic algorithms.
Nevertheless, the classification criteria that are most frequently employed are derived from a wide range of
sources of inspiration. This work categorizes MAs into five broad groups: physical, evolutionary, swarm-based,
mathematical, and human-based??. Evolutionary algorithms primarily imitate biological strategies, such as
reproduction, genetic diversity, and mutational adaptation. The search process begins with a random population
and then iterates constantly to accomplish multi-generational evolution. This category includes, for instance,
Genetic Algorithm (GA)?, Differential Evolution (DE)*!, and Liver Cancer Algorithm (LCA)%*. The second
category refers to mathematical algorithms?, for instance, Arithmetic Optimization Algorithm (AOA)%,
Gradient Based Optimizer (GBO)?, the Weighted Mean of Vectors (INFO)%, and the Sine-Cosine Algorithm
(SCA)*. The third category of algorithms refers to physics-based algorithms which replicate the behavior of
physical events and their governing principles, such as magnetic fields, gravity, and mass equilibrium. The
examples of this category include Simulated Annealing (SA)*!, Gravitational Search Algorithm (GSA)*2, Kepler
Optimization Algorithm (KOA)*, Rime Optimization Algorithm (RIME), and. The fourth category pertains
to human cooperation and behaviors within a society, referred to as human-based algorithms such as Teaching
Learning-Based Optimization (TLBO)**, Human memory optimization algorithm (HMO)*, and Human
evolutionary optimization algorithm (HEOA)™. The final category relates to swarm-based techniques, which
are based on the collective behaviors of organisms in clusters, such as breeding, foraging, and hunting. This
category includes a diverse range of algorithms such as Particle Swarm Optimization (PSO)?, Slime Mould
Optimizer (SMA)¥, Crayfish optimization algorithm (COA)*°, Harris Hawks Optimization (HHO)*!, Spider
Wasp Optimizer (SWO)*2, and Dung Beetle Optimization (DBO)*.

Despite their successes, many issues appear regarding MAs. Among the most important ones, there is the
trade-off between exploration and exploitation. Exploration is the process by which the algorithm explores
new, unexplored regions of the solution space in order to find multiple possible solutions. On the other hand,
the exploitation phase generally needs the intensification of known promising solutions in order to achieve
an optimum. A good balance between these two processes basically poses the challenge for any MA to be
successful*’. Additionally, MAs generally suffer from slow convergence rates, loss of accuracy as the problem
becomes highly complex, and the tendency to get stuck in local optima, especially in high-dimensional space®.
Due to these challenges regarding MAs, much research effort has focused on improving existing MAs by adding
new strategies and hybridizing strategies from multiple algorithms?®. The improvements aim at increasing the
convergence speed, enhancing the solution’s accuracy, and enhancing the algorithm’s capability of escaping from
local optima.

The Crayfish Optimization Algorithm (COA) is an innovative MA developed by Jia in 2023, inspired by the
survival strategies observed in crayfish populations. This algorithm draws inspiration from crayfish behaviors
such as avoiding heat, competing for shelter, and searching for food. Previous investigations have emphasized
that, when compared to several traditional MA, its shared advantages include a versatile structure, a reduced
number of parameter settings, and high accuracy. However, COA unavoidably has certain limitations, which is
why this paper advocates for an enhanced version of COA. The main limitations of COA include: (1) The COA
approach demonstrates insufficient accuracy and slow convergence when dealing with high-dimensional and
non-convex issues. 2) when faced with complicated engineering optimization difficulties, COA is susceptible
to getting stuck in local optima due to a large number of non-linear constraints. 3) the No Free Lunch (NFL)
theorem?’ states that “no MA can be guaranteed to work for all optimization applications” which motivates
employing suitable tactics to enhance the efficiency and potential success of COA in addressing practical
engineering problems.

To address these limitations, an Adaptive Dynamic Crayfish Optimization Algorithm with the improved
escape operator, namely AD-COA-L, is proposed. Four main strategies are embedded in this variant of COA to
enhance the performance of this algorithm:

« Bernoulli Map Initialization: This strategy is used in initialization so that a uniformly distributed population
can be formed to enhance diversity from the initialization for the better exploration of the search space.

 Adaptive Dynamic Inertia Weight: This strategy updates the inertia weight dynamically in the exploitation
phase to reserve the superior solutions and build up the search capability of the algorithm during iterations.

« Local Escape Operator (LEO): LEO strengthens local exploitation with a view to strengthening information
exchange between search agents, balancing exploration and exploitation, and hence enhancing the quality of
the solution.
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« Adaptive Lens Opposition-Based Learning: the ALOBL strategy moves the current best solution in the
opposite direction, in later iterations, in order to avoid local optima and therefore increase the probability of
global convergence.

In this regard, convergence speed, solution accuracy, and robustness of AD-COA-L have been strictly tested on 29
benchmark functions selected from the IEEE CEC2017 dataset. Also, this work compares the performance of the
AD-COA-L with that of several state-of-the-art MAs. Furthermore, AD-COA-L is applied to seven constrained
real-world engineering design problems to validate its practical effectiveness. The primary contributions are
outlined as follows:

« An improved version of COA is proposed, AD-COA-L, which includes four major strategies to enhance the
overall performance of COA including Bernoulli map initialization for diversity in the population, adaptive
dynamic inertia weight for enhancing exploitation, local escape operator for improving local exploration, and
ALOBL to prevent local optima.

o The strength of AD-COA-L is verified using 29 CEC2017 test functions. The acquired results are compared
with several state-of-the-art methodologies and high-performance modified variant algorithms.

o The effectiveness of AD-COA-L in addressing intricate real-world optimization difficulties is confirmed by
analysis of seven engineering design scenarios.

 The Wilcoxon rank-sum test and Friedman ranking test provide evidence that AD-COA-L outperforms other
competing algorithms in terms of solution correctness, convergence rate, and resilience.

The subsequent sections of this study are structured as follows: Sect. 2 provides a summarized overview for
the recent literature works. Section 3 provides an in-depth explanation of the principles and mathematical
models that form the foundation of COA. Section 4 introduces the development of a sophisticated crayfish
optimization algorithm called AD-COA-L, which utilizes multiple strategies to optimize its performance. The
evaluation of the optimization performance of AD-COA-L on the CEC2017 benchmark suites is conducted in
Sect. 5. Section 6 demonstrates the efficacy of AD-COA-L in seven real-world applications by presenting several
examples of limited engineering design. Section 7 summarizes the result and presents possible directions for
future research.

Related work

Hu et al.*® introduced an enhanced hybrid AOA named CSOAQA to improve exploitation, avoid local optima,
and increase convergence accuracy. CSOAOA incorporated point set initialization, optimal neighborhood
learning, and crisscross optimization strategies. It was validated on 23 classical benchmark functions, CEC2019,
and CEC2020 test suites, showing significant improvements in precision and convergence rate. Statistical tests
confirmed that CSOAOATs potential as a powerful algorithm for complex engineering optimization problems.

Shen et al.** proposed MEWOA, a WOA variant using multi-population evolution to improve convergence
speed and avoid local optima. MEWOA divided individuals into exploratory, exploitative, and modest sub-
populations with different search strategies. It was tested on 30 benchmarks and real-world problems; MEWOA
outperformed five WOA variants and seven metaheuristics in convergence speed, runtime, and solution
accuracy, demonstrating its competitiveness. Qiao et al.*’ proposed a hybrid AOA-HHO algorithm for Multilevel
Thresholding Image Segmentation (MTIS) to improve threshold selection for object detection. Combining AOA’s
exploration strengths with HHO’s exploitation abilities, AOA-HHO outperformed AOA, HHO, and other MAs.
It used the image features as the fitness function, experiments on seven test images show superior segmentation
accuracy, PSNR, SSIM, and execution time. Qiu et al.>! proposed an improved Gray Wolf Optimization (IGWO)
algorithm to enhance the traditional GWO’s convergence speed, solution accuracy, and ability to escape local
minima. IGWO used lens imaging reverse learning for initial population optimization, a nonlinear control
parameter strategy, and tuning inspired by TSA and PSO. It was tested on 23 benchmarks, 15 CEC2014 problems,
and 2 engineering problems; IGWO showed superior performance and balance in global optimization. Houssein
et al.>2 proposed mSTOA, an improved Sooty Tern Optimization Algorithm for feature selection (FS) to avoid
sub-optimal convergence. mSTOA employed strategies for balancing exploration/exploitation, self-adaptive
control parameters, and population reduction. It was validated on CEC2020 benchmarks and tested against
various algorithms; mSTOA demonstrated superior performance in extracting optimal feature subsets, with
statistical analyses confirming its effectiveness.

Wu et al.>® proposed a novel variant of the Ant Colony Optimization algorithm (MAACO) for mobile
robot path planning to address slow convergence and inefficiency. MAACO introduced orientation guidance,
an improved heuristic function, a new state transition rule, and uneven pheromone distribution. Experiments
demonstrated MAACO’s superiority over 13 existing approaches in reducing path length, turn times, and
convergence speed, proving its efficiency and practicality.

Nadimi-Shahraki et al.>* proposed an enhanced Whale Optimization Algorithm (E-WOA) using a pooling
mechanism and three effective search strategies to address WOA's low population diversity and poor search
strategy. E-WOA outperformed existing WOA variants in solving global optimization problems. The binary
version, BE-WOA, was validated on medical datasets, showing superior performance in feature selection,
particularly for COVID-19 detection, compared to other high-performing algorithms.

Askr et al.>® proposed Binary Enhanced Golden Jackal Optimization (BEGJO) for feature selection (FS)
to tackle high-dimensional datasets. BEGJO improved the original GJO by incorporating Copula Entropy
for dimensionality reduction and four enhancement strategies to boost exploration and exploitation. It used
the sigmoid transfer function where BEGJO outperformed other algorithms in classification accuracy, feature
dimension, and ranks fourth in processing time, validated through statistical evaluations.
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Orzkaya et al.*® proposed a novel Adaptive Fitness-Distance Balance based Artificial Rabbits Optimization

(AFDB-ARO) algorithm to solve the complex Combined Heat and Power Economic Dispatch (CHPED)
problem. AFDB-ARO enhanced exploration and balances exploitation, outperforming the base ARO in
benchmark tests. It was applied to CHPED systems with various unit configurations, AFDB-ARO achieved
optimal solutions in most cases, demonstrating superior performance and stability compared to ARO. Yildiz et
al.’” proposed a novel hybrid optimizer, AOA-NM, combining Arithmetic Optimization Algorithm (AOA) and
Nelder-Mead local search to improve solution quality and avoid local optima traps. AOA-NM’s performance
was validated on CEC2020 benchmarks and ten constrained engineering design problems, showing superior
results compared to other metaheuristics. Comparative analysis confirmed AOA-NM'’s robustness in solving
complex engineering and manufacturing problems. Deng et al.>® proposed an improved Whale Optimization
Algorithm (IWOA) to address WOA's slow convergence, low precision, and tendency to fall into local optima.
IWOA used chaotic mapping for population initialization, integrates black widow algorithm pheromone and
opposition-based learning for population modification, and employed adaptive coefficients and new update
modes. It was tested on 23 benchmark functions; IWOA demonstrated superior convergence speed, stability,
accuracy, and global performance compared to other optimization algorithms. Tan and Mohamad-Saleh®
proposed a hybrid Equilibrium Whale Optimization Algorithm (EWOA), combining bio-inspired WOA and
Equilibrium Optimizer (EO). EWOA integrated WOA's encircling and attacking mechanisms with EO’s weight
balance strategy. It was tested on multiple benchmark sets; EWOA outperformed six state-of-the-art algorithms
in terms of statistical mean performance, convergence rate, and robustness. EWOA achieved the best results on
46 out of 101 functions, demonstrating superior optimization efficiency. The Mahajan et al.*®® proposed a hybrid
method combining Aquila optimizer (AO) and AOA to enhance convergence and result quality. It was tested
on various problems, including image processing and engineering design, AO-AOA demonstrated effectiveness
in both high- and low-dimensional problems. The results showed efficient search results, particularly in high-
dimensional problems, validating the approach. Qian et al.%" introduced a hybrid SSACO method that combines
the foraging model of the salp swarm algorithm with the ant colony optimizer. The salp foraging behavior in
SSACO effectively improved the original algorithm’s capacity to avoid local optima, resulting in a large increase
in convergence accuracy. The application of SSACO to remote sensing image segmentation had yielded
successful results. The evaluation of these results, based on peak signal-to-noise ratio, structural similarity index,
and feature similarity index, had demonstrated that this method possessed distinct benefits over comparable
segmentation methods.

Zhu et al.® proposed the QHDBO algorithm, an enhanced Dung Beetle Optimization algorithm
incorporating quantum computing and multi-strategy hybridization to address local optimum issues. QHDBO
improved initial population distribution, balances global and local search, and used a t-distribution variation
strategy. It was tested on 37 functions and engineering problems, QHDBO showed improved convergence speed,
optimization accuracy, and robustness. Table 1 summarize the reviewed related and existing works to highlight
the points of strength and weakness to motivate the need for the proposed work in this paper.

According to the analysis of related works in Table 1, although performances of various MAs have enhanced
over many reviewed related works, a lot of their shortcomings remain unsolved. Most of the available methods
suffer from an imbalance between the exploration-exploitation principle, though they have converged to an
optimal solution on certain problem domains. Besides, they often result in a phenomenon called premature
convergence, when the algorithm converges into local optima without proper exploration of the solution space.
Also, several related works, though improved in enhancing the speed of convergence, depict poor performance
on complex, high-dimensional problems including a large and non-convex search space.

Furthermore, most of the works done previously are mainly dependent on fine-tuning control parameters
toward optimal results. This very dependence makes these algorithms less general, with increased computational
costs especially when it deals with large-scale or real-world applications. Their effectiveness is immensely
reduced in problems of higher dimensions due to limited explorative capabilities.

The proposed AD-COA-L will directly address these gaps through the incorporation of a number of adaptive
mechanisms. With the Bernoulli map, initialization is guaranteed to result in greater diversity of population at
the very beginning. Adaptive dynamic inertia weight maintains a balance between exploration and exploitation
in the process to ensure that neither of these phases ever dominates, hence avoiding premature convergence.
The local escape operator enhances local exploration and allows the algorithm to move away from local optima.
In addition, the ALOBL mechanism strengthens the exploration power of the algorithm for high-dimensional
spaces. These merits of enhancement indicate that the new algorithm, namely AD-COA-L, will have better
convergence, ensure the solution quality, and be more effective for complex, high-dimensional optimization
problems compared to the previously developed algorithms.

Crayfish optimization algorithm (COA)

In 2023, researchers introduced the COA*, which replicates crayfish behaviors: competitive behavior, summer
resort behavior, and foraging behavior. These behaviors align with the exploitation and exploration phases
of optimization, influenced by temperature. Higher temperatures lead crayfish to seek cave refuge for rest or
competition, while suitable temperatures promote foraging during exploration. Temperature adjustments
produce unpredictability in finding optimal solutions. The main stages of COA are follows:

« Initialization: In COA, an optimization problem with dimensions is represented by each crayfish, which
serves as a potential solution in the form of a 1 X d vector. Each variable (X1, X2, X3, 7, Xq) represents
a particular point X within the search space, which is constrained by an upper boundary Ub and a lower
boundary Lb. During each iteration of the process, the most optimal solution is computed. The solutions
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Related work

Methodology

Strength

Weakness

Huetal 4

Enhanced hybrid AOA (CSOAOA)

Improves exploitation, avoids local optima, increases
convergence accuracy

Imbalanced exploration-exploitation despite improved accuracy,
potential for slow convergence in high-dimensional problems

Shen et al. #°

Multi-population evolved WOA
(MEWOA)

Increases convergence speed, avoids local optima,
competitive performance

May face challenges in extremely high-dimensional problems
despite improved convergence speed

Qiao et al. *°

Hybrid AOA-HHO for MTIS

Improves segmentation accuracy, PSNR, SSIM,
execution time

Focused on image segmentation, lacks general applicability
across other domains

Qiu et al. >

Improved Gray Wolf Optimization
(IGWO)

Improves convergence speed, solution accuracy,
escapes local minima

Requires fine-tuning to maintain performance across diverse
problems, risk of local optima

Houssein et al. >

Improved Sooty Tern Optimization
Algorithm (mSTOA)

Balances exploration/exploitation, avoids sub-optimal
convergence

Control parameter sensitivity may lead to inconsistent
performance in complex cases

Wu et al. >3

Variant Ant Colony Optimization
(MAACO)

Reduces path length, turn times, improves
convergence speed

High computational cost for large-scale problems despite
improved path planning performance

Nadimi-
Shahraki et al. >*

Enhanced Whale Optimization
Algorithm (E-WOA)

Improves population diversity and search strategy

Struggles with maintaining balance in multi-objective tasks,
relies heavily on parameter adjustment

Askr et al. >

Binary Enhanced Golden Jackal
Optimization (BEGJO)

Boosts exploration and exploitation, outperforms in
classification accuracy

Computationally expensive, may not generalize well to larger
datasets despite classification improvements

Ozkaya et al. >

Adaptive Fitness-Distance Balance
ARO (AFDB-ARO)

Balances exploration/exploitation, achieves optimal
solutions

May struggle with large-scale problems despite performance in
benchmark tests

Yildiz et al. >’

Hybrid AOA-NM

Improves solution quality, avoids local optima traps

Limited applicability outside constrained design problems

Dengetal. *®

Improved Whale Optimization
Algorithm (IWOA)

Improves convergence speed, stability, accuracy

Challenges in dealing with complex constraints, potential slow
convergence

Tan and
Mohamad-
Saleh *°

Hybrid Equilibrium Whale
Optimization Algorithm (EWOA)

Superior statistical performance, convergence rate,
robustness

Improved robustness but limited efficiency in more complex,
high-dimensional spaces

Mahajan et al. ©

Hybrid AO-AOA

Effective in high- and low-dimensional problems

limited exploration in certain complex tasks

Qian et al.

Hybrid SSACO

Avoids local optima, improves convergence accuracy

Limited exploration capabilities in high-dimensional, non-
convex problems

Zhu et al. ©

Enhanced Dung Beetle Optimization
(QHDBO)

Improves convergence speed, accuracy, robustness

Still prone to local optima in extremely challenging problems
despite overall improvements

Table 1. Summary of existing works.

are compared in a step-by-step manner, and the most favorable choice is found and retained as the ultimate
optimal solution. The initial distribution of the COA population is established using Eq. (1):

X; = Lb+ (Ub+ Lb) x rand

(1)

where the optimization problem’s borders are represented by Ub and Lb. The temperature is a crucial
factor in multiple stages of the crayfish and is defined by Eq. (2). When the temperature exceeds 30
degrees, the crayfish relocates to a cooler area as its summer sanctuary. The crayfish exhibits its foraging
activity when the temperature is suitable.

temp = rand x 15+ 20

)

Therefore, the act of searching for food can be replicated by employing a Gaussian distribution, which is
influenced by the temperature as described in Eq. (3):

1
p:Clx (
2X T X o

<o) (Uem )

€)

where the temperature of the best crayfish is represented by 1, whereas the parameters C; and o
regulate the different temperatures of crayfish.

o Summer resort phase: In the summer, when the temperature exceeds 30 °C, crayfish actively seek out cool
and moist tunnels to avoid the harmful effects of the heat. The method for determining these caverns is de-
fined in Eq. (4):

Xs=(Xg+X1)/2

(4)

According to Eq. (4), the best position is denoted as X g, whereas the current position of the population is
called X.Conversely, if the random number is below 0.5, there is no rivalry among the crayfish. Instead,
they promptly assume possession of the cave in the following manner:

Xnew = Xi +C2 x rand x (Xs— X;)

=2 (7

(5)

) (6)
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where the position of the crayfish in the next iteration is represented as X, the position of the current
crayfish is represented as X, and the maximum number of iterations is denoted as 7.

o Competition phase: When the temperature exceeds 30 °C and the random variable rand is 0.5 or higher, it
signifies that the crayfish are experiencing competition from other crayfish for the cave. The new position is
calculated using Eq. (7):

Xnew = Xi — X + Xs (7)
z=round(rand x (N —1))+1 (8)

N represents the total count of agents in the current population.

« Foraging phase: when the temperature reaches or falls below 30 °C, crayfish are prompted to leave their caves
in order to search for food. At elevated temperatures, crayfish emerge from their burrows and locate food by
utilizing the optimal place they determined during their evaluation. The food’s position is determined using
the following:

Xr = Xg )

The consumption of crayfish is influenced by both their feeding rate and the size of the food they
consume. If the food is overly large, the crayfish are unable to swallow it instantly; instead, they must first
deconstruct it with their pincers. The size of the food is calculated using Eq. (10):

Q=Cs x <Ffd) (10)

where C'3 represents the maximum size of food, which is set at a specific value of 3. The variable Fj
represents the fitness score of the crayfish with the index , while F'o0q4 represents the fitness score of the
crayfish with the index and a specific food source.

Crayfish assess the magnitude of the meal by taking into account its maximal nutritional worth, @, in
order to select their feeding approach. If the value of exceeds ( C'3 + 1)/2, it indicates that the food is too
huge to be consumed directly. The formula for crushing food is as stated:

Xr =exp (—22) x Xp (11)

Then, the crayfish employ their second and third claws to alternately grip the food and move it into their
mouth. The equation representing the alternative feeding behavior of crayfish is given by Eq. (12):

Xnew = X5+ Xr X px (cos(2x m x rand ) —sin(2 x 7w x rand )) (12)

If the value of is less than or equal to (C3 + 1)/2, it indicates that the crayfish may consume the meal
instantly because it is an adequate size. The equation representing the feeding behavior of crayfish is given
by Eq. (13):

Xnew = (Xi — Xr) X p+px rand X X; (13)

Finally, the greedy selection process is utilized to choose between the newly updated position and the
present solution as follows:

Xnew ; ; Xnew < XZ
Xi(t+1) = { X i ogherijgse ) (14)

The proposed AD-COA-L algorithm

This research presents a novel approach called AD-COA-L and utilizes it to address global optimization and
engineering design challenges. Four main improvements guide the COA toward better solutions and obtain
high quality fitness solutions. The details of these introduced strategies are explained in the following subsequent
subsections.

Bernoulli map-based population initialization

The fundamental aspect of metaheuristic algorithms lies in the iterative process of evaluating potential solutions.
Consequently, the beginning population plays a crucial role in determining the algorithm’s convergence and
exploration. Furthermore, it is widely recognized that the initialization phase of the majority of MAs involves
generating random values within a specific range, following a Gaussian distribution. This initialization process has
a significant impact on the progress and optimization quality. On the other hand, Chaotic maps are employed to
produce chaotic sequences, which are sequences of unpredictability generated by straightforward deterministic
systems. Chaotic maps exhibit non-linearity, a strong sensitivity to beginning conditions, ergodicity, randomness,
chaotic attractors, fractional maintenance, overall stability, local instability, and long-term unpredictability.
Thus, in the realm of optimization, chaotic maps are frequently employed as substitutes for the pseudo-random
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number generator rand to produce chaotic numbers within the range of 0 to 1. Experimental evidence has
shown that employing chaotic sequences for population initialization, selection, crossover, and mutation has
a significant impact on the algorithm’s performance, typically resulting in superior convergence compared
to utilizing random sequences’. The Bernoulli map is a common example of a chaotic system. The system is
characterized as a segmented chaotic system, using the following formula:

e Z(k,v) € (01—7]
Z(k+1,7v) = AN ’ ’ 15
(kL) { Zen)=y - Z(k,y) € (1—7,1) =
S@‘j:lb‘j—ﬁ-Z(kJ,"}/)X (upi—lbj), 1=12,... ,Nj=12...,D (16)

where the parameter is a randomly chosen value between 0 and 0.5, typically with a value of 0.29 3. The notation
S;.; represents the §'" dimension of the ‘" monochromatic wave.

In other words, the AD-COA-L introduces an initialization of the population based on the Bernoulli map
with the aim of improving the exploration capability since the early stages of the optimization process. In the
original COA, the population is initialized randomly within a fixed range and can result in some uneven or even
suboptimal distribution of solutions. Such random initialization may imply the algorithm has only a limited
capability of exploring the search space in depth, getting trapped into premature convergence to local optima.

In the random initialization, the highly sensitive initial condition-dependent chaotic sequence is now
the Bernoulli map. The use of the Bernoulli map in the AD-COA-L guaranteed uniformity in the spread of
population across the search space besides ensuring diversity. This strategy will enhance the quality of the
population by generating a more diverse set of initial solutions, which enables the algorithm to explore more
promising areas much earlier in the search process. This also helps to reduce the possibility of getting trapped
into a local minimum, thereby helping to accelerate convergence toward the global optimum.

Dynamic inertia weight coefficient

In the basic COA algorithm, the inertia weight value remains constant at 1. Consequently, the algorithm is prone
to getting stuck in local minima. To address this issue, it has been recommended in® to set the inertia weight
value to a variable w that is updated during iterations, leading to improved convergence. In this regard, the
proposed AD-COA-L algorithm utilizes a variable value for the inertia weight coefficient, as described in Eq. 17:

cos (m%ﬂ (17)

The adaptive inertia weight function, denoted as , is periodic function with represents a varied value, with
possible values ranging from 1 to 0 in increments of 0.1. The variable ¢ represents the current iteration, while 7°
represents the maximum number of iterations. The inertia weight is added to both the competition and foraging
phases of COA to boost the convergence speed at later iterations and helps AD-COA-L to avoid falling the local
optima. The updated competition and foraging phases of AD-COA-L are represented by Eqs. (18-20) instead of
Egs. (7), (12) and (13).

w =

Xnew =w x X; — X, + Xs (18)
Xnew =w X X;+ Xr X pX (cos(2Xx m x rand) —sin(2 x m x rand )) (19)
Xnew =w X (X;i— Xp)x p+px rand x X; (20)

The dynamic inertia weight coefficient not only enhances the exploration and exploitation capabilities of AD-
COA-L but also ensures an effective balance between the two throughout the optimization process. The inertia
weight is set to higher values in the early iterations in order to give more emphasis on global exploration.
This higher value of inertia weight inspires the solutions to traverse a larger area of the search space; thus, the
algorithm does not get entrapped into the local optima at the beginning. Enabling solutions to travel larger
distances, AD-COA-L increases the chances of finding new diversified regions, hence reinforcing its exploration
power.

As iterations grow and the algorithm starts to converge toward potential promising regions, the inertia
weight starts to decrease. As a result, the algorithm now moves its focus from a broad exploration toward the
exploitation of the best solutions found so far. A smaller inertia weight makes the search more local, which can
enable the algorithm to fine-tune and refine the solutions in these high-potential regions. This refined search
process amplifies the algorithm’s capability for higher accuracy and attainment of optimal solutions.

Furthermore, the balance between exploration and exploitation depends on the value of the probability
parameter p in the AD-COA-L algorithm. Higher values of p in early stages allow wider explorations because it
enables the solutions to make larger movements across the search space, thus preventing it getting stuck in local
optima. Conversely, during runtime, if the value of p is decreased, it guides the algorithm toward exploitation
for more refined, local adjustments in the solutions for fine-tuning and optimization. This dynamic adjustment
of p, combined with the adaptive inertia weight, maintains appropriate exploration-exploitation trade-offs so
that the algorithm is always effectively exploring new areas while continually exploiting the best-found solutions
for better convergence without getting stuck prematurely.

The AD-COA-L algorithm operates to keep a good balance between exploration and exploitation by varying
the inertia weight dynamically with iteration count. It starts giving importance to wide exploration in its early
iterations to ensure that the algorithm has scanned the solution space well and, in later stages, gives more
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importance to exploitation in order to tune the best-found solutions. This is important in avoiding premature
convergence and maintaining efficient convergence toward global optima. Dynamic adjustment can assure that
AD-COA-L will adaptively switch between exploration and exploitation to obtain more robust optimization
performance.

Adaptive lens reverse learning strategy

It is analyzed that the COA depends on the best solution Xp during the position update of different phases
as mentioned in Egs. (5), (7) and (12) where new candidate solution is created by directing the current
individual towards the global optimal point X 5. During the optimization process, the majority of individuals
in the population have a tendency to gather around the perceived current best solution. Therefore, the COA is
prone to early convergence. The primary research focus in improving COA is centered on enhancing its ability
to overcome local optima. One widely used approach in the existing literature to strengthen the worldwide
investigation of MAs is Opposition-Based Learning (OBL)%. The OBL algorithm is based on the concurrent
calculation of objective values for the present individual and its inverse solution, in order to reveal a more
advantageous optimal solution for the optimization objective. Nguyen et al.%® used the OBL mechanism into
the Slime Mould Algorithm (SMA) to circumvent the occurrence of local optima and enhance the optimization
performance for achieving optimal solutions.

On the other hand, Lens opposition-based learning (LOBL) is a novel adaptation of OBL that replicates the
process of convex lens imaging in optical principles. More precisely, if an item is positioned at a distance equal to
twice the focal length of a convex lens, a true image that is both inverted and reduced in size will be formed on
the opposite side of the lens. In Fig. 1, the point O represents the middle point of the search interval [Ib, ub] in
a two-dimensional space. The y-axis is visualized as a convex lens. The assumption is that when a person with a
height of h is projected onto the x-axis in the image region, it is labeled as x. This x point is located at a distance
twice the focal distance away from the lens. Following the process of lens imaging, an actual image is formed
with a height approximately equal to h. The projection of this image on the x-axis is denoted as x, indicated by
the green point. By applying the fundamental principles of lens imaging, we can deduce the geometric equation
as follows:

b+ ub)/2 — =z
T

= 2 (21)
—(b+ub)/2 p

Let k=h/ E, then Eq. (21) is converted into:

~ lb+ub Ib+ub
T= —

X
— 22
5 Tk Tk 22)

When the value of k is equal to 1, Eq. (22) can be converted into the standard form of OBL in the following
manner:

a=1b+ub—z (23)
This implies that OBL is a specific example of LOBL, which not only possesses the benefits of OBL but also

enhances solution variety and the probability of avoiding suboptimal solutions by adjusting the value of k. The
extension of Eq. (23) to the D-dimensional space can be stated as follows:

~ _ Ibj + ub; +lbj+ubj _ Tig

24
Tioi 2 2% k @4

Original imaging A ¥ (Convex lens)
p
h \ z
== & oO—>
) X ) : I:l' ub X

Convex lens imaging

®: Current best solution
®: Newly generated opposite solution

Fig. 1. Schematic of Lens Opposite Based Learning.
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The variable 7; ; denotes the opposing solution of the i-th individual in the j-th dimension. Ib; and ub;

represent the upper and lower limits in the j-th dimension, respectively.

In the basic LOBL, the variable k is allocated a fixed value, which restricts its capacity to generate varied
solutions during the iterations. The algorithm often prioritizes thorough exploration of the search space during
the initial iterations in order to identify promising areas that contain optimal answers. Currently, increasing
the value of k significantly can enhance the search breadth and population diversity. During the later stages, a
reduced k value can be employed to improve the local search efficiency of the algorithm, resulting in a more
accurate optimal solution. Thus, this paper suggests a nonlinear adaptive reduction mechanism for modifying
the value of k resulting in adaptive variant of LOBL named Adaptive Lens Opposite-based Learning (ALBOL)
in which the parameter £ is defined in the following manner:

k=10 x [1 - (;)1 +1 (25)

where ¢ represents the current iteration and 7 represents the maximum number of iterations. Figure 2 illustrates
the trajectory of the variable k. After completing all algorithm operations, the proposed ALOBL mechanism is
utilized to gradually modify the current optimal solution X p dimension by dimension. This adjustment aims to
bring the solution closer to the theoretical optimal solution and speed up the convergence process.

In other words, the strategy of ALOBL in AD-COA-L is applied only for the current best solution in the
population, to avoid falling into the local optima strategically. The ALOBL generates an opposite solution to
the current best solution by reflecting the best solution across the midpoint of the search space to create an
alternative solution that explores another area of space that may lead to better optima. The application of ALOBL
in this regard ensures that the algorithm does not disrupt the progress of the whole population, but indeed
provides a critical exploration mechanism for the most promising candidate.

In addition, the ALOBL will be adaptive is the opposition strength, controlled by dynamically changing
parameter k. Because this value of the parameter is higher at early iterations, it maintains a higher diversity in
the opposite solutions that enable broader exploration. Furthermore, k value fine-tunes the search to improve
the exploitation around the best-found areas. When ALBOL applied to the best solution, AD-COA-L efficiently
balances exploration and exploitation, leading to a better convergence behavior of this approach without the
risk of premature stagnation in suboptimal regions. This strategy enhances the ability of the algorithm to pass
through a complex search space and accelerates its convergence with maintained diversity in solutions.

12000 T T T T T T T T T

I0000 .

8000 B

6000 | A

Value of K

4000 *

2000 [~ 1

| 1 1 | 1 | 1 1 1

o 100 200 300 400 500 600 700 800 900 1000
Iteration

Fig. 2. The value of proposed k with the progress of iterations.
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Local escaping Operator (LEO)

The Local Escaping Operator (LEO) is an additional local search algorithm introduced in?®. Its main purpose
is to enhance the exploration capabilities of the Gradient-based Optimizer by facilitating the exploration of
new regions, especially in complex real-world problems. This leads to an improvement in the overall quality
of the solution. LEO updates the positions of solutions based on specific criteria, effectively preventing the
optimization algorithm from being trapped in local optima and improving its convergence behavior. To generate
alternative solutions with superior performance, LEO utilizes critical solutions, including the best position X5
, two randomly generated solutions X1 and X2, two randomly chosen solutions X1; and X2;, and a newly
generated random solution X.. The following scheme provides a mathematical formula for determining the
value of X1 go:

if rand < pr then

if rand < 0.5 then.
Xrpo (1) « Xi(t+ 1)+ f1 X (w1 X Xpest —uz X X5 (£)) + fo x py x (us X (X2; — X1;) +uz x (X1 — Xp2))/2
Xi(t+ 1)« Xrgo (t)
else.
Xreo (t) ¢ Xpest + f1 X (u1 X Xvest —u2 X X, (1)) + f2 x pq X (uz x (X2 — X1;) +u2 x (Xr1 — X12))/2
Xi(t+ 1)« Xrgo (t)
end if.
end if (26)

The given equations have several parameters including f1 which is a stochastic variable that can assume any
value between — 1 and 1 inclusively, f2 is a random variable that follows a normal distribution with a mean of 0
and a standard deviation of 1. Furthermore, p ; indicates the probability and there are three additional random
variables, specifically (w1, u2, and wusz) which are defined as follows:

_f 2x rand ifp, <05
ur = { 1 othelrwise (27)
_ f rand ifp, <0.5
Uz = { 1 othérwise (28)
. rand ifp, <0.5
us = { 1 othérwise (29)

where rand represents a randomly generated number that falls within the range of 0 to 1. On the other hand,
the variable u represents a number that also falls within the range of 0 to 1. The provided equations can be
simplified as shown in Egs. (30-32):

ur = Q1 X 2 x rand + (1 — Q1) (30)
uz = @1 X rand + (1 — Q1) (31)
uz = @1 X rand + (1 — Q1) (32)

The binary parameter, (1, can only have a value of either 0 or 1. This value is determined by a condition: if
Q1 is less than 0.5, then Q1 is set to 1. Alternatively, it is given a value of 0. In addition, to maintain a proper
equilibrium between exploration and exploitation in search processes, the variable p ; is introduced which is
defined by Egs. (33-35):

py=2xrand X o —« (33)
o = |sin (sin (B x 3l) +3l) x 5’ (34)
2 2
)
/8 :(ﬂmax_ﬁmin)+/8minx (1_<T) > (35)
where the values of 3 ,,,;, and [ ,,,are fixed at 0.2 and 1.2, respectively. The variable denotes the present

iteration, while T signifies the maximum number of iterations. In order to maintain an equilibrium between
exploration and exploitation, the parameter p ; automatically adapts itself according to the sine function «
. The parameters (3 ,,,,, and 3 ... influence the adaptation of the probability factor p 1 inside the strategy
of LEO. These modulate the function « of the sine that applies the perturburbation step to the solutions. The
smaller value of 3 ,,,,, in the initial iterations, promotes wider exploration. A higher value of 3 ,,,. during
the ending iterations gives smaller, finer perturbations, shifting the focus toward exploitation. The adaptive
mechanism provides an effective balance between exploration and exploitation, improves the convergence, and
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gives more accurate solutions using the AD-COA-L algorithm. It is proposed to calculate the solution, X, in
the prior scheme by following the indicated strategy in Eqgs. (36) and (37):

_ Xrand lfﬂ < 0.5
X = { Xp othezrwise (36)
Xrand = Xmin + rand (071) X (Xmax — Xmin ) (37)

where X,qna denotes a fresh generated solution, while X, refers to a solution that has been chosen randomly
from a population. Additionally, 1+ represents a random number that falls within the range of values between 0
and 1. Equation (37) can be simplified in the following manner:

Xz = Q2 X Xp + (1 - QQ) X Xrand (38)

Here, the parameter ()2 is a binary variable that can only take the values of 0 or 1. Its value is decided by whether
the variable p is smaller than 0.5 or not. The stochastic selection of parameter values w1, u2, and w3 enhances
population variety and aids in avoiding local optimal solutions.

COA may struggle to achieve optimal performance as a result of insufficient information sharing among
individuals. Relying solely on the dominant solution for guidance is a type of greedy search, which increases
the likelihood of becoming trapped in local minima. To effectively discourage the deployment of isolated
solutions and encourage the exchange of information in the search area, it is imperative for all participating
parties to maintain communication via harnessing collective intelligence. In order to address this problem, the
AD-COA-L algorithm utilizes the LEO operator at the end of each iteration to enhance the exploitation and
search capabilities of COA. Additionally, the LEO strategy provides a controlled perturbations to the solutions’
positions by stochastic variables and probability factors. This leads to easily escaping local minima, encouraging
the algorithm to explore parts of the search space not analyzed before. This could render LEO particularly
effective during later iterations when the algorithm can refine the search with a maintained diversity in the
population. Enriching its general convergence speed and solution accuracy to enable the algorithm to plunge
even into global optima for highly complex optimization problems, AD-COA-L is applied with LEO at the end
of every iteration.

Consequently, the new AD-COA-L allows the population to discard inefficient options and perform the
local search process more efficiently. The main steps and operators of the proposed AD-COA-L is depicted in
Algorithm 1 and Fig. 3.

[ —

Calc. Temp
(Eq. 2)

——

Calc.C,
(Eq.6)

Calc. x,
(Eq. 4)

ﬁ_)

Apply ALOBL to
best solution
(Eq. 24)
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(Eq. 19))
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Q (Egs. 3,10)
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Apply LEO Check Apply greedy
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Check boundary (Egs. 26:38) (Eq. 14)

conditions
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Update Xg
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Fig. 3. The proposed AD-COA-L algorithm.
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Algorithm 1: AD-COA-L algorithm

Input: Maximum number of iterations T’, Population size N.
Output: Optimal solution X p, fitness value of optimal solution fp

1. | Initialize the initial population X using Eq. (16)

Compute the fitness value f (X ) of each solution

Obtain the required solutions X g and X,
fort < Tdo

Calculate the temperature temp using Eq. (2)

Calculate Cs3 using Eq. (6)

Calculate X s using Eq. (4)

Apply ALOBL strategy to the best solution using Eq. (24)

W RN U e

fori=1to N do
iftemp > 30then

11. | ifrand < 0.5then

—
4

12. | Update position of crayfish using Eq. (5)
13. | Else

14. | Update position of crayfish using Eq. (18)
15. | end if
16. | else

17. | Define the food intake p and size Q using Eq. (3) and Eq. (10)
18. | if p > 2then

19. | Update the position of crayfish using Eq. (19)
20. | else

21. | Update position of crayfish using Eq. (20)

22. | end if
23. | end if
24. | end for

25. | Check the boundary conditions

26. | Apply greedy selection using Eq. (14)

27. | fori =1to N do
28. | Apply LEO operator using Egs. (26-38)

29. | Check boundary limits

30. | Apply greedy selection using Eq. (14)
31. | end for

32. | Update the current optimal solution X p and its fitness value fp.

Bolt=t+1
34. | end for

35. | Return X p and its fitness value fp;

Experimental results and analysis

This study evaluates the effectiveness of the AD-COA-L algorithm by comparing it against eleven conventional
and recent algorithms, as well as eight state-of-the-art similar algorithms that are recognized for their exceptional
performance. A total of 29 benchmark functions from CEC2017 ¢7 were tested. The comparison includes six
conventional algorithms: Particle Swarm Optimizer (PSO)%*, Sine-Cosine Algorithm (SCA)*°, Slime Mould
Optimizer (SMA)*, Arithmetic Optimization Algorithm (AOA)%, Whale Optimization Algorithm (WOA)®%,
and Harris Hawk Algorithm (HHO)*!. Additionally, it incorporates five recent algorithms: White Shark
Optimizer (WSO)%, Gradient Based Optimizer (GBO)?, Spider Wasp Optimizer (SWO)*?, Weighted Mean
of Vectors (INFO)?, and the original COA. The specifications for the comparison methods’ parameters can be
found in Table 2. In order to achieve fairness, every algorithm is given a consistent maximum iteration limit of
1000 and an initial population size of 30. To minimize variability, every algorithm is run 30 times for each test
function, and the standard deviation (STD) and average (AVG) of the results are recorded.

The trials are conducted on a system including an Intel(R) i7-10750 H CPU, 32 GB of RAM, and running
Microsoft Windows 10. Furthermore, MATLAB (R2020a) functions as the programming environment for
coding, ensuring dependability and computational power throughout experimentation. The rows in the Tables
indicate the ranking of the average values. A rank of 1 signifies that the algorithm achieved the lowest average
solution value out of 30 trials, indicating a higher search capability.

Parameter sensitivity analysis
Two main parameters affect the performance of AD-COA-L including the probability p and the LEO limit
parameters min and Bmax. Therefore, in this section an experiment is conducted to test the sensitivity analysis
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Algorithm Setting values

PSO W =1[0.4, 0.9], cl =c2=2

N A,

WOA Q=[-1,1andk =1

SCA Aissetto2

WSO fmax = 0.75 and fmin = 0.07
SWo TR =0.3and CR=0.2
COA,AD-COA-L | C3=3, u =25,0 =3

SMA z =0.03, p=10.03

AOA C1=2,C,=6,C3=2,C4 =05
INFO c=2,d=4

GBO B min =02, B ae = 1.2, pr =0.5

Table 2. Comparative algorithms parameters’ values.

of these parameters. First, we perform the sensitivity analysis of the AD-COA-L algorithm with respect to the
probability parameter p, that controls the size of position updates in both competitive and foraging phases. To
this end, we conducted experiments over 29 benchmark functions of CEC 2017 suite with nine different values
of p within the interval [0.1, 0.9] with a step size of 0.1. Table 3 reports the STD and AVG of different variations
of parameter p. In all functions, the results include the computation of the average fitness AVG and STD over
multiple runs and present the results for each value of p. Further, performance across all functions has been
ranked based on the Friedman rank test where lower ranks correspond to a better overall performance. The well
marked variation of performance when the value of p changes are reported. For instance, for lower values of p,
such as 0.1 and 0.2, the algorithm tends to explore more widely, which indicates that with larger steps, while the
exploration capability of the algorithm is wider in the search space, convergence towards the optimal solution
is less precise.

Because p increases to 0.3 and 0.4, the drastic improvement of the algorithm’s performance is evident. In
particular, when p = 0.4, the lowest AVG values for many benchmark functions compared to other variations
are obtained by the algorithm, where the STD values of most benchmark functions depict steady convergence
behavior. The fact that p=0.4 presents the best performance is further corroborated by the Friedman rank,
reaching the minimum average rank there, which maintains an effective balance between exploration and
exploitation. This lets the algorithm efficiently explore the search space and fine-tune solutions in later iterations.

Beyond p = 0.4, the performance of the algorithm starts to degrade slightly, which could also be seen from
increased AVG and STD values when p = 0.5 and beyond. That is indicative of the fact that the higher values of
p shift the algorithm to a more conservative strategy of search in favour of exploitation at the expense of global
exploration. Thus, the algorithm is then prone to local optima, particularly on multimodal functions, which call
for a broader search.

This sensitivity analysis introduces that the selection of probability parameter p significantly influences the
performances of the AD-COA-L algorithm. In this work, the optimal value identified is p=0.4, since the optimal
trade-off between exploration and exploitation occurs for the algorithm, with superior performance evident
over most of the CEC2017 benchmark functions. Therefore, in applications of the AD-COA-L algorithm, the
utilization of p=0.4 will be taken into consideration to ensure robustness in the performances of optimization.

Together with the sensitivity analysis of the probability parameter p, an experiment also will be carried out
that analyzes the impact of the parameters 5 ,,;.d 5 ,,... This would give which governs the adaptation of
the probability factor p 1 within LEO strategy. Six different combinations of 3 and 3 ,,,,re evaluated,
described in detail in Table 4.

Additionally, Table 5 captures the STD and AVG values of different combinations for the parameters 3
and f ,,,.- The sensitivity analysis has shown that the algorithm’s performance significantly depends on the
choice of 3 ,,,, and 3 ,,,.. Among the six scenarios, the best performance of the algorithm is obtained for
Scenario 3, since this scenario has minimum AVG and STD values for many of the CEC 2017 benchmark
functions compared to other scenarios. It finds reflection in its Friedman rank of 1.87, thereby confirming
that it has the best balance between exploration and exploitation, which has translated into better convergence
behavior.

In contrast, the AVG and STD values were higher for Scenario 1 since the smaller range of 8 resulted in
limited exploration. The Friedman rank achieved for this scenario is 4.62, indicating relatively poor performance.
Similar behavior was obtained for Scenario 4 with a Friedman rank of 4.28, since the increase of fmin to 0.3
yielded poor exploration capabilities of the algorithm in the search space.

Scenario 2 and Scenario 5 provided a moderate performance, ranking Friedman at 3.43 and 3.15, respectively.
While they turned out better than the results for Scenario 1, their balance between exploration and exploitation
was still far from being as ideal as in Scenario 3. In Scenario 6, the wider range allowed the Friedman rank to
become as low as 2.65 due to effective exploration and exploitation of 3, though less well-balanced compared
to the Scenario 3 configuration.

The Friedman rank test categorizes Scenario 3 as the best among all parameter combinations tested.
Therefore, the sensitivity analysis conducted within the study revealed that the choices of 3 ,,,;,, and are

min

min

max
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F p=0.1 =02 =03 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9
AVG | 2914.970 2790.631 2370.477 2016.222 3080.839 2745.107 2984.092 1955.950 1785.844
i STD | 3067.888 2621.845 2365.965 2739.999 3037.802 2842.528 2638.295 1801.859 1842.695
AVG | 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000
B STD | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AVG | 404.996 402.433 402.154 402.114 404.574 402.061 404.482 402.152 404.481
F STD |12.157 0.828 1.080 0.970 12.028 1.074 12.750 0.799 11.754
AVG | 514.725 515.678 512.674 511.543 514.213 515.160 512.533 510.604 511.504
s STD |6.816 6.507 4.764 5.751 6.352 6.554 7.207 5.459 5.650
AVG | 600.005 600.007 600.007 600.001 600.007 600.026 600.004 600.066 600.074
re STD |0.022 0.029 0.029 0.002 0.019 0.119 0.011 0.260 0.389
AVG | 732.884 730.476 729.012 727.287 728.611 727.268 728.482 729.400 727.354
¥ STD |12.888 9.431 8.066 8.166 6.564 8.052 9.762 8.336 8.656
AVG | 820.297 818.175 816.649 816.483 815.787 818.308 816.417 820.562 813.797
8 STD |5.210 5.616 5.969 5.535 6.313 4.941 6.747 9.487 6.951
AVG | 900.570 900.091 900.488 900.261 900.231 900.258 900.148 900.106 900.284
£ STD |2.781 0.346 1.202 0.728 0.589 0.710 0.515 0.371 1.091
AVG | 1796.412 1720.963 1773.530 1783.348 1822.633 1840.329 1868.146 1855.204 1825.656
F1o STD | 324.757 278.732 281.498 280.044 297.047 235.682 204.305 295.473 244.190
AVG | 1114.407 1110.341 1111.510 1109.740 1108.841 1111.268 1111.852 1109.778 1112.042
i STD |10.635 7.742 11.686 5.510 6.599 10.989 6.577 5.377 7.786
AVG | 1.109E+04 | 1.243E+04 | 1.099E+04 | 1.294E+04 | 1.448E+04 | 1.193E+04 | 1.359E+04 | 1.188E+04 | 2.482E+04
f12 STD | 7.557E+03 | 9.866E+03 | 9.934E+03 | 1.045E+04 | 1.080E+04 | 8.517E+03 | 1.152E+04 | 9.139E+03 | 4.752E+04
AVG | 7319.643 9452.287 7555.361 7322.329 7960.247 6937.152 7433.426 6853.058 7646.979
F3 STD | 5166.980 5813.553 4917.643 5548.804 4399.696 4333.280 4867.852 5112.088 4662.249
AVG | 1456.690 1463.982 1456.455 1464.498 1466.125 1455.323 1467.344 1466.175 1511.596
1 STD |23.494 38.935 23.761 35.069 31.725 33.837 28.646 44.535 164.483
AVG | 1539.660 1581.334 1580.945 1661.276 1587.780 1596.697 1611.015 1583.903 1671.012
fs STD |32.877 88.755 67.285 183.605 80.153 77.588 121.319 103.876 389.450
AVG | 1715.579 1722.061 1692.191 1679.430 1698.432 1688.219 1668.952 1698.046 1666.663
F6 STD | 117.040 107.498 109.071 83.413 103.975 120.341 95.413 118.366 83.824
AVG | 1737.922 1736.327 1735.392 1738.064 1737.101 1741.193 1743.505 1747.238 1740.305
F7 STD |20.574 18.010 19.442 21.392 15.741 18.604 19.466 28.317 15.090
AVG | 1.029E+04 | 9.393E+03 | 1.211E+04 | 1.059E+04 | 1.019E+04 | 1.221E+04 | 9.135E+03 | 1.169E+04 | 9.884E +03
F18 STD | 9.197E+03 | 7.682E+03 | 1.051E+04 | 8.706E+03 | 7.206E+03 | 1.233E+04 | 8.077E+03 | 9.703E+03 | 9.452E+03
AVG | 4635.888 5114.007 4388.294 5825.227 4620.957 3934.643 5413.622 5432.556 3798.480
9 STD | 2913.909 3773.489 3528.607 5801.014 4399.353 2540.750 3678.078 4216.590 2759.922
AVG | 2058.041 2060.533 2058.633 2059.613 2068.792 2064.003 2064.347 2056.833 2068.118
F20 STD |53.794 53.131 55.057 60.764 60.269 54.967 75.268 61.240 48.689
AVG | 2274.929 2263.345 2263.778 2228.304 2227.895 2231.466 2250.757 2256.763 2220.703
Fa STD | 57.802 58.590 58.888 47.797 48.363 49.932 56.655 59.820 41.094
AVG | 2301.898 2298.926 2296.440 2296.126 2295.419 2301.779 2295.712 2295.696 2301.204
F22 STD |0.904 13.129 19.487 20.576 24.472 1.035 21.865 23.053 0.558
AVG | 2614.667 2617.113 2615.311 2615.403 2616.685 2616.896 2615.965 2616.408 2618.894
k23 STD |5.862 10.113 6.157 7.735 7.847 7.181 5.746 6.039 9.044
AVG | 2748.502 2738.693 2739.975 2738.123 2750.403 2749.353 2721.769 2722.450 2739.040
kA STD | 8.604 45.496 45.839 45.649 8.502 7.064 75.416 75.860 45.711
AVG | 2929.767 2926.761 2927.735 2932.863 2928.393 2926.720 2934.886 2926.951 2931.257
F2s STD |29.382 23.555 22.509 20.706 22.824 23.114 23.166 23.681 21.769
AVG | 2918.634 2896.783 2962.660 2955.677 2903.703 2907.698 2967.895 2898.328 2898.653
k6 STD |206.513 79.111 207.953 241.552 53.876 52.042 273.238 48.618 78.304
AVG | 3097.828 3098.844 3099.497 3092.709 3092.203 3093.596 3091.954 3095.301 3092.807
7 STD |17.995 22933 17.283 2.631 2.322 10.989 2.632 16.475 3.088
AVG | 3330.768 3359.143 3368.113 3318.037 3349.360 3380.123 3355.468 3350.177 3362.445
F8 STD | 153.060 160.850 153.606 159.558 118.861 118.293 143.109 186.773 181.344
AVG | 3208.716 3199.846 3210.029 3219.014 3208.830 3198.291 3198.231 3198.817 3200.998
k9 STD |33.125 45.961 63.445 59.219 48.905 45.834 53.011 46.787 42.707
Continued
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F p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9
AVG | 1.681E+05 |2.379E+05 | 1.053E+05 | 4.641E+05 | 3.048E+05 | 5.831E+05 | 3.527E+05 | 4.640E+05 | 2.400E+05
STD |3.072E+05 | 4.152E+05 | 2.088E+05 | 9.019E+05 | 5.297E+05 | 9.073E+05 | 4.265E+05 | 6.565E+05 | 2.638E+05
FRrank | 541 5.11 493 4.48 5.01 4.89 5.08 4.87 522

F30

Table 3. Sensitivity analysis of parameter p

Scenario | fmin | fmax

Scenario 1 | 0.2 1.0

Scenario 2 | 0.2 1.1
Scenario 3 | 0.2 1.2

Scenario 4 | 0.3 1.0

Scenario 5 | 0.3 1.1
Scenario 6 | 0.3 1.2

Table 4. Different scenarios for the parameters 3 ,,,,,, and

max

crucial for the performance delivered by AD-COA-L. The best performing variants were, in fact, obtained by the
setting introduced in Scenario 3 with Friedman rank of 1.87 reached a good balance between exploration and
exploitation, resulting in enhanced optimization performance of the benchmark functions.

CEC2017 results analysis

The CEC2017 benchmark suite consists of 29 benchmark test functions, each specifically tailored to fulfill certain
objectives within its class. F1 and F3 are functions that have a single peak, making optimization straightforward.
Functions F4 to F10 exhibit several modes with numerous peaks and valleys. Functions F11 to F20 are composite,
incorporating a variety of landscapes, which adds complexity to the optimization problem. Functions F21 to
F30 are composed of multiple sub-components, which collectively produce intricate optimization landscapes.
The experimental validity of F2 has been compromised by uncontrollable factors, rendering it unsuitable for
experimentation. Therefore, we refrained from doing tests on F2. The next part presents a comprehensive
analysis of the test findings derived from the experiments conducted on these functions.

CEC2017 statistical performance

Tables 6 and 7 present the empirical results for the situations with sizes of 50 and 100. Tables 6 and 7 depict
the mean, ranking, and standard deviation of objective function values for each algorithm. The AD-COA-L
algorithm has demonstrated outstanding performance in locating the global optimum, particularly in
experiments involving the single-peaked issue F1.

During the trials conducted in a 50-dimensional space, AD-COA-L initially demonstrates a minor advantage
over INFO in terms of F1 performance. Nevertheless, it quickly exceeds the original state and progresses
towards the optimal solution. Nevertheless, in the case of trials done in a 100-dimensional space, AD-COA-L
continuously surpassed INFO in terms of performance on the F1 function, retaining a persistent advantage
throughout. The INFO algorithm demonstrated the highest average value in problems with a dimension of 50 in
the example of F3. Nevertheless, AD-COA-L exhibited superior performance compared to all other algorithms
when applied to the tested functions in a 100-dimensional space. The expanded power of AD-COA-L to discover
and converge towards the most optimal solutions for problems with a single highest point is proven, confirming
its robust potential to both explore and exploit global optima.

AD-COA-L exhibits superior performance in the majority of functions for multimodal problems F4-F10
when compared to the other eleven comparison algorithms. When comparing the AD-COA-L algorithm to the
INFO, PSO, and WSO algorithms, it becomes apparent that the AD-COA-L approach demonstrates a slower
convergence and achieves inferior results in the 50-dimensional trials. However, it shows a comparatively
lower level of performance on function F6. Within the function F7, the efficiency of the INFO and PSO
methods surpasses that of AD-COA-L. Nevertheless, the disparity between AD-COA-L and these algorithms
is minimal, indicating that AD-COA-L exhibits commendable performance in F7. However, AD-COA-L has
lower performance than INFO on functions F5, F6, and F8. Nevertheless, AD-COA-L demonstrates exceptional
performance in the remaining functions, proving its supremacy and resilience in effectively resolving complex
challenges. AD-COA-L demonstrates excellent competence in effectively managing a diverse variety of mixed
functions, ranging from F11 to F20. When tested in a 50-dimensional configuration, the performance of AD-
COA-L is similar to that of INFO on F11, but slightly worse on F12, F14, and F18. However, the standard
deviation of AD-COA-L at F18 exceeds that of INFO, suggesting that AD-COA-L demonstrates more stability in
this function. AD-COA-L outperforms other algorithms in most functions when considering 100 dimensions,
except for F12 and F13, which are effectively handled by INFO. Significantly, there is a slight discrepancy in the
performance of AD-COA-L and INFO at F12 and F13, with AD-COA-L exhibiting superior stability compared
to INFO at F12. The outstanding success of AD-COA-L can be credited to its wide array of solution search
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F Scenario 1 | Scenario2 | Scenario3 | Scenario4 | Scenario5 | Scenario 6
AVG | 3249.980 1884.484 2564.724 2602.047 2316.105 2083.979
o STD | 3063.281 2473.937 2616.219 2956.188 2332.908 2061.324
AVG | 300.000 300.000 300.000 300.000 300.000 300.000
B STD | 0.000 0.000 0.000 0.000 0.000 0.000
AVG | 406.615 404.886 404.641 404.388 404.880 402.083
F STD | 16.270 11.749 12.601 12.025 12.232 0.998
AVG | 517.001 517.864 516.981 520.363 519.023 516.350
s STD | 6.867 9.922 8.748 9.621 8.699 7.639
AVG | 600.095 600.048 600.001 600.047 600.040 600.066
o STD | 0.408 0.255 0.005 0.214 0.170 0.204
AVG | 729.866 732.022 730.430 731.410 730.620 731.164
7 STD |8.225 12.356 7.154 8.103 9.479 9.124
AVG | 817.544 819.999 817.578 818.407 818.971 816.914
e STD | 6.046 7.181 7.332 6.505 8.377 7.283
AVG | 900.294 900.601 900.139 900.200 900.118 900.124
£ STD | 0.666 1.406 0.309 0.456 0.414 0.299
AVG | 1666.399 1755.451 1794.644 1650.378 1740.848 1813.138
F1o STD | 276.410 285.118 340.923 246.766 260.343 252.345
AVG | 1111.970 1111.133 1112.685 1113.263 1111.381 1109.898
i STD | 9.574 4.175 8.896 13.237 8.817 5.777
AVG | 1.282E+04 | 1.194E+04 | 1.375E+04 | 1.232E+04 | 1.105E+04 | 1.380E+ 04
f12 STD | 9.639E+03 | 6.926E+03 | 9.751E+03 | 8.122E+03 | 7.525E+03 | 1.056E+04
AVG | 7.712E+03 | 8.061E+03 | 6.958E+03 | 6.609E+03 | 8.483E+03 | 8.358E+03
3 STD | 5243.024 4976.950 4289.342 4264.100 4969.781 5094.372
AVG | 1459.933 1455.562 1451.157 1461.718 1454.935 1462.153
1 STD | 33.376 24.621 21.114 42.699 27.959 31.612
AVG | 1560.125 1548.950 1548.520 1563.955 1550.480 1562.455
1 STD | 70.473 45.246 65.323 50.719 43.575 63.181
AVG | 1722.224 1719.137 1756.630 1732.078 1737.260 1784.496
Fe STD | 125.121 110.412 150.588 129.688 132.981 129.439
AVG | 1746.013 1741.960 1742.751 1744.755 1739.671 1739.451
7 STD |22.347 28.214 21.858 27.654 32.271 21.117
AVG | 1.249E+04 | 1.133E+04 | 8.910E+03 | 1.145E+04 | 9.333E+03 | 1.144E+04
Fs STD | 1.152E+04 | 1.079E+04 | 7.141E+03 | 8.989E+03 | 8.770E+03 | 1.114E+04
AVG | 5346.020 5248.418 5811.505 3830.378 4433.477 4298.046
9 STD | 3601.822 3610.759 4518.454 2736.605 2696.526 3730.923
AVG | 2065.215 2071.315 2048.261 2064.562 2059.317 2061.875
F20 STD | 59.808 62.194 49.510 50.540 52.295 53.796
AVG | 2301.552 2287.715 2313.057 2308.170 2295.181 2292.825
k1 STD | 41.235 53.729 31.756 37.045 48.986 52.003
AVG | 2298.636 2301.316 2300.009 2301.501 2299.058 2298.536
2 STD | 15.775 0.656 7.794 0.820 14.394 15.312
AVG | 2615.773 2616.088 2614.798 2614.022 2615.625 2615.681
F3 STD |7.933 5.240 6.456 6.533 7.330 7.984
AVG | 2747.400 2729.996 2737.983 2714.093 2730.498 2737.914
A STD | 6.744 62.883 45.471 85.723 63.092 45.601
AVG | 2929.513 2929.746 2932.090 2926.550 2933.128 2925.301
F2s STD | 22.162 22.167 27.802 23.242 21.118 23.640
AVG | 3012.865 2901.459 2897.367 2898.257 2897.375 2918.368
F26 STD | 337.581 224.031 78.903 101.261 68.794 215.475
AVG | 3096.576 3096.283 3096.307 3096.735 3095.849 3097.025
7 STD | 18.560 18.969 15.207 15.232 13.224 17.906
AVG | 3308.714 | 3349.607 3342.790 3344.003 3317.424 3342.396
F8 STD | 183.521 119.064 111.080 113.920 128.693 147.237
AVG | 3214.929 3209.557 3207.533 3206.326 3203.550 3211.961
9 STD | 44.248 40.942 58.281 49.514 46.002 53.084
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F Scenario 1 | Scenario2 | Scenario3 | Scenario4 | Scenario5 | Scenario 6
30 AVG | 3.850E+05 | 1.553E+05 | 1.219E+05 | 1.089E+05 | 2.338E+05 | 1.777E+05
STD | 5.725E+05 | 3.987E+05 | 2.987E+05 | 3.061E+05 | 4.299E+05 | 4.219E+05
FR rank 4.32 3.58 2.99 3.46 3.11 3.55
Table 5. Sensitivity analysis of the parameters [ ,,,;,, and 5 .

strategies, namely its immensely powerful global search capabilities, which is remarkably effective in addressing
intricate problems.

AD-COA-L is capable of effectively resolving complex problems, namely those related to functions F21-F30.
In a study involving 50 dimensions, the AD-COA-L algorithm has outstanding performance, outperforming all
others except for F21, F27, and F30, which have higher rankings. AD-COA-L demonstrates superior performance
compared to all other algorithms across all functions, with the exception of the INFO function in F26, F29, and
F30, while testing with 100-dimensional data. The results clearly demonstrate that AD-COA-L is exceptional
and highly versatile in efficiently addressing a wide range of challenges. It enables a thorough examination and
enhancement of intricate search domains.

CEC2017 convergence analysis

Figures 4 and 5 depict the convergence rate and accuracy of the AD-COA-L, SWO, COA, SO, AOA, HHO,
INFO, PSO, SMA, SCA, and GBO algorithms in comparison to CEC2017 for the dimensions D =50 and D =100.
The data demonstrates that AD-COA-L has a higher rate of convergence, reduced variability, and greater stability
when compared to the other algorithms. Hence, AD-COA-L possesses the capacity to quickly attain the most
favorable answers, thereby improving problem-solving effectiveness and adaptability. AD-COA-L consistently
exhibits improved convergence on the convergence curve in the majority of test cases. This suggests that its
search capacity gradually improves with each repetition, allowing it to effectively locate the best solutions for
optimization problems. When applied to unimodal functions F1 and F3, the AD-COA-L algorithm has a higher
convergence rate compared to other techniques. While INFO may outperform AD-COA-L in the early iterations,
AD-COA-L ultimately gets higher results due to its new Bernoulli approach for population initialization. AD-
COA-L demonstrates a higher rate of convergence in comparison to all alternative approaches. Function F5
provides evidence that AD-COA-L consistently obtains the lowest fitness values before the 300th iteration,
surpassing all other algorithms in performance. Therefore, it can be deduced that AD-COA-L demonstrates a
swift convergence rate, most likely because of its innovative exploitation technique and improved exploration
formula. This enhances the algorithm’s ability to both explore and exploit. Once again, when assessing the
performance of function F7 at CEC2017 with a dimensionality of 50, AD-COA-L demonstrates superior
performance compared to all other rivals. This is attributed to its faster convergence rate and the attainment
of the lowest value. Nevertheless, when evaluating F7 with D=100, PSO exhibits remarkable performance.
However, the difference in convergence rate between AD-COA-L and PSO is negligible. Thus, we can infer that
the performance of AD-COA-L is praiseworthy.

Comparison of AD-COA-L with advanced algorithms

This experiment is undertaken to further evaluate the performance of AD-COA-L in comparison to high-
performing algorithms. Eight sophisticated and high-performing algorithms are employed to thoroughly
assess the accuracy and effectiveness of AD-COA-L. The algorithms can be categorized into two groups. The
first group consists of five advanced optimization algorithms: CSOAOA*, CJADE’®, RLTLBO’!, ASMA’?, and
TLABC??, and the second group constitute three winning algorithms in IEEE CEC, which are proven to perform
excellently, namely, CMAES’, IMODE’®, and AGSK®. These algorithms have been demonstrated to perform
exceptionally well. The table labeled Table 8 contains the statistical standard deviation and mean of fitness values.
These data were acquired from 30 independent runs using twenty-nine benchmark functions from CEC2017.
The dimensionality of these functions is 50.

The analysis reveals that the AD-COA-L algorithm achieves the lowest average fitness value in 17 out of
29 functions, surpassing all other algorithms. The AD-COA-L algorithm has the greatest number of superior
functions compared to all other algorithms. For instance, AD-COA-L demonstrates outstanding performance in
unimodal functions F1 and F3, indicating superior values for both standard deviation and mean of fitness. The
IMODE algorithm reports the optimal STD values in F4, while the AD-COA-L function guarantees the highest
average fitness values.

However, the original COA approach does not demonstrate exceptional performance in any function. The
suggested modifications in AD-COA-L enhance the balance between exploration and exploitation, resulting
in the highest quality overall solution in terms of the ideal global optima. According to the findings in Table 8,
the AD-COA-L algorithm shows great potential in the field of optimization. It outperforms algorithms that are
very proficient in the field by being capable of solving global optimization tasks. The last row in Table 8; Fig. 6
represents the Friedman rank between the comparative algorithms where AD-COA-L is ranked the first with
2.71 while IMODE is the second with rank of 2.92 indicating the superior performance of AD-COA-L compared
to a set of advanced and champion algorithms.
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Statistical analysis of AD-COA-L

The Wilcoxon rank sum test”” can be employed as a nonparametric statistical test to assess if the comparative
AD-COA-L approach is statistically distinct from the other methods. The objective was achieved by doing 30
individual runs for each of the competing algorithms, utilizing a standardized set of 29 test functions. The
Wilcoxon rank sum test is performed at a significance level of 0.05 to assess the significant difference between
the solution results of the six algorithms being studied and those of the AD-COA-L algorithm. The statistical
test results are aggregated and presented in Tables 9 and 10. To confirm these findings, if the p-value is less than
0.05, we can reject the null hypothesis and conclude that there is a significant difference between the algorithms
being studied. Alternatively, if the p-value is greater than 0.05, the search results obtained from the two methods
are compared. Tables 9 and 10 clearly demonstrate that the AD-COA-L algorithm exhibits substantial disparities
when compared to the other approaches. AD-COA-L exhibits significant superiority when compared to WOA,
SWO, WSO, HHO, PSO, COA, INFO, AOA, SMA, SCA, and GBO. The statistical significance of the advantage
of the AD-COA-L algorithm has been determined.

Computational analysis

Computational analysis of different algorithms is a crucial factor that needs to be studies to assess the overall
performance of the novel proposed algorithms. The computational analysis includes two main folds which are
the time complexity and space complexity. The time complexity studies the theoretical computational runtime
of different algorithms according to the most significant operations while the space complexity denotes the
memory space required by the main variables and vectors of algorithms. This section studies the compactional
analysis of the proposed AD-COA-1 compared to the original COA and other compared algorithms.

Time complexity

There are three key parameters that directly influence the time complexity of the original COA including
population size ( IV), dimensionality ( D), and the number of iterations ( 7"). COA generates an initial population
in the initialization stage, and the main computational cost occurs in the updating of positions in the stages of
summer resort, competition, and foraging. This updating process is done for each solution in the population
and this whole process is repeated for all iterations. So, for original COA time complexity can be represented as:

O(COA)= O(ND + TND) =0 (TND)

On the other hand, the general time complexity of the proposed AD-COA-L algorithm is similar to that of the
original COA, with several enhancements added to it. Namely, Bernoulli Map-based Population Initialization,
Adaptive Lens Opposite-Based Learning (ALOBL), and the Local Escaping Operator (LEO). In the Bernoulli
map-based population initialization, the complexity remains O (ND), similar to the original initialization
process. In the adaptive lens opposite-based learning (ALOBL), it applied only to the best solution, contributing
O (T'D) over the iterations. Furthermore, the local escaping operator (LEO) updates the positions of all
solutions, contributing O (T'N D). The dynamic inertia weight coefficient does not add more complexity since
it is part of the position update equation of the original COA. Therefore, the total time complexity of the AD-
COA-L algorithm is bound by:

O(AD -COA—-L)= O(ND + TND) = O (T'ND)lt is apparent that from the time complexity of
each the original COA and the improved AD-COA-L that there is no major difference between them in the time
complexity consumed by the CPU, but the performance obtained by AD-COA-L is much better than COA as
conducted in the experiments.

Space complexity

Regarding space complexity, the original COA and the proposed AD-COA-L have the same space complexity
because both algorithms deal with a population of size N and a problem of dimensionality D. The number
of memory usage used at any instant of time during the run of the algorithm increases linearly with respect to
the population size and the number of dimensions under optimization. Hence, the following ensures the space
complexity for both algorithms:

Space Complexity = O (N x D)

Finally, Table 11 compare between the proposed AD-COA-L and its rivals regarding the time and space
complexity obtained during different iterations. As shown by Table 11, the time complexity for all algorithms
under comparison, including the proposed AD-COA-L algorithm, is O (T'ND). This means that, even
with added strategies in AD-COA-L, such as Bernoulli map-based initialization, ALOBL, and LEO, the time
complexity level is still within the same magnitude with other popular algorithms such as PSO, AOA, and WOA.

Additionally, in all algorithms, the space complexity is O (ND), which suggests that the proposed
enhancements in AD-COA-L do not consume more of the memory resource than those used by the other
compared algorithms and hence is competitive both in time and space efficiency.

This implies that the new AD-COA-L introduces some new strategies for the improvement of exploration
and exploitation and retains the same computational complexity as other well-established algorithms. This
underlines its efficiency since the improvement in optimization performance does not involve any increase
in either time or space complexity. The AD-COA-L therefore provides a well-balanced compromise between
performance and computational cost; hence, it should be considered seriously when trying to solve challenging
global optimization problems.
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Fig. 4. Convergence analysis for AD-COA-L and its rival algorithms using CEC2017, D =50.

Application of AD-COA-L to Engineering problems

This section assesses the practical performance of the proposed AD-COA-L by examining its efficacy in solving
engineering optimization challenges. The problems encompass tension/compression string design, welded beam
design, speed reducer design, tubular column design, piston lever design (PLD), and robot gripper. The research
utilizes the static penalty method® to address the limitations in the optimization problem:
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Fig. 5. Convergence analysis for AD-COA-L and its rival algorithms using CEC2017, D =100.
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F AD-COA-L | COA CMAES IMODE AGSK DAOA CJADE RLTLBO ASMA TLABC
AVG | 1.43LEL+04 | 4.73LEL+09 | 1.37LEL+10 | 6.05LEL+05 | 1.06LEL+07 |2.57LEL+11 | 2.68LEL+11 | 2.65LEL+09 | 5.22LEL+09 | 8.89LEL+10
f STD |9.26LEL+03 | 1.10LEL+10 | 2.41LEL+10 |4.32LEL+05 | 1.63LEL+07 | 2.73LEL+10 | 2.57LEL+10 | 2.58LEL+09 | 2.52LEL+09 | 1.05LEL+10
AVG | 8.87LEL+04 | 2.34LEL+05 | 3.87LEL+05 |2.33LEL+05 | 2.18LEL+05 | 9.60LEL+07 | 5.11LEL+11 | 1.24LEL+05 | 1.26LEL+05 | 1.84LEL+05
B STD | 1.43LEL+04 | 5.09LEL+04 | 4.82LEL+04 | 2.64LEL+04 | 3.33LEL+04 |4.71LEL+08 | 1.10LEL+12 | 2.38LEL+04 | 1.97LEL+04 | 3.19LEL+04
AVG | 5.17LEL+02 | 9.67LEL+02 | 7.68LEL+03 | 5.58LEL+02 | 6.12LEL+02 | 1.18LEL+05 | 1.22LEL+05 | 9.36LEL+02 | 9.35LEL+02 | 2.81LEL+04
k4 STD | 5.69LEL+01 | 3.77LEL+02 | 1.96LEL+03 | 4.01LEL+01 | 4.82LEL+01 | 1.92LEL+04 | 2.17LEL+04 | 2.02LEL+02 | 2.12LEL+02 | 5.80LEL+03
AVG | 799LEL+02 | 9.92LEL+02 | 5.92LEL+02 | 7.47LEL+02 | 9.16LEL+02 | 1.74LEL+03 | 1.72LEL+03 | 8.44LEL+02 | 7.28LEL+02 | 1.10LEL+03
s STD | 1.89LEL+01 | 9.58LEL+01 | 1.44LEL+02 | 5.09LEL+01 |3.31LEL+01 |7.44LEL+01 | 746LEL+01 | 491LEL+01 |7.12LEL+01 | 4.83LEL+01
AVG | 6.01LEL+02 | 6.64LEL+02 | 6.37LEL+02 | 6.43LEL+02 |6.19LEL+02 | 7.56LEL+02 | 7.56LEL+02 | 6.43LEL+02 |6.16LEL+02 | 6.83LEL+02
Fe STD | 2.79LEL-01 1.33LEL+01 | 3.33LEL+01 | 8.46LEL+00 |4.77LEL+00 |9.07LEL+00 | 1.07LEL+01 | 9.75LEL+00 | 4.67LEL+00 | 5.28LEL+00
AVG | 9.00LEL+02 | 1.47LEL+03 | 1.26LEL+03 | 1.03LEL+03 | 1.21LEL+03 | 6.15LEL+03 | 6.10LEL+03 | 1.39LEL+03 | 1.07LEL+03 | 1.88LEL+03
7 STD | 1.22LEL+02 | 1.58LEL+02 | 1.25LEL+02 | 2.65LEL+01 | 5.04LEL+01 | 4.03LEL+02 | 5.58LEL+02 | 1.62LEL+02 | 8.27LEL+01 | 9.69LEL+01
AVG | 1.08LEL+03 | 1.29LEL+03 | 1.01LEL+03 | 1.05LEL+03 | 1.22LEL+03 | 1.97LEL+03 | 2.08LEL+03 | 1.17LEL+03 | 1.06LEL+03 | 1.40LEL+03
8 STD |4.37LEL+01 | 8.26LEL+01 | 2.45LEL+02 |2.42LEL+01 | 3.72LEL+01 | 9.97LEL+01 | 7.57LEL+01 | 6.26LEL+01 | 8.12LEL+01 | 4.36LEL+01
AVG | 1.25LEL+04 | 2.16LEL+04 | 2.89LEL+03 | 8.89LEL+03 | 5.51LEL+03 | 1.06LEL+05 | 1.07LEL+05 | 1.95LEL+04 |8.97LEL+03 | 2.55LEL+04
F STD | 499LEL+03 | 9.01LEL+03 | 5.27LEL+03 | 2.25LEL+03 | 2.76LEL+03 | 1.33LEL+04 | 1.13LEL+04 | 7.17LEL+03 | 4.74LEL+03 | 3.49LEL+03
AVG | 1.22LEL+04 | 1.07LEL+04 | 1.49LEL+04 |8.71LEL+03 | 7.48LEL+03 | 1.71LEL+04 | 1.85LEL+04 | 1.16LEL+04 | 8.80LEL+03 | 1.40LEL+04
F1o STD | 1.57LEL+03 | 1.97LEL+03 | 4.12LEL+02 |5.79LEL+02 | 3.64LEL+02 | 4.83LEL+02 | 7.56LEL+02 | 1.79LEL+03 | 2.74LEL+03 | 8.16LEL+02
AVG | 1.40LEL+03 | 2.62LEL+03 | 7.14LEL+04 | 1.40LEL+03 | 1.56LEL+03 | 9.02LEL+04 | 8.17LEL+06 | 1.51LEL+03 | 3.91LEL+03 | 1.93LEL+04
F STD | 1.05LEL+02 | 1.31LEL+03 | 1.51LEL+04 |8.61LEL+01 | 7.61LEL+01 | 3.03LEL+04 | 2.12LEL+07 | 1.55LEL+02 | 1.23LEL+03 | 4.30LEL+03
AVG | 3.66LEL+06 | 6.75LEL+08 | 2.07LEL+10 |7.02LEL+06 |9.15LEL+06 | 1.45LEL+11 | 1.46LEL+11 | 2.72LEL+07 | 8.54LEL+08 | 4.73LEL+10
F12 STD | 2.43LEL+06 | 7.47LEL+08 | 5.34LEL+09 | 3.86LEL+06 |5.49LEL+06 |2.38LEL+10 | 3.12LEL+10 | 3.02LEL+07 | 1.39LEL+09 | 1.11LEL+10
AVG | 548LEL+04 | 5.13LEL+07 | 1.07LEL+10 | 1.87LEL+04 | 1.24LEL+04 | 9.18LEL+10 | 9.00LEL+10 | 3.14LEL+04 | 1.22LEL+08 | 2.36LEL+10
3 STD | 3.19LEL+04 | 6.95LEL+07 | 2.90LEL+09 |2.37LEL+04 |1.45LEL+04 | 1.87LEL+10 | 2.96LEL+10 | 4.66LEL+04 | 1.49LEL+08 | 9.25LEL+09
AVG | 2.58LEL+05 | 3.11LEL+06 | 2.13LEL+07 |3.16LEL+05 |6.22LEL+04 | 3.91LEL+08 | 5.19LEL+08 | 6.15LEL+04 | 1.29LEL+06 | 2.34LEL+07
F STD | 5.09LEL+04 | 3.73LEL+06 | 1.30LEL+07 | 4.07LEL+05 | 1.64LEL+05 | 1.62LEL+08 | 2.53LEL+08 | 5.80LEL+04 | 1.37LEL+06 | 2.52LEL+07
AVG | 1.31LEL+04 | 2.15LEL+07 | 1.82LEL+09 | 1.33LEL+04 | 2.02LEL+04 | 2.86LEL+10 | 3.85LEL+10 | 1.56LEL+04 | 1.10LEL+07 | 3.94LEL+09
F1> STD |7.63LEL+03 | 7.20LEL+07 | 7.82LEL+08 | 1.10LEL+04 | 1.26LEL+04 | 9.26LEL+09 | 9.04LEL+09 | 5.52LEL+03 | 1.69LEL+07 | 2.29LEL+09
AVG | 3.23LEL+03 | 4.87LEL+03 | 6.79LEL+03 | 3.64LEL+03 | 4.10LEL+03 | 1.55LEL+04 | 1.69LEL+04 | 3.27LEL+03 | 3.74LEL+03 | 6.62LEL+03
F16 STD | 5.25LEL+02 | 540LEL+02 | 4.35LEL+02 |2.61LEL+02 | 1.97LEL+02 | 3.48LEL+03 | 3.72LEL+03 | 418LEL+02 |5.22LEL+02 | 6.87LEL+02
AVG | 3.31LEL+03 | 4.19LEL+03 | 2.85LEL+03 | 3.02LEL+03 | 3.39LEL+03 | 1.41LEL+06 | 2.07LEL+06 | 3.18LEL+03 |2.93LEL+03 | 4.31LEL+03
F7 STD | 3.32LEL+02 | 4.76LEL+02 | 3.58LEL+02 |1.43LEL+02 | 1.61LEL+02 | 1.92LEL+06 | 2.01LEL+06 | 3.49LEL+02 | 3.66LEL+02 |7.02LEL+02
AVG | 7.78LEL+05 | 8.16LEL+06 | 1.05LEL+08 |2.33LEL+06 | 1.24LEL+06 | 6.47LEL+08 | 1.56LEL+09 | 1.33LEL+06 |5.25LEL+06 |3.98LEL+07
F18 STD |4.27LEL+05 | 9.49LEL+06 | 5.63LEL+07 | 1.68LEL+06 |7.78LEL+05 | 2.47LEL+08 | 7.40LEL+08 | 8.64LEL+05 |4.80LEL+06 |2.63LEL+07
AVG | 2.70LEL+04 | 5.69LEL+06 | 1.08LEL+09 |2.17LEL+04 | 1.14LEL+04 | 1.42LEL+10 | 1.51LEL+10 | 1.94LEL+04 | 1.75LEL+06 | 1.35LEL+09
F19 STD | 1.44LEL+04 | 5.57LEL+06 | 7.36LEL+08 |5.94LEL+03 | 8.23LEL+03 | 3.95LEL+09 | 4.37LEL+09 | 1.07LEL+04 | 1.67LEL+06 |7.25LEL+08
AVG | 3.16LEL+03 | 3.72LEL+03 | 3.77LEL+03 | 3.18LEL+03 | 3.45LEL+03 | 5.33LEL+03 | 5.77LEL+03 | 3.13LEL+03 | 3.03LEL+03 | 3.56LEL+03
F20 STD | 3.69LEL+02 | 2.96LEL+02 | 2.60LEL+02 |2.17LEL+02 | 1.81LEL+02 | 2.20LEL+02 | 3.42LEL+02 | 2.31LEL+02 | 3.57LEL+02 | 3.14LEL+02
AVG | 2.51LEL+03 | 2.85LEL+03 | 2.62LEL+03 |2.54LEL+03 | 2.70LEL+03 | 3.58LEL+03 | 3.59LEL+03 | 2.57LEL+03 | 2.58LEL+03 |2.98LEL+03
21 STD | 5.36LEL+01 | 8.75LEL+01 | 2.66LEL+02 | 2.64LEL+01 | 3.10LEL+01 | 9.25LEL+01 | 1.11LEL+02 | 5.78LEL+01 |4.75LEL+01 | 6.53LEL+01
AVG [ 9.97LEL+03 | 1.25LEL+04 | 1.65LEL+04 | 8.78LEL+03 | 1.36LEL+04 | 1.86LEL+04 | 2.00LEL+04 | 5.61LEL+03 | 9.97LEL+03 | 1.54LEL+04
k22 STD | 2.65LEL+03 | 2.19LEL+03 | 5.77LEL+02 | 2.10LEL+03 | 1.80LEL+03 | 6.22LEL+02 | 7.89LEL+02 | 3.23LEL+03 | 2.35LEL+03 | 9.15LEL+02
AVG | 2.98LEL+03 | 3.51LEL+03 | 3.44LEL+03 | 3.01LEL+03 | 3.14LEL+03 | 5.37LEL+03 | 5.29LEL+03 | 3.12LEL+03 | 3.25LEL+03 | 4.00LEL+03
F23 STD | 1.35LEL+02 | 1.26LEL+02 | 4.15LEL+01 |2.41LEL+01 |4.79LEL+01 | 4.34LEL+02 | 3.88LEL+02 | 8.96LEL+01 |3.68LEL+01 | 1.42LEL+02
AVG | 3.18LEL+03 | 3.64LEL+03 | 3.52LEL+03 |3.22LEL+03 | 3.28LEL+03 | 6.09LEL+03 | 6.08LEL+03 | 3.34LEL+03 | 3.42LEL+03 |4.37LEL+03
Fa STD | 1.35LEL+02 | 1.32LEL+02 | 3.84LEL+01 |2.61LEL+01 | 4.92LEL+01 | 5.25LEL+02 | 4.80LEL+02 | 8.86LEL+01 | 1.07LEL+02 | 3.03LEL+02
AVG | 3.07LEL+03 | 3.99LEL+03 | 3.99LEL+03 | 3.11LEL+03 | 3.11LEL+03 | 6.36LEL+04 | 6.52LEL+04 | 3.41LEL+03 | 3.56LEL+03 | 1.36LEL+04
F25 STD | 3.15LEL+01 | 1.94LEL+03 | 1.49LEL+03 |3.20LEL+01 | 3.68LEL+01 | 9.65LEL+03 | 1.05LEL+04 | 1.55LEL+02 | 3.00LEL+02 | 1.60LEL+03
AVG | 6.55LEL+03 | 1.04LEL+04 | 1.14LEL+04 | 7.52LEL+03 | 7.88LEL+03 | 3.40LEL+04 | 3.46LEL+04 | 1.06LEL+04 | 6.72LEL+03 | 1.60LEL+04
F26 STD | 2.63LEL+02 | 1.40LEL+03 | 4.87LEL+02 |2.73LEL+03 |9.72LEL+02 | 4.96LEL+03 | 5.33LEL+03 | 2.20LEL+03 | 7.58LEL+02 | 8.77LEL+02
AVG | 3.65LEL+03 | 3.92LEL+03 | 3.87LEL+03 | 3.55LEL+03 | 3.50LEL+03 | 9.01LEL+03 | 9.28LEL+03 | 3.69LEL+03 | 3.61LEL+03 | 5.59LEL+03
F27 STD | 1.65LEL+02 | 2.47LEL+02 | 8.89LEL+01 |5.16LEL+01 | 7.67LEL+01 | 1.22LEL+03 | 1.16LEL+03 | 1.09LEL+02 | 1.07LEL+02 | 5.07LEL+02
AVG | 3.34LEL+03 | 6.10LEL+03 | 9.71LEL+03 | 3.41LEL+03 | 3.40LEL+03 | 2.62LEL+04 | 2.52LEL+04 | 3.85LEL+03 |4.16LEL+03 | 1.10LEL+04
ka8 STD |3.78LEL+01 | 2.48LEL+03 | 3.74LEL+02 | 2.96LEL+01 | 4.88LEL+01 | 4.05LEL+03 | 3.65LEL+03 | 1.86LEL+02 |3.39LEL+02 | 1.09LEL+03
AVG | 4.14LEL+03 | 6.27LEL+03 | 1.22LEL+04 | 5.14LEL+03 | 4.94LEL+03 | 2.28LEL+06 | 4.51LEL+06 | 5.16LEL+03 | 4.61LEL+03 | 1.56LEL+04
£ STD | 2.24LEL+02 | 9.21LEL+02 | 2.86LEL+03 | 4.15LEL+02 |2.40LEL+02 |2.14LEL+06 | 4.26LEL+06 | 433LEL+02 |3.21LEL+02 | 6.79LEL+03
Continued
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F0 AVG | 332LEL+06 |4.42LEL+07 | 1.88LEL+09 | 5.05LEL+06 | 3.49LEL+06 | 1.97LEL+10 | 2.38LEL+10 | 1.43LEL+06 | 1.21LEL+08 | 2.53LEL+09
STD | 1.70LEL+06 | 4.81LEL+07 | 6.47LEL+08 | 1.10LEL+06 | 1.56LEL+06 | 5.27LEL+09 | 6.49LEL+09 | 6.99LEL+05 | 4.23LEL+07 | 1.76LEL+09

Friedman 6.52 6.13 2.92 3.13 8.82 9.42 425 451 7.11

rank

Final rank 7 6 2 3 9 10 4 5 8

Table 8. Comparative analysis between AD-COA-L and its high-performing rivals using CEC2017.

oovoo @&Og
< & & v *”‘V&V

—
N W R LN 0 O O

Fig. 6. Friedman rank comparison between AD-COA-L and other algorithms.

CE=FEE [D b max(0,6:(:)" + 3 5o 0ilU; () | (39)

where the parameter ¢ (z) represents the objective function, while o; and [; are two positive penalty constants.
The functions Uj (z) and T; (z) represent constraint conditions. The parameters « and 3 can take on values
of either 1 or 2. The resolution of all engineering issues is achieved by employing the parameter configurations
specified in Sect. 4.2. The population size, maximum iteration count, and number of independent runs are 50,
500, and 30, respectively.

Welded beam design

The welded beam structure is a pragmatic design problem frequently employed to assess different optimization
techniques. The structure comprises of beam A and the welds that fasten it to member B, as illustrated in Fig. 7.
The aim of this design is to determine the most efficient design factors that result in the lowest production
costs®!. The minimization method is constrained by limitations on shear stress (), bending stress in the beam
(), buckling load on the bar (-), and the final deflection of the beam (). The optimization process includes four
parameters: the length of the clamping bar (), the thickness of the weld (h), the thickness of the bar (), and the
height (). The model is presented in the following manner:

Consider

r = [x1, x2, 3, va] = [h, |, ¢, b]

Objective function

f(x) = 11047125 z2 + 0.04811x324(14.0 + x2)

Subject to
g (@) =7 (T)=Tmaz < 0
g2 (T)= 0 (T) = 0 mac < 0
94 (¥)=a1—24< 0
95(7)=P—P.(7)< 0
g6 () =0.125 -2, < 0
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91(7) =T (7) — T maz S 0
g7 (@) = 1.104712F + 0.04811z374 (14.0 + 22) — 0.5 < 0

Where
P MR
? :\/ 7\2 o ! rr P2 ’r I o
r(@) =P T = i = 2
2 2
T2 5 CC1+$3) 6PL
M=P(L+2),R=4]=2 )= ——
(L+2), (T e =y
s=2 (Ve | % 4 (D)) 5 @) = SPL
o 2y 2 ’ ~ Ex4x3’
4.013E [ 2229 z z
R V "o T3 T3
P.(f)=—> % -2 -2,
() L2 YA R TelA T el
Boundaries
01< ;< 2,i=14
0.1< z; < 10,i = 2.3

When designing the welded beam, the AD-COA-L method was evaluated with other algorithms such as COA,
GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA. Table 12 presents the minimum cost and the
matching optimal variable values obtained by each approach. The welded beam design reached an ideal cost of
1.6702177263 using AD-COA-L.

Piston lever design (PLD)

The aim of PLD is to decrease the amount of oil while the piston lever moves from 0° to 45°%2, The optimization

outcomes are influenced by the relative distances H, B, D, and V between the piston components. Figure 8

depicts the schematic representation of PLD, and the related mathematical model is defined as follows:
Consider

x = [z, z2, z3, 4] = [H, B, D, V]
Objective function

f(X)= (7) 7 x5 (L2 — L)

Subject to
gux) = QLcos(0)— RF < 0,
g2x) = Q(L — wa) = M < 0,
g3x) = 1.2(L2 — L1) — L1 < 0,

2
Jax) = (f) —z2< 0,

Where

Pz*2
F== 4:C s L=/ (4 — 22)* + 112,

L, = \/(a:4sin6 +21)% + (22 — z4cosh )?

R = | — z4(w4sinf + x1) + z1 (22 — 24c080 )| /L1, § = 45° , Q = 10,000 lbs
M = 1.8 x 10°%1bs, P = 1500psi, L = 240in
Boundaries
0.05 < x1,x2,z3 < 500

0.05 < x4 < 120

Scientific Reports|  (2025) 15:10656 | https://doi.org/10.1038/s41598-024-81144-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

00T =d £107DTD Jursn s[eAlx s) pue T-YOD-JV U9aMI2q 159} UOXOI[IA\ UO PIseq sIsA[eue [ed1iseIs "0 d[qeL

20-T41686000°¢

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

T10-THTE615S9°L

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT6L918T°¢

90-TAT6L918T°¢

90-TAT86EVEL'T

0€9-L1D

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

T10-TdTC0T986'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

SO-TITETLI6S'T

90-TAT86EVEL'T

6CO-LID

YO-TdT96L11¥'C

90-Td182€€09°C

90-THIE6VIIT'S

CO-TATPITP9S'9

SO-TATOPS9TI'T

90-TdT9€16€€9

SO-THTPISE6Y'T

10-T4T£01020°T

10-TdT9SVe6V €

SO-THTECOPT0'T

90-TAT86EVEL'T

87O-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EHEL'T

90-TAT86EYEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EHEL'T

90-TATE8LE86'9

SO-THTCISTILOY

90-TAT86EVEL'T

LTO-LTD

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TdTI86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

PO-TATI8CTYL'T

SO-TITLSL6ICS

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TdT86EVEL'T

90-TdT86EVEL'T

97O-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

T0-TITL90¢€61°S

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

STO-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86EHEL'T

90-TAT86EYEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86EHEL'T

90-TAT86EYEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

¥ZO-L1D

SO-TdTC9¢1S L

90-TdT86EVEL'T

90-TdT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

€0-TITCOVLS6'T

90-TH'IC80997'8

YO-THTIEVETIT

90-TAT86EVEL'T

SO-TITC99¢1S 'L

90-TdI86€EVEL'T

€CO-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

C0-TITLY90CT'8

90-THTI86EVEL'T

90-TATIZ60Z6'T

90-TAT86EVEL'T

90-TAT86EVEL'T

TCO-LID

SO-THI8F886L'T

90-TdT6L918T°€

90-TAT19€99C1°C

SO-TATCISILOY

90-TAT9€99C1'C

€0-T47T092S01°C

YO-TATCC66VT'T

YO-TH1LT8YCT'T

S0-TAT0808€T'T

SO-THTISIETITE

90-TAT86EVEL'T

129-L1D

SO-TTVCvev8'C

90-TdT86EVELT

90-TAT86EVELT

10-TATVLO6LL'T

90-TdT86EVEL'T

YO-TATI8CCVL'T

T10-T4'I88€009°¢

€0-TdT9¢Cvs8'c

SO-TATOVVT6L'S

€O-TdTHOLYIV'C

90-TAT86EVELT

07O-LTD

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TATI86EVEL'T

90-TAT86EVEL'T

PO-TATI8CTYL'T

T0-THTS0€€8S9

90-THTI86EVEL'T

90-TAT86EVEL'T

90-Td18C€€09°C

90-TAT86EVEL'T

619-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86ETEL'T

90-TAT86EVEL'T

90-TdT9€99C1°C

90-TAT86EVEL'T

90-TAT8CE€C09°C

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

81D-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVELT

90-TAT86EHEL'T

90-TAT86EYEL'T

90-TAT86EVEL'T

90-TATIC60C6'T

90-TAT86EHEL'T

90-TAT86ETEL'T

90-TATIT60T6'T

90-TAT86EVELT

LID-LTD

90-TAT86EVEL'T

90-TATIC60T6'T

90-TH198958C'¥

90-THTI86EVEL'T

90-TAT86EVEL'T

P0-TATCL6068'T

90-THTESOTSL'S

YO-THILT8YCTT

SO-TATC6690¢€°S

0-TdT19658¥8°C

90-TAT86EVEL'T

919-LID

SO-THTLSTSOV'€

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86ETEL'T

90-TAT86EVEL'T

¥0-Td1666¥90°¢

90-TAT86EVEL'T

90-TAT9€99C1'C

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

SIO-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EHEL'T

90-TAT86EYEL'T

T0-TH1€860L6°L

90-THIC0T6TLY

90-TATC0T6TLY

90-TAT6L918T°€

90-TAT20C6TLY

90-TH'I8TE€09°C

Y19-L1D

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

€I9-L1ID

T10-THTI0¥¥0E'S

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86ETEL'T

90-TAT86EVEL'T

CO-THTPIT#9S'9

90-TAT86EVEL'T

90-TAT989S8TY

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

CIO-LID

YO-TATI0EP76'8

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT6L9T8T €

90-TAT86EYEL'T

T0-T41C88850°C

90-TAT86EVEL'T

SO-TATO808€T'T

90-TAT86EYEL'T

$0-TATCL6068'T

90-TAT86EVEL'T

119-L1D

90-Td1C80997'8

SO-TITESLLST'S

90-TdT86EVEL'T

€O-TATrP60EL’L

90-TAT86EVEL'T

90-Td1C80997'8

€0-TITEEV609°€

SO-TATETL96ST

€0-TITI€998C'T

SO-TITPISE6V'T

90-TdT86EVEL'T

0I9-LID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT9€99C1'C

90-TAT86EVEL'T

€0-THT65S¥8S'C

90-THT9€99C1'C

SO-THTI8Y6TLE'T

90-TAT86EVEL'T

90-TdTC81288'¢C

90-TAT86EVEL'T

69-LID

€0-THI8EELOT'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86EHEL'T

90-TAT86EYEL'T

€0-THTI8SH96'T

90-TAT86EVEL'T

90-TATITYESET

SO-TATOPSITI'T

90-TATIZ60T6'T

90-TAT86EVEL'T

8D-LID

YO-TATI0EVV6'8

90-TdT86EVEL'T

90-TdI86€EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

T0-TdT61C9V8'T

90-TdT86€EVEL'T

90-TAT9€16€C™9

90-TAT86EVEL'T

90-Td198958CY

90-TdTI86€EVEL'T

LO-LTD

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THTI86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

99-L1D

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EHEL'T

90-TAT86EYEL'T

€0-THT9€0T8ET

90-TAT86EVEL'T

90-THT86EHEL'T

90-TAT86EYEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

SO-LID

90-TdT86€EVEL'T

90-TdT86EVEL'T

90-TdI86€EVEL'T

90-TdI86EVEL'T

90-TdT86EVEL'T

€0-TIT9S85€8'9

90-TdI86¢EVEL'T

90-TAI86EVEL'T

90-TdT86EVEL'T

90-TdT86EVEL'T

90-TdT86€EVEL'T

¥D-LID

CO-TITI61CTLLLG

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86ETEL'T

90-TAT86EVEL'T

€0-TITI8T6E8Y'T

90-TAT86EVEL'T

10-THTC8EYST'T

SO-TATLSL6TES

€0-TITISTOILT 6

90-TAT86EVEL'T

€9-L1ID

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86ETEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-THT86ETEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

90-TAT86EVEL'T

19-L1D

osMm

YoM

OMS

OHH

YVOS

OdINI

0sd

YIAS

(0}: (9]

YOO

YOV

d

nature portfolio

| https://doi.org/10.1038/s41598-024-81144-0

(2025) 15:10656

Scientific Reports |


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Algorithm

Time Complexity O | Space Complexity O

PSO 38

N

D

-D

AOA?Z

WOA 78

SCA %0

SMA ¥

WSO ¢

SWO #

INFO ¥

GBO7”

CJADE 7

RLTLBO 7!

TLABC”

AD-COA-L

AN EE RS

ivAlvilvilvilviivilviRviRvlRvlRvlliv)

AR EEEEEE
liRviRviRvilvilvilvilviRviRviRvERv}

Table 11. Time and space complexity of AD-COA-L compared to other comparative algorithms.

Fig. 7. Schematic of Welded beam.

Table 13 unequivocally shows that the cost of AD-COA-L is significantly lower than that of the comparative
approaches. It is important to note that only PSO and SMA fail to accurately identify the optimal design method
for PLD. This suggests that while most algorithms have adequate convergence accuracy, they lack the durability

seen by AD-COA-L. The AD-COA-L algorithm attains an optimal fitness value of 8.411227.

Three-bar truss design

The objective of this task is to determine the construction with the lowest weight required for constructing a
three-bar truss. This problem consists of two distinct parameters that need to be optimized while considering
other restrictions. The mathematical model and the necessary constraint for the parameters are specified as

shown:

Consider:

Minimize:

? = [1’1 232]
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Algorithm | g4 To x3 x4 Optimum Cost
AD-COA-L | 0.198685 | 3.337218 | 9.191877 | 0.198685 | 1.670071
COA 0.198756 | 3.337343 | 9.190771 | 0.198752 | 1.670521
GJO 0.198558 | 3.342662 | 9.193462 | 0.198785 | 1.671629
RSA 0.180683 | 3.824357 | 9.259838 | 0.208402 | 1.794052
WOA 0.218367 | 3.154853 | 8.667862 | 0.223452 | 1.765891
GWO 0.198437 | 3.342427 | 9.192508 | 0.198757 | 1.671047
HHO 0.199337 | 3.312611 | 9.251155 | 0.198793 | 1.678433
PSO 0.204328 | 3.291268 | 9.015522 | 0.211175 | 1.736801
WSO 0.198685 | 3.337218 | 9.191877 | 0.198685 | 1.670075
jDE 0.198685 | 3.337218 | 9.191877 | 0.198685 | 1.670079
ASMA 0.363187 | 2.37327 | 6.949511 | 0.361265 | 2.324504

Table 12. Optimization results of different algorithms on welded beam problem.

Fig. 8. Schematic of Piston lever.

Subject to:

Where

I (?) = (2\/53:1 + xz) *]
_ _V2z1+4z
g (¥) = FFEE P-0 <0

I =100 cm, P = 2KN/cm?, 0 = 2KN/cm?

0< z1,2z2 < 1
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Algorithm | g4 To x3 x4 Optimum Cost
AD-COA-L | 0.05 2.040038 |4.081282 | 120 8.411227
COA 0.05 2.040046 | 4.081286 | 120 8.411275
GJO 0.05 2.040817 | 4.082166 | 119.1476 | 8.417951
RSA 0.05 2.043883 | 4.081242 | 120 8.432057
WOA 0.077454 | 2.047302 | 4.090786 | 119.485 | 8.739959
GWO 0.049881 | 2.043668 | 4.082328 | 120 8.430411
HHO 0.050445 | 2.043883 | 4.081242 | 120 8.432057
PSO 336.7383 | 471.7858 | 2.507971 | 62.25415 | 202.355
WSO 0.05 2.040038 | 4.081282 | 120 8.411227
jDE 2.782685 | 336.6265 | 4.085402 | 35.41586 | 166.6067
ASMA 442.2308 | 500 2.277671 | 76.54786 | 174.9272

Table 13. Optimization results of different algorithms on Piston Lever Design problem.

x1 x2 Optimal value
AD-COA-L | 0.7873 | 0.4069 | 263.8944
COA 0.7866 | 0.4089 | 263.8956
GJO 0.7757 | 0.442 | 264.1285
RSA 0.7875 | 0.4061 | 263.8945
WOA 0.7862 | 0.4098 | 263.8956
GWO 0.7872 | 0.4071 | 263.8945
HHO 0.7873 | 0.4068 | 263.8945
PSO 0.782 | 0.4221 | 263.9188
WSO 0.8092 | 0.352 | 264.5974
jDE 0.7885 | 0.4035 | 263.8955
ASMA 0.7831 | 0.419 | 263.9249

Table 14. Optimized parameters and the best-obtained value for the three-bar truss problem.

l|/z' IQI
1

N

Fig. 9. Speed reducer structure.

The comparative outcomes for AD-COA-L and other relevant algorithms for the Three-bar truss problem are
displayed in Table 14. Table 14 shows that AD-COA-L achieved the lowest weight when designing the Three-
bar truss with optimized 1 and 2. Several other algorithms, such as GWO and HHO had favorable outcomes.
However, AD-COA-L surpasses them in performance. The statistical metrics pertaining to this problem are
displayed in Table 14. The AD-COA-L algorithm achieved favorable statistical outcomes when compared to all
other algorithms.

Speed reducer design

The design illustrated in Fig. 9 presents a complex optimization problem with the objective of decreasing the
weight of the speed reducer®. This design issue encompasses 7 variables and is subject to 11 constraints. The
variables consist of the teeth module (), face width (), length of the first shaft between bearings (-1), number
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of teeth on the pinion (), diameter of the first shaft (-1), length of the second shaft between bearings (-2), and
diameter of the second shaft (-2). The objective function for this model is specified as follows:
Consider

r = [331, 2, I3, 3343353;‘633‘7] = [b, m, z, ll, 12, d1, dz]
Objective function

fx) =07854 x @1 x x5 % (3.3333 x 23 + 14.9334 x 3
—43.0934) — 1.508 X x1 X (x§ + 22) + 74777 X x§ + &
+0.7854 X 4 X To + x5 X T2
Subject to

= —Z - 1<0

) zlxw;Xwg

) — 0539%_1§0
1><1:2><z3

1.93% «
X T 1<
- _—
) chxac3><a:6 1
) 1493><zg
TaX TIX TH -

1 4 2 .
g5 (7) = ,x,¢(75xa“)-+m9x 106-1< 0

T2 X I3

2
96 (7) = — 3x,¢(M5X“%)-+m9x 10°-1<0

T2 X I3

. 1.5 x x6+19 .
_71.4

_llx ar+19
= T

g10 (7) 1<0

911 (7)) 1<0

Boundaries

N O
OWW=II>
]
S
Www P>

@
S mmow

ot

INAIAIAIAIAIA
8
~ 8
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The Speed Reducer problem design involved evaluating the performance of AD-COA-L approach in comparison
to various other algorithms, namely COA, GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA. Table 15
displays the lowest cost and the related ideal variable values achieved by each algorithm. AD-COA-L achieved
an optimal cost of 2675.413081664 for the design of the Speed Reducer problem.

The tension—-compression spring design problem

The goal of the tension/compression spring design is to minimize the spring’s weight while meeting three specific
limitations, as shown in Fig. 10 34, This optimization involves three key variables: the wire diameter d (1), the
mean coil diameter ( D (x2), and the number of active coils N (x3). These variables need to be optimized as

follows:
Consider
x = [z12223] = [dDN]

Objective function

fx)=(z3+2) x @2 x a7
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Algorithm | 4 To x3 x4 Ts5 Tg x7 | Optimum Cost

AD-COA-L | 2.606452 | 0.710209 | 7.3 7.3 3.381091 | 5.274581 | 2674.265 2.606452
COA 2.805034 | 0.7 7.331474 | 7.3 3.349004 | 5.286384 | 2712.064 2.805034
GJO 2.805279 | 0.7 7.545646 | 7.32871173 | 3.355445 | 5.286641 | 2716.623 2.805279
RSA 2.805527 | 0.7 7.3 7.30000003 | 3.348862 | 5.28637 |2696.12 2.805527
WOA 2.646551 | 0.7 7.385085 | 7.39972896 | 3.348652 | 5.286488 | 2721.568 2.646551
GWO 2.793395 | 0.700026 | 7.334125 | 7.42196935 | 3.348564 | 5.287437 | 2715.745 2.793395
HHO 2.751335 | 0.703378 | 7.578303 | 7.3 3.368571 | 5.288383 | 2716.935 2.751335
PSO 2.813802 | 0.7 7.337899 7.3 3.354786 | 5.297043 | 2723.614 2.813802
WSO 2.805527 | 0.7 7.3 7.30000008 | 3.348862 | 5.28637 |2711.884 2.805527
jDE 2.805527 | 0.7 7.300145 7.3 3.348862 | 5.28637 | 2711.884 2.805527
ASMA 2.735725 | 0.707382 | 7.891635 | 7.57565249 | 3.808051 | 5.359336 | 2933.446 2.735725

Table 15. Optimization results of different algorithms on speed reducer problem design.

_.|d

Fig. 10. Tension/compressor spring.

Subject to
3
T3 X T
=1 - —— =
g (@) 71785 x 2t =
4 x m% — 1 X To 1
= —-1<0
92 () 12566 x 21 T 518 x 22 | =
140.45 x
=1—-—<0
95 (z) x2 x x3 T
r1+x
ga(2) = == —1<0
Boundaries
0.05 < 1 < 2.0
025 < x2< 13
2.0 < x3<15.0

AD-COA-L was evaluated alongside COA, GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA
algorithms. Table 16 displays the lowest cost and the related optimal variable values attained by each approach.
AD-COA-L earned the lowest spring weight of 0.01266352 in the tension/compression spring design task.

Tubular column design problem

The challenge of tubular column design is centered around the creation of columns that are uniform in shape
and capable of withstanding compression stresses of magnitude P, while simultaneously minimizing cost®*. The
design variables consist of the average diameter ¢: of the column and the thickness ¢2 of the tube. The column
is 250 cm long, has a modulus of elasticity of 0.85 x 10° kgf/cm?, and a yield stress of 500 kgf/cm?.
Figure 11 depicts a homogeneous tubular column structure together with its cross-section. The design model
can be characterized as follows:

Consider

X = [:E1LE2}

Objective function
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Algorithm | xo x3 optimum cost
AD-COA-L | 0.051563426 | 0.353702818 | 11.467935018 | 0.011223223
COA 0.051812077 | 0.359650899 | 11.120926789 | 0.011225979
GJO 0.051611771 | 0.354791095 | 11.462098793 | 0.011280799
RSA 0.050000000 | 0.310370833 | 15.000000000 | 0.011748750
WOA 0.052195899 | 0.369033835 | 10.601967699 | 0.011228010
GWO 0.051773458 | 0.358668362 | 11.183156880 | 0.011232373
HHO 0.050000000 | 0.317235532 | 14.071029568 | 0.011303744
PSO 0.050000000 | 0.317341851 | 14.044153230 | 0.011286693
WSO 0.051689172 | 0.356720412 | 11.288809111 | 0.011223223
jDE 0.051689034 | 0.356717092 | 11.289003739 | 0.011223511
ASMA 0.050000000 | 0.310470518 | 15.000000000 | 0.011752987

Table 16. Optimization results of different algorithms on Tension/compression string design.

P
t
| |
| |
| | l
| | [
I [ A A
I [
| | ~d |
| | d |
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Fig. 11. Tubular column design problem.

f(z) = 98z1 22 + 211,

Subject to
gi(z) = P/(rz1220 _y) — 1 <0,
g2(z) = BPL?) /(r’Exixa (21 + x2°) — 1 < 0,

gs(x) =20/z1 — 1 < 0,

ga(z) =21 /14 — 1 < 0,

gs(x) = 02/220 — 1 < 0,

gs () =x2/8 — 1 < 0,

Boundaries
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Algorithm | g4 To Optimum cost
AD-COA-L | 5450720536 | 0.290166229 | 26.484901272
COA 5.450721174 | 0.290166369 | 26.484911863

GJO 5.451354757 | 0.290179861 | 26.488710724

RSA 5.450376472 | 0.290221043 | 26.486158443

WOA 5.450520272 | 0.290209613 | 26.486246384

GWO 5.450337289 | 0.290414994 | 26.496330393

HHO 5.450509448 | 0.290785382 | 26.516956690

PSO 5.450720536 | 0.290166229 | 26.484901273

WSO 2.069965819 | 0.458459491 | 51.701128794

jDE 5.696859619 | 0.283200952 | 27.291664238

ASMA 4.631667296 | 0.800000000 | 0.000000000

Table 17. Optimization results of different algorithms on tubular column design problem.

Fig. 12. Schematic of Robot Gripper.

2< 21< 14,02 < 22 < 08

AD-COA-L has been utilized to resolve problems related to tubular column design. The least cost and
corresponding variables produced from the AD-COA-L scheme are compared with those acquired from other
algorithms, as shown in Table 17. The data shown in Table 17 demonstrates that the AD-COA-L solution attains
the most economical cost. This demonstrates that AD-COA-L has the capability to offer superior quality and
more consistent solutions for this challenge, hence highlighting the exceptional performance of AD-COA-L.

Robot gripper (RG)

RG stands for a complex optimization problem in the field of mechanical structural engineering that deals with
restrictions. The primary goal is to reduce the discrepancy between the maximum and minimum forces exerted
by a fixture!!. The optimization outcomes are impacted by six variables: the dimensions of the chain rods, the
angular orientation of the chain rods, the vertical and horizontal distances, the clamping pressure, and the
placement of the actuator in the robotic gripper. This problem involves seven decision variables: the vertical
distance between the first and third link nodes (-1), the lengths of three chain rods (-) for =1,2,3, the horizontal
distance between the actuator’s end and the third link node (h), the vertical distance between the first link node
and the actuator’s end (-2), and the angle between the second and third chain rods (). The objective function for
RG integrates two antagonistic optimization functions. In order to address the issue of prolonged computation
times during the iterative process of identifying the optimal value. Figure 12 illustrates the schematic depiction
of RG, whereas the actual mathematical model is described as follows:

Consider

X = [z1, %2, T3, T4, T5, Te, T7) = [l1, 12,13, v1,v2,h, 5]
Objective function

Minimizef (X) = maxF(X, z) — minF(X, z)
z z

Subject to

g1 (X) = _Ymin + Y(X, Zmin) S 0,
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Algorithm | g4 To x3 x4 x5 Tg x7 Optimum Cost
AD-COA-L | 150 149.305453 | 199.9876 | 0.554889 | 111.5646 | 100.3744 | 2.508223 | 2.525423
COA 149.9876 | 127.240596 | 194.5136 | 22.13016 | 149.9876 | 121.3282 | 2.650971 | 3.220764
GJO 149.9876 | 149.846886 | 200 0 149.1175 | 103.3929 | 2.365144 | 2.592627
RSA 149.9876 | 149.9876 199.9876 | 0 149.9876 | 106.9643 | 2.287727 | 4.897705
WOA 149.9873 | 147.639939 | 158.7813 | 0 32.03828 | 151.2824 | 1.866606 | 4.163875
GWO 149.3097 | 149.150576 | 194.2868 | 0 84.63068 | 104.6169 | 1.987486 | 2.694334
SSA 149.0688 | 150 198.9275 | 0.212219 | 111.5646 | 104.7142 | 2.124441 | 2.631094
HHO 150 149.826237 | 197.2751 | 0 142.3795 | 105.1166 | 2.336818 | 2.659223
PSO 149.9876 | 97.9795128 | 186.8842 | 49.9876 | 149.9876 | 135.7171 | 3.1276 4.037625
SHO 129.61 129.467413 | 100.6067 | 0 9.9876 100.5476 | 1.402619 | 6.293852
WSO 149.8163 | 149.137294 | 200 0.541857 | 125.9246 | 101.6464 | 2.171224 | 2.558456
jDE 149.9789 | 149.816348 | 199.9329 | 0.032755 | 148.9041 | 100.9544 | 2.279773 | 2.533071
ASMA 133.9786 | 105.02752 | 147.399 | 14.01085 | 109.4035 | 178.4849 | 2.895224 | 7.194506

Table 18. Optimization results of different algorithms on Robot Gripper problem.

92 (X) = =Y(X, Zmin) < 0,
g3 (X) = Ymax — Y(X7 Zmax) < 07
92 (X) = Y(X, Zuax) = Y_G < 0,

95 (X) = 26° + a” — (21 + 22)? < 0,
g6 (X) = 23 — (21 — 24)® — (T6 — Zumax)’ < 0,
97 (X) = Zmax — w6 < 0,
Where

a = cos '((x1? — z2° + ¢°) / (221g)) + ¢,

B = cos '((x2® — a1® + ¢°) / (2m29)) — ¢,
9=+ (@ + (z — 26)),

¢ = tan N(za/ (z6 — 2)), Y(X, 2) = 2(x5 + x4 + z35in(8 + 7)),
F(X, z) = (Pz2 sin(a + B))/(2zscos(a)),
Ymin = 50, Ymaz = 100, Yo = 150, Zpar = 100, P = 100

Boundaries

S}
N
—
(Sl
=]

10 < o1, z2, @
100 < 23 < 200
0 S Xy

IN
SN
S

100 < z¢ < 300
1< 27< 3.14

Table 18 unambiguously demonstrates that the optimal cost of AD-COA-L is significantly lower than that of the
other comparison methods. It is crucial to note that only ASMA did not achieve low optimal values compared
to the other algorithms. This suggests that while most algorithms may have enough convergence accuracy, they
lack the durability seen by AD-COA-L. The AD-COA-L algorithm achieved an ideal fitness value of 2.525423.

Conclusion and future directions

This study presents AD-COA-L, an improved version of the crayfish optimization method specifically developed
for addressing numerical optimization and real-world engineering issues. During the initialization phase, the
Bernoulli map technique is employed to generate a population that is uniformly distributed and of good quality.
Subsequently, a dynamic inertia weight is utilized to properly manage the trade-off between exploration and
exploitation. Then, the LEO mechanism is employed in subsequent phases to revise specific places, broadening
the scope of the search and enhancing the precision of the solution. In order to counteract the original algorithm’s
inclination towards local optima, a novel ALOBL technique is introduced to carry out a dimension-by-dimension
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reversal of the present optimal solution. The efficacy of AD-COA-L is validated through numerical tests using
29 CEC2017 benchmark functions, demonstrating superior convergence rate, solution correctness, stability,
and scalability in comparison to other sophisticated algorithms. Furthermore, AD-COA-L demonstrates its
competitiveness in seven engineering optimization tasks, highlighting its practical usefulness.

Although the proposed AD-COA-L algorithm introduces accepted performance and advanced strategies,
there are some limitations that should be taken into consideration. First, some parameters in AD-COA-L are fixed
based on experimental results and keep constant during the optimization process. In spite of these parameters
performing well on most test functions, they might not be universally optimal for all types of problems, especially
when complex or large-scale optimization tasks are dealt with. Second, for highly diverse problem landscapes,
AD-COA-L have some problems for example F26. The fixed parameters of the algorithm prevent it from being
globally optimal in an efficient way in some cases. It would cancel this shortcoming by developing appropriate
adaptive parameter control mechanisms that change dynamically depending on the problem at hand, which
further increases the performance of the algorithm for a larger class of tasks. Third, while ALOBL and LEO
were devised to improve exploration with the goal of preventing local optima, AD-COA-L may still experience
difficulties converging towards the global optimum with acceptable speed on multimodal problems that exhibit
a large number of local optima such as F27. Fourth, in the case of ALOBL, diversity is effective by a selective
application to the best solution; it introduces extra computational complexity, enlarging the execution time in
some high-dimensional or real-time optimization problems. Finally, the efficiency of the algorithm has been
validated on benchmark standard functions mainly, while testing on more complex real-world problems requires
further research which will help in evaluating all positive and negative features of the proposed algorithm.

Therefore, future enhancements will prioritize the integration of parallel computing techniques to further
enhance the computational expenses while preserving convergence accuracy. In addition, the algorithm’s
resilience could be improved by integrating improvements such as the quantum rotation gate and dynamic
population development. Based on the encouraging outcomes, AD-COA-L has the potential to be utilized in a
wider range of practical optimization tasks, such as feature selection, image segmentation, cloud job scheduling,
and PID controller parameter tuning. One potential future goal is to develop a multi-objective version of AD-
COA-L that can effectively handle complex multi-objective optimization issues.
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