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The Crayfish Optimization Algorithm (COA) is a recent powerful algorithm that is sometimes 
plagued by poor convergence speed and a tendency to rapidly converge to the local optimum. This 
study introduces a variation of the COA called Adaptive Dynamic COA with a Locally enhanced 
escape operator (AD-COA-L) to tackle these issues. Firstly, the algorithm utilizes the Bernoulli map 
initialization strategy to quickly establish a high-quality population that is evenly distributed. This 
helps the algorithm to promptly reach the proper search area. Additionally, in order to mitigate 
the likelihood of getting trapped in local optima and improve the quality of the obtained solution, 
an Adaptive Lens Opposition-Based Learning (ALOBL) mechanism is applied. Moreover, the local 
escape operator (LEO) is utilized to aggressively discourage the adoption of isolated solutions and 
encourage the sharing of information within the search area. Finally, a new inertia weight is suggested 
to improve the search capability of COA and prevent it from being stuck in local optima by enhancing 
the exploitation capability of COA. AD-COA-L is evaluated against eight advanced state-of-the-art 
variations and ten classical and recent metaheuristic algorithms on 29 benchmark functions from 
CEC2017 of varying dimensions (50 and 100). AD-COA-L demonstrates superior accuracy, balanced 
exploration-exploitation and convergence speed, compared to other algorithms across most 
benchmark functions. Furthermore, we evaluated the proficiency of AD-COA-L in tackling seven 
demanding real-world and restricted engineering optimization challenges. The experimental findings 
clearly illustrate the competitiveness and advantages of the proposed AD-COA-L algorithm.
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With the development of Artificial Intelligence (AI), optimization has become a crucial mathematical 
methodology to find an optimum solution among complex problems in all walks of life. Optimization has 
gained wide applications in fault diagnosis1, service composition2, the agriculture field3, path planning4, image 
segmentation5, intrusion detection6,7, feature selection8,9, and parameter identification of photovoltaic models10. 
Most of these optimization tasks involve high complexity due to large-scale dimensionality, non-linearity, and 
non-convexity, which are computationally challenging11. It is well known that single-objective optimization, 
dealing with the optimal solution for a single performance criterion, often faces complex landscapes. In contrast 
to multi-objective optimization, where a set of non-dominated solutions represented by a Pareto front is 
produced, the present study deals exclusively with single-objective optimization12. The challenge is increased 
due to the scale and complexity of the problem at hand.

Traditional methods for solving optimization problems include classical techniques such as linear 
programming13, Newton’s method14, and conjugate gradient methods15. While these methods might work quite 
well for small or relatively simple problems, they often tend to break down when real-world applications involving 
thousands of variables and a multitude of constraints are considered. These traditional methods are highly time-
consuming and also tend to converge prematurely to local optima, especially in non-convex problem spaces16. 
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Therefore, in more realistic high-dimensional optimization settings, these methods usually cannot produce a 
solution that would be satisfactory.

Therefore, in the last few decades, many researchers have been developing Metaheuristic Algorithms (MAs) 
in order to surmount the limitations of the classical methods, by allowing greater flexibility and robustness while 
handling complex optimization problems17. MAs represent a class of stochastic optimization techniques that 
do not use gradient information for the optimization process; hence, it is also suitable for solving nonlinear, 
nonconvex, high-dimensional problems. Unlike in the case of classical methods, these metaheuristics are 
superior to them because they can handle complex search spaces by effectively combining global and local search 
strategies that enable them to avoid local optima and reach near-optimal solutions with efficiency. Their ability to 
balance exploration and exploitation has made them highly popular in diverse optimization tasks18.

MAs are typically inspired by many natural phenomena, including physical principles biological behaviors, 
human habits, and more. Various categories of MAs are present in the literature. In19, the authors classify MAs 
into two main groups: evolutionary algorithms and swarm intelligence algorithms. Furthermore, in20, the 
authors classify MAs into three distinct categories: evolutionary algorithms, swarm intelligence algorithms, 
and physical algorithms. On the other hand, the authors in21 categorize MAs as either single- or population-
based solutions. Generally, there is no widely agreed upon criterion for categorizing metaheuristic algorithms. 
Nevertheless, the classification criteria that are most frequently employed are derived from a wide range of 
sources of inspiration. This work categorizes MAs into five broad groups: physical, evolutionary, swarm-based, 
mathematical, and human-based22. Evolutionary algorithms primarily imitate biological strategies, such as 
reproduction, genetic diversity, and mutational adaptation. The search process begins with a random population 
and then iterates constantly to accomplish multi-generational evolution. This category includes, for instance, 
Genetic Algorithm (GA)23, Differential Evolution (DE)24, and Liver Cancer Algorithm (LCA)25. The second 
category refers to mathematical algorithms26, for instance, Arithmetic Optimization Algorithm (AOA)27, 
Gradient Based Optimizer (GBO)28, the Weighted Mean of Vectors (INFO)29, and the Sine-Cosine Algorithm 
(SCA)30. The third category of algorithms refers to physics-based algorithms which replicate the behavior of 
physical events and their governing principles, such as magnetic fields, gravity, and mass equilibrium. The 
examples of this category include Simulated Annealing (SA)31, Gravitational Search Algorithm (GSA)32, Kepler 
Optimization Algorithm (KOA)33, Rime Optimization Algorithm (RIME)34, and. The fourth category pertains 
to human cooperation and behaviors within a society, referred to as human-based algorithms such as Teaching 
Learning-Based Optimization (TLBO)35, Human memory optimization algorithm (HMO)36, and Human 
evolutionary optimization algorithm (HEOA)37. The final category relates to swarm-based techniques, which 
are based on the collective behaviors of organisms in clusters, such as breeding, foraging, and hunting. This 
category includes a diverse range of algorithms such as Particle Swarm Optimization (PSO)38, Slime Mould 
Optimizer (SMA)39, Crayfish optimization algorithm (COA)40, Harris Hawks Optimization (HHO)41, Spider 
Wasp Optimizer (SWO)42, and Dung Beetle Optimization (DBO)43.

Despite their successes, many issues appear regarding MAs. Among the most important ones, there is the 
trade-off between exploration and exploitation. Exploration is the process by which the algorithm explores 
new, unexplored regions of the solution space in order to find multiple possible solutions. On the other hand, 
the exploitation phase generally needs the intensification of known promising solutions in order to achieve 
an optimum. A good balance between these two processes basically poses the challenge for any MA to be 
successful44. Additionally, MAs generally suffer from slow convergence rates, loss of accuracy as the problem 
becomes highly complex, and the tendency to get stuck in local optima, especially in high-dimensional space45. 
Due to these challenges regarding MAs, much research effort has focused on improving existing MAs by adding 
new strategies and hybridizing strategies from multiple algorithms46. The improvements aim at increasing the 
convergence speed, enhancing the solution’s accuracy, and enhancing the algorithm’s capability of escaping from 
local optima.

The Crayfish Optimization Algorithm (COA) is an innovative MA developed by Jia in 2023, inspired by the 
survival strategies observed in crayfish populations. This algorithm draws inspiration from crayfish behaviors 
such as avoiding heat, competing for shelter, and searching for food. Previous investigations have emphasized 
that, when compared to several traditional MA, its shared advantages include a versatile structure, a reduced 
number of parameter settings, and high accuracy. However, COA unavoidably has certain limitations, which is 
why this paper advocates for an enhanced version of COA. The main limitations of COA include: (1) The COA 
approach demonstrates insufficient accuracy and slow convergence when dealing with high-dimensional and 
non-convex issues. 2) when faced with complicated engineering optimization difficulties, COA is susceptible 
to getting stuck in local optima due to a large number of non-linear constraints. 3) the No Free Lunch (NFL) 
theorem47 states that “no MA can be guaranteed to work for all optimization applications” which motivates 
employing suitable tactics to enhance the efficiency and potential success of COA in addressing practical 
engineering problems.

To address these limitations, an Adaptive Dynamic Crayfish Optimization Algorithm with the improved 
escape operator, namely AD-COA-L, is proposed. Four main strategies are embedded in this variant of COA to 
enhance the performance of this algorithm:

•	 Bernoulli Map Initialization: This strategy is used in initialization so that a uniformly distributed population 
can be formed to enhance diversity from the initialization for the better exploration of the search space.

•	 Adaptive Dynamic Inertia Weight: This strategy updates the inertia weight dynamically in the exploitation 
phase to reserve the superior solutions and build up the search capability of the algorithm during iterations.

•	 Local Escape Operator (LEO): LEO strengthens local exploitation with a view to strengthening information 
exchange between search agents, balancing exploration and exploitation, and hence enhancing the quality of 
the solution.
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•	 Adaptive Lens Opposition-Based Learning: the ALOBL strategy moves the current best solution in the 
opposite direction, in later iterations, in order to avoid local optima and therefore increase the probability of 
global convergence.

In this regard, convergence speed, solution accuracy, and robustness of AD-COA-L have been strictly tested on 29 
benchmark functions selected from the IEEE CEC2017 dataset. Also, this work compares the performance of the 
AD-COA-L with that of several state-of-the-art MAs. Furthermore, AD-COA-L is applied to seven constrained 
real-world engineering design problems to validate its practical effectiveness. The primary contributions are 
outlined as follows:

•	 An improved version of COA is proposed, AD-COA-L, which includes four major strategies to enhance the 
overall performance of COA including Bernoulli map initialization for diversity in the population, adaptive 
dynamic inertia weight for enhancing exploitation, local escape operator for improving local exploration, and 
ALOBL to prevent local optima.

•	 The strength of AD-COA-L is verified using 29 CEC2017 test functions. The acquired results are compared 
with several state-of-the-art methodologies and high-performance modified variant algorithms.

•	 The effectiveness of AD-COA-L in addressing intricate real-world optimization difficulties is confirmed by 
analysis of seven engineering design scenarios.

•	 The Wilcoxon rank-sum test and Friedman ranking test provide evidence that AD-COA-L outperforms other 
competing algorithms in terms of solution correctness, convergence rate, and resilience.

The subsequent sections of this study are structured as follows: Sect. 2 provides a summarized overview for 
the recent literature works. Section  3 provides an in-depth explanation of the principles and mathematical 
models that form the foundation of COA. Section  4 introduces the development of a sophisticated crayfish 
optimization algorithm called AD-COA-L, which utilizes multiple strategies to optimize its performance. The 
evaluation of the optimization performance of AD-COA-L on the CEC2017 benchmark suites is conducted in 
Sect. 5. Section 6 demonstrates the efficacy of AD-COA-L in seven real-world applications by presenting several 
examples of limited engineering design. Section 7 summarizes the result and presents possible directions for 
future research.

Related work
Hu et al.48 introduced an enhanced hybrid AOA named CSOAOA to improve exploitation, avoid local optima, 
and increase convergence accuracy. CSOAOA incorporated point set initialization, optimal neighborhood 
learning, and crisscross optimization strategies. It was validated on 23 classical benchmark functions, CEC2019, 
and CEC2020 test suites, showing significant improvements in precision and convergence rate. Statistical tests 
confirmed that CSOAOA’s potential as a powerful algorithm for complex engineering optimization problems.

Shen et al.49 proposed MEWOA, a WOA variant using multi-population evolution to improve convergence 
speed and avoid local optima. MEWOA divided individuals into exploratory, exploitative, and modest sub-
populations with different search strategies. It was tested on 30 benchmarks and real-world problems; MEWOA 
outperformed five WOA variants and seven metaheuristics in convergence speed, runtime, and solution 
accuracy, demonstrating its competitiveness. Qiao et al.50 proposed a hybrid AOA-HHO algorithm for Multilevel 
Thresholding Image Segmentation (MTIS) to improve threshold selection for object detection. Combining AOA’s 
exploration strengths with HHO’s exploitation abilities, AOA-HHO outperformed AOA, HHO, and other MAs. 
It used the image features as the fitness function, experiments on seven test images show superior segmentation 
accuracy, PSNR, SSIM, and execution time. Qiu et al.51 proposed an improved Gray Wolf Optimization (IGWO) 
algorithm to enhance the traditional GWO’s convergence speed, solution accuracy, and ability to escape local 
minima. IGWO used lens imaging reverse learning for initial population optimization, a nonlinear control 
parameter strategy, and tuning inspired by TSA and PSO. It was tested on 23 benchmarks, 15 CEC2014 problems, 
and 2 engineering problems; IGWO showed superior performance and balance in global optimization. Houssein 
et al.52 proposed mSTOA, an improved Sooty Tern Optimization Algorithm for feature selection (FS) to avoid 
sub-optimal convergence. mSTOA employed strategies for balancing exploration/exploitation, self-adaptive 
control parameters, and population reduction. It was validated on CEC2020 benchmarks and tested against 
various algorithms; mSTOA demonstrated superior performance in extracting optimal feature subsets, with 
statistical analyses confirming its effectiveness.

Wu et al.53 proposed a novel variant of the Ant Colony Optimization algorithm (MAACO) for mobile 
robot path planning to address slow convergence and inefficiency. MAACO introduced orientation guidance, 
an improved heuristic function, a new state transition rule, and uneven pheromone distribution. Experiments 
demonstrated MAACO’s superiority over 13 existing approaches in reducing path length, turn times, and 
convergence speed, proving its efficiency and practicality.

Nadimi-Shahraki et al.54 proposed an enhanced Whale Optimization Algorithm (E-WOA) using a pooling 
mechanism and three effective search strategies to address WOA’s low population diversity and poor search 
strategy. E-WOA outperformed existing WOA variants in solving global optimization problems. The binary 
version, BE-WOA, was validated on medical datasets, showing superior performance in feature selection, 
particularly for COVID-19 detection, compared to other high-performing algorithms.

Askr et al.55 proposed Binary Enhanced Golden Jackal Optimization (BEGJO) for feature selection (FS) 
to tackle high-dimensional datasets. BEGJO improved the original GJO by incorporating Copula Entropy 
for dimensionality reduction and four enhancement strategies to boost exploration and exploitation. It used 
the sigmoid transfer function where BEGJO outperformed other algorithms in classification accuracy, feature 
dimension, and ranks fourth in processing time, validated through statistical evaluations.
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Ozkaya et al.56 proposed a novel Adaptive Fitness-Distance Balance based Artificial Rabbits Optimization 
(AFDB-ARO) algorithm to solve the complex Combined Heat and Power Economic Dispatch (CHPED) 
problem. AFDB-ARO enhanced exploration and balances exploitation, outperforming the base ARO in 
benchmark tests. It was applied to CHPED systems with various unit configurations, AFDB-ARO achieved 
optimal solutions in most cases, demonstrating superior performance and stability compared to ARO. Yıldız et 
al.57 proposed a novel hybrid optimizer, AOA-NM, combining Arithmetic Optimization Algorithm (AOA) and 
Nelder–Mead local search to improve solution quality and avoid local optima traps. AOA-NM’s performance 
was validated on CEC2020 benchmarks and ten constrained engineering design problems, showing superior 
results compared to other metaheuristics. Comparative analysis confirmed AOA-NM’s robustness in solving 
complex engineering and manufacturing problems. Deng et al.58 proposed an improved Whale Optimization 
Algorithm (IWOA) to address WOA’s slow convergence, low precision, and tendency to fall into local optima. 
IWOA used chaotic mapping for population initialization, integrates black widow algorithm pheromone and 
opposition-based learning for population modification, and employed adaptive coefficients and new update 
modes. It was tested on 23 benchmark functions; IWOA demonstrated superior convergence speed, stability, 
accuracy, and global performance compared to other optimization algorithms. Tan and Mohamad-Saleh59 
proposed a hybrid Equilibrium Whale Optimization Algorithm (EWOA), combining bio-inspired WOA and 
Equilibrium Optimizer (EO). EWOA integrated WOA’s encircling and attacking mechanisms with EO’s weight 
balance strategy. It was tested on multiple benchmark sets; EWOA outperformed six state-of-the-art algorithms 
in terms of statistical mean performance, convergence rate, and robustness. EWOA achieved the best results on 
46 out of 101 functions, demonstrating superior optimization efficiency. The Mahajan et al.60 proposed a hybrid 
method combining Aquila optimizer (AO) and AOA to enhance convergence and result quality. It was tested 
on various problems, including image processing and engineering design, AO-AOA demonstrated effectiveness 
in both high- and low-dimensional problems. The results showed efficient search results, particularly in high-
dimensional problems, validating the approach. Qian et al.61 introduced a hybrid SSACO method that combines 
the foraging model of the salp swarm algorithm with the ant colony optimizer. The salp foraging behavior in 
SSACO effectively improved the original algorithm’s capacity to avoid local optima, resulting in a large increase 
in convergence accuracy. The application of SSACO to remote sensing image segmentation had yielded 
successful results. The evaluation of these results, based on peak signal-to-noise ratio, structural similarity index, 
and feature similarity index, had demonstrated that this method possessed distinct benefits over comparable 
segmentation methods.

Zhu et al.62 proposed the QHDBO algorithm, an enhanced Dung Beetle Optimization algorithm 
incorporating quantum computing and multi-strategy hybridization to address local optimum issues. QHDBO 
improved initial population distribution, balances global and local search, and used a t-distribution variation 
strategy. It was tested on 37 functions and engineering problems, QHDBO showed improved convergence speed, 
optimization accuracy, and robustness. Table 1 summarize the reviewed related and existing works to highlight 
the points of strength and weakness to motivate the need for the proposed work in this paper.

According to the analysis of related works in Table 1, although performances of various MAs have enhanced 
over many reviewed related works, a lot of their shortcomings remain unsolved. Most of the available methods 
suffer from an imbalance between the exploration-exploitation principle, though they have converged to an 
optimal solution on certain problem domains. Besides, they often result in a phenomenon called premature 
convergence, when the algorithm converges into local optima without proper exploration of the solution space. 
Also, several related works, though improved in enhancing the speed of convergence, depict poor performance 
on complex, high-dimensional problems including a large and non-convex search space.

Furthermore, most of the works done previously are mainly dependent on fine-tuning control parameters 
toward optimal results. This very dependence makes these algorithms less general, with increased computational 
costs especially when it deals with large-scale or real-world applications. Their effectiveness is immensely 
reduced in problems of higher dimensions due to limited explorative capabilities.

The proposed AD-COA-L will directly address these gaps through the incorporation of a number of adaptive 
mechanisms. With the Bernoulli map, initialization is guaranteed to result in greater diversity of population at 
the very beginning. Adaptive dynamic inertia weight maintains a balance between exploration and exploitation 
in the process to ensure that neither of these phases ever dominates, hence avoiding premature convergence. 
The local escape operator enhances local exploration and allows the algorithm to move away from local optima. 
In addition, the ALOBL mechanism strengthens the exploration power of the algorithm for high-dimensional 
spaces. These merits of enhancement indicate that the new algorithm, namely AD-COA-L, will have better 
convergence, ensure the solution quality, and be more effective for complex, high-dimensional optimization 
problems compared to the previously developed algorithms.

Crayfish optimization algorithm (COA)
In 2023, researchers introduced the COA40, which replicates crayfish behaviors: competitive behavior, summer 
resort behavior, and foraging behavior. These behaviors align with the exploitation and exploration phases 
of optimization, influenced by temperature. Higher temperatures lead crayfish to seek cave refuge for rest or 
competition, while suitable temperatures promote foraging during exploration. Temperature adjustments 
produce unpredictability in finding optimal solutions. The main stages of COA are follows:

•	 Initialization: In COA, an optimization problem with  dimensions is represented by each crayfish, which 
serves as a potential solution in the form of a 1 × d vector. Each variable (X1, X2, X3, ?, Xd) represents 
a particular point X  within the search space, which is constrained by an upper boundary Ub and a lower 
boundary Lb. During each iteration of the process, the most optimal solution is computed. The solutions 
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are compared in a step-by-step manner, and the most favorable choice is found and retained as the ultimate 
optimal solution. The initial distribution of the COA population is established using Eq. (1):

	 Xi = Lb + (Ub + Lb) × rand� (1)

where the optimization problem’s borders are represented by Ub and Lb. The temperature is a crucial 
factor in multiple stages of the crayfish and is defined by Eq.  (2). When the temperature exceeds 30 
degrees, the crayfish relocates to a cooler area as its summer sanctuary. The crayfish exhibits its foraging 
activity when the temperature is suitable.

	 temp = rand × 15 + 20� (2)

Therefore, the act of searching for food can be replicated by employing a Gaussian distribution, which is 
influenced by the temperature as described in Eq. (3):

	
p = C1 ×

(
1√

2 × π × σ
× exp

) (
(temp − µ )2

2σ 2

)
� (3)

where the temperature of the best crayfish is represented by µ , whereas the parameters C1 and σ  
regulate the different temperatures of crayfish.

•	 Summer resort phase: In the summer, when the temperature exceeds 30 °C, crayfish actively seek out cool 
and moist tunnels to avoid the harmful effects of the heat. The method for determining these caverns is de-
f﻿ined in Eq. (4):

	 XS = (XB + XL)/2� (4)

According to Eq. (4), the best position is denoted as XB , whereas the current position of the population is 
called XL. Conversely, if the random number is below 0.5, there is no rivalry among the crayfish. Instead, 
they promptly assume possession of the cave in the following manner:

	 Xnew = Xi + C2 × rand × (XS − Xi)� (5)

	
C2 = 2 −

(
t

T

)
� (6)

Related work Methodology Strength Weakness

Hu et al. 48 Enhanced hybrid AOA (CSOAOA) Improves exploitation, avoids local optima, increases 
convergence accuracy

Imbalanced exploration-exploitation despite improved accuracy, 
potential for slow convergence in high-dimensional problems

Shen et al. 49 Multi-population evolved WOA 
(MEWOA)

Increases convergence speed, avoids local optima, 
competitive performance

May face challenges in extremely high-dimensional problems 
despite improved convergence speed

Qiao et al. 50 Hybrid AOA-HHO for MTIS Improves segmentation accuracy, PSNR, SSIM, 
execution time

Focused on image segmentation, lacks general applicability 
across other domains

Qiu et al. 51 Improved Gray Wolf Optimization 
(IGWO)

Improves convergence speed, solution accuracy, 
escapes local minima

Requires fine-tuning to maintain performance across diverse 
problems, risk of local optima

Houssein et al. 52 Improved Sooty Tern Optimization 
Algorithm (mSTOA)

Balances exploration/exploitation, avoids sub-optimal 
convergence

Control parameter sensitivity may lead to inconsistent 
performance in complex cases

Wu et al. 53 Variant Ant Colony Optimization 
(MAACO)

Reduces path length, turn times, improves 
convergence speed

High computational cost for large-scale problems despite 
improved path planning performance

Nadimi-
Shahraki et al. 54

Enhanced Whale Optimization 
Algorithm (E-WOA) Improves population diversity and search strategy Struggles with maintaining balance in multi-objective tasks, 

relies heavily on parameter adjustment

Askr et al. 55 Binary Enhanced Golden Jackal 
Optimization (BEGJO)

Boosts exploration and exploitation, outperforms in 
classification accuracy

Computationally expensive, may not generalize well to larger 
datasets despite classification improvements

Ozkaya et al. 56 Adaptive Fitness-Distance Balance 
ARO (AFDB-ARO)

Balances exploration/exploitation, achieves optimal 
solutions

May struggle with large-scale problems despite performance in 
benchmark tests

Yıldız et al. 57 Hybrid AOA-NM Improves solution quality, avoids local optima traps Limited applicability outside constrained design problems

Deng et al. 58 Improved Whale Optimization 
Algorithm (IWOA) Improves convergence speed, stability, accuracy Challenges in dealing with complex constraints, potential slow 

convergence

Tan and 
Mohamad-
Saleh 59

Hybrid Equilibrium Whale 
Optimization Algorithm (EWOA)

Superior statistical performance, convergence rate, 
robustness

Improved robustness but limited efficiency in more complex, 
high-dimensional spaces

Mahajan et al. 60 Hybrid AO-AOA Effective in high- and low-dimensional problems limited exploration in certain complex tasks

Qian et al. 61 Hybrid SSACO Avoids local optima, improves convergence accuracy Limited exploration capabilities in high-dimensional, non-
convex problems

Zhu et al. 62 Enhanced Dung Beetle Optimization 
(QHDBO) Improves convergence speed, accuracy, robustness Still prone to local optima in extremely challenging problems 

despite overall improvements

Table 1.  Summary of existing works.
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where the position of the crayfish in the next iteration is represented as Xnew , the position of the current 
crayfish is represented as Xi, and the maximum number of iterations is denoted as T .

•	 Competition phase: When the temperature exceeds 30 °C and the random variable rand is 0.5 or higher, it 
signifies that the crayfish are experiencing competition from other crayfish for the cave. The new position is 
calculated using Eq. (7):

	 Xnew = Xi − Xz + XS � (7)

	 z = round(rand × (N − 1 )) + 1� (8)

N represents the total count of agents in the current population.

•	 Foraging phase: when the temperature reaches or falls below 30 °C, crayfish are prompted to leave their caves 
in order to search for food. At elevated temperatures, crayfish emerge from their burrows and locate food by 
utilizing the optimal place they determined during their evaluation. The food’s position is determined using 
the following:

	 XF = XB � (9)

The consumption of crayfish is influenced by both their feeding rate and the size of the food they 
consume. If the food is overly large, the crayfish are unable to swallow it instantly; instead, they must first 
deconstruct it with their pincers. The size of the food is calculated using Eq. (10):

	
Q = C3 ×

(
Fi

Ffood

)
� (10)

where C3 represents the maximum size of food, which is set at a specific value of 3. The variable Fi 
represents the fitness score of the crayfish with the index , while Ffood represents the fitness score of the 
crayfish with the index  and a specific food source.
Crayfish assess the magnitude of the meal by taking into account its maximal nutritional worth, Q, in 
order to select their feeding approach. If the value of  exceeds ( C3 + 1)/2, it indicates that the food is too 
huge to be consumed directly. The formula for crushing food is as stated:

	
XF = exp

(
− 1

Q

)
× XF � (11)

Then, the crayfish employ their second and third claws to alternately grip the food and move it into their 
mouth. The equation representing the alternative feeding behavior of crayfish is given by Eq. (12):

	 Xnew = Xi + XF × p × (cos(2 × π × rand ) − sin(2 × π × rand ))� (12)

If the value of  is less than or equal to ( C3 + 1)/2, it indicates that the crayfish may consume the meal 
instantly because it is an adequate size. The equation representing the feeding behavior of crayfish is given 
by Eq. (13):

	 Xnew = (Xi − XF ) × p + p × rand × Xi� (13)

Finally, the greedy selection process is utilized to choose between the newly updated position and the 
present solution as follows:

	
Xi (t + 1) =

{
Xnew , if f (Xnew) < f (Xi)

Xi , otherwise � (14)

The proposed AD-COA-L algorithm
This research presents a novel approach called AD-COA-L and utilizes it to address global optimization and 
engineering design challenges. Four main improvements guide the COA toward better solutions and obtain 
high quality fitness solutions. The details of these introduced strategies are explained in the following subsequent 
subsections.

Bernoulli map-based population initialization
The fundamental aspect of metaheuristic algorithms lies in the iterative process of evaluating potential solutions. 
Consequently, the beginning population plays a crucial role in determining the algorithm’s convergence and 
exploration. Furthermore, it is widely recognized that the initialization phase of the majority of MAs involves 
generating random values within a specific range, following a Gaussian distribution. This initialization process has 
a significant impact on the progress and optimization quality. On the other hand, Chaotic maps are employed to 
produce chaotic sequences, which are sequences of unpredictability generated by straightforward deterministic 
systems. Chaotic maps exhibit non-linearity, a strong sensitivity to beginning conditions, ergodicity, randomness, 
chaotic attractors, fractional maintenance, overall stability, local instability, and long-term unpredictability. 
Thus, in the realm of optimization, chaotic maps are frequently employed as substitutes for the pseudo-random 
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number generator rand to produce chaotic numbers within the range of 0 to 1. Experimental evidence has 
shown that employing chaotic sequences for population initialization, selection, crossover, and mutation has 
a significant impact on the algorithm’s performance, typically resulting in superior convergence compared 
to utilizing random sequences9. The Bernoulli map is a common example of a chaotic system. The system is 
characterized as a segmented chaotic system, using the following formula:

	
Z(k + 1, γ ) =

{
Z(k,γ )

1−γ
, Z(k, γ ) ∈ (0,1 − γ ]

Z(k,γ )−1+γ
γ

, Z(k, γ ) ∈ (1 − γ , 1)
� (15)

	 Si,j = lbj + Z(k, γ ) × (upi − lbj) , i = 1,2, . . . , N, j = 1,2, . . . , D� (16)

where the parameter  is a randomly chosen value between 0 and 0.5, typically with a value of 0.29 63. The notation 
Si,j  represents the jth dimension of the ith monochromatic wave.

In other words, the AD-COA-L introduces an initialization of the population based on the Bernoulli map 
with the aim of improving the exploration capability since the early stages of the optimization process. In the 
original COA, the population is initialized randomly within a fixed range and can result in some uneven or even 
suboptimal distribution of solutions. Such random initialization may imply the algorithm has only a limited 
capability of exploring the search space in depth, getting trapped into premature convergence to local optima.

In the random initialization, the highly sensitive initial condition-dependent chaotic sequence is now 
the Bernoulli map. The use of the Bernoulli map in the AD-COA-L guaranteed uniformity in the spread of 
population across the search space besides ensuring diversity. This strategy will enhance the quality of the 
population by generating a more diverse set of initial solutions, which enables the algorithm to explore more 
promising areas much earlier in the search process. This also helps to reduce the possibility of getting trapped 
into a local minimum, thereby helping to accelerate convergence toward the global optimum.

Dynamic inertia weight coefficient
In the basic COA algorithm, the inertia weight value remains constant at 1. Consequently, the algorithm is prone 
to getting stuck in local minima. To address this issue, it has been recommended in64 to set the inertia weight 
value to a variable w that is updated during iterations, leading to improved convergence. In this regard, the 
proposed AD-COA-L algorithm utilizes a variable value for the inertia weight coefficient, as described in Eq. 17:

	
w =

∣∣∣cos
(

ntπ

T

)∣∣∣� (17)

The adaptive inertia weight function, denoted as , is periodic function with  represents a varied value, with 
possible values ranging from 1 to 0 in increments of 0.1. The variable t represents the current iteration, while T  
represents the maximum number of iterations. The inertia weight is added to both the competition and foraging 
phases of COA to boost the convergence speed at later iterations and helps AD-COA-L to avoid falling the local 
optima. The updated competition and foraging phases of AD-COA-L are represented by Eqs. (18–20) instead of 
Eqs. (7), (12) and (13).

	 Xnew = w × Xi − Xz + XS � (18)

	 Xnew = w × Xi + XF × p × (cos(2 × π × rand ) − sin(2 × π × rand ))� (19)

	 Xnew = w × (Xi − XF ) × p + p × rand × Xi� (20)

The dynamic inertia weight coefficient not only enhances the exploration and exploitation capabilities of AD-
COA-L but also ensures an effective balance between the two throughout the optimization process. The inertia 
weight is set to higher values in the early iterations in order to give more emphasis on global exploration. 
This higher value of inertia weight inspires the solutions to traverse a larger area of the search space; thus, the 
algorithm does not get entrapped into the local optima at the beginning. Enabling solutions to travel larger 
distances, AD-COA-L increases the chances of finding new diversified regions, hence reinforcing its exploration 
power.

As iterations grow and the algorithm starts to converge toward potential promising regions, the inertia 
weight starts to decrease. As a result, the algorithm now moves its focus from a broad exploration toward the 
exploitation of the best solutions found so far. A smaller inertia weight makes the search more local, which can 
enable the algorithm to fine-tune and refine the solutions in these high-potential regions. This refined search 
process amplifies the algorithm’s capability for higher accuracy and attainment of optimal solutions.

Furthermore, the balance between exploration and exploitation depends on the value of the probability 
parameter p in the AD-COA-L algorithm. Higher values of p in early stages allow wider explorations because it 
enables the solutions to make larger movements across the search space, thus preventing it getting stuck in local 
optima. Conversely, during runtime, if the value of p is decreased, it guides the algorithm toward exploitation 
for more refined, local adjustments in the solutions for fine-tuning and optimization. This dynamic adjustment 
of p, combined with the adaptive inertia weight, maintains appropriate exploration-exploitation trade-offs so 
that the algorithm is always effectively exploring new areas while continually exploiting the best-found solutions 
for better convergence without getting stuck prematurely.

The AD-COA-L algorithm operates to keep a good balance between exploration and exploitation by varying 
the inertia weight dynamically with iteration count. It starts giving importance to wide exploration in its early 
iterations to ensure that the algorithm has scanned the solution space well and, in later stages, gives more 
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importance to exploitation in order to tune the best-found solutions. This is important in avoiding premature 
convergence and maintaining efficient convergence toward global optima. Dynamic adjustment can assure that 
AD-COA-L will adaptively switch between exploration and exploitation to obtain more robust optimization 
performance.

Adaptive lens reverse learning strategy
It is analyzed that the COA depends on the best solution XB  during the position update of different phases 
as mentioned in Eqs.  (5), (7) and (12) where new candidate solution is created by directing the current 
individual towards the global optimal point XB . During the optimization process, the majority of individuals 
in the population have a tendency to gather around the perceived current best solution. Therefore, the COA is 
prone to early convergence. The primary research focus in improving COA is centered on enhancing its ability 
to overcome local optima. One widely used approach in the existing literature to strengthen the worldwide 
investigation of MAs is Opposition-Based Learning (OBL)65. The OBL algorithm is based on the concurrent 
calculation of objective values for the present individual and its inverse solution, in order to reveal a more 
advantageous optimal solution for the optimization objective. Nguyen et al.66 used the OBL mechanism into 
the Slime Mould Algorithm (SMA) to circumvent the occurrence of local optima and enhance the optimization 
performance for achieving optimal solutions.

On the other hand, Lens opposition-based learning (LOBL) is a novel adaptation of OBL that replicates the 
process of convex lens imaging in optical principles. More precisely, if an item is positioned at a distance equal to 
twice the focal length of a convex lens, a true image that is both inverted and reduced in size will be formed on 
the opposite side of the lens. In Fig. 1, the point O represents the middle point of the search interval [lb, ub] in 
a two-dimensional space. The y-axis is visualized as a convex lens. The assumption is that when a person with a 
height of h is projected onto the x-axis in the image region, it is labeled as x. This x point is located at a distance 
twice the focal distance away from the lens. Following the process of lens imaging, an actual image is formed 
with a height approximately equal to 

∼
h. The projection of this image on the x-axis is denoted as

∼
x, indicated by 

the green point. By applying the fundamental principles of lens imaging, we can deduce the geometric equation 
as follows:

	

(lb + ub)/2 − x
∼
x −(lb + ub)/2

= h
∼
h

� (21)

Let k = h/
∼
h, then Eq. (21) is converted into:

	
∼
x= lb + ub

2 + lb + ub

2k
− x

k
� (22)

When the value of k is equal to 1, Eq. (22) can be converted into the standard form of OBL in the following 
manner:

	
∼
x= lb + ub − x� (23)

This implies that OBL is a specific example of LOBL, which not only possesses the benefits of OBL but also 
enhances solution variety and the probability of avoiding suboptimal solutions by adjusting the value of k. The 
extension of Eq. (23) to the D-dimensional space can be stated as follows:

	
∼
xi,j = lbj + ubj

2 + lbj + ubj

2k
− xi,j

k
� (24)

Fig. 1.  Schematic of Lens Opposite Based Learning.
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The variable 
∼
xi,j  denotes the opposing solution of the i-th individual in the j-th dimension. lbj  and ubj  

represent the upper and lower limits in the j-th dimension, respectively.
In the basic LOBL, the variable k is allocated a fixed value, which restricts its capacity to generate varied 

solutions during the iterations. The algorithm often prioritizes thorough exploration of the search space during 
the initial iterations in order to identify promising areas that contain optimal answers. Currently, increasing 
the value of k significantly can enhance the search breadth and population diversity. During the later stages, a 
reduced k value can be employed to improve the local search efficiency of the algorithm, resulting in a more 
accurate optimal solution. Thus, this paper suggests a nonlinear adaptive reduction mechanism for modifying 
the value of k resulting in adaptive variant of LOBL named Adaptive Lens Opposite-based Learning (ALBOL) 
in which the parameter k is defined in the following manner:

	
k = 104 ×

[
1 −

(
t

T

)2
]

+ 1� (25)

where t represents the current iteration and T  represents the maximum number of iterations. Figure 2 illustrates 
the trajectory of the variable k. After completing all algorithm operations, the proposed ALOBL mechanism is 
utilized to gradually modify the current optimal solution XB  dimension by dimension. This adjustment aims to 
bring the solution closer to the theoretical optimal solution and speed up the convergence process.

In other words, the strategy of ALOBL in AD-COA-L is applied only for the current best solution in the 
population, to avoid falling into the local optima strategically. The ALOBL generates an opposite solution to 
the current best solution by reflecting the best solution across the midpoint of the search space to create an 
alternative solution that explores another area of space that may lead to better optima. The application of ALOBL 
in this regard ensures that the algorithm does not disrupt the progress of the whole population, but indeed 
provides a critical exploration mechanism for the most promising candidate.

In addition, the ALOBL will be adaptive is the opposition strength, controlled by dynamically changing 
parameter k. Because this value of the parameter is higher at early iterations, it maintains a higher diversity in 
the opposite solutions that enable broader exploration. Furthermore, k value fine-tunes the search to improve 
the exploitation around the best-found areas. When ALBOL applied to the best solution, AD-COA-L efficiently 
balances exploration and exploitation, leading to a better convergence behavior of this approach without the 
risk of premature stagnation in suboptimal regions. This strategy enhances the ability of the algorithm to pass 
through a complex search space and accelerates its convergence with maintained diversity in solutions.

Fig. 2.  The value of proposed k with the progress of iterations.
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Local escaping Operator (LEO)
The Local Escaping Operator (LEO) is an additional local search algorithm introduced in28. Its main purpose 
is to enhance the exploration capabilities of the Gradient-based Optimizer by facilitating the exploration of 
new regions, especially in complex real-world problems. This leads to an improvement in the overall quality 
of the solution. LEO updates the positions of solutions based on specific criteria, effectively preventing the 
optimization algorithm from being trapped in local optima and improving its convergence behavior. To generate 
alternative solutions with superior performance, LEO utilizes critical solutions, including the best position XB

, two randomly generated solutions Xr1 and Xr2, two randomly chosen solutions X1i and X2i, and a newly 
generated random solution Xz . The following scheme provides a mathematical formula for determining the 
value of XLEO :

if rand < pr then

if rand < 0.5 then.

	 XLEO (t) ← Xi(t + 1) + f1 × (u1 × Xbest − u2 × Xz (t)) + f2 × ρ 1 × (u3 × (X2i − X1i) + u2 × (Xr1 − Xr2))/2

	 Xi(t + 1) ← XLEO (t)

else.

	 XLEO (t) ← Xbest + f1 × (u1 × Xbest − u2 × Xz (t)) + f2 × ρ 1 × (u3 × (X2i − X1i) + u2 × (Xr1 − Xr2))/2

	 Xi(t + 1) ← XLEO (t)

end if.
end if (26)

The given equations have several parameters including f1 which is a stochastic variable that can assume any 
value between − 1 and 1 inclusively, f2 is a random variable that follows a normal distribution with a mean of 0 
and a standard deviation of 1. Furthermore, ρ 1 indicates the probability and there are three additional random 
variables, specifically ( u1, u2, and u3) which are defined as follows:

	
u1 =

{ 2 × rand if µ 1 < 0.5
1 otherwise � (27)

	
u2 =

{
rand if µ 1 < 0.5
1 otherwise � (28)

	
u3 =

{
rand if µ 1 < 0.5
1 otherwise � (29)

where rand represents a randomly generated number that falls within the range of 0 to 1. On the other hand, 
the variable µ  represents a number that also falls within the range of 0 to 1. The provided equations can be 
simplified as shown in Eqs. (30–32):

	 u1 = Q1 × 2 × rand + (1 − Q1)� (30)

	 u2 = Q1 × rand + (1 − Q1)� (31)

	 u3 = Q1 × rand + (1 − Q1)� (32)

The binary parameter, Q1, can only have a value of either 0 or 1. This value is determined by a condition: if 
Q1 is less than 0.5, then Q1 is set to 1. Alternatively, it is given a value of 0. In addition, to maintain a proper 
equilibrium between exploration and exploitation in search processes, the variable ρ 1 is introduced which is 
defined by Eqs. (33–35):

	 ρ 1 = 2 × rand × α − α � (33)

	
α =

∣∣∣sin
(
sin

(
β × 3π

2

)
+ 3π

2

)
× β

∣∣∣� (34)

	
β = (β max − β min) + β min ×

(
1 −

(
t

T

)3
)2

� (35)

where the values of β min  and β maxare fixed at 0.2 and 1.2, respectively. The variable  denotes the present 
iteration, while T  signifies the maximum number of iterations. In order to maintain an equilibrium between 
exploration and exploitation, the parameter ρ 1 automatically adapts itself according to the sine function α
. The parameters β min and β max​ influence the adaptation of the probability factor ρ 1 inside the strategy 
of LEO. These modulate the function α  of the sine that applies the perturburbation step to the solutions. The 
smaller value of β min, in the initial iterations, promotes wider exploration. A higher value of β max during 
the ending iterations gives smaller, finer perturbations, shifting the focus toward exploitation. The adaptive 
mechanism provides an effective balance between exploration and exploitation, improves the convergence, and 
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gives more accurate solutions using the AD-COA-L algorithm. It is proposed to calculate the solution, Xz , in 
the prior scheme by following the indicated strategy in Eqs. (36) and (37):

	
Xz =

{
Xrand if µ 2 < 0.5
Xp otherwise � (36)

	 Xrand = Xmin + rand (0,1) × (Xmax − Xmin )� (37)

where Xrand denotes a fresh generated solution, while Xp refers to a solution that has been chosen randomly 
from a population. Additionally, µ  represents a random number that falls within the range of values between 0 
and 1. Equation (37) can be simplified in the following manner:

	 Xz = Q2 × Xp + (1 − Q2) × Xrand � (38)

Here, the parameter Q2 is a binary variable that can only take the values of 0 or 1. Its value is decided by whether 
the variable µ  is smaller than 0.5 or not. The stochastic selection of parameter values u1, u2, and u3 enhances 
population variety and aids in avoiding local optimal solutions.

COA may struggle to achieve optimal performance as a result of insufficient information sharing among 
individuals. Relying solely on the dominant solution for guidance is a type of greedy search, which increases 
the likelihood of becoming trapped in local minima. To effectively discourage the deployment of isolated 
solutions and encourage the exchange of information in the search area, it is imperative for all participating 
parties to maintain communication via harnessing collective intelligence. In order to address this problem, the 
AD-COA-L algorithm utilizes the LEO operator at the end of each iteration to enhance the exploitation and 
search capabilities of COA. Additionally, the LEO strategy provides a controlled perturbations to the solutions’ 
positions by stochastic variables and probability factors. This leads to easily escaping local minima, encouraging 
the algorithm to explore parts of the search space not analyzed before. This could render LEO particularly 
effective during later iterations when the algorithm can refine the search with a maintained diversity in the 
population. Enriching its general convergence speed and solution accuracy to enable the algorithm to plunge 
even into global optima for highly complex optimization problems, AD-COA-L is applied with LEO at the end 
of every iteration.

Consequently, the new AD-COA-L allows the population to discard inefficient options and perform the 
local search process more efficiently. The main steps and operators of the proposed AD-COA-L is depicted in 
Algorithm 1 and Fig. 3.

Fig. 3.  The proposed AD-COA-L algorithm.
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Algorithm 1: AD-COA-L algorithm

Input: Maximum number of iterations T , Population size N .
Output: Optimal solution XB , fitness value of optimal solution fB

1. Initialize the initial population X  using Eq. (16)

2. Compute the fitness value f (Xi) of each solution

3. Obtain the required solutions XB  and XL

4. for t ≤ Tdo

5. Calculate the temperature temp using Eq. (2)

6. Calculate C2  using Eq. (6)

7. Calculate XS  using Eq. (4)

8. Apply ALOBL strategy to the best solution using Eq. (24)

9. for i = 1 to N do
10. if temp > 30then

11. if rand < 0.5then

12. Update position of crayfish using Eq. (5)

13. Else

14. Update position of crayfish using Eq. (18)

15. end if

16. else

17. Define the food intake p and size Q using Eq. (3) and Eq. (10)

18. if p > 2then

19. Update the position of crayfish using Eq. (19)

20. else

21. Update position of crayfish using Eq. (20)

22. end if

23. end if

24. end for

25. Check the boundary conditions

26. Apply greedy selection using Eq. (14)

27. for i = 1 to N do
28. Apply LEO operator using Eqs. (26–38)

29. Check boundary limits

30. Apply greedy selection using Eq. (14)

31. end for

32. Update the current optimal solution XB  and its fitness value fB .

33. t = t + 1
34. end for

35. Return XB  and its fitness value fB ;
 

Experimental results and analysis
This study evaluates the effectiveness of the AD-COA-L algorithm by comparing it against eleven conventional 
and recent algorithms, as well as eight state-of-the-art similar algorithms that are recognized for their exceptional 
performance. A total of 29 benchmark functions from CEC2017 67 were tested. The comparison includes six 
conventional algorithms: Particle Swarm Optimizer (PSO)38, Sine-Cosine Algorithm (SCA)30, Slime Mould 
Optimizer (SMA)39, Arithmetic Optimization Algorithm (AOA)27, Whale Optimization Algorithm (WOA)68, 
and Harris Hawk Algorithm (HHO)41. Additionally, it incorporates five recent algorithms: White Shark 
Optimizer (WSO)69, Gradient Based Optimizer (GBO)28, Spider Wasp Optimizer (SWO)42, Weighted Mean 
of Vectors (INFO)29, and the original COA. The specifications for the comparison methods’ parameters can be 
found in Table 2. In order to achieve fairness, every algorithm is given a consistent maximum iteration limit of 
1000 and an initial population size of 30. To minimize variability, every algorithm is run 30 times for each test 
function, and the standard deviation (STD) and average (AVG) of the results are recorded.

The trials are conducted on a system including an Intel(R) i7-10750 H CPU, 32 GB of RAM, and running 
Microsoft Windows 10. Furthermore, MATLAB (R2020a) functions as the programming environment for 
coding, ensuring dependability and computational power throughout experimentation. The rows in the Tables 
indicate the ranking of the average values. A rank of 1 signifies that the algorithm achieved the lowest average 
solution value out of 30 trials, indicating a higher search capability.

Parameter sensitivity analysis
Two main parameters affect the performance of AD-COA-L including the probability p and the LEO limit 
parameters βmin and βmax. Therefore, in this section an experiment is conducted to test the sensitivity analysis 
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of these parameters. First, we perform the sensitivity analysis of the AD-COA-L algorithm with respect to the 
probability parameter p, that controls the size of position updates in both competitive and foraging phases. To 
this end, we conducted experiments over 29 benchmark functions of CEC 2017 suite with nine different values 
of p within the interval [0.1, 0.9] with a step size of 0.1. Table 3 reports the STD and AVG of different variations 
of parameter p. In all functions, the results include the computation of the average fitness AVG and STD over 
multiple runs and present the results for each value of p. Further, performance across all functions has been 
ranked based on the Friedman rank test where lower ranks correspond to a better overall performance. The well 
marked variation of performance when the value of p changes are reported. For instance, for lower values of p, 
such as 0.1 and 0.2, the algorithm tends to explore more widely, which indicates that with larger steps, while the 
exploration capability of the algorithm is wider in the search space, convergence towards the optimal solution 
is less precise.

Because p increases to 0.3 and 0.4, the drastic improvement of the algorithm’s performance is evident. In 
particular, when p = 0.4, the lowest AVG values for many benchmark functions compared to other variations 
are obtained by the algorithm, where the STD values of most benchmark functions depict steady convergence 
behavior. The fact that p=0.4 presents the best performance is further corroborated by the Friedman rank, 
reaching the minimum average rank there, which maintains an effective balance between exploration and 
exploitation. This lets the algorithm efficiently explore the search space and fine-tune solutions in later iterations.

Beyond p = 0.4, the performance of the algorithm starts to degrade slightly, which could also be seen from 
increased AVG and STD values when p = 0.5 and beyond. That is indicative of the fact that the higher values of 
p shift the algorithm to a more conservative strategy of search in favour of exploitation at the expense of global 
exploration. Thus, the algorithm is then prone to local optima, particularly on multimodal functions, which call 
for a broader search.

This sensitivity analysis introduces that the selection of probability parameter p significantly influences the 
performances of the AD-COA-L algorithm. In this work, the optimal value identified is p=0.4, since the optimal 
trade-off between exploration and exploitation occurs for the algorithm, with superior performance evident 
over most of the CEC2017 benchmark functions. Therefore, in applications of the AD-COA-L algorithm, the 
utilization of p=0.4 will be taken into consideration to ensure robustness in the performances of optimization.

Together with the sensitivity analysis of the probability parameter p, an experiment also will be carried out 
that analyzes the impact of the parameters β mind β max. This would give which governs the adaptation of 
the probability factor ρ 1 within LEO strategy. Six different combinations of β min and β maxre evaluated, 
described in detail in Table 4.

Additionally, Table 5 captures the STD and AVG values of different combinations for the parameters β min 
and β max. The sensitivity analysis has shown that the algorithm’s performance significantly depends on the 
choice of β min and β max. Among the six scenarios, the best performance of the algorithm is obtained for 
Scenario 3, since this scenario has minimum AVG and STD values for many of the CEC 2017 benchmark 
functions compared to other scenarios. It finds reflection in its Friedman rank of 1.87, thereby confirming 
that it has the best balance between exploration and exploitation, which has translated into better convergence 
behavior.

In contrast, the AVG and STD values were higher for Scenario 1 since the smaller range of β  resulted in 
limited exploration. The Friedman rank achieved for this scenario is 4.62, indicating relatively poor performance. 
Similar behavior was obtained for Scenario 4 with a Friedman rank of 4.28, since the increase of βmin to 0.3 
yielded poor exploration capabilities of the algorithm in the search space.

Scenario 2 and Scenario 5 provided a moderate performance, ranking Friedman at 3.43 and 3.15, respectively. 
While they turned out better than the results for Scenario 1, their balance between exploration and exploitation 
was still far from being as ideal as in Scenario 3. In Scenario 6, the wider range allowed the Friedman rank to 
become as low as 2.65 due to effective exploration and exploitation of β , though less well-balanced compared 
to the Scenario 3 configuration.

The Friedman rank test categorizes Scenario 3 as the best among all parameter combinations tested. 
Therefore, the sensitivity analysis conducted within the study revealed that the choices of β min and β max are 

Algorithm Setting values

PSO W = [0.4, 0.9], c1 = c2 = 2

AOA MOP limit = 0.2,1
α = 5, µ = 0.499

WOA Q = [−1, 1] and k = 1
SCA A is set to 2
WSO fmax = 0.75 and fmin = 0.07
SWO T R = 0.3 and CR = 0.2
COA, AD-COA-L C3 = 3, µ = 25, σ = 3
SMA z = 0.03, p = 0.03
AOA C1 = 2, C2 = 6, C3 = 2, C4 = 0.5
INFO c = 2, d = 4
GBO β min = 0.2, β max = 1.2, pr = 0.5

Table 2.  Comparative algorithms parameters’ values.
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F p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

F1
AVG 2914.970 2790.631 2370.477 2016.222 3080.839 2745.107 2984.092 1955.950 1785.844

STD 3067.888 2621.845 2365.965 2739.999 3037.802 2842.528 2638.295 1801.859 1842.695

F3
AVG 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000

STD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

F4
AVG 404.996 402.433 402.154 402.114 404.574 402.061 404.482 402.152 404.481

STD 12.157 0.828 1.080 0.970 12.028 1.074 12.750 0.799 11.754

F5
AVG 514.725 515.678 512.674 511.543 514.213 515.160 512.533 510.604 511.504

STD 6.816 6.507 4.764 5.751 6.352 6.554 7.207 5.459 5.650

F6
AVG 600.005 600.007 600.007 600.001 600.007 600.026 600.004 600.066 600.074

STD 0.022 0.029 0.029 0.002 0.019 0.119 0.011 0.260 0.389

F7
AVG 732.884 730.476 729.012 727.287 728.611 727.268 728.482 729.400 727.354

STD 12.888 9.431 8.066 8.166 6.564 8.052 9.762 8.336 8.656

F8
AVG 820.297 818.175 816.649 816.483 815.787 818.308 816.417 820.562 813.797

STD 5.210 5.616 5.969 5.535 6.313 4.941 6.747 9.487 6.951

F9
AVG 900.570 900.091 900.488 900.261 900.231 900.258 900.148 900.106 900.284

STD 2.781 0.346 1.202 0.728 0.589 0.710 0.515 0.371 1.091

F10
AVG 1796.412 1720.963 1773.530 1783.348 1822.633 1840.329 1868.146 1855.204 1825.656

STD 324.757 278.732 281.498 280.044 297.047 235.682 204.305 295.473 244.190

F11
AVG 1114.407 1110.341 1111.510 1109.740 1108.841 1111.268 1111.852 1109.778 1112.042

STD 10.635 7.742 11.686 5.510 6.599 10.989 6.577 5.377 7.786

F12
AVG 1.109E + 04 1.243E + 04 1.099E + 04 1.294E + 04 1.448E + 04 1.193E + 04 1.359E + 04 1.188E + 04 2.482E + 04

STD 7.557E + 03 9.866E + 03 9.934E + 03 1.045E + 04 1.080E + 04 8.517E + 03 1.152E + 04 9.139E + 03 4.752E + 04

F13
AVG 7319.643 9452.287 7555.361 7322.329 7960.247 6937.152 7433.426 6853.058 7646.979

STD 5166.980 5813.553 4917.643 5548.804 4399.696 4333.280 4867.852 5112.088 4662.249

F14
AVG 1456.690 1463.982 1456.455 1464.498 1466.125 1455.323 1467.344 1466.175 1511.596

STD 23.494 38.935 23.761 35.069 31.725 33.837 28.646 44.535 164.483

F15
AVG 1539.660 1581.334 1580.945 1661.276 1587.780 1596.697 1611.015 1583.903 1671.012

STD 32.877 88.755 67.285 183.605 80.153 77.588 121.319 103.876 389.450

F16
AVG 1715.579 1722.061 1692.191 1679.430 1698.432 1688.219 1668.952 1698.046 1666.663

STD 117.040 107.498 109.071 83.413 103.975 120.341 95.413 118.366 83.824

F17
AVG 1737.922 1736.327 1735.392 1738.064 1737.101 1741.193 1743.505 1747.238 1740.305

STD 20.574 18.010 19.442 21.392 15.741 18.604 19.466 28.317 15.090

F18
AVG 1.029E + 04 9.393E + 03 1.211E + 04 1.059E + 04 1.019E + 04 1.221E + 04 9.135E + 03 1.169E + 04 9.884E + 03

STD 9.197E + 03 7.682E + 03 1.051E + 04 8.706E + 03 7.206E + 03 1.233E + 04 8.077E + 03 9.703E + 03 9.452E + 03

F19
AVG 4635.888 5114.007 4388.294 5825.227 4620.957 3934.643 5413.622 5432.556 3798.480

STD 2913.909 3773.489 3528.607 5801.014 4399.353 2540.750 3678.078 4216.590 2759.922

F20
AVG 2058.041 2060.533 2058.633 2059.613 2068.792 2064.003 2064.347 2056.833 2068.118

STD 53.794 53.131 55.057 60.764 60.269 54.967 75.268 61.240 48.689

F21
AVG 2274.929 2263.345 2263.778 2228.304 2227.895 2231.466 2250.757 2256.763 2220.703

STD 57.802 58.590 58.888 47.797 48.363 49.932 56.655 59.820 41.094

F22
AVG 2301.898 2298.926 2296.440 2296.126 2295.419 2301.779 2295.712 2295.696 2301.204

STD 0.904 13.129 19.487 20.576 24.472 1.035 21.865 23.053 0.558

F23
AVG 2614.667 2617.113 2615.311 2615.403 2616.685 2616.896 2615.965 2616.408 2618.894

STD 5.862 10.113 6.157 7.735 7.847 7.181 5.746 6.039 9.044

F24
AVG 2748.502 2738.693 2739.975 2738.123 2750.403 2749.353 2721.769 2722.450 2739.040

STD 8.604 45.496 45.839 45.649 8.502 7.064 75.416 75.860 45.711

F25
AVG 2929.767 2926.761 2927.735 2932.863 2928.393 2926.720 2934.886 2926.951 2931.257

STD 29.382 23.555 22.509 20.706 22.824 23.114 23.166 23.681 21.769

F26
AVG 2918.634 2896.783 2962.660 2955.677 2903.703 2907.698 2967.895 2898.328 2898.653

STD 206.513 79.111 207.953 241.552 53.876 52.042 273.238 48.618 78.304

F27
AVG 3097.828 3098.844 3099.497 3092.709 3092.203 3093.596 3091.954 3095.301 3092.807

STD 17.995 22.933 17.283 2.631 2.322 10.989 2.632 16.475 3.088

F28
AVG 3330.768 3359.143 3368.113 3318.037 3349.360 3380.123 3355.468 3350.177 3362.445

STD 153.060 160.850 153.606 159.558 118.861 118.293 143.109 186.773 181.344

F29
AVG 3208.716 3199.846 3210.029 3219.014 3208.830 3198.291 3198.231 3198.817 3200.998

STD 33.125 45.961 63.445 59.219 48.905 45.834 53.011 46.787 42.707
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crucial for the performance delivered by AD-COA-L. The best performing variants were, in fact, obtained by the 
setting introduced in Scenario 3 with Friedman rank of 1.87 reached a good balance between exploration and 
exploitation, resulting in enhanced optimization performance of the benchmark functions.

CEC2017 results analysis
The CEC2017 benchmark suite consists of 29 benchmark test functions, each specifically tailored to fulfill certain 
objectives within its class. F1 and F3 are functions that have a single peak, making optimization straightforward. 
Functions F4 to F10 exhibit several modes with numerous peaks and valleys. Functions F11 to F20 are composite, 
incorporating a variety of landscapes, which adds complexity to the optimization problem. Functions F21 to 
F30 are composed of multiple sub-components, which collectively produce intricate optimization landscapes. 
The experimental validity of F2 has been compromised by uncontrollable factors, rendering it unsuitable for 
experimentation. Therefore, we refrained from doing tests on F2. The next part presents a comprehensive 
analysis of the test findings derived from the experiments conducted on these functions.

CEC2017 statistical performance
Tables 6 and 7 present the empirical results for the situations with sizes of 50 and 100. Tables 6 and 7 depict 
the mean, ranking, and standard deviation of objective function values for each algorithm. The AD-COA-L 
algorithm has demonstrated outstanding performance in locating the global optimum, particularly in 
experiments involving the single-peaked issue F1.

During the trials conducted in a 50-dimensional space, AD-COA-L initially demonstrates a minor advantage 
over INFO in terms of F1 performance. Nevertheless, it quickly exceeds the original state and progresses 
towards the optimal solution. Nevertheless, in the case of trials done in a 100-dimensional space, AD-COA-L 
continuously surpassed INFO in terms of performance on the F1 function, retaining a persistent advantage 
throughout. The INFO algorithm demonstrated the highest average value in problems with a dimension of 50 in 
the example of F3. Nevertheless, AD-COA-L exhibited superior performance compared to all other algorithms 
when applied to the tested functions in a 100-dimensional space. The expanded power of AD-COA-L to discover 
and converge towards the most optimal solutions for problems with a single highest point is proven, confirming 
its robust potential to both explore and exploit global optima.

AD-COA-L exhibits superior performance in the majority of functions for multimodal problems F4-F10 
when compared to the other eleven comparison algorithms. When comparing the AD-COA-L algorithm to the 
INFO, PSO, and WSO algorithms, it becomes apparent that the AD-COA-L approach demonstrates a slower 
convergence and achieves inferior results in the 50-dimensional trials. However, it shows a comparatively 
lower level of performance on function F6. Within the function F7, the efficiency of the INFO and PSO 
methods surpasses that of AD-COA-L. Nevertheless, the disparity between AD-COA-L and these algorithms 
is minimal, indicating that AD-COA-L exhibits commendable performance in F7. However, AD-COA-L has 
lower performance than INFO on functions F5, F6, and F8. Nevertheless, AD-COA-L demonstrates exceptional 
performance in the remaining functions, proving its supremacy and resilience in effectively resolving complex 
challenges. AD-COA-L demonstrates excellent competence in effectively managing a diverse variety of mixed 
functions, ranging from F11 to F20. When tested in a 50-dimensional configuration, the performance of AD-
COA-L is similar to that of INFO on F11, but slightly worse on F12, F14, and F18. However, the standard 
deviation of AD-COA-L at F18 exceeds that of INFO, suggesting that AD-COA-L demonstrates more stability in 
this function. AD-COA-L outperforms other algorithms in most functions when considering 100 dimensions, 
except for F12 and F13, which are effectively handled by INFO. Significantly, there is a slight discrepancy in the 
performance of AD-COA-L and INFO at F12 and F13, with AD-COA-L exhibiting superior stability compared 
to INFO at F12. The outstanding success of AD-COA-L can be credited to its wide array of solution search 

Scenario βmin βmax

Scenario 1 0.2 1.0

Scenario 2 0.2 1.1

Scenario 3 0.2 1.2

Scenario 4 0.3 1.0

Scenario 5 0.3 1.1

Scenario 6 0.3 1.2

Table 4.  Different scenarios for the parameters β min and β max

 

F p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

F30
AVG 1.681E + 05 2.379E + 05 1.053E + 05 4.641E + 05 3.048E + 05 5.831E + 05 3.527E + 05 4.640E + 05 2.400E + 05

STD 3.072E + 05 4.152E + 05 2.088E + 05 9.019E + 05 5.297E + 05 9.073E + 05 4.265E + 05 6.565E + 05 2.638E + 05

FR rank 5.41 5.11 4.93 4.48 5.01 4.89 5.08 4.87 5.22

Table 3.  Sensitivity analysis of parameter p
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F Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

F1
AVG 3249.980 1884.484 2564.724 2602.047 2316.105 2083.979

STD 3063.281 2473.937 2616.219 2956.188 2332.908 2061.324

F3
AVG 300.000 300.000 300.000 300.000 300.000 300.000

STD 0.000 0.000 0.000 0.000 0.000 0.000

F4
AVG 406.615 404.886 404.641 404.388 404.880 402.083

STD 16.270 11.749 12.601 12.025 12.232 0.998

F5
AVG 517.001 517.864 516.981 520.363 519.023 516.350

STD 6.867 9.922 8.748 9.621 8.699 7.639

F6
AVG 600.095 600.048 600.001 600.047 600.040 600.066

STD 0.408 0.255 0.005 0.214 0.170 0.204

F7
AVG 729.866 732.022 730.430 731.410 730.620 731.164

STD 8.225 12.356 7.154 8.103 9.479 9.124

F8
AVG 817.544 819.999 817.578 818.407 818.971 816.914

STD 6.046 7.181 7.332 6.505 8.377 7.283

F9
AVG 900.294 900.601 900.139 900.200 900.118 900.124

STD 0.666 1.406 0.309 0.456 0.414 0.299

F10
AVG 1666.399 1755.451 1794.644 1650.378 1740.848 1813.138

STD 276.410 285.118 340.923 246.766 260.343 252.345

F11
AVG 1111.970 1111.133 1112.685 1113.263 1111.381 1109.898

STD 9.574 4.175 8.896 13.237 8.817 5.777

F12
AVG 1.282E + 04 1.194E + 04 1.375E + 04 1.232E + 04 1.105E + 04 1.380E + 04

STD 9.639E + 03 6.926E + 03 9.751E + 03 8.122E + 03 7.525E + 03 1.056E + 04

F13
AVG 7.712E + 03 8.061E + 03 6.958E + 03 6.609E + 03 8.483E + 03 8.358E + 03

STD 5243.024 4976.950 4289.342 4264.100 4969.781 5094.372

F14
AVG 1459.933 1455.562 1451.157 1461.718 1454.935 1462.153

STD 33.376 24.621 21.114 42.699 27.959 31.612

F15
AVG 1560.125 1548.950 1548.520 1563.955 1550.480 1562.455

STD 70.473 45.246 65.323 50.719 43.575 63.181

F16
AVG 1722.224 1719.137 1756.630 1732.078 1737.260 1784.496

STD 125.121 110.412 150.588 129.688 132.981 129.439

F17
AVG 1746.013 1741.960 1742.751 1744.755 1739.671 1739.451

STD 22.347 28.214 21.858 27.654 32.271 21.117

F18
AVG 1.249E + 04 1.133E + 04 8.910E + 03 1.145E + 04 9.333E + 03 1.144E + 04

STD 1.152E + 04 1.079E + 04 7.141E + 03 8.989E + 03 8.770E + 03 1.114E + 04

F19
AVG 5346.020 5248.418 5811.505 3830.378 4433.477 4298.046

STD 3601.822 3610.759 4518.454 2736.605 2696.526 3730.923

F20
AVG 2065.215 2071.315 2048.261 2064.562 2059.317 2061.875

STD 59.808 62.194 49.510 50.540 52.295 53.796

F21
AVG 2301.552 2287.715 2313.057 2308.170 2295.181 2292.825

STD 41.235 53.729 31.756 37.045 48.986 52.003

F22
AVG 2298.636 2301.316 2300.009 2301.501 2299.058 2298.536

STD 15.775 0.656 7.794 0.820 14.394 15.312

F23
AVG 2615.773 2616.088 2614.798 2614.022 2615.625 2615.681

STD 7.933 5.240 6.456 6.533 7.330 7.984

F24
AVG 2747.400 2729.996 2737.983 2714.093 2730.498 2737.914

STD 6.744 62.883 45.471 85.723 63.092 45.601

F25
AVG 2929.513 2929.746 2932.090 2926.550 2933.128 2925.301

STD 22.162 22.167 27.802 23.242 21.118 23.640

F26
AVG 3012.865 2901.459 2897.367 2898.257 2897.375 2918.368

STD 337.581 224.031 78.903 101.261 68.794 215.475

F27
AVG 3096.576 3096.283 3096.307 3096.735 3095.849 3097.025

STD 18.560 18.969 15.207 15.232 13.224 17.906

F28
AVG 3308.714 3349.607 3342.790 3344.003 3317.424 3342.396

STD 183.521 119.064 111.080 113.920 128.693 147.237

F29
AVG 3214.929 3209.557 3207.533 3206.326 3203.550 3211.961

STD 44.248 40.942 58.281 49.514 46.002 53.084
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strategies, namely its immensely powerful global search capabilities, which is remarkably effective in addressing 
intricate problems.

AD-COA-L is capable of effectively resolving complex problems, namely those related to functions F21-F30. 
In a study involving 50 dimensions, the AD-COA-L algorithm has outstanding performance, outperforming all 
others except for F21, F27, and F30, which have higher rankings. AD-COA-L demonstrates superior performance 
compared to all other algorithms across all functions, with the exception of the INFO function in F26, F29, and 
F30, while testing with 100-dimensional data. The results clearly demonstrate that AD-COA-L is exceptional 
and highly versatile in efficiently addressing a wide range of challenges. It enables a thorough examination and 
enhancement of intricate search domains.

CEC2017 convergence analysis
Figures  4 and 5 depict the convergence rate and accuracy of the AD-COA-L, SWO, COA, SO, AOA, HHO, 
INFO, PSO, SMA, SCA, and GBO algorithms in comparison to CEC2017 for the dimensions D = 50 and D = 100. 
The data demonstrates that AD-COA-L has a higher rate of convergence, reduced variability, and greater stability 
when compared to the other algorithms. Hence, AD-COA-L possesses the capacity to quickly attain the most 
favorable answers, thereby improving problem-solving effectiveness and adaptability. AD-COA-L consistently 
exhibits improved convergence on the convergence curve in the majority of test cases. This suggests that its 
search capacity gradually improves with each repetition, allowing it to effectively locate the best solutions for 
optimization problems. When applied to unimodal functions F1 and F3, the AD-COA-L algorithm has a higher 
convergence rate compared to other techniques. While INFO may outperform AD-COA-L in the early iterations, 
AD-COA-L ultimately gets higher results due to its new Bernoulli approach for population initialization. AD-
COA-L demonstrates a higher rate of convergence in comparison to all alternative approaches. Function F5 
provides evidence that AD-COA-L consistently obtains the lowest fitness values before the 300th iteration, 
surpassing all other algorithms in performance. Therefore, it can be deduced that AD-COA-L demonstrates a 
swift convergence rate, most likely because of its innovative exploitation technique and improved exploration 
formula. This enhances the algorithm’s ability to both explore and exploit. Once again, when assessing the 
performance of function F7 at CEC2017 with a dimensionality of 50, AD-COA-L demonstrates superior 
performance compared to all other rivals. This is attributed to its faster convergence rate and the attainment 
of the lowest value. Nevertheless, when evaluating F7 with D = 100, PSO exhibits remarkable performance. 
However, the difference in convergence rate between AD-COA-L and PSO is negligible. Thus, we can infer that 
the performance of AD-COA-L is praiseworthy.

Comparison of AD-COA-L with advanced algorithms
This experiment is undertaken to further evaluate the performance of AD-COA-L in comparison to high-
performing algorithms. Eight sophisticated and high-performing algorithms are employed to thoroughly 
assess the accuracy and effectiveness of AD-COA-L. The algorithms can be categorized into two groups. The 
first group consists of five advanced optimization algorithms: CSOAOA48, CJADE70, RLTLBO71, ASMA72, and 
TLABC73, and the second group constitute three winning algorithms in IEEE CEC, which are proven to perform 
excellently, namely, CMAES74, IMODE75, and AGSK76. These algorithms have been demonstrated to perform 
exceptionally well. The table labeled Table 8 contains the statistical standard deviation and mean of fitness values. 
These data were acquired from 30 independent runs using twenty-nine benchmark functions from CEC2017. 
The dimensionality of these functions is 50.

The analysis reveals that the AD-COA-L algorithm achieves the lowest average fitness value in 17 out of 
29 functions, surpassing all other algorithms. The AD-COA-L algorithm has the greatest number of superior 
functions compared to all other algorithms. For instance, AD-COA-L demonstrates outstanding performance in 
unimodal functions F1 and F3, indicating superior values for both standard deviation and mean of fitness. The 
IMODE algorithm reports the optimal STD values in F4, while the AD-COA-L function guarantees the highest 
average fitness values.

However, the original COA approach does not demonstrate exceptional performance in any function. The 
suggested modifications in AD-COA-L enhance the balance between exploration and exploitation, resulting 
in the highest quality overall solution in terms of the ideal global optima. According to the findings in Table 8, 
the AD-COA-L algorithm shows great potential in the field of optimization. It outperforms algorithms that are 
very proficient in the field by being capable of solving global optimization tasks. The last row in Table 8; Fig. 6 
represents the Friedman rank between the comparative algorithms where AD-COA-L is ranked the first with 
2.71 while IMODE is the second with rank of 2.92 indicating the superior performance of AD-COA-L compared 
to a set of advanced and champion algorithms.

F Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

F30
AVG 3.850E + 05 1.553E + 05 1.219E + 05 1.089E + 05 2.338E + 05 1.777E + 05

STD 5.725E + 05 3.987E + 05 2.987E + 05 3.061E + 05 4.299E + 05 4.219E + 05

FR rank 4.32 3.58 2.99 3.46 3.11 3.55

Table 5.  Sensitivity analysis of the parameters β min and β max
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Statistical analysis of AD-COA-L
The Wilcoxon rank sum test77 can be employed as a nonparametric statistical test to assess if the comparative 
AD-COA-L approach is statistically distinct from the other methods. The objective was achieved by doing 30 
individual runs for each of the competing algorithms, utilizing a standardized set of 29 test functions. The 
Wilcoxon rank sum test is performed at a significance level of 0.05 to assess the significant difference between 
the solution results of the six algorithms being studied and those of the AD-COA-L algorithm. The statistical 
test results are aggregated and presented in Tables 9 and 10. To confirm these findings, if the p-value is less than 
0.05, we can reject the null hypothesis and conclude that there is a significant difference between the algorithms 
being studied. Alternatively, if the p-value is greater than 0.05, the search results obtained from the two methods 
are compared. Tables 9 and 10 clearly demonstrate that the AD-COA-L algorithm exhibits substantial disparities 
when compared to the other approaches. AD-COA-L exhibits significant superiority when compared to WOA, 
SWO, WSO, HHO, PSO, COA, INFO, AOA, SMA, SCA, and GBO. The statistical significance of the advantage 
of the AD-COA-L algorithm has been determined.

Computational analysis
Computational analysis of different algorithms is a crucial factor that needs to be studies to assess the overall 
performance of the novel proposed algorithms. The computational analysis includes two main folds which are 
the time complexity and space complexity. The time complexity studies the theoretical computational runtime 
of different algorithms according to the most significant operations while the space complexity denotes the 
memory space required by the main variables and vectors of algorithms. This section studies the compactional 
analysis of the proposed AD-COA-l compared to the original COA and other compared algorithms.

Time complexity
There are three key parameters that directly influence the time complexity of the original COA including 
population size ( N ), dimensionality ( D), and the number of iterations ( T ). COA generates an initial population 
in the initialization stage, and the main computational cost occurs in the updating of positions in the stages of 
summer resort, competition, and foraging. This updating process is done for each solution in the population 
and this whole process is repeated for all iterations. So, for original COA time complexity can be represented as:

	 O (COA) = O (ND + T ND) = O (T ND)

On the other hand, the general time complexity of the proposed AD-COA-L algorithm is similar to that of the 
original COA, with several enhancements added to it. Namely, Bernoulli Map-based Population Initialization, 
Adaptive Lens Opposite-Based Learning (ALOBL), and the Local Escaping Operator (LEO). In the Bernoulli 
map-based population initialization, the complexity remains O (ND), similar to the original initialization 
process. In the adaptive lens opposite-based learning (ALOBL), it applied only to the best solution, contributing 
O (T D) over the iterations. Furthermore, the local escaping operator (LEO) updates the positions of all 
solutions, contributing O (T ND). The dynamic inertia weight coefficient does not add more complexity since 
it is part of the position update equation of the original COA. Therefore, the total time complexity of the AD-
COA-L algorithm is bound by:

O (AD − COA − L) = O (ND + T ND) = O (T ND)It is apparent that from the time complexity of 
each the original COA and the improved AD-COA-L that there is no major difference between them in the time 
complexity consumed by the CPU, but the performance obtained by AD-COA-L is much better than COA as 
conducted in the experiments.

Space complexity
Regarding space complexity, the original COA and the proposed AD-COA-L have the same space complexity 
because both algorithms deal with a population of size N  and a problem of dimensionality D. The number 
of memory usage used at any instant of time during the run of the algorithm increases linearly with respect to 
the population size and the number of dimensions under optimization. Hence, the following ensures the space 
complexity for both algorithms:

	 Space Complexity = O (N × D)

Finally, Table  11 compare between the proposed AD-COA-L and its rivals regarding the time and space 
complexity obtained during different iterations. As shown by Table 11, the time complexity for all algorithms 
under comparison, including the proposed AD-COA-L algorithm, is O (T ND). This means that, even 
with added strategies in AD-COA-L, such as Bernoulli map-based initialization, ALOBL, and LEO, the time 
complexity level is still within the same magnitude with other popular algorithms such as PSO, AOA, and WOA.

Additionally, in all algorithms, the space complexity is O (ND), which suggests that the proposed 
enhancements in AD-COA-L do not consume more of the memory resource than those used by the other 
compared algorithms and hence is competitive both in time and space efficiency.

This implies that the new AD-COA-L introduces some new strategies for the improvement of exploration 
and exploitation and retains the same computational complexity as other well-established algorithms. This 
underlines its efficiency since the improvement in optimization performance does not involve any increase 
in either time or space complexity. The AD-COA-L therefore provides a well-balanced compromise between 
performance and computational cost; hence, it should be considered seriously when trying to solve challenging 
global optimization problems.
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Application of AD-COA-L to Engineering problems
This section assesses the practical performance of the proposed AD-COA-L by examining its efficacy in solving 
engineering optimization challenges. The problems encompass tension/compression string design, welded beam 
design, speed reducer design, tubular column design, piston lever design (PLD), and robot gripper. The research 
utilizes the static penalty method80 to address the limitations in the optimization problem:

Fig. 4.  Convergence analysis for AD-COA-L and its rival algorithms using CEC2017, D = 50.
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Fig. 5.  Convergence analysis for AD-COA-L and its rival algorithms using CEC2017, D = 100.
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F AD-COA-L COA CMAES IMODE AGSK DAOA CJADE RLTLBO ASMA TLABC

F1
AVG 1.43LEL + 04 4.73LEL + 09 1.37LEL + 10 6.05LEL + 05 1.06LEL + 07 2.57LEL + 11 2.68LEL + 11 2.65LEL + 09 5.22LEL + 09 8.89LEL + 10

STD 9.26LEL + 03 1.10LEL + 10 2.41LEL + 10 4.32LEL + 05 1.63LEL + 07 2.73LEL + 10 2.57LEL + 10 2.58LEL + 09 2.52LEL + 09 1.05LEL + 10

F3
AVG 8.87LEL + 04 2.34LEL + 05 3.87LEL + 05 2.33LEL + 05 2.18LEL + 05 9.60LEL + 07 5.11LEL + 11 1.24LEL + 05 1.26LEL + 05 1.84LEL + 05

STD 1.43LEL + 04 5.09LEL + 04 4.82LEL + 04 2.64LEL + 04 3.33LEL + 04 4.71LEL + 08 1.10LEL + 12 2.38LEL + 04 1.97LEL + 04 3.19LEL + 04

F4
AVG 5.17LEL + 02 9.67LEL + 02 7.68LEL + 03 5.58LEL + 02 6.12LEL + 02 1.18LEL + 05 1.22LEL + 05 9.36LEL + 02 9.35LEL + 02 2.81LEL + 04

STD 5.69LEL + 01 3.77LEL + 02 1.96LEL + 03 4.01LEL + 01 4.82LEL + 01 1.92LEL + 04 2.17LEL + 04 2.02LEL + 02 2.12LEL + 02 5.80LEL + 03

F5
AVG 7.99LEL + 02 9.92LEL + 02 5.92LEL + 02 7.47LEL + 02 9.16LEL + 02 1.74LEL + 03 1.72LEL + 03 8.44LEL + 02 7.28LEL + 02 1.10LEL + 03

STD 1.89LEL + 01 9.58LEL + 01 1.44LEL + 02 5.09LEL + 01 3.31LEL + 01 7.44LEL + 01 7.46LEL + 01 4.91LEL + 01 7.12LEL + 01 4.83LEL + 01

F6
AVG 6.01LEL + 02 6.64LEL + 02 6.37LEL + 02 6.43LEL + 02 6.19LEL + 02 7.56LEL + 02 7.56LEL + 02 6.43LEL + 02 6.16LEL + 02 6.83LEL + 02

STD 2.79LEL-01 1.33LEL + 01 3.33LEL + 01 8.46LEL + 00 4.77LEL + 00 9.07LEL + 00 1.07LEL + 01 9.75LEL + 00 4.67LEL + 00 5.28LEL + 00

F7
AVG 9.00LEL + 02 1.47LEL + 03 1.26LEL + 03 1.03LEL + 03 1.21LEL + 03 6.15LEL + 03 6.10LEL + 03 1.39LEL + 03 1.07LEL + 03 1.88LEL + 03

STD 1.22LEL + 02 1.58LEL + 02 1.25LEL + 02 2.65LEL + 01 5.04LEL + 01 4.03LEL + 02 5.58LEL + 02 1.62LEL + 02 8.27LEL + 01 9.69LEL + 01

F8
AVG 1.08LEL + 03 1.29LEL + 03 1.01LEL + 03 1.05LEL + 03 1.22LEL + 03 1.97LEL + 03 2.08LEL + 03 1.17LEL + 03 1.06LEL + 03 1.40LEL + 03

STD 4.37LEL + 01 8.26LEL + 01 2.45LEL + 02 2.42LEL + 01 3.72LEL + 01 9.97LEL + 01 7.57LEL + 01 6.26LEL + 01 8.12LEL + 01 4.36LEL + 01

F9
AVG 1.25LEL + 04 2.16LEL + 04 2.89LEL + 03 8.89LEL + 03 5.51LEL + 03 1.06LEL + 05 1.07LEL + 05 1.95LEL + 04 8.97LEL + 03 2.55LEL + 04

STD 4.99LEL + 03 9.01LEL + 03 5.27LEL + 03 2.25LEL + 03 2.76LEL + 03 1.33LEL + 04 1.13LEL + 04 7.17LEL + 03 4.74LEL + 03 3.49LEL + 03

F10
AVG 1.22LEL + 04 1.07LEL + 04 1.49LEL + 04 8.71LEL + 03 7.48LEL + 03 1.71LEL + 04 1.85LEL + 04 1.16LEL + 04 8.80LEL + 03 1.40LEL + 04

STD 1.57LEL + 03 1.97LEL + 03 4.12LEL + 02 5.79LEL + 02 3.64LEL + 02 4.83LEL + 02 7.56LEL + 02 1.79LEL + 03 2.74LEL + 03 8.16LEL + 02

F11
AVG 1.40LEL + 03 2.62LEL + 03 7.14LEL + 04 1.40LEL + 03 1.56LEL + 03 9.02LEL + 04 8.17LEL + 06 1.51LEL + 03 3.91LEL + 03 1.93LEL + 04

STD 1.05LEL + 02 1.31LEL + 03 1.51LEL + 04 8.61LEL + 01 7.61LEL + 01 3.03LEL + 04 2.12LEL + 07 1.55LEL + 02 1.23LEL + 03 4.30LEL + 03

F12
AVG 3.66LEL + 06 6.75LEL + 08 2.07LEL + 10 7.02LEL + 06 9.15LEL + 06 1.45LEL + 11 1.46LEL + 11 2.72LEL + 07 8.54LEL + 08 4.73LEL + 10

STD 2.43LEL + 06 7.47LEL + 08 5.34LEL + 09 3.86LEL + 06 5.49LEL + 06 2.38LEL + 10 3.12LEL + 10 3.02LEL + 07 1.39LEL + 09 1.11LEL + 10

F13
AVG 5.48LEL + 04 5.13LEL + 07 1.07LEL + 10 1.87LEL + 04 1.24LEL + 04 9.18LEL + 10 9.00LEL + 10 3.14LEL + 04 1.22LEL + 08 2.36LEL + 10

STD 3.19LEL + 04 6.95LEL + 07 2.90LEL + 09 2.37LEL + 04 1.45LEL + 04 1.87LEL + 10 2.96LEL + 10 4.66LEL + 04 1.49LEL + 08 9.25LEL + 09

F14
AVG 2.58LEL + 05 3.11LEL + 06 2.13LEL + 07 3.16LEL + 05 6.22LEL + 04 3.91LEL + 08 5.19LEL + 08 6.15LEL + 04 1.29LEL + 06 2.34LEL + 07

STD 5.09LEL + 04 3.73LEL + 06 1.30LEL + 07 4.07LEL + 05 1.64LEL + 05 1.62LEL + 08 2.53LEL + 08 5.80LEL + 04 1.37LEL + 06 2.52LEL + 07

F15
AVG 1.31LEL + 04 2.15LEL + 07 1.82LEL + 09 1.33LEL + 04 2.02LEL + 04 2.86LEL + 10 3.85LEL + 10 1.56LEL + 04 1.10LEL + 07 3.94LEL + 09

STD 7.63LEL + 03 7.20LEL + 07 7.82LEL + 08 1.10LEL + 04 1.26LEL + 04 9.26LEL + 09 9.04LEL + 09 5.52LEL + 03 1.69LEL + 07 2.29LEL + 09

F16
AVG 3.23LEL + 03 4.87LEL + 03 6.79LEL + 03 3.64LEL + 03 4.10LEL + 03 1.55LEL + 04 1.69LEL + 04 3.27LEL + 03 3.74LEL + 03 6.62LEL + 03

STD 5.25LEL + 02 5.40LEL + 02 4.35LEL + 02 2.61LEL + 02 1.97LEL + 02 3.48LEL + 03 3.72LEL + 03 4.18LEL + 02 5.22LEL + 02 6.87LEL + 02

F17
AVG 3.31LEL + 03 4.19LEL + 03 2.85LEL + 03 3.02LEL + 03 3.39LEL + 03 1.41LEL + 06 2.07LEL + 06 3.18LEL + 03 2.93LEL + 03 4.31LEL + 03

STD 3.32LEL + 02 4.76LEL + 02 3.58LEL + 02 1.43LEL + 02 1.61LEL + 02 1.92LEL + 06 2.01LEL + 06 3.49LEL + 02 3.66LEL + 02 7.02LEL + 02

F18
AVG 7.78LEL + 05 8.16LEL + 06 1.05LEL + 08 2.33LEL + 06 1.24LEL + 06 6.47LEL + 08 1.56LEL + 09 1.33LEL + 06 5.25LEL + 06 3.98LEL + 07

STD 4.27LEL + 05 9.49LEL + 06 5.63LEL + 07 1.68LEL + 06 7.78LEL + 05 2.47LEL + 08 7.40LEL + 08 8.64LEL + 05 4.80LEL + 06 2.63LEL + 07

F19
AVG 2.70LEL + 04 5.69LEL + 06 1.08LEL + 09 2.17LEL + 04 1.14LEL + 04 1.42LEL + 10 1.51LEL + 10 1.94LEL + 04 1.75LEL + 06 1.35LEL + 09

STD 1.44LEL + 04 5.57LEL + 06 7.36LEL + 08 5.94LEL + 03 8.23LEL + 03 3.95LEL + 09 4.37LEL + 09 1.07LEL + 04 1.67LEL + 06 7.25LEL + 08

F20
AVG 3.16LEL + 03 3.72LEL + 03 3.77LEL + 03 3.18LEL + 03 3.45LEL + 03 5.33LEL + 03 5.77LEL + 03 3.13LEL + 03 3.03LEL + 03 3.56LEL + 03

STD 3.69LEL + 02 2.96LEL + 02 2.60LEL + 02 2.17LEL + 02 1.81LEL + 02 2.20LEL + 02 3.42LEL + 02 2.31LEL + 02 3.57LEL + 02 3.14LEL + 02

F21
AVG 2.51LEL + 03 2.85LEL + 03 2.62LEL + 03 2.54LEL + 03 2.70LEL + 03 3.58LEL + 03 3.59LEL + 03 2.57LEL + 03 2.58LEL + 03 2.98LEL + 03

STD 5.36LEL + 01 8.75LEL + 01 2.66LEL + 02 2.64LEL + 01 3.10LEL + 01 9.25LEL + 01 1.11LEL + 02 5.78LEL + 01 4.75LEL + 01 6.53LEL + 01

F22
AVG 9.97LEL + 03 1.25LEL + 04 1.65LEL + 04 8.78LEL + 03 1.36LEL + 04 1.86LEL + 04 2.00LEL + 04 5.61LEL + 03 9.97LEL + 03 1.54LEL + 04

STD 2.65LEL + 03 2.19LEL + 03 5.77LEL + 02 2.10LEL + 03 1.80LEL + 03 6.22LEL + 02 7.89LEL + 02 3.23LEL + 03 2.35LEL + 03 9.15LEL + 02

F23
AVG 2.98LEL + 03 3.51LEL + 03 3.44LEL + 03 3.01LEL + 03 3.14LEL + 03 5.37LEL + 03 5.29LEL + 03 3.12LEL + 03 3.25LEL + 03 4.00LEL + 03

STD 1.35LEL + 02 1.26LEL + 02 4.15LEL + 01 2.41LEL + 01 4.79LEL + 01 4.34LEL + 02 3.88LEL + 02 8.96LEL + 01 3.68LEL + 01 1.42LEL + 02

F24
AVG 3.18LEL + 03 3.64LEL + 03 3.52LEL + 03 3.22LEL + 03 3.28LEL + 03 6.09LEL + 03 6.08LEL + 03 3.34LEL + 03 3.42LEL + 03 4.37LEL + 03

STD 1.35LEL + 02 1.32LEL + 02 3.84LEL + 01 2.61LEL + 01 4.92LEL + 01 5.25LEL + 02 4.80LEL + 02 8.86LEL + 01 1.07LEL + 02 3.03LEL + 02

F25
AVG 3.07LEL + 03 3.99LEL + 03 3.99LEL + 03 3.11LEL + 03 3.11LEL + 03 6.36LEL + 04 6.52LEL + 04 3.41LEL + 03 3.56LEL + 03 1.36LEL + 04

STD 3.15LEL + 01 1.94LEL + 03 1.49LEL + 03 3.20LEL + 01 3.68LEL + 01 9.65LEL + 03 1.05LEL + 04 1.55LEL + 02 3.00LEL + 02 1.60LEL + 03

F26
AVG 6.55LEL + 03 1.04LEL + 04 1.14LEL + 04 7.52LEL + 03 7.88LEL + 03 3.40LEL + 04 3.46LEL + 04 1.06LEL + 04 6.72LEL + 03 1.60LEL + 04

STD 2.63LEL + 02 1.40LEL + 03 4.87LEL + 02 2.73LEL + 03 9.72LEL + 02 4.96LEL + 03 5.33LEL + 03 2.20LEL + 03 7.58LEL + 02 8.77LEL + 02

F27
AVG 3.65LEL + 03 3.92LEL + 03 3.87LEL + 03 3.55LEL + 03 3.50LEL + 03 9.01LEL + 03 9.28LEL + 03 3.69LEL + 03 3.61LEL + 03 5.59LEL + 03

STD 1.65LEL + 02 2.47LEL + 02 8.89LEL + 01 5.16LEL + 01 7.67LEL + 01 1.22LEL + 03 1.16LEL + 03 1.09LEL + 02 1.07LEL + 02 5.07LEL + 02

F28
AVG 3.34LEL + 03 6.10LEL + 03 9.71LEL + 03 3.41LEL + 03 3.40LEL + 03 2.62LEL + 04 2.52LEL + 04 3.85LEL + 03 4.16LEL + 03 1.10LEL + 04

STD 3.78LEL + 01 2.48LEL + 03 3.74LEL + 02 2.96LEL + 01 4.88LEL + 01 4.05LEL + 03 3.65LEL + 03 1.86LEL + 02 3.39LEL + 02 1.09LEL + 03

F29
AVG 4.14LEL + 03 6.27LEL + 03 1.22LEL + 04 5.14LEL + 03 4.94LEL + 03 2.28LEL + 06 4.51LEL + 06 5.16LEL + 03 4.61LEL + 03 1.56LEL + 04

STD 2.24LEL + 02 9.21LEL + 02 2.86LEL + 03 4.15LEL + 02 2.40LEL + 02 2.14LEL + 06 4.26LEL + 06 4.33LEL + 02 3.21LEL + 02 6.79LEL + 03

Continued
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ζ (z) = f (z) ±

[∑
m
i=1 li · max(0, ti (z))α +

∑
n
j=1 oj |Uj (z)|β

]
� (39)

where the parameter ζ (z) represents the objective function, while oj  and lj  are two positive penalty constants. 
The functions Uj (z) and Ti (z) represent constraint conditions. The parameters α  and β  can take on values 
of either 1 or 2. The resolution of all engineering issues is achieved by employing the parameter configurations 
specified in Sect. 4.2. The population size, maximum iteration count, and number of independent runs are 50, 
500, and 30, respectively.

Welded beam design
The welded beam structure is a pragmatic design problem frequently employed to assess different optimization 
techniques. The structure comprises of beam A and the welds that fasten it to member B, as illustrated in Fig. 7. 
The aim of this design is to determine the most efficient design factors that result in the lowest production 
costs81. The minimization method is constrained by limitations on shear stress (), bending stress in the beam 
(), buckling load on the bar (-), and the final deflection of the beam (). The optimization process includes four 
parameters: the length of the clamping bar (), the thickness of the weld (ℎ), the thickness of the bar (), and the 
height (). The model is presented in the following manner:

Consider

	 x = [ x1, x2, x3, x4] = [ h, l, t, b ]

Objective function

	 f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

Subject to

	 g1 (−→x ) = τ (−→x ) − τ max ≤ 0

	 g2 (−→x ) = σ (−→x ) − σ max ≤ 0

	 g4 (−→x ) = x1 − x4 ≤ 0

	 g5 (−→x ) = P − Pc (−→x ) ≤ 0

	 g6 (−→x ) = 0.125 − x1 ≤ 0

Fig. 6.  Friedman rank comparison between AD-COA-L and other algorithms.

 

F AD-COA-L COA CMAES IMODE AGSK DAOA CJADE RLTLBO ASMA TLABC

F30
AVG 3.32LEL + 06 4.42LEL + 07 1.88LEL + 09 5.05LEL + 06 3.49LEL + 06 1.97LEL + 10 2.38LEL + 10 1.43LEL + 06 1.21LEL + 08 2.53LEL + 09

STD 1.70LEL + 06 4.81LEL + 07 6.47LEL + 08 1.10LEL + 06 1.56LEL + 06 5.27LEL + 09 6.49LEL + 09 6.99LEL + 05 4.23LEL + 07 1.76LEL + 09

Friedman 
rank 2.71 6.52 6.13 2.92 3.13 8.82 9.42 4.25 4.51 7.11

Final rank 1 7 6 2 3 9 10 4 5 8

Table 8.  Comparative analysis between AD-COA-L and its high-performing rivals using CEC2017.
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	 g1 (−→x ) = τ (−→x ) − τ max ≤ 0

	 g7 (−→x ) = 1.10471x2
1 + 0.04811x3x4 (14.0 + x2) − 0.5 ≤ 0

Where

	
τ (−→x ) =

√
(τ ′ )2 + 2τ ′ τ ′ ′ x2

2R
+ (τ ′ ′ ), τ ′ = P√

2x1x2
, τ ′ ′ = MR

J
,

	
M = P (L + x2

2 ), R =

√
x2

2
4 +

(
x1 + x3

2

)2
, σ (−→x ) = 6P L

x4x2
3

,

	
J = 2

(
√

2x1x2

[
x2

x

4 +
(

x1 + x3

2

)2
])

, δ (−→x ) = 6P L3

Ex4x2
3

,

	
Pc (x⃗) =

4.013E

√
x2

3x6
4

0

L2 , (1 − x3

2L

√
E

4G
), (1 − x3

2L

√
E

4G
),

Boundaries

	
0.1 ≤ xi ≤ 2, i = 1,4
0.1 ≤ xi ≤ 10, i = 2.3

When designing the welded beam, the AD-COA-L method was evaluated with other algorithms such as COA, 
GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA. Table  12 presents the minimum cost and the 
matching optimal variable values obtained by each approach. The welded beam design reached an ideal cost of 
1.6702177263 using AD-COA-L.

Piston lever design (PLD)
The aim of PLD is to decrease the amount of oil while the piston lever moves from 0° to 45°82. The optimization 
outcomes are influenced by the relative distances H , B, D, and V  between the piston components. Figure 8 
depicts the schematic representation of PLD, and the related mathematical model is defined as follows:

Consider

	 x = [ x1, x2, x3, x4] = [ H, B, D, V ]

Objective function

	
f (X) =

(1
4

)
π x2

3 (L2 − L1)

Subject to

	 g1(X) = QL cos (θ ) − RF ≤ 0,

	 g2(X) = Q (L − x4) − M ≤ 0,

	 g3(X) = 1.2 (L2 − L1) − L1 ≤ 0,

	
g4(X) =

(
x3

2

)
− x2 ≤ 0,

Where

	
F = π P x32

4 , L1 =
√

(x4 − x2)2 + x12,

	 L2 =
√

(x4sinθ + x1)2 + (x2 − x4cosθ )2

	 R = | − x4(x4sinθ + x1) + x1(x2 − x4cosθ )| /L1, θ = 45◦ , Q = 10,000 lbs

	 M = 1.8 × 106lbs, P = 1500psi, L = 240in

Boundaries

	 0.05 ≤ x1, x2, x3 ≤ 500

	 0.05 ≤ x4 ≤ 120
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Table 13 unequivocally shows that the cost of AD-COA-L is significantly lower than that of the comparative 
approaches. It is important to note that only PSO and SMA fail to accurately identify the optimal design method 
for PLD. This suggests that while most algorithms have adequate convergence accuracy, they lack the durability 
seen by AD-COA-L. The AD-COA-L algorithm attains an optimal fitness value of 8.411227.

Three-bar truss design
The objective of this task is to determine the construction with the lowest weight required for constructing a 
three-bar truss. This problem consists of two distinct parameters that need to be optimized while considering 
other restrictions. The mathematical model and the necessary constraint for the parameters are specified as 
shown:

Consider:

	
−→x = [x1x2]

Minimize:

Fig. 7.  Schematic of Welded beam.

 

Algorithm Time Complexity O Space Complexity O

PSO 38 T · N · D N · D

AOA 27 T · N · D N · D

WOA 78 T · N · D N · D

SCA 30 T · N · D N · D

SMA 39 T · N · D N · D

WSO 69 T · N · D N · D

SWO 42 T · N · D N · D

INFO 29 T · N · D N · D

GBO 79 T · N · D N · D

CJADE 70 T · N · D N · D

RLTLBO 71 T · N · D N · D

TLABC 73 T · N · D N · D

AD-COA-L T · N · D N · D

Table 11.  Time and space complexity of AD-COA-L compared to other comparative algorithms.
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	 f (−→x ) =
(
2
√

2x1 + x2
)
*l

Subject to:

	

g1 (−→x ) =
√

2x1+x2√
2x2

1+2x1x2
P − σ ≤ 0

g2 (−→x ) = x2√
2x2

1+2x1x2
P − σ ≤ 0

g3 (−→x ) = 1√
2x2+2x1

P − σ ≤ 0

Where

	
l = 100 cm, P = 2KN/cm2, σ = 2KN/cm2

0 ≤ x1, x2 ≤ 1

Fig. 8.  Schematic of Piston lever.

 

Algorithm x1 x2 x3 x4 Optimum Cost

AD-COA-L 0.198685 3.337218 9.191877 0.198685 1.670071

COA 0.198756 3.337343 9.190771 0.198752 1.670521

GJO 0.198558 3.342662 9.193462 0.198785 1.671629

RSA 0.180683 3.824357 9.259838 0.208402 1.794052

WOA 0.218367 3.154853 8.667862 0.223452 1.765891

GWO 0.198437 3.342427 9.192508 0.198757 1.671047

HHO 0.199337 3.312611 9.251155 0.198793 1.678433

PSO 0.204328 3.291268 9.015522 0.211175 1.736801

WSO 0.198685 3.337218 9.191877 0.198685 1.670075

jDE 0.198685 3.337218 9.191877 0.198685 1.670079

ASMA 0.363187 2.37327 6.949511 0.361265 2.324504

Table 12.  Optimization results of different algorithms on welded beam problem.
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The comparative outcomes for AD-COA-L and other relevant algorithms for the Three-bar truss problem are 
displayed in Table 14. Table 14 shows that AD-COA-L achieved the lowest weight when designing the Three-
bar truss with optimized 1 and 2. Several other algorithms, such as GWO and HHO had favorable outcomes. 
However, AD-COA-L surpasses them in performance. The statistical metrics pertaining to this problem are 
displayed in Table 14. The AD-COA-L algorithm achieved favorable statistical outcomes when compared to all 
other algorithms.

Speed reducer design
The design illustrated in Fig. 9 presents a complex optimization problem with the objective of decreasing the 
weight of the speed reducer83. This design issue encompasses 7 variables and is subject to 11 constraints. The 
variables consist of the teeth module (), face width (), length of the first shaft between bearings (-1), number 

Fig. 9.  Speed reducer structure.

 

x1 x2 Optimal value

AD-COA-L 0.7873 0.4069 263.8944

COA 0.7866 0.4089 263.8956

GJO 0.7757 0.442 264.1285

RSA 0.7875 0.4061 263.8945

WOA 0.7862 0.4098 263.8956

GWO 0.7872 0.4071 263.8945

HHO 0.7873 0.4068 263.8945

PSO 0.782 0.4221 263.9188

WSO 0.8092 0.352 264.5974

jDE 0.7885 0.4035 263.8955

ASMA 0.7831 0.419 263.9249

Table 14.  Optimized parameters and the best-obtained value for the three-bar truss problem.

 

Algorithm x1 x2 x3 x4 Optimum Cost

AD-COA-L 0.05 2.040038 4.081282 120 8.411227

COA 0.05 2.040046 4.081286 120 8.411275

GJO 0.05 2.040817 4.082166 119.1476 8.417951

RSA 0.05 2.043883 4.081242 120 8.432057

WOA 0.077454 2.047302 4.090786 119.485 8.739959

GWO 0.049881 2.043668 4.082328 120 8.430411

HHO 0.050445 2.043883 4.081242 120 8.432057

PSO 336.7383 471.7858 2.507971 62.25415 202.355

WSO 0.05 2.040038 4.081282 120 8.411227

jDE 2.782685 336.6265 4.085402 35.41586 166.6067

ASMA 442.2308 500 2.277671 76.54786 174.9272

Table 13.  Optimization results of different algorithms on Piston Lever Design problem.
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of teeth on the pinion (), diameter of the first shaft (-1), length of the second shaft between bearings (-2), and 
diameter of the second shaft (-2). The objective function for this model is specified as follows:

Consider

	 x = [ x1, x2, x3, x4x5x6x7] = [b, m, z, l1, l2, d1, d2]

Objective function

	 f (x) = 07854 × x1 × x2
2 × (3.3333 × x2

3 + 14.9334 × x3

	 −43.0934) − 1.508 × x1 × (x2
6 + x2

7) + 7.4777 × x3
6 + x3

7

	 +0.7854 × x4 × x2
6 + x5 × x2

7

Subject to

	

g1 (−→x ) = 27
x1× x2

2× x3
− 1 ≤ 0

g2 (−→x ) = 397.5
x1× x2

2× x2
3

− 1 ≤ 0

g3 (−→x ) = 1.93× x3
4

x2× x3× x4
6

− 1 ≤ 0

g4 (−→x ) = 1.93× x3
5

x2× x3× x4
7

− 1 ≤ 0

	
g5 (−→x ) = 1

110 × x3
6

×
√(745 × x4

x2 × x3

)2
+ 16.9 × 106 − 1 ≤ 0

	
g6 (−→x ) = 1

85 × x3
7

×
√(745 × x5

x2 × x3

)2
+ 16.9 × 106 − 1 ≤ 0

	
g7 (−→x ) = x2 × x3

40 − 1 ≤ 0

	
g8 (−→x ) = 5 × x2

x1
− 1 ≤ 0

	
g9 (−→x ) = x1

12 × x2
− 1 ≤ 0

	
g10 (−→x ) = 1.5 × x6 + 1.9

x4
− 1 ≤ 0

	
g11 (−→x ) = 1.1 × x7 + 1.9

x5
− 1 ≤ 0

Boundaries

	

2.6 ≤ x1 ≤ 3.6
0.7 ≤ x2 ≤ 0.8
17 ≤ x3 ≤ 28

7.3 ≤ x4 ≤ 8.3
7.3 ≤ x5 ≤ 8.3
2.9 ≤ x6 ≤ 3.9
5 ≤ x7 ≤ 5.5

The Speed Reducer problem design involved evaluating the performance of AD-COA-L approach in comparison 
to various other algorithms, namely COA, GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA. Table 15 
displays the lowest cost and the related ideal variable values achieved by each algorithm. AD-COA-L achieved 
an optimal cost of 2675.413081664 for the design of the Speed Reducer problem.

The tension–compression spring design problem
The goal of the tension/compression spring design is to minimize the spring’s weight while meeting three specific 
limitations, as shown in Fig. 10 84. This optimization involves three key variables: the wire diameter d (x1), the 
mean coil diameter ( D (x2), and the number of active coils N (x3). These variables need to be optimized as 
follows:

Consider

	 x = [x1x2x3] = [dDN ]

Objective function

	 f (x) = (x3 + 2) × x2 × x2
1
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Subject to

	
g1 (x) = 1 − x3 × x3

2

71785 × x4
1

≤ 0

	
g2 (x) = 4 × x2

2 − x1 × x2

12566 × x4
1

+ 1
5108 × x2

1
− 1 ≤ 0

	
g3 (x) = 1 − 140.45 × x1

x2
2 × x3

≤ 0

	
g4 (x) = x1 + x2

1.5 − 1 ≤ 0

Boundaries

	

0.05 ≤ x1 ≤ 2.0
0.25 ≤ x2 ≤ 1.3
2.0 ≤ x3 ≤ 15.0

AD-COA-L was evaluated alongside COA, GWO, HHO, RSA, GJO, jDE, WSO, WOA, PSO, and ASMA 
algorithms. Table 16 displays the lowest cost and the related optimal variable values attained by each approach. 
AD-COA-L earned the lowest spring weight of 0.01266352 in the tension/compression spring design task.

Tubular column design problem
The challenge of tubular column design is centered around the creation of columns that are uniform in shape 
and capable of withstanding compression stresses of magnitude P , while simultaneously minimizing cost85. The 
design variables consist of the average diameter t1 of the column and the thickness t2 of the tube. The column 
is 250  cm long, has a modulus of elasticity of 0.85 × 106 kgf/cm2, and a yield stress of 500 kgf/cm2. 
Figure 11 depicts a homogeneous tubular column structure together with its cross-section. The design model 
can be characterized as follows:

Consider

	 X = [x1x2]

Objective function

Fig. 10.  Tension/compressor spring.

 

Algorithm x1 x2 x3 x4 x5 x6 x7 Optimum Cost

AD-COA-L 2.606452 0.710209 7.3 7.3 3.381091 5.274581 2674.265 2.606452

COA 2.805034 0.7 7.331474 7.3 3.349004 5.286384 2712.064 2.805034

GJO 2.805279 0.7 7.545646 7.32871173 3.355445 5.286641 2716.623 2.805279

RSA 2.805527 0.7 7.3 7.30000003 3.348862 5.28637 2696.12 2.805527

WOA 2.646551 0.7 7.385085 7.39972896 3.348652 5.286488 2721.568 2.646551

GWO 2.793395 0.700026 7.334125 7.42196935 3.348564 5.287437 2715.745 2.793395

HHO 2.751335 0.703378 7.578303 7.3 3.368571 5.288383 2716.935 2.751335

PSO 2.813802 0.7 7.337899 7.3 3.354786 5.297043 2723.614 2.813802

WSO 2.805527 0.7 7.3 7.30000008 3.348862 5.28637 2711.884 2.805527

jDE 2.805527 0.7 7.300145 7.3 3.348862 5.28637 2711.884 2.805527

ASMA 2.735725 0.707382 7.891635 7.57565249 3.808051 5.359336 2933.446 2.735725

Table 15.  Optimization results of different algorithms on speed reducer problem design.
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	 f (x) = 9.8 x1 x2 + 2 x1,

Subject to

	 g1 (x) = P / (π x1 x2 σ _y) − 1 ≤ 0,

	 g2 (x) = (8 P L2) / (π 3E x1 x2 (x1
2 + x2

2)) − 1 ≤ 0,

	 g3 (x) = 2.0 / x1 − 1 ≤ 0,

	 g4 (x) = x1 / 14 − 1 ≤ 0,

	 g5 (x) = 0.2 / x2 − 1 ≤ 0,

	 g6 (x) = x2/8 − 1 ≤ 0,

Boundaries

Fig. 11.  Tubular column design problem.

 

Algorithm x1 x2 x3 optimum cost

AD-COA-L 0.051563426 0.353702818 11.467935018 0.011223223

COA 0.051812077 0.359650899 11.120926789 0.011225979

GJO 0.051611771 0.354791095 11.462098793 0.011280799

RSA 0.050000000 0.310370833 15.000000000 0.011748750

WOA 0.052195899 0.369033835 10.601967699 0.011228010

GWO 0.051773458 0.358668362 11.183156880 0.011232373

HHO 0.050000000 0.317235532 14.071029568 0.011303744

PSO 0.050000000 0.317341851 14.044153230 0.011286693

WSO 0.051689172 0.356720412 11.288809111 0.011223223

jDE 0.051689034 0.356717092 11.289003739 0.011223511

ASMA 0.050000000 0.310470518 15.000000000 0.011752987

Table 16.  Optimization results of different algorithms on Tension/compression string design.
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	 2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8.

AD-COA-L has been utilized to resolve problems related to tubular column design. The least cost and 
corresponding variables produced from the AD-COA-L scheme are compared with those acquired from other 
algorithms, as shown in Table 17. The data shown in Table 17 demonstrates that the AD-COA-L solution attains 
the most economical cost. This demonstrates that AD-COA-L has the capability to offer superior quality and 
more consistent solutions for this challenge, hence highlighting the exceptional performance of AD-COA-L.

Robot gripper (RG)
RG stands for a complex optimization problem in the field of mechanical structural engineering that deals with 
restrictions. The primary goal is to reduce the discrepancy between the maximum and minimum forces exerted 
by a fixture11. The optimization outcomes are impacted by six variables: the dimensions of the chain rods, the 
angular orientation of the chain rods, the vertical and horizontal distances, the clamping pressure, and the 
placement of the actuator in the robotic gripper. This problem involves seven decision variables: the vertical 
distance between the first and third link nodes (-1), the lengths of three chain rods (-) for =1,2,3, the horizontal 
distance between the actuator’s end and the third link node (ℎ), the vertical distance between the first link node 
and the actuator’s end (-2), and the angle between the second and third chain rods (). The objective function for 
RG integrates two antagonistic optimization functions. In order to address the issue of prolonged computation 
times during the iterative process of identifying the optimal value. Figure 12 illustrates the schematic depiction 
of RG, whereas the actual mathematical model is described as follows:

Consider

	 X = [x1, x2, x3, x4, x5, x6, x7] = [l1, l2, l3, v1, v2, h, δ ]

Objective function

	
Minimizef (X) = max

z
F (X, z) − min

z
F (X, z)

Subject to

	 g1 (X) = −Ymin + Y (X, Zmin) ≤ 0,

Fig. 12.  Schematic of Robot Gripper.

 

Algorithm x1 x2 Optimum cost

AD-COA-L 5.450720536 0.290166229 26.484901272

COA 5.450721174 0.290166369 26.484911863

GJO 5.451354757 0.290179861 26.488710724

RSA 5.450376472 0.290221043 26.486158443

WOA 5.450520272 0.290209613 26.486246384

GWO 5.450337289 0.290414994 26.496330393

HHO 5.450509448 0.290785382 26.516956690

PSO 5.450720536 0.290166229 26.484901273

WSO 2.069965819 0.458459491 51.701128794

jDE 5.696859619 0.283200952 27.291664238

ASMA 4.631667296 0.800000000 0.000000000

Table 17.  Optimization results of different algorithms on tubular column design problem.
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	 g2 (X) = −Y (X, Zmin) ≤ 0,

	 g3 (X) = Ymax − Y (X, Zmax) ≤ 0,

	 g4 (X) = Y (X, Zmax) − Y _G ≤ 0,

	 g5 (X) = x6
2 + x4

2 − (x1 + x2)2 ≤ 0,

	 g6 (X) = x2
2 − (x1 − x4)2 − (x6 − Zmax)2 ≤ 0,

	 g7 (X) = Zmax − x6 ≤ 0,

Where

	 α = cos−1((x1
2 − x2

2 + g2) / (2x1g)) + ϕ ,

	 β = cos−1((x2
2 − x1

2 + g2) / (2x2g)) − ϕ ,

	 g =
√

(x4
2 + (z − x6)2),

	 ϕ = tan−1(x4 / (x6 − z)), Y (X, z) = 2(x5 + x4 + x3 sin(β + x7)),

	 F (X, z) = (P x2 sin(α + β )) / (2 x3cos(α )),

	 Ymin = 50, Ymax = 100, YG = 150, Zmax = 100, P = 100

Boundaries

	 10 ≤ x1, x2, x5 ≤ 150

	 100 ≤ x3 ≤ 200

	 0 ≤ x4 ≤ 50

	 100 ≤ x6 ≤ 300

	 1 ≤ x7 ≤ 3.14

Table 18 unambiguously demonstrates that the optimal cost of AD-COA-L is significantly lower than that of the 
other comparison methods. It is crucial to note that only ASMA did not achieve low optimal values compared 
to the other algorithms. This suggests that while most algorithms may have enough convergence accuracy, they 
lack the durability seen by AD-COA-L. The AD-COA-L algorithm achieved an ideal fitness value of 2.525423.

Conclusion and future directions
This study presents AD-COA-L, an improved version of the crayfish optimization method specifically developed 
for addressing numerical optimization and real-world engineering issues. During the initialization phase, the 
Bernoulli map technique is employed to generate a population that is uniformly distributed and of good quality. 
Subsequently, a dynamic inertia weight is utilized to properly manage the trade-off between exploration and 
exploitation. Then, the LEO mechanism is employed in subsequent phases to revise specific places, broadening 
the scope of the search and enhancing the precision of the solution. In order to counteract the original algorithm’s 
inclination towards local optima, a novel ALOBL technique is introduced to carry out a dimension-by-dimension 

Algorithm x1 x2 x3 x4 x5 x6 x7 Optimum Cost

AD-COA-L 150 149.305453 199.9876 0.554889 111.5646 100.3744 2.508223 2.525423

COA 149.9876 127.240596 194.5136 22.13016 149.9876 121.3282 2.650971 3.220764

GJO 149.9876 149.846886 200 0 149.1175 103.3929 2.365144 2.592627

RSA 149.9876 149.9876 199.9876 0 149.9876 106.9643 2.287727 4.897705

WOA 149.9873 147.639939 158.7813 0 32.03828 151.2824 1.866606 4.163875

GWO 149.3097 149.150576 194.2868 0 84.63068 104.6169 1.987486 2.694334

SSA 149.0688 150 198.9275 0.212219 111.5646 104.7142 2.124441 2.631094

HHO 150 149.826237 197.2751 0 142.3795 105.1166 2.336818 2.659223

PSO 149.9876 97.9795128 186.8842 49.9876 149.9876 135.7171 3.1276 4.037625

SHO 129.61 129.467413 100.6067 0 9.9876 100.5476 1.402619 6.293852

WSO 149.8163 149.137294 200 0.541857 125.9246 101.6464 2.171224 2.558456

jDE 149.9789 149.816348 199.9329 0.032755 148.9041 100.9544 2.279773 2.533071

ASMA 133.9786 105.02752 147.399 14.01085 109.4035 178.4849 2.895224 7.194506

Table 18.  Optimization results of different algorithms on Robot Gripper problem.
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reversal of the present optimal solution. The efficacy of AD-COA-L is validated through numerical tests using 
29 CEC2017 benchmark functions, demonstrating superior convergence rate, solution correctness, stability, 
and scalability in comparison to other sophisticated algorithms. Furthermore, AD-COA-L demonstrates its 
competitiveness in seven engineering optimization tasks, highlighting its practical usefulness.

Although the proposed AD-COA-L algorithm introduces accepted performance and advanced strategies, 
there are some limitations that should be taken into consideration. First, some parameters in AD-COA-L are fixed 
based on experimental results and keep constant during the optimization process. In spite of these parameters 
performing well on most test functions, they might not be universally optimal for all types of problems, especially 
when complex or large-scale optimization tasks are dealt with. Second, for highly diverse problem landscapes, 
AD-COA-L have some problems for example F26. The fixed parameters of the algorithm prevent it from being 
globally optimal in an efficient way in some cases. It would cancel this shortcoming by developing appropriate 
adaptive parameter control mechanisms that change dynamically depending on the problem at hand, which 
further increases the performance of the algorithm for a larger class of tasks. Third, while ALOBL and LEO 
were devised to improve exploration with the goal of preventing local optima, AD-COA-L may still experience 
difficulties converging towards the global optimum with acceptable speed on multimodal problems that exhibit 
a large number of local optima such as F27. Fourth, in the case of ALOBL, diversity is effective by a selective 
application to the best solution; it introduces extra computational complexity, enlarging the execution time in 
some high-dimensional or real-time optimization problems. Finally, the efficiency of the algorithm has been 
validated on benchmark standard functions mainly, while testing on more complex real-world problems requires 
further research which will help in evaluating all positive and negative features of the proposed algorithm.

Therefore, future enhancements will prioritize the integration of parallel computing techniques to further 
enhance the computational expenses while preserving convergence accuracy. In addition, the algorithm’s 
resilience could be improved by integrating improvements such as the quantum rotation gate and dynamic 
population development. Based on the encouraging outcomes, AD-COA-L has the potential to be utilized in a 
wider range of practical optimization tasks, such as feature selection, image segmentation, cloud job scheduling, 
and PID controller parameter tuning. One potential future goal is to develop a multi-objective version of AD-
COA-L that can effectively handle complex multi-objective optimization issues.

Data availability
All data generated or analyzed during this study are included directly in the text of this submitted manuscript. 
There are no additional external files with datasets.
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