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Low-light image enhancement aims to enhance the visibility and contrast of low-light images while 
eliminating complex degradation issues such as noise, artifacts, and color distortions. Most existing 
low-light image enhancement methods either focus on quality while neglecting computational 
efficiency or have limited learning and generalization capabilities. To address these issues, we propose 
a Bilateral Enhancement Network with signal-to-noise ratio fusion, called BiEnNet, for lightweight 
and generalizable low-light image enhancement. Specifically, we design a lightweight Bilateral 
enhancement module with SNR (Signal-to-Noise Ratio) Fusion (BSF), which serves the SNR map of 
the input low-light image as the interpolation weights to dynamically fuse global brightness features 
and local detail features extracted from a bilateral network and achieve differentiated enhancement 
across different regions. To improve the network’s generalization ability, we propose a Luminance 
Normalization (LNM) module for preprocessing and a Dual-Exposure Processing (DEP) module for 
post-processing. LNM divides the channels of input features into luminance-related channels and 
luminance independent channels, and reduces the inconsistency of the degradation distribution of 
input low-light images by only normalizing the luminance-related channels. DEP learns overexposure 
and underexposure corrections simultaneously by employing the ReLU activation function, inverting 
operation, and residual network, which can improve the robustness of enhancement effects under 
different exposure conditions while reducing network parameters. Experiments on the LOL-V1 dataset 
shows BiEnNet significantly increased PSNR by 8.6% and SSIM by 3.6% compared to FLW-Net, 
reduced parameters by 98.78%, and improved computational speed by 52.64% compared to the 
classical KIND.
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Due to the influence of factors such as shooting environment and equipment limitations, images captured in 
low-light environments often exhibit various issues, including low brightness, low contrast, severe noise, and 
uneven color distribution. These image quality problems not only impair visual perception but also significantly 
impact subsequent downstream computer vision tasks, such as semantic segmentation1,2and object detection3,4. 
In recent years, numerous low-light image enhancement methods5–14 have been proposed. Although these 
methods have achieved impressive enhancement results, striking a balance between efficiency and quality 
remains challenging.

Low-light image enhancement methods can be broadly categorized into two categories: traditional methods 
(e.g., histogram equalization15–17, Retinex model18–22) and deep learning methods (e.g., MBLLEN8, SNR-
Aware23, and SKF24). The evolution from traditional methods to deep learning approaches marks a significant 
advancement in low-light image enhancement. Traditional methods rely on physical modeling and optimization 
of image degradation, using hand-crafted algorithms to achieve enhancement. However, as data availability and 
computational power have grown, deep learning approaches have emerged, leveraging neural networks to learn 
mappings from input to output, resulting in more precise and efficient low-light enhancement.

1School of Software, Henan Polytechnic University, Jiaozuo 454000, China. 2School of Computer Science and 
Technology, Henan Polytechnic University, Jiaozuo 454003, China. email: hzq@hpu.edu.cn

OPEN

Scientific Reports |        (2024) 14:29832 1| https://doi.org/10.1038/s41598-024-81706-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-81706-2&domain=pdf&date_stamp=2024-11-30


Traditional methods, such as CLAHE15, improve the detection of fine structures in mammographic images 
through contrast-limited adaptive histogram equalization. However, these methods often encounter challenges 
in complex scenes, such as over-enhancement or noise amplification. Moreover, they require substantial manual 
prior information for parameter tuning, increasing complexity and limiting their flexibility and applicability in 
real-world scenarios.

Deep learning methods address some of these issues by training neural networks on large datasets, enabling 
automatic learning of the mapping from low-light to enhanced images. These methods offer notable improvements 
in accuracy, robustness, and speed. Nevertheless, they also have limitations. For instance, SKF24 enhances low-
light images using semantic-aware guidance but suffers from a complex network structure and large model 
parameters, leading to prolonged processing times and lower computational efficiency. Furthermore, because 
deep learning models inherently learn mappings between input and output domains, variations among samples 
make them heavily reliant on training data, reducing their generalization capabilities.

In this paper, we opt to normalize the degradation before low-light image enhancement to make the input images 
have a more consistent degradation distribution. For this, we designed a lightweight Luminance Normalization 
(LNM) module to normalize the luminance-related channels. The LNM consists of a normalization module for 
processing luminance information and a gating module for channel selection. Initially, the normalization module 
normalizes each channel separately, then the gating module filters out the luminance-related channels, and 
finally, the normalized channels are merged with the original channels. This method can reduce the differences 
between samples while reducing the loss of information due to normalization and improving the generalization 
of the model. Considering the variability of exposure conditions, we use a simple network to simultaneously 
learn the correction of two exposure attribute features. To achieve this, we design the Dual-Exposure Processing 
(DEP) module, which primarily comprises an exposure activation module and an exposure learning module. 
Initially, the exposure activation module extracts underexposed and overexposed features. Then, the exposure 
learning module concurrently learns to correct these features. Finally, we fuse the processed features to enhance 
the network’s robustness across various exposure conditions.

For the enhancement part of the network, considering that different regions of low-light images have varying 
degrees of brightness and noise degradation conditions, regions with very low brightness have more noise and 
cannot achieve effective enhancement by relying solely on local information. Conversely, regions with higher 
brightness achieve good enhancement using only local region information. Therefore, our solution for the 
enhancement part is to utilize both global and local features. To this end, we design the Bilateral Enhancement 
module with SNR Fusion (BSF). The global branch, taking the luminance channel and its histogram of the 
low-light image as inputs, captures global information. Meanwhile, the local branch, with a residual connection 
structure, captures local information. Then, guided by the SNR prior information of low-light images, it 
dynamically fuses global and local features to achieve better low-light image enhancement.

In our extensive experiments conducted on representative datasets (LOL-V125, LOL-V226), as well as a mixed 
dataset, the results show that our BiEnNet recovers more realistic color tones and better contrast and detail 
compared to other methods (see Fig. 1). Overall, our work makes the following key contributions:

Fig. 1.  Visual comparison with some other state-of-the-art methods. It can be observed that the enhanced 
images generated by our method closely resemble the reference images in terms of color and details.
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•	 We propose an LNM module that selects luminance-related channels for normalization, thus enhancing the 
network’s generalization ability under unknown conditions. It is lightweight and can be easily integrated into 
other tasks.

•	 To further improve the network’s robustness, we devise a DEP module, which simultaneously learns both 
underexposure and overexposure features within a single network. It enhances the network’s ability to handle 
exposure variations, and like the LNM module, it is lightweight and adaptable for integration into other tasks.

•	 We design a lightweight BSF module, which is a dual-branch module. The two branches capture global and 
local features, respectively. By dynamically fusing these features based on SNR priors, we achieve better low-
light image enhancement.

Related work
Low-light image enhancement
Researchers have focused on low-light enhancement for many years, mainly dividing it into two categories: 
traditional methods and deep learning methods. Among them, traditional methods mainly include histogram 
equalization15–17and the Retinex model18–22. Histogram equalization adjusts overall brightness by expanding 
the grayscale distribution of an image. Zuiderveld et al.16 proposed local region histogram equalization, which 
effectively reduces noise amplification by limiting the upper bound of contrast enhancement. Lee et al.17 
introduced using a tree-structured hierarchical 2D histogram to represent grayscale differences in high-frequency 
regions. Based on color constancy, the Retinex theory decomposes the original image into an illumination map 
and reflectance map. Fu et al.20 utilized a weighted variational model to preserve more detailed reflectance. Li et 
al.21 improved the performance of low-light enhancement by introducing noise mapping into the Retinex model. 
Although these methods have achieved excellent results in enhancing brightness and contrast, they still have 
significant limitations, such as unsatisfactory noise removal and color restoration.

With the rapid development of deep learning in the field of computer vision, these techniques have been 
successfully applied to the low-light enhancement field and have become mainstream methods. Lv et al.8 
proposed a multi-branch enhancement network capable of extracting features at different levels and fusing them 
to generate output images. Jiang et al.27 introduced the first unsupervised low-light image enhancement method, 
enabling training without paired data. Guo et al.6 proposed Zero-DCE, which designs deep networks to estimate 
dynamically adjustable pixels and curves to achieve brightness enhancement. The structure of URetinex-Net 
proposed by Wu et al.28 consists of initialization, optimization, and illumination adjustment modules, which 
achieve noise suppression and detail preservation. Compared with traditional methods, deep learning methods 
can learn complex feature representations from massive data, resulting in clearer and more naturally enhanced 
results. However, due to these typically involving large-scale network structures, they requires substantial 
computational resources during both training and deployment, resulting in longer processing times and making 
them unsuitable for real-time response applications.

Model generalization
The generalization ability of a model refers to its performance on unseen datasets, specifically whether it can 
successfully transfer and apply the knowledge learned from training data to other scenarios. The strength of 
generalization ability is an important criterion for measuring whether a model has practical application value. 
Therefore, how to train models with better generalization ability using limited datasets is one of the important 
topics in deep learning research. In early machine learning algorithms, researchers proposed many methods to 
address this issue, such as regularization29,30and cross-validation31.

However, with the increasing complexity and scale of models, previous generalization methods are no 
longer sufficient to meet practical application needs. Researchers have developed various methods to address 
this challenge, including domain generalization32, transfer learning33, meta-learning34, zero-shot learning35, 
self-supervised learning6,21,36, and adversarial training37. Current methods mainly address this issue from the 
perspectives of datasets or optimization algorithms. Single-domain generalization38 has also recently gained 
attention, aiming to train models from a single source domain that can generalize well to other unseen domains. 
However, these methods typically involve complex network structures, making them unsuitable for real-time 
application needs. They also do not solve the problem from the perspective of consistency in the degradation 
distribution of the input images.

Exposure correction
In the field of digital image processing, exposure correction is a crucial aspect. Traditional exposure correction 
methods mainly include histogram equalization39, gamma correction40, and the Retinex model18,20. Reza et 
al.39proposed CLAHE, which corrects exposure by adaptively adjusting the histograms of different regions. 
LIME18 uses the maximum intensity of the RGB channels as an initial rough illumination map and then refines 
it using prior structures. However, because these methods heavily rely on manual design and neglect the 
relationships between pixels, they often exhibit unnatural results.

In recent years, deep learning-based exposure correction methods have gradually emerged41–45. Mertens et 
al.41 proposed a method that suggests blending well-exposed regions from a sequence of images with different 
exposure levels into a single high-quality image. However, it requires a multi-exposure image sequence as input, 
so it cannot apply directly to a single image. Zhang et al.42 first used sampled tone mapping curves to construct 
multi-exposure image sequences for each video frame. Then, they gradually fuse the image sequences in a 
spatiotemporal manner to obtain enhanced videos, thus applying the technique to exposure-deficient video 
enhancement. More recently, Afifi et al.43 developed a pyramid-based network to correct exposure in a coarse-
to-fine manner, initially restoring brightness and subsequently refining details. Although these methods have 
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achieved good results, they do not fully utilize both overexposure and underexposure features simultaneously, 
resulting in suboptimal correction effects.

Methods
As shown in Fig. 2, BiEnNet primarily consists of three primary components: the Luminance Normalization 
(LNM) module, the Bilateral Enhancement module with SNR Fusion (BSF), and the Dual-Exposure Processing 
(DEP) module. Given a low-light image IL, the network first expands the channel dimension of the low-light 
image using the encoder. Then, the LNM module normalizes the channels related to the luminance information 
of the features, and a decoder obtains the normalized low-light image IN  to provide a low-light image with a 
more consistent luminance distribution for the subsequent enhancement. For the low-light enhancement part, 
the BSF module obtains global luminance features and local detail features of IN  through the Global Brightness 
Adjustment (GBA) module and the Local Feature Extraction (LFE) module, respectively. Concurrently, the 
SNF module employs a non-learning method to obtain an SNR map of IN , which guides the dynamic fusion 
of global and local features. Finally, the DEP module’s role is to learn feature representations under different 
exposure conditions simultaneously, enhancing the network’s robustness to various exposure conditions.

Luminance normalization module
Motivation
Due to different lighting conditions and camera parameters, the actual images obtained often exhibit different 
levels of degradation. This inconsistency among samples poses a challenge for a well-trained model, especially for 
images with degraded conditions that are not present in the training data. A common approach is to increase the 
diversity of the training dataset to expand its capacity. However, the high cost of data collection often makes this 
method impractical. Moreover, a more diverse dataset may increase the difficulty of model training, potentially 
leading to instability in the training process.

Normalization possesses the capability of reducing differences in image brightness, allowing for a more 
consistent brightness distribution across different images. This assists the model in effectively extracting 
information that is not related to brightness, mitigating the impact of brightness variations on model training, 
reducing the difficulty of subsequent operations, and improving the model’s generalization capabilities. 
Therefore, we choose to apply normalization methods to images with different brightness levels to achieve a 
more consistent brightness distribution and improve the model’s generalization performance.

Luminance normalization
As shown in Fig. 3, the LNM mainly consists of two parts: a normalization module that processes brightness 
information and a gating module for channel selection. Since Instance Normalization (IN)46 is unaffected by the 
number of channels and batch size, and its computation is relatively simple, we use IN for channel normalization. 
Assume the input feature map F x ∈ RC×H×W , where C is the number of channels, and H and W are the height 
and width of the feature map, respectively. For each channel feature in F x, IN first calculates its mean µ(F x,c) 
and variance σ(F x,c), then subtracts the mean µ(F x,c) and divides by the variance σ(F x,c), and finally scales 
and shifts the result. We can represent this process as:

	
F ′

x =
∪

c
IN(Fx,c) =

∪
c

(
αc

Fx,c−µ(Fx,c)√
σ2(Fx,c)+∋

+ ηc

)
� (1)

 

where µ(F x,c) and σ(F x,c) are computed for each channel, 
∪

c
 represents the merging of all normalized 

channels, and αc and ηc are learnable scaling and shifting parameters, and ∋  is a very small constant used 
to prevent division by zero. This method ensures that each channel of every sample has its own mean and 
variance, thus maintaining the independence between samples. Therefore, this approach can effectively reduce 
the brightness differences between samples, thereby improving the model’s generalization ability.

Fig. 2.  Detailed architecture of BiEnNet network. Before low-light enhancement, we use LNM to normalize 
brightness degradation, reducing inconsistencies between images. During enhancement, BSF employs signal-
to-noise ratio fusion, using SNF to compute the SNR map S for low-light images, with DB and GB representing 
denoising and grayscale computation. GBA and LFE capture global brightness and local detail features, 
respectively, and then BSF dynamically fuses them through S. Finally, DEP learns the correction for two 
exposure conditions, enhancing network robustness.
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Although the benefits of normalization in reducing sample variations and enhancing model stability, 
it inevitably leads to some information loss. For instance, it can affect the correlation between channels, 
potentially impacting the model’s accuracy to some extent. Therefore, to mitigate the information loss caused by 
normalization, we introduce a gating mechanism for channel selection. We expect the gating module to output 
values close to 0 or 1 to control which channels require normalization. This is specifically expressed as follows:

	 F y = (1 − G) ⊙ F x + G ⊙ F ′
x� (2)

where, G represents the gating module, which outputs values of 0 or 1. And ⊙ denotes channel-wise 
multiplication, which is used to selectively weights the normalized features F ′

x and the original features F x 
based on the gating weights G. We expect G to dynamically output 0 or 1 according to different features, thereby 
selecting the channels that truly require normalization. The Sigmoid activation function maps input values to 
the range [0, 1], making it suitable for representing probabilities or weights for normalizing data. Inspired by 
this property, we design G as:

	
G = β2

β2 + ε
� (3)

where β is the output vector of feature F x through the convolution layer with activation function, and ε is a very 
small constant to prevent division by zero. We control the value of G using β, enabling G to filter the channel 
effectively.

When β = 0, the normalized image is the same as the original low-light image, i.e., F y = F x. And when β ̸= 0
, then G ≈ 1 and F y = F ′

x. Since β is generated by convolution operations, G easily outputs as 1. To prevent 
the normalized image from being identical to the original image, we set the normalization operation as in Eq. 2, 
making G more inclined towards normalized channels. As shown in Fig. 4, we plot the brightness distribution of 
images with the same content but different brightness distributions. After processing with the trained LNM, they 
exhibit similar brightness distributions, further demonstrating the effectiveness of our LNM module.

Fig. 4.  Comparison of brightness distributions between low-light images and LNM-normalized results. The 
low-light images are from the LOL-V226 test dataset. The images on the left have the same content but different 
brightness distributions; the images on the right show the brightness distributions before and after LNM. The 
results show that the normalized images have similar brightness distributions after applying LNM.

 

Fig. 3.  Detailed structure of the brightness normalization (LNM) module. LNM consists mainly of a per-
channel IN normalization layer composed of multiple INs and a gating module for selecting luminance-
relevant channels.
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Bilateral enhancement module with SNR fusion
Low-light images exhibit varying characteristics such as brightness and noise across different regions. In 
the same low-light image, regions with lower brightness suffer more severe noise degradation, while regions 
with higher brightness experience less damage, resulting in relatively better visibility. Most existing methods 
primarily focus on capturing global information but overlook the imbalance in characteristics across different 
regions. This may lead to insufficient enhancement in lower brightness regions and over-enhancement in higher 
brightness regions.

For low-light regions heavily affected by noise, local features alone cannot achieve effective enhancement due 
to the limited amount of useful information available. In contrast, regions with less noise degradation can be 
effectively enhanced using only local features.

To address this issue, we employ a dynamic enhancement strategy to enhance pixels in different regions. For 
regions with high SNR, we enhance them primarily through local information, as they contain sufficient useful 
information. For regions with low SNR, where noise severely affects local information and useful details are 
scarce, we utilize global information to enhance them effectively.

Based on this idea, we propose a Bilateral Enhancement module with SNR Fusion (BSF), as shown in Fig. 2; 
it mainly consists of three parts: the Global Brightness Adjustment (GBA) branch, the Local Feature Extraction 
(LFE) branch, and the SNR Fusion (SNF) branch.

Global brightness adjustment
Zhang et al.47 have demonstrated that enhancing the V channel of an image in the HSV space can represent 
the processes of contrast and brightness enhancement while also minimizing noise and color distortion. 
Additionally, Guo et al.6 prove that iterative application of the following enhancement curve equation effectively 
extracts enhancement information.

	 LEm(x) = LEm−1(x) + ωmLEm−1(x)(1 − LEm−1(x))� (4)

where, m represents the number of iterations and controls the curvature. LEm(x) denotes the enhanced version 
of the input image, and ωm is a parameter map of the same size as the image.

Inspired by this, our Global Brightness Adjustment module takes the V channel and its histogram from the 
low-light image as input. It extracts brightness information from the V channel’s histogram and then treats it as 
a trainable curve parameter ω0,1,...,n. Using an iterative method, we adjust the V channel features to generate 
the global brightness feature. As shown in Fig. 5 (a), the main component of this branch is a simple multi-layer 
perceptron with very few parameters. The adjustment process can be expressed as:

	

ω0,1,...,n = g(h(V ))
Vm+1 = Vm + ωm(Vm − V 2

m)
� (5)

where, g(·) represents the multi-layer perceptron part, and h(·) represents the brightness histogram of the low-
light image.

Local feature extraction
Transformer is first proposed in the field of natural language processing (NLP)48, where its multi-head self-
attention mechanism dynamically focuses on different parts of the input sequence in context, enabling 
outstanding performance in text understanding and generation. Following its success, transformer is gradually 
introduced to computer vision49,50, demonstrating powerful feature extraction capabilities. However, its complex 
architecture and large parameter scale limit its application in lightweight models.

In the local feature extraction module, our primary goal is to extract features from regions heavily affected 
by noise. Inspired by the transformer model, we design a transformer-style Local Enhancement Block (LEB). 
To achieve the lightweight design, we replace the self-attention mechanism with depth-wise convolutions and 

Fig. 5.  Detailed structure of parts in the bilateral enhancement module. (a) Global Brightness Adjustment 
Branch (GBA) mainly consists of an MLP network and high-order curve adjustment. (b) Local Enhancement 
Block (LEB), mainly comprises layer normalization, depth-wise separable convolution, and a simple MLP 
network.

 

Scientific Reports |        (2024) 14:29832 6| https://doi.org/10.1038/s41598-024-81706-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


substitute the transformer’s feed-forward network with an MLP composed of two 1 × 1 convolutions to enhance 
feature representation further.

As shown in Fig. 2, the normalized low-light image IN  first passes through a 3 × 3 depth-wise convolution 
to expand the channel dimension, producing the input feature F in. Subsequently, F in is processed by the local 
feature extraction (LFE) branch composed of two stacked LEBs. For the lightweight design of the LEB, as shown 
in Fig. 5 (b), the LEB uses a depth-wise convolution to encode positional information from F in, which is then 
connected with F in via a residual connection to avoid information loss, resulting in F em. The enhanced local 
detail feature F pdp is then extracted using a depth-wise separable convolution network comprising PWConv-
DWConv-PWConv with layer normalization. Finally, we use an MLP with layer normalization to further 
strengthen the feature representation, producing F leb.

We apply a skip connection between the output features F leb,2 of the stacked LEB and the input features F in 
to retain some fundamental information about the original image. The enhancement process can be expressed 
as:

	

F in = Conv3×3(IN )

F leb,2 =
2∑

k=1

(P W P (Norm(Conv3×3(F in,k) + F in,k)) + MLP (Norm(F pdp,k)))

F l = F leb,2 + F in

� (6)

where, F in,k  represents the input features of the k-th LEB block, where F in,1 = F in, and F pdp,k  denotes the 
enhanced features obtained from the k-th PWConv-DWConv-PWConv operation. F l is the local detail features 
finally output by local feature extraction LFE.

SNR fusion
Estimating noise solely from the input image while simultaneously providing a corresponding clean image to 
estimate the SNR is challenging and significantly increases the model’s complexity. To achieve a lightweight 
design, we use a non-learning-based method to estimate the SNR of the low-light image. As shown in Fig. 2, 
given a low-light input image IN , we first use a mean filtering method to obtain the denoised image Id. We then 
apply a weighted averaging method to both IN  and Id to get the corresponding grayscale images Ig  and Ig

d
, respectively. By calculating the difference between Ig  and Ig

d, we obtain the noise image N . Finally, we apply 
element-wise division to Ig

d and N  to get the final SNR map S. The calculation process is expressed as follows:

	

Id = blur(IN )
Ig = gray(IN ), Ig

d = gray(Id)
N = abs(Ig − Ig

d), S = Ig
d/N

� (7)

Next, we reshape the obtained SNR map to match the dimensions of the global brightness features and local 
features, and normalize its values to the range [0, 1]. Finally, we use the refined SNR map S

′
 as interpolation 

weights to dynamically fuse global brightness features F g  and local detail features F l. The fusion process can 
be expressed as:

	 F en = (1 − S′) × F g + S′ × F l� (8)

Dual-exposure processing module
Motivation
In the field of image processing, issues of underexposure and overexposure are prevalent and often affect image 
quality and subsequent computer vision tasks. Traditional image processing techniques typically rely on complex 
algorithms and parameter adjustments, making it challenging to adaptively handle diverse exposure conditions. 
With the development of deep learning technology in image processing, new solutions have emerged to address 
this issue. However, achieving robust handling of different exposure conditions while maintaining a lightweight 
network remains a challenging task.

In convolutional neural networks, activation functions play a role in activating certain features, helping the 
network capture complex characteristics. As shown in Fig.  6, when the network mainly focuses on features 
of underexposed regions, ReLU and NegReLU functions exhibit differential responses to the two exposure 
properties, where NegReLU represents the operation of inverting the input values and then applying the 
ReLU function. Specifically, ReLU tends to process underexposed features, while NegReLU responds more 
to overexposed features. Additionally, the activation of ReLU for underexposed images and the activation of 
NegReLU for overexposed images show similarities. Based on this observation, we design the Dual-Exposure 
Processing (DEP) module, as shown in Fig. 7. It mainly consists of an exposure activation module composed of 
ReLU and NegReLU activation functions and an exposure learning module with residual networks.

Dual-exposure processing
To further improve the robustness of the network under different exposure conditions, we introduce a DEP 
module after the augmented network. Specifically, for the input feature F en, we first use ReLU and NegReLU 
activation functions to obtain features F u and F o representing underexposed and overexposed properties, 
respectively. Then, to learn these two features consistently, the exposure learning module processes these 
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features through two residual blocks (RsBlock), resulting in F
′
u and F

′
o. Since F o is obtained by inverting 

ReLU, we need to apply the same inversion process to it before proceeding to the next step to obtain the feature 
in its original format.

Additionally, to retain more important information from the input feature F en, we use the LNM module 
to normalize it and obtain the feature F c, which remains invariant to exposure attributes. We then concatenate 
the three features F

′
u, F

′
o, and F c, so the final feature contains exposure information from both attributes. The 

whole process is as follows:

	

F
′
u = R(F u), F

′
o = −R(F o), F c = LNM(F en)

F
′′
u = P[F

′
u, F c], F

′′
o = P[F

′
o, F c], F out = P[F

′′
u , F

′′
o ]

� (9)

where R represents the residual network block, [·] denotes the concatenation operation, and P  indicates the 1×1 
convolution layer. Through these operations, the final output features F out simultaneously contain information 
from both exposure attributes.

Fig. 7.  Detailed structure of the Dual-Exposure Processing Module. It uses the ReLU activation function to 
extract features from two exposure properties and then learns these features through residual network blocks. 
Finally, it employs LNM to obtain exposure-invariant features, which merge with the previously extracted 
features to produce the final output features.

 

Fig. 6.  Comparison of activation feature heatmaps for underexposed and overexposed images using ReLU 
and NegReLU activation functions. When the network activates features of underexposed images, ReLU tends 
to activate the underexposed parts, whereas NegReLU, in contrast to ReLU, tends to activate the overexposed 
features. Furthermore, ReLU and NegReLU exhibit similar tendencies in activating features of both 
underexposed and overexposed images.
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Loss function
To better enhance the network’s performance, this paper employs the loss function that includes not only the 
commonly used Charbonnier loss function Lchar  and SSIM structural similarity loss Lssim but also a color 
similarity loss function Lcolor , a luminance similarity loss function Lbright, and a structural similarity loss 
function Lstruct

51.

Charbonnier loss function
The Lchar  is a variant of the L1 loss function, which, compared to L1, includes an additional regularization term 
ϵ. It enhances model performance by approximating the L1 loss. The gradient near-zero values are prevented 
from becoming too small due to the presence of ϵ, thus avoiding gradient vanishing. It can be expressed as:

	 L char =
√

(ŷ − y)2 + ϵ2� (10)

where ŷ represents the enhanced image, y represents the ground truth image, and ϵ is a small constant set to 
10−3 to prevent division by zero.

Color similarity loss function
The Lcolor  utilizes cosine similarity to measure the hue and saturation differences between two pixels, ensuring 
that the enhanced image’s colors match the reference image more closely. It can be expressed as:

	
Lcolor = 1 −

m,n∑
i=1,j=1

cos(E(Ii,j), Y i,j)� (11)

where E and Y  represent the pixel values of the enhanced image and the reference image, respectively, and the 
cos(·) denotes the cosine similarity between the two vectors. By minimizing the Lcolor , the network generates 
enhanced images with hue and saturation closer to those of the ground truth image.

Brightness similarity loss function
It aims to ensure that the brightness order within each image block of the enhanced image remains consistent 
with that of the reference image19. Specifically, it requires the enhanced image to linearly transform from the 
noise-free reference image, significantly suppressing noise and improving the quality of the enhanced image. 
T﻿his loss function follows:

	

Lbright = 1 −
r,g,b∑

c

m,n∑
i=1,j=1

cos(b(E(Ic
i,j)) − min(b(E(Ic

i,j)),

b(Y (Ic
i,j)) − min(b(Y (Ic

i,j)))

� (12)

where, b(·) represents image patches centered on E and Y . The brightness relationship between them can be 
expressed as b(E) = λb(Y ) + δ. Different image patches have different λ and δ, and subtracting the minimum 
value removes the influence of the constant δ.

Structural similarity loss function
It uses gradients to represent structural information, modifying Eq. 12 yields the expression for this loss function:

	

Lstruct = 1 −
r,g,b∑

c

m,n∑
i=1,j=1

cos(b∇(E(Ic
i,j)) − min(b∇(E(Ic

i,j)),

b∇(Y (Ic
i,j)) − min(b∇(Y (Ic

i,j)))

� (13)

To better normalize the brightness distribution, we use the Charbonnier loss function Llow  to constrain the 
normalized low-light image IN  to be as close as possible to the original low-light image I . In the experiments, 
we set the same weight for all loss functions based on empirical observations. Therefore, the total loss is expressed 
as:

	 Ltotal = Lchar + Lssim + Lcolor + Lbright + Lstruct + Llow � (14)

Experiments
Dataset
In this section, we train our network on the LOL-V125and LOL-V226 training datasets and then test it on the 
corresponding test sets and a mixed dataset. The details of the training and test sets are as follows:
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LOL-V1
It contains 500 image pairs, with 15 used for testing. To highlight the impact of data quantity on the network, 
we use only 343 image pairs for training. During training, we randomly crop each training image into patches of 
size 100×100 and use data augmentation methods involving random rotation and random flipping to enhance 
the diversity of the training dataset, effectively reducing and preventing overfitting.

LOL-V2
This dataset contains 689 image pairs for training and 100 image pairs for testing. During training, we randomly 
crop each training image into patches of size 100×100 and use data augmentation methods involving random 
rotation and random flipping to enhance the diversity of the training dataset, effectively reducing and preventing 
overfitting.

Mixed dataset
This dataset consists of LOL-V1 (15 images)25, LIME (10 images)18, MF (10 images)11, and VV (23 images). It 
does not have reference images and is used only for evaluating the no-reference metric NIQE52.

Implementation details
The experiment is conducted on a server running Ubuntu 20.04.6 operating system, equipped with an NVIDIA 
4090 GPU and a configured PyTorch deep learning framework. During training, the input image size is set to 
100 × 100, with a batch size of 128. To achieve better training results and prevent overfitting, the maximum 
number of epochs is set to 30,000, and an early stopping mechanism is employed. Through multiple tests, 
setting the patience value to around 2,000 and the error threshold delta to 0.001 achieves satisfactory training 
performance. To reduce the number of model parameters, the histogram bin value for the V channel of low-
light images is set to 32, which is experimentally validated in the Ablation experiments section. We use the 
Adam optimization algorithm and find that applying a learning rate adjustment strategy leads to poorer training 
outcomes. Therefore, both the learning rate and weight decay are set to 10−4. To maintain model accuracy while 
improving training speed, we set the model saving frequency to every 20 epochs when epoch ≤ 1,000, and every 
100 epochs otherwise.

To better compare the low-light enhancement performance of different methods, we use PSNR, SSIM, 
CIEDE200053, and NIQE52 as objective evaluation metrics. The PSNR and SSIM measure the peak signal-
to-noise ratio and structural similarity of the enhanced images, respectively. Higher values indicate better 
enhancement effects. The International Commission on Illumination (CIE) introduced CIEDE2000 in 2000 
as an improved color difference evaluation metric based on the CIELAB color space. It accounts for the non-
uniformity of human visual perception and addresses color perception issues more effectively. Lower values 
indicate smaller color differences. NIQE is a no-reference image quality assessment metric that measures the 
perceptual quality of images without needing a reference image. Lower values indicate better perceptual quality 
of the enhanced images.

Compared methods
To validate the effectiveness of our method, we compare it with several state-of-the-art low-light enhancement 
methods, including traditional methods (LIME18), unsupervised methods (ZeroDec++7, PairLIE54), and 
supervised methods (RetinexNet25, MBLLEN8, KIND9, KIND++55, IAT56, DecNet57, FLW-Net51).

Objective evaluation
Tables 1 and 2 present the quantitative comparison of different models on the LOL-V1, LOL-V2, and mixed 
datasets. We observe that our BiEnNet achieves superior results over other methods in terms of PSNR, SSIM, 
and CIEDE2000 metrics on both the LOL-V1 and LOL-V2 datasets. Additionally, the number of training 
samples indeed affects model performance, with a more significant impact on PSNR compared to other metrics. 
For instance, compared to LOL-V1, training BiEnNet on the LOL-V2 dataset increases the PSNR by nearly 
0.6dB (e.g., from 29.06 to 29.66), while the SSIM only increases by about 0.01dB (e.g., from 0.86 to 0.87). The 
improvements in NIQE and CIEDE2000 are also minimal, decreasing from 3.49 to 3.48 and from 6.16 to 6.10, 
respectively. Although our method does not achieve the best scores across the board in terms of NIQE, number 
of parameters, and testing time-for example, on the NIQE metric of the combined dataset, our method yields 
comparable results to MBLLEN, KIND, and KIND++-BiEnNet boasts a relatively low number of parameters 
(0.1M) and consumes less time during testing. In summary, our BiEnNet attains results that are close to or even 
better than other methods in overall metrics.

Visual comparison
In addition to objective evaluations, we conduct visual comparisons on the LOL-V1, LOL-V2, and mixed 
datasets to further affirm the effectiveness of our BiEnNet. Fig. 8 and 9provide the visual comparison results of 
various methods on the LOL-V1 and LOL-V2 datasets. It is apparent that the low-light images, once enhanced 
by BiEnNet, exhibit superior improvements in brightness, color, and detail, thus more closely resembling 
the reference images. As LIME is a traditional enhancement method, it cannot effectively perform targeted 
enhancements under different conditions, resulting in images with significant noise and darker colors. Moreover, 
the unsupervised methods ZeroDec++7and PairLIE54, lacking guidance from reference images during training, 
do not achieve optimal enhancement effects, especially on the LOL-V1 test dataset. The RetinexNet25and 
MBLLEN8 methods show severe color distortion issues after enhancing low-light images. Fig. 10 presents the 
visual comparison on the mixed dataset, where our BiEnNet achieves a better balance in detail preservation, 
color fidelity, and halo artifacts.
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Fig. 8.  Visual comparison of different methods on the LOL-V125dataset, including LIME18, ZeroDec++7, 
PairLIE54, RetinexNet25, MBLLEN8, KIND9, KIND++55, IAT56, DecNet57, and FLW-Net51.

 

Methods

CIEDE2000↓ Efficiency↓
LOL-V1 LOL-V2 Params(M) test time(s)

LIME18 14.62 17.63 - 0.19

ZeroDec++7 19.28 14.27 0.01 0.001

PairLIE54 11.93 11.23 0.33 0.057

RetinexNet25 13.76 18.07 0.40 0.019

MBLLEN8 13.72 14.66 20.47 1.981

KIND9 9.68 6.74 8.21 0.11

KIND++55 8.51 9.36 8.28 0.12

IAT56 7.97 8.17 0.09 0.04

DecNet57 8.93 8.87 1.83 0.353

FLW-Net51 7.74 6.64 0.02 0.001

BiEnNet (LOL-V1) 6.16 5.03 0.10 0.07

BiEnNet (LOL-V2) 6.10 4.58 0.10 0.07

Table 2.  The comparison results of color difference metric CIEDE200053and running efficiency on the LOL-
V125and LOL-V226 datasets. The best and second-best results are marked in Bold and italic, respectively.

 

Methods

LOL-V1 LOL-V2 Mix Data

PSNR ↑ SSIM↑ NIQE ↓ PSNR↑ SSIM↑ NIQE↓ NIQE↓
LIME18 17.22 0.50 5.32 15.77 0.46 5.37 4.57

ZeroDec++7 15.35 0.57 7.86 18.49 0.58 8.05 4.53

PairLIE54 18.47 0.75 4.25 19.88 0.78 4.34 3.90

RetinexNet25 17.86 0.78 6.37 17.37 0.76 9.09 5.68

MBLLEN8 17.90 0.70 2.50 18.00 0.72 3.11 3.32

KIND9 20.38 0.83 5.45 23.78 0.88 4.96 3.87

KIND++55 21.80 0.84 5.17 22.21 0.84 4.89 3.74

IAT56 23.38 0.81 3.92 23.50 0.82 4.19 4.71

DecNet57 22.49 0.82 4.51 22.56 0.84 4.83 4.26

FLW-Net51 23.84 0.83 4.22 25.71 0.87 4.09 3.93

BiEnNet (LOL-V1) 25.88 0.86 2.75 29.06 0.89 3.08 3.49

BiEnNet (LOL-V2) 26.44 0.87 2.63 29.66 0.90 3.01 3.48

Table 1.  Quantitative comparison results on the LOL-V125, LOL-V226and mixed datasets. Bold indicates 
the best results, and italic indicates the second-best results. LIME18represents a traditional method, 
ZeroDec++7and PairLIE54 represent unsupervised learning methods, and the others represent supervised 
learning methods.
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Ablation experiments
Determination of the bin Value
In this ablation study, we evaluate bin values of 8, 16, 32, 64, and 128. By comparing the changes in model 
parameters and the PSNR and SSIM performance on the LOL-V1 and LOL-V2 test dataset, we determine the 
optimal bin value, as shown in Fig. 11.

The results indicate that as the bin value increases, both PSNR and SSIM reach their highest values at bin 
= 32 on both the LOL-V1 and LOL-V2 test datasets. The overall trend shows an initial increase followed by 
a decline. This phenomenon may be due to the fact that although increasing the number of bins improves 
model precision, an excessive number of bins can lead to overfitting or parameter redundancy, which decreases 
accuracy. Moreover, the number of model parameters increases steadily with the bin value. Therefore, to balance 
model parameters and performance, we choose bin = 32 as the optimal value.

Demonstration of module effectiveness
We conduct ablation experiments by continuously adding and combining modules in different ways to 
demonstrate the effectiveness of each module in our proposed method. The entire ablation experiment trains 
and tests on the LOL-V1 dataset. As shown in Table  3, we use four metrics-PSNR, SSIM, CEIDE2000, and 
NIQE-in the quantitative comparison experiments.

In Table 3, “1” indicates that the entire network only has a simple Global Brightness Adjustment (GBA) branch. 
Although it has the lowest scores in all groups, it still achieves good results, demonstrating its effectiveness. “2”, 
“3”, and “4” add the Luminance Normalization (LNM) module, Dual-Exposure Processing (DEP) module, and 
the combination of Local Feature Extraction (LFE) and SNR Fusion (SNF) branches to the GBA, respectively. 
Since LNM and DEP mainly improve the network’s generalization ability, they show similar improvements in 
PSNR and SSIM metrics. The Bilateral Enhancement Module with SNR Fusion (BSF), composed of LFE, SNF, 

Fig. 10.  Visual comparison of different methods on the mixed dataset. The methods include LIME18, 
ZeroDec++7, PairLIE54, RetinexNet25, MBLLEN8, KIND9, KIND++55, IAT56, DecNet57, and FLW-Net51.

 

Fig. 9.  Visual comparison of different methods on the LOL-V226dataset, including LIME18, ZeroDec++7, 
PairLIE54, RetinexNet25, MBLLEN8, KIND9, KIND++55, IAT56, DecNet57, and FLW-Net51.
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and GBA, is the main low-light enhancement part of the entire network. Therefore, “4”, “6”, and “7”, which 
include LFE and SNF, show significant improvements. The improvement effect of their combinations with LNM 
and DEP is also similar. Group “8” represents the complete BiEnNet. Due to its improved generalization ability 
for different degradations and better enhancement capability, this group achieves the best enhancement effect.

As shown in Fig. 12, we also present the visual comparison results of each setting. Group “1” restores overall 
brightness and contrast, but the enhanced image has unsaturated tones and more noise, especially in the red and 
green boxed areas. Groups “2” and “3”, which add LNM and DEP, show some improvement in tone restoration 
but still have significant gap compared to the reference image. Group “4”, “6”, and “7”, which add LFE and 
SNF, show further improvements in color and detail restoration, especially in the green boxed area. Finally, our 
complete BiEnNet network, containing all branches, has better enhancement capability. Therefore, “8” achieves 
an enhancement effect closest to the reference image.

Conclusion
In this paper, we propose a deep learning-based lightweight generalizable low-light enhancement scheme. 
Specifically, to eliminate the brightness differences in input images, we propose a channel normalization method 
to obtain a more consistent degradation distribution in the preprocessing stage. In the low-light enhancement 
stage, we acquire global and local features through a dual-branch enhancement network and effectively fuse the 
global and local features using the SNR map of low-light images to achieve a better enhancement effect. Finally, 
to further improve the model’s robustness, we design a dual-exposure processing module in the post-processing 
state that guides the network to learn features under different exposure conditions simultaneously. Experiments 
on three public datasets demonstrate the superiority of our method compared to other state-of-the-art methods. 
However, our method still has certain limitations. For extremely low-light non-synthetic images, most regions 
contain very little recoverable information, and since our LOL training dataset mainly consists of synthetic low-
light images, BiEnNet may produce color distortions that affect overall image quality. In future research, we plan 
to optimize the network structure while incorporating real low-light image datasets to improve the network’s 
performance on extremely low-light real-world images. We also aim to explore its potential applications in 
downstream image processing tasks.

Index LNM DEP LFE&SNF PSNR↑ SSIM↑ CIEDE2000↓ NIQE↓
1 ✗ ✗ ✗ 23.84 0.83 7.74 3.89

2 ✓ ✗ ✗ 24.13 0.83 7.54 3.61

3 ✗ ✓ ✗ 24.16 0.83 7.46 3.58

4 ✗ ✗ ✓ 24.85 0.85 7.09 3.22

5 ✓ ✓ ✗ 24.74 0.84 7.18 3.39

6 ✓ ✗ ✓ 25.24 0.85 6.83 2.95

7 ✗ ✓ ✓ 25.35 0.85 6.51 2.83

8 ✓ ✓ ✓ 25.88 0.86 6.16 2.75

Table 3.  Visual comparison of different methods on the mixed dataset. The methods include LIME18, 
ZeroDec++7, PairLIE54, RetinexNet25, MBLLEN8, KIND9, KIND++55, IAT56, DecNet57, and FLW-Net51.

 

Fig. 11.  Variations in PSNR and SSIM metrics of BiEnNet on the LOL-V125and LOL-V226 test datasets under 
different bin value settings, along with variations in the model’s parameter count.
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Data availability 
The data that support the findings of this study are available from the corresponding author, [Z.H.], upon rea-
sonable request.
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