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Efficient traffic management solutions in 6G communication systems face challenges as the scale 
of the Internet of Things (IoT) grows. This paper aims to yield an all-inclusive framework ensuring 
reliable air pollution monitoring throughout smart cities, capitalizing on leading-edge techniques to 
encourage large coverage, high-accuracy data, and scalability. Dynamic sensors deployed to mobile 
ad-hoc pieces of fire networking sensors adapt to ambient changes. To address this issue, we proposed 
the Quantum-inspired Clustering Algorithm (QCA) and Quantum Entanglement and Mobility Metric 
(MoM) to enhance the efficiency and stability of clustering. Improved the sustainability and durability 
of the network by incorporating Dynamic CH selection employing Deep Reinforcement Learning (DRL). 
Data was successfully routed using a hybrid Quantum Genetic Algorithm and Ant Colony Optimization 
(QGA-ACO) approach. Simulation results were implemented using the ns-3 simulation tool, and the 
proposed model outperformed the traditional methods in deployment coverage (95%), cluster stability 
index (0.97), and CH selection efficiency (95%). This work is expected to study the 6G communication 
systems as a key enabler for IoT applications and as the title legible name explains, the solutions 
smartly done in a practical and scalable way gives a systematic approach towards solving the IoT 
traffic, and multi-routing challenges that are intended to be addressed in 6G era delivering a robust IoT 
ecosystem in securing the process.

Keywords  Air pollution monitoring, IoT, Mobile ad-hoc networking, Quantum-inspired clustering 
algorithm, Quantum entanglement and mobility metric, Deep reinforcement learning, Dynamic cluster head 
selection, Quantum genetic algorithm

The next generation of network traffic management solutions for air pollution monitoring must evolve in 
conjunction with the proliferation of the Internet of Things (IoT) and the evolution of 6G communication system 
technologies1,2. This rapid growth in the number of connected devices, combined with the urgent need for 
on-time data processing and low-latency communication, brings forward an overwhelming environment that 
current infrastructures are not equipped to cope with. More literately, the deficiencies of current air pollution 
monitoring networks in smart cities imply that advanced and flexible systems are highly desirable3. Currently, 
air pollution monitoring networks are limited in several important ways. A chief concern is monitoring, which 
many of today’s systems are based on fixed sensor networks that do not achieve blanket surveillance of all urban 
regions. Hence, large parts of the city could go unmonitored, leading to air quality data blind spots4. Such lack 
of comprehensive visibility hampers the ability to establish large-scale pollution monitoring for community-
wide health, as well as regional pollution control prioritization for public health intervention, environmental 
policy-making, etc. This leads to downtime, unexpected fluctuations in pollution levels caused by weather or 
traffic, and bottlenecks, delays, and inefficiencies in the air quality monitoring systems, affecting Smart Urban 
Air Management due to overly centralized data processing5,6. Table 1 shows the abbreviations and acronyms.

They are not equipped to detect pollutants at a low level early, which is important as it affects human health 
and other elements of our surroundings7. Air pollution is something that cities cannot monitor around the clock, 
so a rapid reaction is not possible. This challenge can addressed by optimization and multi-routing techniques 
such as clustering algorithms for better performance of sensor nodes. These novel technologies would give 
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us very wide coverage, very high-quality data, operational agility, and environmental adaptability8,9. 6G IoT 
technologies shown in Fig. 1.

We implement the QCA algorithm and Quantum Entanglement and Mobility Metric (MoM) to improve 
clustering performance and robustness. Our quantum-inspired clustering algorithms enhance performance 
limits and form self-adaptive clusters in dynamic environments. We propose learning-to-cluster, automating 
online Cluster Head (CH) selection using Deep Reinforcement Learning for Dynamic CH selection, and 
choosing the most energy-efficient CHs based on current network status, thus increasing network longevity and 
resilience. It also presents QGA-ACO for data routing, which is a combination of Quantum genetic algorithms 
and Ant colony optimization for data routing. The hybrid algorithm adaptively selects routes to minimize latency 
and energy consumption based on network knowledge10.

Existing IoT-based air pollution monitoring systems include the use of static sensor networks that are not 
efficient in updating, sweeping across the whole city, and delivering accurate data in real time. Moreover, these 
systems face challenges such as low scalability, high latency, and high energy consumption, which hamper their 
exploitation in smart urban environments. Therefore, this paper was informed by the necessity to respond to these 
shortcomings by creating a solid and flexible solution that optimizes both data collection, transfer, and signal 
processing in IoT networks supported by a 6G connection. The research intervention aims at a dual-optimized 
clubbed structure based on Quantum-inspired Clustering Algorithms (QCA), Quantum Entanglement and 
Mobility Metrics (MoM), and Deep Reinforcement Learning (DRL) for selecting the dynamic CH. These 
methods selected to address the fundamental issues in the longevity of networks, dynamic adjustments at the 
time of network usability and low-energy data transfer.

Main contribution of this work

•	 Enhance Network Scalability and Stability: By implementing QCA and MoM, we aim to form stable, efficient 
clusters that reduce communication overhead and respond dynamically to changes in urban environments.

•	 Optimize Cluster Head Selection: Using DRL, our method selects CHs based on energy levels and network 
topology to extend the network lifetime and maintain efficient communication.

•	 Improve Data Routing Efficiency: Our Quantum Genetic Algorithm and Ant Colony Optimization (QGA-
ACO) hybrid method seeks to minimize data latency and energy consumption, ensuring resilient, low-latency 
routing.

In this paper, we study 6G IoT Traffic Management and Multi-Routing Strategy towards assisting urban 
developers and environmental agencies in air quality policymaking. The paper is structured as follows: related 
work (“Related works”); methodology (QGA-ACO, “Methodology”); experimental setup and results (“Results 
and discussions”); and findings and future research (“Conclusion and future work”).

Abbreviation Full form

IoT Internet of things

6G Sixth generation

QCA Quantum-inspired clustering algorithm

DRL Deep reinforcement learning

ACO Ant colony optimization

MoM Mobility metric

CH Cluster head

WSN Wireless sensor network

MANET Mobile ad-hoc network

QGA Quantum genetic algorithm

AI Artificial intelligence

IRS Intelligent reflecting surface

MIMO Multiple-input multiple-output

UAV Unmanned aerial vehicle

SP-LSTM Stacked predictive long short-term memory

A2C Advantage actor-critic

A3C Asynchronous advantage actor-critic

RL Reinforcement learning

ML Machine learning

QoS Quality of service

LEACH Low energy adaptive clustering hierarchy

QEF Quantum entanglement factor

Table 1.  Abbreviations and acronyms.
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Related works
High data traffic from mIoT over 6G Throughput & Interference Model with 2 RL strategies: A2C, A3C earlier 
interference reduction with 2 RL strategies with a Hypergraph interference model, latency reduction with A3C 
supporting non-overlapping spectrum resources, enhanced network throughput & eliminated interference11.

Hundreds of sensors in smart transportation systems collect real-time data on traffic to plan efficiency and 
minimize congestion. A non-parametric model was provided for short-term traffic flow forecasting in the 
presence of IoT and 6G, which outperforms existing methods, achieving up to 32.6% lower prediction error 
with 97.3% less execution time12.

6G networks with gigabit data rates and billions of devices might redefine AI/ML paradigms for network 
management. SP-LSTM was proposed for modeling the adaptable routing policy under the context of traffic 
dynamics and prediction algorithms13. The two-tier approach: SP-LSTM predicts congestion, then RL optimizes 
path selection by combining SP-LSTM with Reinforcement Learning (RL), which complies with the 6G standards 
for heterogeneity, ultra-low latency, and runtime adaptation.

A fog-cloud approach towards vertically integrated cloudlets for IoT; an IoT-empowered environment-aware 
architecture with machine learning-based traffic management. On the other hand, the fog layer works in real-

Fig. 1.  6G IoT technologies.
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time, collecting and processing traffic data, while the cloud layer optimizes WaT, WQueL, and G signals for 
TMSPs according to input from the fog14. Facility-level IRS grade provides landing time predictability, which 
enables path-aware routing and journey time optimization. The load log branch is situated in the fog layer, and 
it is classified by LR, and the computational requirements with much lower computational costs are efficiently 
solved with ANN in the cloud layer.

Smart City and Intelligent Transportation Systems (ITS) have made urban transportation much more 
sustainable and intelligent through the help of the advanced Internet of Things (IoT) technology. The problem 
of optimizing traffic flow in global cities is another matter entirely, and is unlikely to be solved by IoT. This 
motivates the need for an IoT traffic control model for ITS, enhancing road monitoring and system efficiency15.

The algorithms provided are complex and extremely computationally demanding to run in real-time as we 
may be limited by processing resources. Moreover, the hypergraph interference model may be oversimplified 
with respect to the more intricate, time-varying mIoT network topology, which can decrease the performance 
of the solution. 6G-powered mIoTs need to achieve high throughput in the network, which compromises their 
latency, energy, reliability, etc. Future research should focus on scalable and generalizable strategies to solve these 
constraints and improve network performance.

Methodology
In this research, we applied a multi-methodology to design a viable air pollution-monitoring network for smart 
cities based on the 6G IoT. The sensor nodes were placed in a few zones of increased traffic, industrial areas, 
and residential colonies, and then a few green spaces were selected for complete coverage—energy-efficient 
clustering with stability with the Quantum-inspired Clustering Algorithm (QCA) that analyzed sensor node 
mobility patterns. Dynamic Cluster Head selection improves network resilience and energy efficiency achieved 
during each episode by leveraging Deep Reinforcement Learning techniques. Under the address flexible control 
mechanism, the network realized ultra-low latency and high data throughput, contributing to real-time data 
processing and decision-making. Further, a hybrid Quantum Genetic Algorithm and Ant Colony Optimization 
(QGA-ACO) approach for efficient and reliable data transmission.

Sensor deployment strategy
To develop the air pollution monitoring system in any smart city, you initially need to deploy sensors to 
measure air fragments. The baseline for a network-wide peer-review monitoring process that spans all fisheries 
and collects the correct type of data so we can get the best possible coverage with the highest quality data. 
The deployment suited the topography and population spread of the city. Sensors containing mobile ad-hoc 
networking are aimed at building an ever-changing network that can respond to environmental and mobility 
changes, which is very much needed for a functioning smart city where traffic flow and human activities are 
ever-changing.

Sensors are automatically positioned in congested spots to track peaks in pollution due to the same congestion. 
Industrial zones are also strategic areas to deploy due to the presence of unusual pollutants such as different types 
of chemicals and particulate. Sensors in residential areas also measure air quality, which is affected by local 
sources such as heating systems and small-scale industry, giving an accurate portrayal of the air people breathe 
every day. Figure 2 shows the flowchart of the proposed model.

Quantum-inspired clustering algorithm (QCA)
Then, the air pollution sensor network is organized in some clusters with the help of Quantum-inspired 
Clustering (QCA). Discussion In this section, we discuss the black model and the modifications that we have 
implemented on the QCA-based processor described in the previous sections in order to make it capable of 
dealing with the true mobile and dynamic characteristic that the sensor nodes present in a Mobile Ad-hoc 
Network (MANET) inherently have. This design organizes sensors according to attributes including mobility 
and spatial information, which reduces the energy cost and inter-cluster communication overhead.

QCA is able to dynamically balance resources between clusters so as to avoid situations in which the poor 
utilization of one cluster leads to unnecessary overhead for data aggregation and communication. QCA uses 
quantum-inspired heuristics to obtain the best possible clustering configurations: The optimal balance between 
spatial proximity and resource usage. Such an approach greatly reduces computational overhead and delays in 
response to changes in the network topology (like a node joins or losses).

Quantum entanglement and mobility metric (MoM) for dynamic clustering
Use of Quantum Entanglement and MoM in MANET for air pollution monitoring increases clustering stability at 
the same time efficiently dealing with node mobility. The quantum entanglement methodologies are responsible 
for blending sensor nodes exhibiting similar nature of mobility and then, forming clusters which are further 
accountable for stability and coherency. This is important because it keeps the lines of communication open 
and the data reads true. MoM groups nodes with identical movement patterns into clusters, thus the number 
of rewiring is zero; thereby rendering it simple to implement in a decentralized way without any need to re-
cluster all nodes. Distance Calculation between Nodes: To calculate the distance between two nodes i and j at 
positions (xi, yi) and (xj , yj):

	 dij =
√

(xi − xj)2 + (yi − yj)2� (1)

Relative Mobility Metric (RMM): For the intra-cluster mobility:
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Fig. 2.  Flowchart of proposed model.
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RMMij = 1

T

T∑
t=1

√
(xi(t) − xj(t))2 + (yi(t) − yj(t))2� (2)

 where xi (t) and yi (t) are the coordinates of node i at time t, and T  is the total time period being considered. 
Quantum Entanglement Factor (QEF): For the entanglement strength between two nodes i and j:

	
QEFij = exp

(
−dij

d0

)
� (3)

 where d0 is the normalization constant, which is an average distance to a part of the network. Cluster Stability 
Function (CSF): To check cluster stability Ck

	
V SF (Ck) = 1

|Ck|
∑

i∈ Ck

∑
j∈ Ck,j ̸= i (QEFij · RMMij)� (4)

 where |Ck| is the number of nodes in the cluster. Ck . Optimization Objective for Clustering: To optimize how 
the cluster forms itself by maximize the lifetime of the entire network:

	
max
{ck}

K∑
k=1

CSF (Ck)� (5)

 where K  is the number of total clusters. Energy Consumption Model: To estimate the energy expenditure in 
transmitting data from node i and j:

	 Eij = E0 + Et · d2
ij � (6)

 where E0 represents the base energy consumption and Et is the transmission energy coefficient. Cluster 
Reconfiguration Threshold: Checking perspiration regarding the need of reconfiguration based on mobility.

	

∑
i∈ck

∑
j∈ck,j ̸=i

(RMMij) > θ� (7)

 where θ  is a built-in dynamic cluster instability threshold.

Deep reinforcement learning (DRL) for cluster head (CH) selection
Deep Reinforcement Learning (DRL) is increasingly being used to find solutions to various CIS challenges, one 
of which is the selection of cluster head (CH) in wireless sensor networks (WSNs) for air pollution monitoring in 
smart cities16. Unlike static methods, DRL learns to adjust the CH selection on the fly, which improves network 
throughput and survival time. DRL models this as a Markov Decision Process (MDP), considering the energy 
levels, the location and the communication costs of the nodes in order to learn how to select the best CH to save 
the highest possible energy, prolong the lifetime of the network, and assure the data’s reliability. Action Space: 
Action at at time t involves selecting a node i to act as the CH :

	 at = Select node i ∈ N as CH � (8)

Reward Function: The reward rt at time t is to achieve the trade-off among energy efficiency, network life and 
data transmission reliability:

	
rt = α · Eavg(t)

Etotal
+ β · Lnet(t)

Lmax
− γ · Ctotal(t)

Cmax
� (9)

 where Eavg (t) is the average energy level of nodes at time t, Etotal is the total initial energy of all nodes, 
Lnet (t) is the network lifetime at time t, Lmax is the maximum possible network lifetime, Ctotal (t) is 
the total communication cost at time t, Cmax is the maximum communication cost, α , β , and γ  are the 
coefficients to equally weigh the reward components.

Quantum genetic algorithm and ant colony optimization (QGA-ACO) for routing
The combination of Quantum Genetic Algorithm (QGA) and Ant Colony Optimization (ACO) provides a new 
approach to designing a routing method for wireless sensor networks equipped with smart city air pollution 
monitoring. The hybrid of the two combines the classical QGA quantum-inspired duplicate checking and 
ACO path optimization, improving both the reliability of routes and the ability to control the effectiveness of 
the supply chain. QGA encodes multiple states simultaneously in quantum bits (qubits) and explores a larger 
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solution space painlessly. Quantum Bit Representation: Encoding each potential routing path using qubits, so 
the state of a qubit is expressed by:

	 |ψ⟩ = α |0⟩ + β |1⟩� (10)

 where α and β  are the appropriate probability amplitudes, satisfying |α |2 + |β |2 = 1. QGA uses potential 
solutions (routes) to be encoded like quantum bits (qubits) where qubits can have different states at the same 
time because of superposition nature. This enables QGA to visit a high-dimensional solution space more-
transparently than classical algorithms. Initial Population: Prepare a population of individuals able to encode a 
routing path by qubits.

Each individual in the population of QGA represented is a potential routing path encoded using qubits. A qubit 
is in a certain state described by a probability amplitude, which gives the probability of its state collapsing to 
either of the binary states 0 or 1. The initial population of qubit-based solutions undergoes a series of quantum-
inspired genetic operations, including quantum crossover, quantum mutation, and quantum rotation gates to 
generate a population of solutions that is iteratively evolved by the algorithm. This way the population is kept 
diverse, avoiding premature convergence to local optima. Fitness Function: Evaluate the fitness f (x) of each 
individual x based on routing criteria such as path length L, energy consumption E, and latency T :

	
f (x) = w1 · 1

L (x) + w2 · 1
E (x) + w3 · 1

T (x) � (11)

 where w1, w2, and w3 are weighting factors. By encoding routing paths, the fitness function of QGA can 
simultaneously consider length, energy consumption, latency at the node, and use quantum mechanics to 
quickly converge to a high-quality solution. Ant Colony Optimization (ACO) models the foraging behavior of 
ants, and artificial ants deposit pheromone trails to mark the efficient routes. With a classification granularity 
of 100–200 m, the decision-making process is based on data acquired through a bio-inspired algorithm that 
continuously explores and updates paths to provide robust and resilient routing in dynamic environments. 
Pheromone Update: Initialize pheromone trails τ ij  on all edges (i, j):

	 tij (0) = t0� (12)

 where τ 0 is the initial pheromone level. ACO is a bio-inspired algorithm based on the foraging of ants used 
to find optimal paths. For routing, ACO uses a colony of artificial ants that move around the network, leaving 
tokens of pheromone on the edges through which they passed. The higher the concentration, the higher the 
quality of the associated route, as the trail. Probability of Choosing Edge: The probability Pij  of an ant choosing 
edge (i, j) is given by:

	
Pij (t) =

[τ ij (t)]α ·
[
η ij

]β

∑
k∈ Ni

[τ ij (t)]α ·
[
η ij

]β � (13)

 where τ ij (t) is the pheromone level on edge (i, j) at time t, η ij  is the heuristic value (e.g., inverse of 
distance) of edge (i, j), α  and β  are parameters controlling the influence of pheromone and heuristic value. 
ACO performs well in a high dynamic environment and rapidly stabilizes a robust and fault-resistant routing 
on variation in link life and traffic conditions, since every time if link lifetime or traffic status changed, it re-
construct a new routing for selected QoS purpose. This results in the ‘Hybrid QGA-ACO’ method which 
amplifies the global optimization characteristic of the QGA, and at the same time put the ACO to good use with 
its real-time refinements. The QGA module generates the initial paths while the ACO module then adjusts it 
based on the current network state. It uses a joined integration to give the errorless, efficiency and manageable 
routing, guaranteeing the effectiveness of network to meet the requirements of various air pollution-related tasks 
of smart cities. The hybrid QGA-ACO system was developed in order to combine the best characteristics of 
QGA and ACO to maximize routing performance in different situations for air pollution monitoring.

This work proposed a QGA-ACO hybrid algorithm which joint with quantum-inspired optimization and bio-
inspired adaptation, to improve the routing efficiency in WSNs for air pollution monitoring in smart cities. Utilizes 
state-of-the-art computational technologies and out-performs traditional static systems by utilizing dynamic, 
mobile ad-hoc networking. Energy-efficient cryptographic mechanisms quantum capable cryptographic 
mechanisms and QCA (quantum-inspired clustering algorithm) reduce communication overhead. This keeps 
cluster stability by making use of Quantum Entanglement and Mobility Metric (MoM). Besides, training with 
Deep Reinforcement Learning (DRL) is used to optimize the CH selection for energy efficiency. The novel 
routing efficiency and adaptability of the QGA-ACO scheme could be explained through the merger of global 
and local optimizations.

QCA, DRL and QGA-ACO may seems computationally expensive, but they were designed to be particularly 
suitable for implementation in energy-limited WSNs in IoT traffic management systems17,18. QCA used for 
clustering, whereby stable clusters are formed so that long distance transmission is done sparingly which 
conserves power. It propounds energy efficiency mechanism by developing quantum-inspired heuristics adjust 
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clusters with respect to node mobility in a manner that optimizes energy expenditure in the network. DRL 
used for dynamic selection of the CH also runs as Markov Decision Process to select the most optimum CHs 
consuming least energy by taking into consideration the current network status to prolong the network life. In 
another hybrid approach of Quantum Genetic Algorithm and Ant Colony Optimization known as QGA-ACO, 
aims at solving energy problems of WSNs by finding better routes for transmission to consume less energy 
and time19,20. This adaptive routing approach enables a network to change paths easily without repeatedly 
recalculating to avoid excessive energy use. When combined, these algorithms are able to mesh cohesively into 
a WSN by minimizing communication overhead, self-organizing due to adjustment to network perturbations 
while at the same time sharing load over numerous nodes they are well suited for scalable, lightweight IoT 
networks within smart city setting in 6G21.
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Algorithm 1 QGA-ACO for Routing in Wireless Sensor Networks (WSNs).

Algorithm complexity analysis
The proposed solution, Quantum-inspired Clustering Algorithm (QCA), Deep Reinforcement Learning (DRL) 
and Quantum Genetic Algorithm with Ant Colony Optimization (QGA-ACO) enhance a novel solution for 
WSNs. As we will see, each of these components is designed with computational efficiency within constrained 
power budgets. Due to the clustering and maintenance process in QCA, the complexity basically relies on the 
number of nodes N and clusters K, and results in  (N·K + N log N) . This avoids the unwanted formation of 
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many clusters with high communication overhead among them. DRL used for the Cluster Head (CH) selection 
has a training time complexity of (T·S·A), where T refers to training episodes needed for the selection process. 
However, once trained, the CH selection for DRL in real-time needs (1) operations because it uses efficient and 
quick decision making, hence saving energy. Finally, the solution that is developed through the integration of 
QGA and ACO components has a lesser complexity count of O(P·G + M·N·E), where P and G represent the 
population size and generation number of QGA part, while M and E stand for a number of ants and edges in 
ACO component. Altogether, the total time complexity of the integrated components of the proposed method is 
given by, (N·K + NlogN + T·S·A + P·G + M·N·E). It can be estimated for practical purposes as (N·max(K,logN,E)) 
where K, S, A, P, G, and  M are usually constant or scale with the much slower rates as compared with N, E. This 
complexity helps to ensure the proposed method relatively simple from a computational perspective while at the 
same time affording better clustering, selection of CH, and routing of IoT data within the energy-constrained 
WSNs. The combined strategy deals with computational requirements successfully along with the low power 
consumption requirement that makes it possible for the scalable implementation in 6 G-enabled WSNs.

Results and discussions
The ns-3 a well-known discrete-event network simulator, was used to simulate the proposed model to monitor 
the air pollution. Besides the ns-3 simulator, we used Jupyter Notebook for the data analysis of the all the 
experimental results, and made sure that each individual metric was documented both clearly and thoroughly. 
This setup allowed for the easy analysis of the results of modular simulations and the use of estimates for 
cross comparisons across KPIs, which are imperative when assessing the stability and efficacy of the proposed 
algorithms in a 6G IoT setting. It is an ideal choice for us because the nature of our study relates with design 
of WSN and MANET, which develop different networking protocols and scenarios that suits the ns-3 robust 
environment. Our simulations were conducted on the Spentron device which has an Intel Core i7-14700 CPU, 
8GB of RAM and NVIDIA GeForce RTX 4060 AERO OC 8GB GDDR6 GPU by Gigabyte. This configuration 
allowed these complex algorithms to process efficiently and these huge network scenarios to get processed. 
The GPU was particularly useful for rendering network topology, enabling real-time data packet transmission 
visualization, and displaying moving nodes.

Table 2 shows the simulation parameters for WSN-based IoT traffic management. The sensors were placed 
in the high-traffic zones, industrial area, urban area, and parks of the characteristic city topography and more 
a style of living. Moreover, an adaptive sensor network is proposed considering real environmental changes 
and mobility to gather meaningful emission data. Vehicular emissions in traffic areas, industrial pollutants, 
residential neighborhood emissions, natural baseline air quality in green spaces and other monitoring enforced.

Table 3; Fig. 3 use ecosystem data to create pollution level plots. The pollution recorded in the high-traffic 
areas had significant numbers: 85  µg/m2 average for Area 1 (50 sensors), 90  µg/m2 average for Area 2 (45 
sensors), and 80 µg/m2 average for Area 3 (40 sensors). Industrial zones were the most polluted: Zone 1 (30 
sensors) = 120 µg/m2, Zone 2 (35 sensors) = 115 µg/m2, and Zone 3 (32 sensors) = 130 µg/m2. Lower pollution 
was observed in residential areas: Area 1 had 45 µg/m2 (40 sensors), Area 2 had 50 µg/m2 (38 sensors), and 
Area 3 had 32 µg/m2 (42 sensors). Parks, the least polluted, demonstrate the benefits of urban green space. In 
comparison to LEACH, the proposed Quantum-Inspired Clustering Algorithm (QCA) optimized the sensor 
network in terms of communication overhead and energy consumption and improved clustering efficiency.

We evaluated the efficacy and stability of network cluster using Quantum Clustering Algorithm (QCA) 
whose results are shown in Table 4; Fig. 4. For this test, Cluster 1 (15 nodes) had a 20 ms overhead, expended 
nodal energy/node at 0.8 J and earned stability of just of total possible points. These values were 18 nodes cluster 
had an overhead of 25 ms, energy was at the level of 0.9 J and stability reached only that good value which is 
equal to zero point nine. Smaller clusters had greater resilience properties and larger ones a higher variability. 
Cluster Head Selection, optimized by DRL reduced overhead and energy consumption for higher reliability and 
efficiency.

Cluster head selection results in Table 5; Figs. 5 and 6 show the capability of the DRL algorithm to minimize 
energy consumption and enhance network effectiveness, respectively. ClusterID 1, Node12 (0.8 J) replaced by 
Node 5 (0.5 J), good with CH selection efficiency of 96%. In all previously observed strips, it was Node 20 (0.9 J) 

Parameter Value

simulation area 1000 m × 1000 m

Number of nodes 100

Transmission range 100 m

Node initial energy 2 Joules

Energy consumption (transmit) 50 nJ/bit

Energy consumption (receive) 50 nJ/bit

Packet size 512 bytes

Simulation time 1000 s

Ant colony population (ACO) 20

DRL training episodes 500

Simulation tool NS-3

Table 2.  Simulation parameters for WSN-based IoT traffic management.
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that had the best performance in replacing Node 8 (0.4 J), with an efficiency of up to 93%. Migrating a node 
15 (0.7 J) to replace the least efficient node of cluster ID3, Node 3 (0.6 J), with an efficiency rate of around %94 
Cluster ID 4: Node 22 (1 J) replaced node 10 (0.3 J). Efficiencies of other clusters increased from 92 to 96%. 
DRL effectively enhanced energy management and cluster performance and thus prolonged the life of the WSN 
network. The quantum genetic algorithm based on Ant Colony Optimization is a hybrid QGA-ACO model that 
utilizes the advantages of both Quantum computing and Adaptive Pheromone Trails for Optimal data routing. 
This optimal sensor positioning and adaptive clustering algorithm improves air condition monitoring service 
for the sake of livable cities.

Table 6; Fig. 7 with QGA and ACO exhibit substantial routing efficiency improvements. Path length and 
energy consumption increased by almost 20% each in Route ID R1. The route with ID R2 was shortened from 
150 to 130 m, and energy decreased from 1.8 to 1.5 J, a 17% improvement. The distance of Route ID R3 was 
reduced by 10 m, from 100 to 90 m, with energy requirements dropping from 1.2 to 1 J, a 16% energy saving. 
Route ID R4’s path length decreased from 180 to 160 m, with energy consumption reduced from 2 to 1.7  J, 
resulting in a 15% gain. Route ID R5’s path length was shortened to 120 m from 140 m, with energy consumption 

Fig. 3.  Pollution levels across different locations.

 

Location Number of sensors Average pollution level (µg/m2) Peak pollution level (µg/m2) Minimum pollution level (µg/m2)

High-traffic area 1 50 85 150 60

High-traffic area 2 45 90 155 65

High-traffic area 3 40 80 145 55

Industrial zone 1 30 120 200 90

Industrial zone 2 35 115 190 85

Industrial zone 3 32 130 210 95

Residential area 1 40 45 80 30

Residential area 2 38 50 85 35

Residential area 3 42 48 82 32

Park/green space 1 20 20 40 10

Park/green space 2 22 18 38 8

Park/green space 3 18 22 42 12

Table 3.  Sensor deployment data.
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decreasing to 1.3 J from 1.6 J, showing a 19% improvement. These enhancements ensure network longevity and 
optimal performance.

For network optimization, we used the Traditional Method, QCA Method, QCA + MoM Method, DRL 
Method, and Proposed QGA-ACO Method. Table 7; Fig. 8 show the coverage, delay, energy consumption, CH 
stability, CH selection, path length, data heterogeneity, and mobility. QGA-ACO recorded the highest coverage 
at 95% home and 92% office and the lowest communication delay at 15 ms. In addition, QGA-ACO showed the 
lowest energy consumption at 0.9 J/node and the highest stability at 0.97. The Traditional Method was the least 
high-performing method recording 75% coverage, 35 ms in delay, and 1.5 J/node in energy consumption with 
a stability index of 0.85.

Fig. 4.  Clustering performance.

 

Cluster ID Number of nodes Average communication overhead (ms) Energy consumption per node (J) Cluster stability index

1 15 20 0.8 0.95

2 18 25 0.9 0.92

3 12 18 0.7 0.97

4 25 30 1.1 0.9

5 20 22 0.85 0.94

6 17 24 0.9 0.91

7 22 28 1 0.89

8 16 21 0.75 0.96

9 19 23 0.88 0.93

10 21 27 1.05 0.9

Table 4.  Clustering performance using QCA.
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Conclusion and future work
The study has shown the development of smart cities with advanced processing models for large-scale air 
pollution monitoring. Strategically placed mobile ad-hoc sensors measured urban pollution dynamics. QCA and 
Quantum Entanglement & MoM were less prone to produce local clusters with high noise. DRL-based Dynamic 
CH Selection—Steered CH selection in the LERN increased the longevity of the network. The hybrid QGA-ACO 
technique facilitated effective reconfigurable routing, surpassing classical strategies. The deployment coverage 
was increased to 95%, the communication delay was also reduced to 15 ms, the energy consumption of each 
node was lowered down to 0.9 J, the cluster stability index attained to 0.97, the CH selection efficiency of 92% 
and the QGA-ACO approach made a path length of 110 m. These results improved data accuracy with a rated 
92% and extended the network life by 20 months. Increased mobility adaptability to 95%. Further scalability, 
inclusion of other parameters from the environment and establishing complex predictive algorithms for general 
environmental monitoring and better cities etc. can be looked into for future references.

Fig. 5.  CH energy level.

 

Cluster ID Initial CH Energy level of initial CH (J) Selected CH Energy level of selected CH (J) CH selection efficiency (%)

1 Node 5 0.5 Node 12 0.8 96

2 Node 8 0.4 Node 20 0.9 93

3 Node 3 0.6 Node 15 0.7 94

4 Node 10 0.3 Node 22 1 90

5 Node 7 0.5 Node 14 0.9 95

6 Node 6 0.4 Node 19 0.85 92

7 Node 2 0.6 Node 11 0.8 94

8 Node 9 0.3 Node 18 0.95 91

9 Node 1 0.5 Node 16 0.9 93

10 Node 4 0.4 Node 17 0.88 92

Table 5.  Cluster head (CH) selection using DRL.
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Route ID Initial path length (m) Optimized path length (m) Initial energy consumption (J) Optimized energy consumption (J) Improvement (%)

R1 120 100 1.5 1.2 20

R2 150 130 1.8 1.5 17

R3 100 90 1.2 1 16

R4 180 160 2 1.7 15

R5 140 120 1.6 1.3 19

R6 130 110 1.5 1.2 20

R7 110 95 1.3 1.1 15

R8 160 140 1.9 1.6 16

R9 125 105 1.4 1.2 14

R10 170 150 1.9 1.6 15

Table 6.  Routing efficiency using QGA-ACO.

 

Fig. 6.  CH selection efficiency.
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Metric Traditional method QCA method QCA + MoM method DRL method QGA-ACO method

Deployment coverage (%) 75 85 90 92 95

Average communication delay (ms) 35 25 20 18 15

Energy consumption per node (J) 1.5 1.2 1.1 1 0.9

Cluster stability index 0.85 0.9 0.93 0.95 0.97

CH selection efficiency (%) 80 85 88 92 95

Routing path length (m) 150 130 120 115 110

Routing energy consumption (J) 2 1.7 1.6 1.5 1.3

Data accuracy (%) 80 85 88 90 92

Network lifetime (months) 12 14 16 18 20

Adaptability to mobility (%) 70 80 85 90 95

Table 7.  Performance comparison.

 

Fig. 7.  Routing efficiency.
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Data availability
The data used to support the findings of this study are included in the article.

Received: 17 September 2024; Accepted: 28 November 2024

References
	 1.	 Zakria, Q. et al. Towards 6G internet of things: recent advances, use cases, and open challenges. ICT Express. 9(3), 296–312. ​h​t​t​p​s​:​

/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​c​t​e​.​2​0​2​2​.​0​6​.​0​0​6​​​​ (2023).
	 2.	 Tauqeer, S. et al. Non-cooperative learning based routing for 6G-IoT cognitive radio network. Intell. Autom. Soft Comput. 33 (2), 

809–824. https://doi.org/10.32604/iasc.2022.021128 (2023).
	 3.	 Shen, X. et al. A novel wireless resource management for the 6G-enabled high-density internet of things. IEEE Wirel. Commun. 

29(1), 32–39.  https://doi.org/10.1109/MWC.003.00311  (2023).
	 4.	 Urgelles, H. et al. Multi-objective routing optimization for 6G communication networks using a quantum approximate optimization 

algorithm. Sensors. 22(19), 7570. https://doi.org/10.3390/s22197570 (2023).
	 5.	 Liu, Y. et al. Swarm learning-based dynamic optimal management for traffic congestion in 6G-driven intelligent transportation 

system. IEEE Trans. Intell. Transp. Syst. 24 (7), 7831–7846. https://doi.org/10.1109/TITS.2023.3234444 (2023).
	 6.	 Asma et al. Securing massive IoT in 6G: recent solutions, architectures, future directions. Internet Things. 22, 2542–6605. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​i​o​t​.​2​0​2​3​.​1​0​0​7​1​5​​​​ (2023).
	 7.	 Bin, S. et al. Securing 6G-enabled IoT/IoV networks by machine learning and data fusion. J. Wirel. Commun. Netw. 113, 2023. 

https://doi.org/10.1186/s13638-022-02193-5 (2022).
	 8.	 Yantian Luo et al. Securing 5G/6G IoT using transformer and personalized federated learning: an access-side distributed malicious 

traffic detection framework. IEEE Open. J. Commun. Soc. 5, 1325–1339. https://doi.org/10.1109/OJCOMS.2024.3365976 (2024).
	 9.	 Ng, H.A.H., et al. Intelligent traffic engineering for 6G heterogeneous transport networks. Computers. 13(3), 74. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​3​3​9​0​/​c​o​m​p​u​t​e​r​s​1​3​0​3​0​0​7​4​​​​ (2024).
	10.	 Zhang, E. Quantum optical sensors and IoT for image data analysis in traffic management. Opt. Quant. Electron. 56, 389. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​1​0​8​2​-​0​2​3​-​0​6​0​6​1​-​4​​​​ (2024).
	11.	 Huang, J. et al. Reinforcement learning based resource management for 6G-enabled mIoT with hypergraph interference model. 

TCOMM.  https://doi.org/10.1109/TCOMM.2024.3372892 (2024).
	12.	 Fan et al. 6G-Enabled short-term forecasting for large-scale traffic flow in massive IoT based on time-aware locality-sensitive 

hashing. JIOT. 8(7), 5321–5331. https://doi.org/10.1109/JIOT.2020.3037669  (2023).
	13.	 Petro Mushidi Tshakwanda, P. et al. Advancing 6G network performance: AI/ML framework for proactive management and 

dynamic optimal routing. OJCS. https://doi.org/10.1109/OJCS.2024.3398540 (2024).
	14.	 Sahil et al. Fog-Cloud-IoT centric collaborative framework for machine learning-based situation-aware traffic management in 

urban spaces. Computing 106, 1193–1225. https://doi.org/10.1007/s00607-022-01120-2 (2024).

Fig. 8.  Performance comparison over various metrics.

 

Scientific Reports |        (2024) 14:30915 16| https://doi.org/10.1038/s41598-024-81709-z

www.nature.com/scientificreports/

https://doi.org/10.1016/j.icte.2022.06.006
https://doi.org/10.1016/j.icte.2022.06.006
https://doi.org/10.32604/iasc.2022.021128
https://doi.org/10.1109/MWC.003.00311
https://doi.org/10.3390/s22197570
https://doi.org/10.1109/TITS.2023.3234444
https://doi.org/10.1016/j.iot.2023.100715
https://doi.org/10.1016/j.iot.2023.100715
https://doi.org/10.1186/s13638-022-02193-5
https://doi.org/10.1109/OJCOMS.2024.3365976
https://doi.org/10.3390/computers13030074
https://doi.org/10.3390/computers13030074
https://doi.org/10.1007/s11082-023-06061-4
https://doi.org/10.1007/s11082-023-06061-4
https://doi.org/10.1109/TCOMM.2024.3372892
https://doi.org/10.1109/JIOT.2020.3037669
https://doi.org/10.1109/OJCS.2024.3398540
https://doi.org/10.1007/s00607-022-01120-2
http://www.nature.com/scientificreports


	15.	 Hongyan et al. IoT-enabled real-time traffic monitoring and control management for intelligent transportation systems. JIOT. 
11(9), 15842–15854. https://doi.org/10.1109/JIOT.2024.3351908  (2024).

	16.	 Kaur, N. & Kaur Aulakh, I. An Energy Efficient Reinforcement Learning Based Clustering Approach for Wireless Sensor Network (EAI 
Endorsed Scalable Information System, 2021).

	17.	 Dhanasekaran, S., Thamaraimanalan, T., Karthick, P. V. & Silambarasan, D. A lightweight CNN with LSTM malware detection 
architecture for 5G and IoT networks. IETE J. Res. 1–12 (2024).

	18.	 Ramalingam, S., Dhanasekaran, S., Sinnasamy, S. S., Salau, A. O. & Alagarsamy, M. Performance enhancement of efficient 
clustering and routing protocol for wireless sensor networks using improved elephant herd optimization algorithm. Wirel. Netw. 
1–17 (2024).

	19.	 Xue, X. et al. A hybrid cross layer with Harris-Hawk-optimization-based efficient routing for wireless sensor networks symmetry. 
15(2), 438. https://doi.org/10.3390/sym15020438 (2023). 

	20.	 Dhanasekaran, S., Ramalingam, S., Baskaran, K. & Vivek Karthick, P. Efficient distance and connectivity based traffic density stable 
routing protocol for vehicular ad hoc networks. IETE J. Res. https://doi.org/10.1080/03772063.2023.2252385 (2023).

	21.	 Ibrahim Khalaf, O., Algburi, S., Selvaraj, S. A., Sharif, D. & Elmedany, W. M. S., Federated learning with hybrid differential privacy 
for secure and reliable cross-IoT platform knowledge sharing. Secur. Priv. e374 (2024).

Acknowledgements
The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in 
Saudi Arabia for funding this research work through the Project number: IFP22UQU4170008DSR093.

Author contributions
J.L., S.K.P.: Conceptualization, article drafting, methodology; software development. O.P.K.: Result analysis, ar-
ticle proofreading, F.A.A.: Result analysis, article proofreading.

Funding
Open access funding provided by Manipal Academy of Higher Education, Manipal

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to O.P.K. or F.A.A.-Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024 

Scientific Reports |        (2024) 14:30915 17| https://doi.org/10.1038/s41598-024-81709-z

www.nature.com/scientificreports/

https://doi.org/10.1109/JIOT.2024.3351908
https://doi.org/10.3390/sym15020438
https://doi.org/10.1080/03772063.2023.2252385
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Hybrid optimization for efficient 6G IoT traffic management and multi-routing strategy
	﻿Main contribution of this work
	﻿﻿Related works
	﻿﻿Methodology
	﻿Sensor deployment strategy
	﻿Quantum-inspired clustering algorithm (QCA)
	﻿Quantum entanglement and mobility metric (MoM) for dynamic clustering
	﻿Deep reinforcement learning (DRL) for cluster head (CH) selection
	﻿Quantum genetic algorithm and ant colony optimization (QGA-ACO) for routing
	﻿Algorithm complexity analysis

	﻿﻿Results and discussions
	﻿﻿Conclusion and future work
	﻿References


