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Climate change and human activities are the primary drivers influencing changes in runoff dynamics. 
However, current understanding of future hydrological processes under scenarios of gradual climate 
change and escalating human activities remains uncertain, particularly in tropical regions affected by 
deforestation. Based on this, we employed the SWAT model coupled with the near future (2021–2040) 
and middle future (2041–2060) global climate models (GCMs) under four shared socioeconomic 
pathways (SSP1-2.6 (SSP1 + RCP2.6), SSP2-4.5 (SSP2 + RCP4.5), SSP3-7.0 (SSP3 + RCP7.0), 
and SSP5-8.5 (SSP5 + RCP8.5)) from the CMIP6 and the CA-Markov model to evaluate the runoff 
response to future environmental changes in the Dingan River Basin (DRB). The quantification of the 
impacts of climate change and land use change on future runoff changes was conducted. The results 
revealed a non-significant increasing trend in precipitation during the historical period (1999–2018). 
Furthermore, all three future scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) exhibited an upward trend 
in precipitation from 2021 to 2060. Notably, the SSP5-8.5 scenario demonstrated a highly significant 
increase (P < 0.01), while the SSP2-4.5 scenario displayed a non-significant decreasing trend. The 
future precipitation pattern exhibits a decrease during spring and winter, while showing an increase 
in summer and autumn. The temperature exhibited a significant increase (P < 0.05) across the four 
future scenarios, with amplitudes of 0.24 °C/(10 years), 0.36 °C/(10 years), 0.36 °C/(10 years), and 
0.50 °C/(10 years) for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 respectively. The future trend 
of land use change entails a continuous increase in cultivated land and a corresponding decrease in 
artificial forest land. By 2032, the area of cultivated land is projected to witness a growth of 4.10%, 
while artificial forest coverage will experience a decline of 4.45%. Furthermore, by 2046, the extent 
of cultivated land is anticipated to expand by 4.41%, accompanied by a reduction in artificial forest 
cover amounting to 5.39%. The average annual runoff during the historical period was 53.35 m³/s, 
and the Mann-Kendall (MK) trend test showed that it exhibited a non-significant increasing trend. 
Compared with the historical period, the comprehensive impact of climate change and land use will 
cause changes in the runoff by 0.49%, 1.98%, − 3.13%, and 3.65% for the scenarios of SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the near future, and − 3.24%, 1.30%, − 3.75% and 18.24% in 
the middle future respectively. The intra-annual variations in future runoff suggest an earlier peak 
and a more concentrated distribution of runoff during the wet season (May to October). Compared to 
historical periods, the total runoff in the wet season under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios increased by 6.53%, 8.91%, 7.17%, and 7.39%, respectively. The research findings offer 
significant insights into the future hydrological processes in tropical regions, while also serving as a 
valuable reference for watershed water resource management and disaster control.
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Climate change and land use change are the main drivers of runoff change1–4. Runoff changes are intricately 
linked to human life, influencing multiple dimensions of daily activities, agricultural production, and industrial 
development. As of 2022, the global population has reached 8 billion, and the ongoing population growth is 
intensifying climate change and alterations in land use5. Human activities have intensified the emission of 
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greenhouse gases, thereby further accelerating the trend of global climate change. For example, global warming 
may lead to an increase in precipitation and enhanced atmospheric evaporation, consequently increasing and 
decreasing runoff, respectively3,6,7. Precipitation directly influences the volume and distribution patterns of 
runoff, serving as a significant source of runoff8,9. Climate change has also altered vegetation’s water utilization 
strategies. Increasing temperatures disrupt the growth cycle of plants, leading to an acceleration in respiration 
and transpiration processes, thereby modifying their capacity for water absorption10–12. The increase in CO2 
concentration can induce atmospheric warming through direct radiative forcing, potentially resulting in increased 
precipitation and enhanced atmospheric evaporation, thereby augmenting and diminishing runoff, respectively7. 
Additionally, the elevation of CO2 may lead to a reduction in stomatal conductance and transpiration rates of 
plants, consequently contributing to an increase in runoff13–15. Singh, et al.9 study indicates that the average 
annual runoff of the Sutlej River, India, is projected to increase by 0.79–1.43% under the SSP585 scenario during 
the period from 2050 to 2080, whereas an increase of 0.87–1.10% is anticipated under the SSP245 scenario. 
Shrestha et al.16 research conducted in the Songkhram River basin, Thailand, indicates that climate change is 
projected to lead to a reduction in streamflow of 19.5% and 24% under the RCP4.5 and RCP8.5 scenarios, 
respectively, for the period from 2010 to 2099. This suggests that there is a high level of uncertainty regarding 
the impact of future climate change on runoff, and significant differences exist in the region’s hydrological 
responses; therefore, it is essential to conduct comprehensive research on the regional hydrological response to 
future climate change.

Human activities are progressively emerging as the primary driving force influencing land use. The exponential 
growth in population has resulted in an escalating demand for agricultural land. The research findings indicate 
that agricultural irrigation water accounts for approximately 70% of the global freshwater resources17–19. The 
construction of reservoirs and dams, as well as the rapid increase in domestic water consumption resulting from 
urbanization, have directly influenced surface runoff20. Yu et al.21 research conducted in the northwest region 
of China indicates that the “Grain for Green” accounts for 49.6% of the observed reduction in runoff. A study 
conducted in Uruguay indicates that when the area of afforested land reaches approximately 15% of the total 
watershed area, there is a significant reduction in runoff22. Studies have shown that land use change contributes 
to an increase in global runoff by 73–81% 7. This unequivocally demonstrates that the influence of land use 
change on runoff is significant and should not be overlooked.

The hydrological response to environmental changes has been extensively investigated by scholars through 
rigorous research23–30. However, some studies exhibit limitations in the selection and processing of climate and 
land use data, resulting in a comparatively higher degree of uncertainty in the research findings. For example, 
by simply increasing or decreasing temperature and precipitation, simulate future climate change1,31,32. Utilizing 
extreme land use conversion scenarios to examine the effects of future land use change on runoff, such as 
complete transformation of all cropland into grassland and all wasteland into forest2,33. The aforementioned 
methods provide a structured approach for quantifying the impacts of future climate and land use changes on 
runoff; however, considering the inherent complexities and variability of climate, along with the substantial 
disturbances induced by human activities, this research methodology is clearly inadequate. Moreover, research 
that integrates future climate change and land use change to forecast future runoff variations remains relatively 
limited, particularly in regions experiencing tropical deforestation.

Ding’an River serves as a vital water source in Hainan Province, playing a critical role in regional ecological 
balance and economic development. In recent years, the river basin has experienced frequent conversions from 
natural forests to rubber plantations, resulting in a noticeable decline in runoff34. Accurate prediction of the 
effects of future climate change and land use alterations on runoff is essential for mitigating the adverse impacts 
associated with climate variability, including droughts, floods, and the degradation of ecosystem goods and 
services. Based on this, we employed the SWAT model in conjunction with GCMs and the CA-Markov model 
to simulate the response patterns of runoff in the DRB to future climate change and land use changes from 2021 
to 2060. The impacts of future climate change and land use change on runoff were analyzed both independently 
and in conjunction. The research findings offer empirical support and a reference framework for water resources 
planning, management, and sustainable development in the background of future environmental changes.

Materials and methods
Study area and relevant data
Study area
The Dingan River Basin (DRB) serves as the northern tributary of the Wanquan River, originating from 
Fengmenling in Qiongzhong county (Fig.  1). It spans a total length of 88  km and encompasses a drainage 
area measuring 1149 km2. The DRB is situated within the tropical monsoon region, experiencing an annual 
precipitation of 2453 mm. The distinct wet season (May–October) and dry season (November–April) are evident.

Database
The precipitation, wind speed, maximum and minimum temperatures, light duration, and relative humidity 
daily data spanning from 1960 to 2018 were sourced from the Hainan Provincial Meteorological Bureau and 
the China Meteorological Service Center. The daily runoff data of the Jiabao hydrological station spanning from 
1967 to 2016 was acquired from the Water Affairs Department of Hainan Province.

The daily precipitation, minimum temperature, and maximum temperature global climate scenario data 
(historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-5.8) of 1960–2060 are from the EC-Earth3-Veg in the CMIP6 
models provided by the World Climate Research Program (WCRP) official website ​(​​​h​t​t​p​s​:​/​/​e​s​g​f​-​n​o​d​e​.​l​l​n​l​.​g​o​v​
/​s​e​a​r​c​h​/​c​m​i​p​6​​​​​)​. We selected EC-Earth3-Veg for this study primarily because multi-climate ensemble means 
generally demonstrate limited effectiveness in capturing the amplitude of observed multi-decadal precipitation 
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variability35–38. Furthermore, EC-Earth3-Veg has undergone extensive validation through numerous studies, 
confirming its high accuracy in simulating future climate scenarios39–43.

The primary research framework of this study is illustrated in Fig. 2. The land use data of 1990, 2004, and 
2018 were acquired by interpreting remote sensing images from the Geospatial Data Cloud Website ​(​​​h​t​t​p​s​:​/​/​w​w​
w​.​g​s​c​l​o​u​d​.​c​n​/​#​p​a​g​e​1​/​3​​​​​) using ENVI software at a spatial resolution of 30 m × 30 m (Fig. 3). The road data within 

Fig. 2.  Schematic representation of the research framework.

 

Fig. 1.  Diagram of Dingan River Basin and hydrometeorological monitoring stations. The maps were created 
by the authors using ArcGIS 10.2 (Environmental Systems Research Institute, USA; https://www.esri.com/).
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the watershed comes from the OpenStreetMap platform (https://www.Openstreetmap.org). The boundary data 
of the ecological protection red line is sourced from the Hainan Provincial People’s Government, while the slope 
data is derived through analysis of Digital Elevation Model (DEM) data using ArcGIS software. The DEM data 
with a spatial resolution of 30 m × 30 m was obtained from the official website of the Geospatial Data Cloud 
(https://www.gscloud.cn/). Table 1 presents a comprehensive overview of the data necessary for this study along 
with their corresponding source information.

Data type Scale Data description Source

Digital Elevation Model 1:200,000 Elevation, overland and
channel slopes and lengths Geospatial Data Cloud

Land use 1:100,000 Land use classifications, 1990, 2004, 2018 Geospatial data cloud

Soil properties 1:1000,000 Soil physical and chemical properties Harmonized World Soil Database

Climate data daily
Precipitation, wind speed, daily maximum
and minimum air temperature, relative humidity, and solar radiation, 
1960–2018

Hainan Meteorological Bureau, 
China Meteorological Data Service 
Centre

Runoff data daily Cross section runoff of Jiabao, 1967–2016 Hainan Water Resources Department

Future climate data daily historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-5.8, 1960–2060 EC-Earth3-Veg of CMIP6 in WCRP

Road data 1:100,000 National, Provincial, County, and Township roads OpenStreetMap platform

Ecological protection red line 1:100,000 Protected area boundaries Hainan Provincial People’s 
Government

Slope data 1:200,000 Slope of the terrain ArcGIS processes DEM

Table 1.  Description of data and sources for research applications in the Dingan River Basin.

 

Fig. 3.  Observation and simulation results of land use dynamics in the Dingan River Basin for the years 1990, 
2004, and 2018. The maps were created by the authors using ArcGIS 10.2 (Environmental Systems Research 
Institute, USA; https://www.esri.com/).
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Prediction of future climate change
Downscaling and correction of climate model data
The resolution of GCMs data is too coarse when directly applied to the Hydrological model for watershed-scale 
research. Therefore, in this study, the statistical downscaling method known as Inverse Distance Weight (IDW) 
interpolation is employed for spatially downsizing climate scenario data. Subsequently, the Delta method is 
utilized for data correction.

The mathematical formulation of IDW is as follows:

	 Ẑ0 =
∑n

i=0 (ZiQi) � (1)

where Ẑ0 is the estimated value at point (x0, y0), Zi is the observation value at point (xi, yi), Qi is the weight 
coefficient corresponding to the interpolation point and the observation point, and n is the number of 
interpolation points.

	
Qi = f(dej)∑n

j=1
f(dej) � (2)

where Qi is the weight coefficient, dej is the distance between observation points and interpolation points, n is 
the number of observation points.

	
f (dej) = 1

db
ej

� (3)

where, b is an appropriate constant. When the b value is 1 or 2, it is inverse distance reciprocal interpolation and 
inverse distance reciprocal square interpolation.

The Delta method is simple, can simulate multiple stations at the same time, and can better simulate the 
changes of temperature and precipitation, and is widely used. The specific formula is as follows:

	 Tf = To + (TGf − TGo) � (4)

where, Tf is the corrected air temperature, °C; To is the historical measured temperature, °C; TGf is the future 
temperature predicted by the climate model, and TGo is the historical temperature simulated by the climate 
model.

	 Pf = P0
PGf

PGo
� (5)

where Pf is the corrected precipitation, mm; P0 is the historical measured precipitation, mm; PGf is the future 
precipitation predicted by the climate model, and PGo is the historical precipitation simulated by the climate 
model.

Validation of climate simulation results
The correlation coefficient (R2) and the Nash-Sutcliffe efficiency (ENS) coefficient are used to validate the 
availability of model simulation results.
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where Oi is the observed data, 
−
O is the mean value of observed data, Pi is the simulated data, and 

−
p is the mean 

value of simulated data.

	
ENS = 1 −

∑n

i=1 (Qsim,i−Qmea,i)2∑n

i=1 (Qmea,i−Q̄mea)2 � (7)

where Qsim, i is the simulated value, Qmea, i is the observed value, Qmea is the mean observed data, and n is the total 
number of observations.

Prediction of future land use
CA-Markov model
The CA-Markov model is a coupling model of the set Cellular Automata model and the Markov model. The 
model integrates the simulation of complex spatial dynamics and a long-term prediction capability module, 
making it widely applicable for simulating and predicting long-term changes in land use structure44–46.

Simulation steps
The simulation and prediction of land use are conducted using IDRISI 17.2 software, following the specific steps 
outlined below.
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	(1)	�  Data preparation. The land use data (Fig. 3), DEM data, and slope data in the study area should be uni-
formly converted into ASCII format that is compatible with IDRISI software.

	(2)	�  The construction of the Markov Transfer Matrix. In IDRISI software, land use data is classified into five 
categories: Water, Built, Farmland, Artificial forest, and Natural forest. The Markov module in the software 
is executed to calculate the area and probability transfer matrix for two times intervals (1990–2004 and 
2004–2018), with a land use data interval of 14 years. Additionally, a proportion error of 0.15 is set.

	(3)	�  Creation of suitability atlas. The “decision wizard” module of IDRISI software is utilized to generate the 
suitability atlas, incorporating road distribution data, ecological protection red line data, DEM, and slope 
data in the basin as constraint conditions for land use prediction to enhance the realism and rationality 
of prediction outcomes. Ultimately, the land-use suitability atlas of the study area is constructed using the 
“Collection Editor” module.

	(4) 	� Land use simulation. The CA-Markov model in IDRISI software was utilized for land use prediction, incor-
porating the actual land use situation in 2004, the transfer matrix from 1990 to 2004, and the constructed 
suitability atlas as constraints. A selection of 5 × 5 filters was applied with automatic iteration performed 14 
times to simulate the land use status of DRB in 2018. By utilizing the actual land use data from 2018 as a 
reference for simulation, and incorporating the land use transfer matrix from 2004 to 2018, and suitability 
atlas constructed as constraints, a 5 × 5 filter was selected with automatic iteration performed 14 times to 
simulate the future land use status in the DRB region by 2032. Similarly, employing the aforementioned 
settings, after conducting 28 iterations, we can obtain the land use of the DRB by 2046.

Validation of land use simulation results
The effectiveness of the CA-Markov model simulation is assessed through the Kappa index, which is formulated 
as follows:

	 k = p0−pc
1−pc

� (8)

where P0 is the probability value of comparison between actual land use and simulated land use; Pc is the expected 
value of the correct ratio of simulated land use. The Kappa value ranges from 0 to 1, with higher values indicating 
a more favorable simulation effect.

SWAT model construction
The Soil and Water Assessment Tool (SWAT) model is a widely utilized semi-distributed hydrological and water 
quality model, which operates on the fundamental principle of water balance47–49.

According to previous research on the DRB, the runoff underwent a significant transformation in 1990 as a 
result of both climate change and human activities34. In order to avoid the influence of environmental changes 
on the uncertainty of model parameters, the calibration and validation of the SWAT model were carried out 
using data before the runoff abrupt change point. Therefore, the actual measured monthly scale runoff data 
from Jiabao station from 1967 to 1968 was used as the warm-up period of the SWAT model, 1969–1979 as 
the calibration period, and 1980–1989 as the validation period. Utilize R2 (Eq. 6) and the ENS (Eq. 7) for the 
assessment of simulation outcomes derived from the SWAT model.

Scenarios setting
Four scenarios were set up based on different combinations of meteorological and land use data used to drive the 
SWAT model, as shown in Table 2. In this study, we employ the land use of 2032 to represent the land use of the 
near future (2021–2040), and the land use of 2046 to represent the land use of the middle future (2041–2060).

Results
Calibration and validation of model simulation results
Validation of downscaled data from GCMs
The R2 and ENS metrics are employed to evaluate the suitability of downscaling climate data by comparing daily 
precipitation and temperature measurements from the DRB dataset (1960–2014) with downscaled daily data 
derived from the EC-Earth3-Veg Climate model. The closer the R2 and ENS values approach 1, the higher the 
fidelity of model simulation. The validation results demonstrate that the R2 and ENS values for precipitation are 
0.516 and 0.521, respectively. For maximum temperature, the R2 and ENS values are 0.778 and 0.783, respectively; 
while for minimum temperature, the R2 and ENS values are 0.856 and 0.857, respectively (Table  3). Several 
factors, including complex topography and the influence of monsoons, may impact the accuracy of precipitation 
forecasts50. Fortunately, validation results indicate that the downscaled climate data yield satisfactory 
performance51,52.

Scenario Climate scenario Land use scenario

S0 1999–2018 2018

S1 2021–2040, 2041–2060 2018

S2 1999–2018 2032, 2046

S3 2021–2040, 2041–2060 2032, 2046

Table 2.  Scenario setting for SWAT model-driven dataset.
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Validation of land use prediction results
We compared the actual land use data for 2018 with the CA-Markov simulated land use data for 2018 (Fig. 2). The 
comparative analysis results show that the Kappa coefficient between the actual values and the simulated values 
is 0.776, indicating that the simulation accuracy is high and meets the model simulation accuracy requirements.

Calibration and validation of SWAT model
The Soil and Water Assessment Tool Calibration Uncertainty Program (SWAT-CUP) is utilized for the calibration 
and validation of the SWAT model, with the Nash-Sutcliffe efficiency (ENS) as the objective function51,53,54. 
The SWAT-CUP program has been specifically developed to enhance the calibration efficiency of the SWAT 
model47,48,55. The Sequential Uncertainty Fitting version 2 (SUFI-2) program is chosen for specific operations 
due to its relatively straightforward implementation, efficient running times, and commendable simulation 
performance. The optimal parameter combination for the SWAT model was obtained through repeatedly 
iterated by SWAT-CUP. The sensitivity analysis results of the runoff parameters in the DRB are shown in Table 4. 
The monthly runoff data from the Jiabao Station from 1969 to 1979 was used as the calibration period for the 
model, while the monthly runoff data from 1980 to 1989 was used as the validation period. The final calibration 
results show R2 is 0.85, ENS is 0.84, while the validation results indicate R2 is 0.86, ENS is 0.83, demonstrating 
excellent model simulation performance that meets the required accuracy for this study.

Response of runoff to future climate change
The statistical analysis of climate series, derived from the downscaling of the EC-Earth3-Veg climate model of 
various scenarios is conducted. The Mann Kendall (MK) trend analysis reveals an increasing trend in historical 
precipitation patterns. However, under the SSP2-4.5 scenario, the future (2021–2060) shows a statistically 
insignificant decrease in precipitation trends. Conversely, the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5 
exhibit an upward trend in precipitation changes. Notably, SSP5-8.5 demonstrates a significant increase trend 
(P < 0.01) (Fig. S1).

The findings indicate a decrease in precipitation during the middle future (2041–2060) under the SSP3-
7.0 scenario compared to the historical period, while an increase in precipitation is projected for the future 
periods (2021–2060) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The annual average precipitation 
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios increased by 141.59 mm, 157.43 mm, 9.84 mm, 
and 320.78 mm respectively compared to the historical period in the years 2021–2060 (Fig. 4A). The annual 
precipitation amounts will show SSP5-8.5 > SSP2-4.5 > SSP1-2.6 > SSP3-7.0 in different periods in the future 
(Table 5; Fig. 4A–C). The test results indicate a progressive widening trend in the disparities among various 
climate scenarios over time (Fig. 4B and C).

The intra-annual precipitation in the four future climate scenarios demonstrates a tendency towards 
increased precipitation during wet season (May–October) and decreased precipitation during dry season 

Ranking of Parametric Sensitivity Designation of Parameter t-stat P-Value Min value Max value Fitted value

1 R_CN2.mgt 32.61 0.00 − 0.20 0.20 − 0.13

2 R_SOL_K.sol − 15.42 0.00 − 0.80 0.80 − 0.78

3 V_ALPHA_BF.gw 8.13 0.00 0.00 1.00 0.23

4 V_GWQMN.gw − 4.00 0.00 0.00 5000.00 1665.00

5 V_CH_N2.rte − 2.05 0.04 − 0.01 0.30 0.15

6 R_SOL_AWC.sol − 1.88 0.06 − 0.20 0.40 − 0.19

7 V_GW_REVAP.gw 1.55 0.12 0.02 0.20 0.16

8 V_RCHRG_DP.gw − 1.45 0.15 0.00 1.00 0.30

9 V_CANMX.hru − 0.89 0.38 0.00 100.00 53.50

10 V_GW_DELAY.gw 0.88 0.38 0.00 500.00 367.40

11 V_CH_K2.rte − 0.41 0.68 − 0.01 500.00 83.63

12 V_ESCO.hru 0.29 0.77 0.00 1.00 0.47

13 V_REVAPMN.gw 0.04 0.97 0.00 500.00 0.01

Table 4.  Sensitivity analysis of runoff parameters in the DRB. V− means the parameter value is to be replaced 
by the given value; R-means the parameter value is multiplied by (1 + a given value).

 

Classify

Indicator

R2 ENS

Precipitation 0.516 0.521

Maximum temperature 0.778 0.783

Minimum temperature 0.856 0.857

Table 3.  Validation of downscaling results for GCMs.
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(November–April), when compared to historical periods (Fig.  5). The annual precipitation in the historical 
period is characterized by a distribution of 73.98% during the wet season and 26.02% during the dry season. The 
wet season precipitation of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 accounts for 80.27%, 81.97%, 79.47%, 
and 80.44% of the annual precipitation respectively, while the dry season contributes to 19.73%, 18.03%, 20.53%, 
and 19.56% respectively. Compared to historical periods, future winter and spring precipitation will decrease, 
while summer and autumn precipitation will increase.

The MK trend analysis of annual average temperature under the four future climate scenarios from 2021 
to 2060 reveals a statistically significant increasing trend (P < 0.05). Specifically, the temperature exhibits an 
upward trend in SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 with rates of 0.24 °C/(10 years), 0.36 °C/(10 years), 
0.36 °C/(10 years), and 0.50 °C/(10 years) respectively (Fig. S2). Compared to the historical average temperature 

Time

Scenario

Historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

1999–2018 2446.77 – – – –

2021–2040 – 2603.40 2611.60 2511.32 2619.57

2041–2060 – 2573.33 2596.80 2414.06 2915.53

2021–2060 – 2588.36 2604.20 2456.61 2767.55

Table 5.  Variations in annual precipitation under diverse climate scenarios across different temporal periods 
(mm).

 

Fig. 4.  Box plots depicting precipitation, temperature, and runoff across various climate models during 
different time periods. (A: Precipitation for 2021–2060; B: Precipitation for 2021–2040; C: Precipitation for 
2041–2060; D: Temperature for 2021–2060; E: Temperature for 2021–2040; F: Temperature for 2041–2060; G: 
Runoff under climate impact for 2021–2060; H: Runoff under climate impact for 2021–2040; I: Runoff under 
climate impact for 2041–2060; J: Combined impact of climate change and land use change on runoff for 2021–
2060; K: Combined impact of climate change and land use change on runoff for 2021–2040; L: Combined 
impact of climate change and land use change on runoff for 2041–2060).
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of 24.22 °C, the projected average temperature increase is estimated to be 1.39 °C, 1.34 °C, 1.28 °C, and 1.51 °C 
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios in the future (2021–2060) (Fig.  4D). The 
projected temperature increases for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the middle future are 1.39, 
1.65, 2.10, and 1.98 times higher than the corresponding near future increases (Fig. 4E,F).

Figure 3A illustrates the trend of intra-annual monthly average temperature change across different climate 
scenarios from 2021 to 2060. In comparison with the historical period, a significant increase in monthly average 
temperature is anticipated for all four future climate scenarios, and the overall pattern of change remains 
consistent. The trends in the monthly average temperature for both the near and middle periods of intra-annual 
also exhibit similar change patterns (Fig. S3BC).

The SWAT model is employed to assess the response of runoff to future changing environments by integrating 
different land use and climate data combination scenario datasets. By comparing the simulation results of runoff 
changes under scenarios S0 and S1, we can quantitatively assess the characteristics of future climate-induced 
alterations in runoff. The MK test results indicate an increasing trend in runoff changes under the future 
climate scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, which the scenarios of SSP5-8.5 reaches a very 
significant level (P < 0.01) (Fig. S4).

The annual average runoff under S1, compared to S0, exhibits temporal inconsistency in both the near future 
(2021–2040) and the middle future (2041–2060), across the four future climate scenarios (Fig. S4; Fig. 4G–I). The 
runoff under the SSP1-2.6 climate scenario exhibits a marginal increase of 0.16% in the near future compared 
to S0, while experiencing a notable decrease of − 3.68% in the middle future. Under the SSP2-4.5 and SSP5-8.5 
scenarios of S1, the runoff in the near and middle future exhibited increases of 1.67%, 0.86%, 3.31%, and 17.78% 
compared to S0, respectively (Table 6). The runoff of SSP3-7.0 exhibits a reduction in the near and middle future, 
with a declining ratio of − 3.71% and − 7.24% respectively, when compared to S0 (Table 6).

Impact of land use change on runoff
According to the comprehensive analysis of land use in the DRB in 2018, artificial forests, natural forests, and 
cultivated lands constitute the primary land uses, accounting for 57.64%, 19.92%, and 14.79% respectively. The 
proportions of water bodies and construction land are relatively smaller at 6.29% and 1.36% respectively. The 
land use change maps of the DRB for the future years 2032 and 2046 were derived using the CA-Markov model 

Fig. 5.  Distribution pattern of intra-annual precipitation under different climate scenarios in different periods 
(A: 2021–2060; B: 2021–2040; C: 2041–2060).
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(Fig. 6). The land use in 2032 is projected to witness a marginal increase of 0.13% for water bodies, 0.34% for 
construction land, and a substantial growth of 4.10% for cultivated land compared to the base period of 2018. 
Conversely, artificial forest and natural forest are anticipated to experience reductions of − 4.45% and − 0.12%, 
respectively. By 2046, this changing trend will be further intensified. Compared with the base period of 2018, 
there will be a projected increase in the area of water bodies (0.33%), construction land (0.78%), and cultivated 
land (4.41%). Conversely, there is expected to be a decrease in the area of artificial forest (− 5.39%) and natural 
forest (− 0.13%) respectively (Table 7).

The impact of land use change on runoff can be quantified by comparing S2 with S0 through SWAT model 
simulation. The findings indicate that land use change is projected to result in a 0.51% increase in annual average 
runoff by 2032, followed by a further rise of 0.66% by 2046. Comparing S1 and S3, the impact of future land use 
change on runoff can be assessed under the future four different climate scenarios. The findings reveal that, in 
the near future, runoff is projected to increase by 0.32%, 0.31%, 0.60%, and 0.33% respectively for SSP1-2.6, 

Land use

Time

Historical scenario Future scenarios

2018 2032 2046

Water 72.27 (6.29%) 73.77 (6.42%) 76.06 (6.62%)

Construction 
land 15.63 (1.36%) 19.53 (1.70%) 24.59 (2.14%)

Cultivated land 169.94 (14.79%) 217.05 (18.89%) 220.61 (19.20%)

Artificial forest 662.28 (57.64%) 611.15 (53.19%) 600.35 (52.25%)

Natural forest 228.88 (19.92%) 227.50 (19.80%) 227.39 (19.79%)

Table 7.  Land use composition across different time periods in the Dingan River Basin (km2). The numbers 
in the parentheses in the table represent the proportion of each land use type in relation to the total watershed 
area.

 

Fig. 6.  Simulation diagram depicting land use change in the Dingan River Basin for 2032 and 2046. The maps 
were created by the authors using ArcGIS 10.2 (Environmental Systems Research Institute, USA; ​h​t​t​p​s​:​/​/​w​w​w​.​
e​s​r​i​.​c​o​m​/​​​​​)​.​​​​

 

Scenario

Time

2021–2040 2041–2060

Simulation value
(m3/s)

Change value
(m3/s)

Rate of change
(%)

Simulation value
(m3/s)

Change value
(m3/s)

Rate of change
(%)

S0 53.35 – – 53.35 – –

S1_SSP1-2.6 53.44 0.09 0.16 51.39 − 1.96 − 3.68

S1_SSP2-4.5 54.24 0.89 1.67 53.81 0.46 0.86

S1_SSP3-7.0 51.37 − 1.98 − 3.71 49.49 − 3.86 − 7.24

S1_SSP5-8.5 55.12 1.77 3.31 62.84 9.49 17.78

Table 6.  Annual average runoffs under diverse climate scenarios across different time periods.
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SSP2-4.5, SSP3-7.0, and SSP5-8.5 compared to the land use conditions in 2018. The runoff under the 2046 land 
use exhibits an increase of 0.46%, 0.43%, 3.76%, and 0.39% when compared to the corresponding values in the 
2018 land use scenario for the middle future projections of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 climate 
scenarios respectively.

Integrated impacts of climate change and land use on runoff
The inter-annual variation of runoff
Implement scenario S3 to comprehensively analyze the integrated impact of climate and land use changes on 
runoff, considering variations in both climatic conditions and land use patterns. The MK change trend test 
reveals that the statistical Z values for the four climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) 
are 0.221, 0.058, 0.384, and 3.041 respectively. This suggests that all four climate scenarios exhibit an increasing 
trend in future runoff changes (Fig. S5); notably, the increasing trend under the SSP5-8.5 scenario reaches a 
highly significant level (P < 0.01). In comparison to S0, the SSP1-2.6 scenarios under S3 exhibit a 0.49% increase 
in runoff in the near future, whereas a − 3.24% decrease in runoff is observed in the middle future. Compared 
with S0 scenario, SSP2-4.5 and SSP5-8.5 under S3 scenario will increase runoff by 1.98% and 3.65% in the near 
future, and by 1.30% and 18.24% in the middle future, respectively (Fig. 4J–L). The noteworthy point is that 
SSP3-7.0, under S3 scenario in both the near and middle future, exhibits a reduction in runoff with rates of 
− 3.13% and − 3.75%, respectively (Fig. 4J–L; Table 8).

The intra-annual variation of runoff
The combined influence of climate change and land use change has resulted in significant alterations to the 
intra-annual runoff distribution pattern, characterized by an early peak and a more concentrated distribution 
during the wet season (May to October) (Fig. 7). Compared to the intra-annual precipitation distribution, the 
intra-annual variation of runoff exhibited an average one-month lag during the historical period (1999–2018). 
However, this delay phenomenon is projected to diminish in the future (2021–2060) (Figs. 5 and 7). In the wet 
season, the runoff constituted 74.38%, 80.91%, 83.29%, 81.55%, and 81.77% of the total annual runoff under 
historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. The historical peak runoff is 
recorded in October, while the projected future peak runoff is anticipated in September, indicating a trend 
towards earlier occurrences of future peak runoff. The peak runoff of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios in the period 2021–2060 exhibited respective increases of 32.43 m3/s, 58.53 m3/s, 29.37 m3/s, and 
79.74 m3/s compared to the historical period. In the near future projections, these increases are projected to be 
42.82 m3/s, 49.20 m3/s, 23.64 m3/s, and 65.74 m3/s respectively; while in the middle future projections they are 
expected to reach values of 22.04 m3/s, 67 0.85 m3/s, 35 0.09 m3/s, and 93 0.75 m3/s respectively.

Discussion
Impact of climate change and land use change on future runoff in DRB
The future runoff of the DRB exhibits an overall increasing trend under the combined influence of climate change 
and land use change, which aligns with the findings of previous studies56–60. The change in runoff serves as a 
comprehensive reflection of anticipated increases in precipitation, rising temperatures, and the fragmentation of 
land use. The alteration in precipitation directly influences the spatial distribution of runoff and the overall water 
resources8,9,19,61,62. The DRB is located in a tropical region characterized by abundant precipitation, elevated 
soil moisture content, and runoff generation driven by saturation excess, resulting in a lower threshold for the 
transition from precipitation to runoff63,64. Compared to the average annual precipitation measured during the 
base period, future precipitation exhibited significant increases. The increase in precipitation is expected to 
induce significant changes in surface runoff over a relatively short timeframe. The variation in temperature is a 
significant hallmark of climate change, and its impact on runoff must not be overlooked. The phenomenon of 
global warming has been corroborated by an abundance of research findings in recent years65–67. The increase 
in temperature will directly augment surface evaporation, while vegetation transpiration is expected to show an 
initial rise followed by a subsequent decline12,13,15. These changes will undoubtedly exert a substantial influence 
on future runoff dynamics.

Land use change serves as a pivotal indicator of human activities8,68. In contrast to the impact of climate 
change on runoff during the generation stage, land use change primarily influences runoff concentration during 
subsequent stages20. Different land use types exhibit varying infiltration and absorption effects on precipitation, 
leading to diverse runoff yields23,48. The rich biodiversity of forests, along with the interception of precipitation 

Scenario

Land use

2032 2046

Simulation value
(m3/s)

Change value 
(m3/s)

Rate of change
(%)

Simulation value
(m3/s)

Change value
(m3/s)

Rate of change
(%)

S0 53.35 – – 53.35 – –

S3_SSP1-2.6 53.61 0.26 0.49 51.62 − 1.73 − 3.24

S3_SSP2-4.5 54.41 1.06 1.98 54.04 0.69 1.30

S3_SSP3-7.0 51.68 − 1.67 − 3.13 51.35 − 2.00 − 3.75

S3_SSP5-8.5 55.30 1.95 3.65 63.08 9.73 18.24

Table 8.  The combined impacts of land use and climate change on runoff.
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by tree canopies and understory vegetation, enhances their substantial water conservation capacity69,70. The 
water conservation capacity of cultivated land is relatively limited due to significant human disturbance and 
a homogeneous vegetation cover71,72. Within the integrated effects of climate change and land use change on 
runoff, future land use alterations significantly enhance the generation of runoff. For example, compared with 
scenario S0, in scenario S1, climate change contributes to an increase in runoff of 3.31% and 17.78% for SSP5-8.5 
in the near and middle future, respectively. While, in scenario S3, the combined impacts of climate change and 
land use change result in an increase in runoff of 3.65% and 18.24% in the near and middle future, respectively. 
The findings from the land use analysis conducted in 2032 and 2046 reveal a persistent decline in forested 
areas, accompanied by a continuous expansion of both cultivated and constructed lands (Fig. 6; Table 7). This 
phenomenon may elucidate the persistent enhancement of DRB runoff associated with land use change. In 
the DRB region, the impact of land use on runoff is relatively limited. This may be associated with the elevated 
soil moisture content in tropical regions64. Conversely, changes in land use within arid regions constitute the 
primary factor affecting runoff variations, thereby reinforcing our hypothesis3,73. This indicates that runoff 
alterations display distinct patterns across different precipitation regions, while the impact of regional land use 
characteristics on runoff changes exhibits considerable variability.

Attribution analysis of future climate and land use change
Climate change and land use change are highly complex and interconnected evolutionary processes. As global 
warming intensifies, a range of profound changes is emerging within the atmospheric system13,15,58–60,74. 
Precipitation and temperature variations are critical meteorological variables that can be easily monitored and 
analyzed, supported by a substantial repository of historical observational data accumulated by humans3,24,75,76. 
Numerous studies have demonstrated that human activities represent a critical factor in driving global 
warming13,51,59,60,74,77. As temperatures rise, surface transpiration intensifies, thereby increasing precipitation; 
however, the simultaneous occurrence of both precipitation and transpiration contributes to a reduction in 

Fig. 7.  The impact of different land use and climate change combinations on the distribution of intra-annual 
runoff. (A: 2018 land use + 2021–2060 climate scenarios; B: 2018 land use + 2021–2040 climate scenarios; C: 
2018 land use + 2041–2060 climate scenarios; D: 2032 land use + 2021–2060 climate scenarios; E: 2032 land 
use   + 2021–2040 climate scenarios; F: 2032 land use + 2041–2060 climate scenarios; G: 2046 land use + 2021–
2060 climate scenarios; H: 2046 land use + 2021–2040 climate scenarios; I: 2046 land use + 2041–2060 climate 
scenarios).
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temperature. The interplay between water and heat exchange via precipitation and temperature also influences 
regional geomorphological features, resulting in corresponding changes in land use23,56,78.

The uneven distribution of water and heat has led to the delineation of temperature zones globally, resulting in 
distinct geomorphic features and vegetation cover characteristics77,79,80. The melting of glaciers driven by global 
warming results in rising sea levels, thereby directly affecting the spatial distribution of land and water81,82. The 
transformation of land use is driven by the combined effects of climate and human activities, with anthropogenic 
interventions introducing greater complexity to these changes. Our study indicates that the trend of runoff is 
experiencing a significant increase under the influence of future climate conditions, with average increases of 
1.43% and 7.72% in runoff projected for the near and middle future, respectively, compared to the base period. 
Additionally, land use changes are expected to contribute an increase of 0.41% and 1.14% to runoff in the near 
and middle futures, respectively. Under the combined effects of future climate change and land use changes, 
runoff is anticipated to rise by 2.99% and 12.55% in the near and middle futures, respectively. This may be 
associated with a substantial increase in projected future precipitation, along with a decrease in forested areas 
and the expansion of cultivated and construction land. This is consistent with the results of previous studies56,83. 
Future changes in climate and land use patterns are expected to significantly influence the existing hydrological 
and thermal balance at the surface, potentially leading to substantial impacts on regional climate and hydrology; 
thus, it is essential to continue conducting regional hydrological research.

Model uncertainty analysis
Understanding and analyzing the uncertainties associated with a model can improve the reliability of simulation 
results. In our research, rigorous criteria are employed for model calibration and validation to improve the precision 
of simulation results. The uncertainty in global climate model data primarily stems from the projections of future 
greenhouse gas emission scenarios and the forced responses of climate models to atmospheric emissions84. In 
this study, we utilized EC-Earth3-Veg, which has been empirically validated in a series of investigations as 
reliable simulation tool for future climate change projections39–43. While a single GCM’s projections may exhibit 
certain advantages in capturing the amplitude of observed multi-decadal precipitation variability, its associated 
uncertainty could be greater when compared to an ensemble of multiple GCMs36,85. Fortunately, the comparison 
of downscaled historical data from EC-Earth3-Veg for the period 1967–2014 with observed meteorological 
data from the DRB indicates that both R² and ENS values exceed 0.5, demonstrating a high level of simulation 
accuracy in the EC-Earth3-Veg dataset, thereby satisfying the criteria for model simulation51. While the CA-
Markov model predicts future land use changes, it does not fully account for the extent to which future human 
activities will shape land use44–46. To mitigate the uncertain impacts of human activities on future land use 
within the CA-Markov model, we performed a comparative analysis between the simulated data for 2018 and 
actual observed data, resulting in a Kappa coefficient of 0.776. This indicates a strong simulation performance 
and demonstrates adherence to the model’s accuracy requirements.

The SWAT model is a semi-distributed hydrological model that integrates specific physical processes. However, 
the simulation results may be influenced by uncertainty arising from the stringent accuracy requirements for 
driving data and the numerous model parameters86,87. In response to this, we conducted a sensitivity analysis 
on the parameters related to runoff simulation in the SWAT model using SWAT-CUP and evaluated their 
sensitivity through the T-test method. The inevitability of model uncertainty presents a challenge; however, 
we can utilize systematic verification methods to confine the error within an acceptable range. In the future, 
given the escalating complexity of environmental changes arising from human-land interactions, it is essential 
to persist in investigating model uncertainty.

Conclusion
In this study, we employed the downscaling technique to examine various scenarios of the EC-Earth3-Veg climate 
model within the framework of CMIP6. Furthermore, we integrate the predictive outcomes of the CA-Markov 
model for future land use changes to collaboratively drive the SWAT model and assess potential variations in 
future runoff within the DRB. The key findings are as follows:

	(1)	�  In the future (2021–2060), precipitation in the DRB is projected to exhibit an increasing trend under sce-
narios SSP1-2.6, SSP3-7.0, and SSP5-8.5, whereas a declining trend is anticipated in scenario SSP2-4.5. In 
comparison to the historical period, a decreasing trend in spring and winter precipitation is evident, while 
an increasing trend is observed in summer and autumn. The temperature across all four climate scenarios 
demonstrates a statistically significant increasing trend (P < 0.05). Specifically, the projected rate of tem-
perature increase for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 is estimated to be 0.24 °C/(10 years), 0.36 
°C/(10 years), 0.36 °C/(10 years), and 0.50 °C/(10 years) respectively. The monthly temperature variation 
exhibits consistent patterns across different scenarios.

	(2)	� The predominant land uses included artificial forests, natural forests, and cultivated lands, which accounted 
for 57.64%, 19.92%, and 14.79% respectively. As a result of the progressive intensification of human activ-
ities and stringent governmental protection measures for natural forests, the changes in artificial forests, 
natural forests, and cultivated lands by 2032 were recorded as − 4.45%, − 0.12%, and 4.10% respectively; 
whereas by 2046, these changes were noted as − 5.39%, − 0.13%, and 4.41% respectively.

	(3)	� The comparison of scenarios S1, S2, and S3 indicates that the combined effects of climate change and land 
use in the DRB significantly amplify runoff generation. While land use change consistently facilitates runoff, 
its influence remains limited. Climate change emerges as the primary driver of changes in runoff patterns. 
In the future, the cumulative effects of climate change and land use change on runoff variations will persis-
tently intensify. The temporal distribution of future runoff is shifted forward by one month relative to the 
historical period, exhibiting a greater degree of concentration during the wet season. In comparison to the 
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historical period, the projected scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 indicate an expect-
ed increase in runoff during the wet season of 6.53%, 8.91%, 7.17%, and 7.39% respectively.

The research findings enhance the understanding of hydrological processes related to runoff in tropical 
deforestation areas under various future climate scenarios and land-use change patterns. These findings can 
serve as a valuable reference for future flood prevention, drought mitigation, and water resource management 
in the DRB. Furthermore, they hold significant implications for water resource management in similar basins.

Data availability
Relevant data during the current study are available from the corresponding author on reasonable request.
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