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Effects of future climate and land
use changes on runoff in tropical
regions of China

Shiyu Xue%, Xiaohui Guo™*, Yanhu He?, Hao Cai', Jun Li%, Lirong Zhu? & Changging Yel4**

Climate change and human activities are the primary drivers influencing changes in runoff dynamics.
However, current understanding of future hydrological processes under scenarios of gradual climate
change and escalating human activities remains uncertain, particularly in tropical regions affected by
deforestation. Based on this, we employed the SWAT model coupled with the near future (2021-2040)
and middle future (2041-2060) global climate models (GCMs) under four shared socioeconomic
pathways (SSP1-2.6 (SSP1 + RCP2.6), SSP2-4.5 (SSP2 + RCP4.5), SSP3-7.0 (SSP3 + RCP7.0),

and SSP5-8.5 (SSP5 + RCP8.5)) from the CMIP6 and the CA-Markov model to evaluate the runoff
response to future environmental changes in the Dingan River Basin (DRB). The quantification of the
impacts of climate change and land use change on future runoff changes was conducted. The results
revealed a non-significant increasing trend in precipitation during the historical period (1999-2018).
Furthermore, all three future scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) exhibited an upward trend
in precipitation from 2021 to 2060. Notably, the SSP5-8.5 scenario demonstrated a highly significant
increase (P <0.01), while the SSP2-4.5 scenario displayed a non-significant decreasing trend. The
future precipitation pattern exhibits a decrease during spring and winter, while showing an increase
in summer and autumn. The temperature exhibited a significant increase (P < 0.05) across the four
future scenarios, with amplitudes of 0.24 °C/(10 years), 0.36 °C/(10 years), 0.36 °C/(10 years), and
0.50 °C/(10 years) for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 respectively. The future trend

of land use change entails a continuous increase in cultivated land and a corresponding decrease in
artificial forest land. By 2032, the area of cultivated land is projected to witness a growth of 4.10%,
while artificial forest coverage will experience a decline of 4.45%. Furthermore, by 2046, the extent
of cultivated land is anticipated to expand by 4.41%, accompanied by a reduction in artificial forest
cover amounting to 5.39%. The average annual runoff during the historical period was 53.35 m3/s,
and the Mann-Kendall (MK) trend test showed that it exhibited a non-significant increasing trend.
Compared with the historical period, the comprehensive impact of climate change and land use will
cause changes in the runoff by 0.49%, 1.98%, — 3.13%, and 3.65% for the scenarios of SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the near future, and —3.24%, 1.30%, —3.75% and 18.24% in
the middle future respectively. The intra-annual variations in future runoff suggest an earlier peak
and a more concentrated distribution of runoff during the wet season (May to October). Compared to
historical periods, the total runoff in the wet season under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios increased by 6.53%, 8.91%, 7.17%, and 7.39%, respectively. The research findings offer
significant insights into the future hydrological processes in tropical regions, while also serving as a
valuable reference for watershed water resource management and disaster control.
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Climate change and land use change are the main drivers of runoff change'*. Runoff changes are intricately
linked to human life, influencing multiple dimensions of daily activities, agricultural production, and industrial
development. As of 2022, the global population has reached 8 billion, and the ongoing population growth is
intensifying climate change and alterations in land use®. Human activities have intensified the emission of
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greenhouse gases, thereby further accelerating the trend of global climate change. For example, global warming
may lead to an increase in precipitation and enhanced atmospheric evaporation, consequently increasing and
decreasing runoff, respectively>®’. Precipitation directly influences the volume and distribution patterns of
runoff, serving as a significant source of runoff**. Climate change has also altered vegetation’s water utilization
strategies. Increasing temperatures disrupt the growth cycle of plants, leading to an acceleration in respiration
and transpiration processes, thereby modifying their capacity for water absorption'®~2, The increase in CO,
concentration can induce atmospheric warming through direct radiative forcing, potentially resulting in increased
precipitation and enhanced atmospheric evaporation, thereby augmenting and diminishing runoff, respectively”.
Additionally, the elevation of CO, may lead to a reduction in stomatal conductance and transpiration rates of
plants, consequently contributing to an increase in runoff'>-1°. Singh, et al.” study indicates that the average
annual runoff of the Sutlej River, India, is projected to increase by 0.79-1.43% under the SSP585 scenario during
the period from 2050 to 2080, whereas an increase of 0.87-1.10% is anticipated under the SSP245 scenario.
Shrestha et al.’® research conducted in the Songkhram River basin, Thailand, indicates that climate change is
projected to lead to a reduction in streamflow of 19.5% and 24% under the RCP4.5 and RCP8.5 scenarios,
respectively, for the period from 2010 to 2099. This suggests that there is a high level of uncertainty regarding
the impact of future climate change on runoff, and significant differences exist in the region’s hydrological
responses; therefore, it is essential to conduct comprehensive research on the regional hydrological response to
future climate change.

Human activities are progressively emerging as the primary driving force influencing land use. The exponential
growth in population has resulted in an escalating demand for agricultural land. The research findings indicate
that agricultural irrigation water accounts for approximately 70% of the global freshwater resources'’~'?. The
construction of reservoirs and dams, as well as the rapid increase in domestic water consumption resulting from
urbanization, have directly influenced surface runoff®. Yu et al.?! research conducted in the northwest region
of China indicates that the “Grain for Green” accounts for 49.6% of the observed reduction in runoff. A study
conducted in Uruguay indicates that when the area of afforested land reaches approximately 15% of the total
watershed area, there is a significant reduction in runoff?2. Studies have shown that land use change contributes
to an increase in global runoff by 73-81% . This unequivocally demonstrates that the influence of land use
change on runoff is significant and should not be overlooked.

The hydrological response to environmental changes has been extensively investigated by scholars through
rigorous research?*-30. However, some studies exhibit limitations in the selection and processing of climate and
land use data, resulting in a comparatively higher degree of uncertainty in the research findings. For example,
by simply increasing or decreasing temperature and precipitation, simulate future climate change!*"*2. Utilizing
extreme land use conversion scenarios to examine the effects of future land use change on runoff, such as
complete transformation of all cropland into grassland and all wasteland into forest>*3. The aforementioned
methods provide a structured approach for quantifying the impacts of future climate and land use changes on
runoff; however, considering the inherent complexities and variability of climate, along with the substantial
disturbances induced by human activities, this research methodology is clearly inadequate. Moreover, research
that integrates future climate change and land use change to forecast future runoff variations remains relatively
limited, particularly in regions experiencing tropical deforestation.

Ding’an River serves as a vital water source in Hainan Province, playing a critical role in regional ecological
balance and economic development. In recent years, the river basin has experienced frequent conversions from
natural forests to rubber plantations, resulting in a noticeable decline in runoff**. Accurate prediction of the
effects of future climate change and land use alterations on runoff is essential for mitigating the adverse impacts
associated with climate variability, including droughts, floods, and the degradation of ecosystem goods and
services. Based on this, we employed the SWAT model in conjunction with GCMs and the CA-Markov model
to simulate the response patterns of runoff in the DRB to future climate change and land use changes from 2021
to 2060. The impacts of future climate change and land use change on runoff were analyzed both independently
and in conjunction. The research findings offer empirical support and a reference framework for water resources
planning, management, and sustainable development in the background of future environmental changes.

Materials and methods

Study area and relevant data

Study area

The Dingan River Basin (DRB) serves as the northern tributary of the Wanquan River, originating from
Fengmenling in Qiongzhong county (Fig. 1). It spans a total length of 88 km and encompasses a drainage
area measuring 1149 km? The DRB is situated within the tropical monsoon region, experiencing an annual
precipitation of 2453 mm. The distinct wet season (May-October) and dry season (November—April) are evident.

Database

The precipitation, wind speed, maximum and minimum temperatures, light duration, and relative humidity
daily data spanning from 1960 to 2018 were sourced from the Hainan Provincial Meteorological Bureau and
the China Meteorological Service Center. The daily runoft data of the Jiabao hydrological station spanning from
1967 to 2016 was acquired from the Water Affairs Department of Hainan Province.

The daily precipitation, minimum temperature, and maximum temperature global climate scenario data
(historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-5.8) of 1960-2060 are from the EC-Earth3-Veg in the CMIP6
models provided by the World Climate Research Program (WCRP) official website (https://esgf-node.llnl.gov
/search/cmip6). We selected EC-Earth3-Veg for this study primarily because multi-climate ensemble means
generally demonstrate limited effectiveness in capturing the amplitude of observed multi-decadal precipitation
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Fig. 1. Diagram of Dingan River Basin and hydrometeorological monitoring stations. The maps were created
by the authors using ArcGIS 10.2 (Environmental Systems Research Institute, USA; https://www.esri.com/).
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Fig. 2. Schematic representation of the research framework.

variability*>-3. Furthermore, EC-Earth3-Veg has undergone extensive validation through numerous studies,
confirming its high accuracy in simulating future climate scenarios**3.

The primary research framework of this study is illustrated in Fig. 2. The land use data of 1990, 2004, and
2018 were acquired by interpreting remote sensing images from the Geospatial Data Cloud Website (https://ww
w.gscloud.cn/#pagel/3) using ENVI software at a spatial resolution of 30 m x 30 m (Fig. 3). The road data within
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Fig. 3. Observation and simulation results of land use dynamics in the Dingan River Basin for the years 1990,
2004, and 2018. The maps were created by the authors using ArcGIS 10.2 (Environmental Systems Research
Institute, USA; https://www.esri.com/).

- . Elevation, overland and .

Digital Elevation Model 1:200,000 | - el slopes and lengths Geospatial Data Cloud

Land use 1:100,000 | Land use classifications, 1990, 2004, 2018 Geospatial data cloud

Soil properties 1:1000,000 | Soil physical and chemical properties Harmonized World Soil Database
Precipitation, wind speed, daily maximum Hainan Meteorological Bureau,

Climate data daily and minimum air temperature, relative humidity, and solar radiation, | China Meteorological Data Service
1960-2018 Centre

Runoff data daily Cross section runoff of Jiabao, 1967-2016 Hainan Water Resources Department

Future climate data daily historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-5.8, 1960-2060 EC-Earth3-Veg of CMIP6 in WCRP

Road data 1:100,000 | National, Provincial, County, and Township roads OpenStreetMap platform

Ecological protection red line | 1:100,000 | Protected area boundaries gaman Provincial People's

overnment
Slope data 1:200,000 | Slope of the terrain ArcGIS processes DEM

Table 1. Description of data and sources for research applications in the Dingan River Basin.

the watershed comes from the OpenStreetMap platform (https://www.Openstreetmap.org). The boundary data
of the ecological protection red line is sourced from the Hainan Provincial People’s Government, while the slope
data is derived through analysis of Digital Elevation Model (DEM) data using ArcGIS software. The DEM data
with a spatial resolution of 30 m X 30 m was obtained from the official website of the Geospatial Data Cloud
(https://www.gscloud.cn/). Table 1 presents a comprehensive overview of the data necessary for this study along
with their corresponding source information.
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Prediction of future climate change
Downscaling and correction of climate model data
The resolution of GCMs data is too coarse when directly applied to the Hydrological model for watershed-scale
research. Therefore, in this study, the statistical downscaling method known as Inverse Distance Weight (IDW)
interpolation is employed for spatially downsizing climate scenario data. Subsequently, the Delta method is
utilized for data correction.

The mathematical formulation of IDW is as follows:

Zo = Yoo (Z:iQi) ey

where Zj is the estimated value at point (XO, Yo)> Zl. is the observation value at point (Xi, yi), Q;is the weight
coefficient corresponding to the interpolation point and the observation point, and n is the number of
interpolation points.

__ $(de)
Qi ST () )

j=1

where Q, is the weight coefficient, dej is the distance between observation points and interpolation points, # is
the number of observation points.

fdes) = d% 3)

where, b is an appropriate constant. When the b value is 1 or 2, it is inverse distance reciprocal interpolation and
inverse distance reciprocal square interpolation.

The Delta method is simple, can simulate multiple stations at the same time, and can better simulate the
changes of temperature and precipitation, and is widely used. The specific formula is as follows:

Ty =To + (Tas — Tco) 4)

where, T, is the corrected air temperature, °C; Ta is the historical measured temperature, °C; TG is the future
temperature predicted by the climate model, and T, is the historical temperature simulated by the climate
model.

Py =Pyet )

where P, is the corrected precipitation, mm; P,is the historical measured precipitation, mm; P is the future
precipitation predicted by the climate model, and P, is the historical precipitation simulated by the climate

model.
Validation of climate simulation results

The correlation coefficient (R?) and the Nash-Sutcliffe efficiency (Eyg) coefficient are used to validate the
availability of model simulation results.

b zi;l" (oifé) (Pi713>

: : ©
2 (o-0) 1 ()

where O; is the observed data, 5 is the mean value of observed data, P, is the simulated data, and P is the mean

value of simulated data.

n 2
E i1 (Qsim,i—Qmea,i)

Ens=1-— = -
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(7)

-is the observed value, Q  is the mean observed data, and # is the total

mea, i

where Q. is the simulated value, Q

number of observations.

mea

Prediction of future land use

CA-Markov model

The CA-Markov model is a coupling model of the set Cellular Automata model and the Markov model. The
model integrates the simulation of complex spatial dynamics and a long-term prediction capability module,
making it widely applicable for simulating and predicting long-term changes in land use structure*4-%6.

Simulation steps
The simulation and prediction of land use are conducted using IDRISI 17.2 software, following the specific steps
outlined below.
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(1) Data preparation. The land use data (Fig. 3), DEM data, and slope data in the study area should be uni-
formly converted into ASCII format that is compatible with IDRISI software.

(2) 'The construction of the Markov Transfer Matrix. In IDRISI software, land use data is classified into five
categories: Water, Built, Farmland, Artificial forest, and Natural forest. The Markov module in the software
is executed to calculate the area and probability transfer matrix for two times intervals (1990-2004 and
2004-2018), with a land use data interval of 14 years. Additionally, a proportion error of 0.15 is set.

(3) Creation of suitability atlas. The “decision wizard” module of IDRISI software is utilized to generate the
suitability atlas, incorporating road distribution data, ecological protection red line data, DEM, and slope
data in the basin as constraint conditions for land use prediction to enhance the realism and rationality
of prediction outcomes. Ultimately, the land-use suitability atlas of the study area is constructed using the
“Collection Editor” module.

(4) Land use simulation. The CA-Markov model in IDRISI software was utilized for land use prediction, incor-
porating the actual land use situation in 2004, the transfer matrix from 1990 to 2004, and the constructed
suitability atlas as constraints. A selection of 5 5 filters was applied with automatic iteration performed 14
times to simulate the land use status of DRB in 2018. By utilizing the actual land use data from 2018 as a
reference for simulation, and incorporating the land use transfer matrix from 2004 to 2018, and suitability
atlas constructed as constraints, a 5% 5 filter was selected with automatic iteration performed 14 times to
simulate the future land use status in the DRB region by 2032. Similarly, employing the aforementioned
settings, after conducting 28 iterations, we can obtain the land use of the DRB by 2046.

Validation of land use simulation results
The effectiveness of the CA-Markov model simulation is assessed through the Kappa index, which is formulated
as follows:

k=B (8)

where P, is the probability value of comparison between actual land use and simulated land use; P, is the expected
value of the correct ratio of simulated land use. The Kappa value ranges from 0 to 1, with higher values indicating
a more favorable simulation effect.

SWAT model construction
The Soil and Water Assessment Tool (SWAT) model is a widely utilized semi-distributed hydrological and water
quality model, which operates on the fundamental principle of water balance”~*.

According to previous research on the DRB, the runoff underwent a significant transformation in 1990 as a
result of both climate change and human activities**. In order to avoid the influence of environmental changes
on the uncertainty of model parameters, the calibration and validation of the SWAT model were carried out
using data before the runoff abrupt change point. Therefore, the actual measured monthly scale runoff data
from Jiabao station from 1967 to 1968 was used as the warm-up period of the SWAT model, 1969-1979 as
the calibration period, and 1980-1989 as the validation period. Utilize R* (Eq. 6) and the E, (Eq. 7) for the
assessment of simulation outcomes derived from the SWAT model.

Scenarios setting

Four scenarios were set up based on different combinations of meteorological and land use data used to drive the
SWAT model, as shown in Table 2. In this study, we employ the land use of 2032 to represent the land use of the
near future (2021-2040), and the land use of 2046 to represent the land use of the middle future (2041-2060).

Results

Calibration and validation of model simulation results

Validation of downscaled data from GCMs

The R? and E,; metrics are employed to evaluate the suitability of downscaling climate data by comparing daily
precipitation and temperature measurements from the DRB dataset (1960-2014) with downscaled daily data
derived from the EC-Earth3-Veg Climate model. The closer the R* and E, ; values approach 1, the higher the
fidelity of model simulation. The validation results demonstrate that the R* and E, ¢ values for precipitation are
0.516 and 0.521, respectively. For maximum temperature, the R? and E,; values are 0.778 and 0.783, respectively;
while for minimum temperature, the R* and E, values are 0.856 and 0.857, respectively (Table 3). Several
factors, including complex topography and the influence of monsoons, may impact the accuracy of precipitation
forecasts®®. Fortunately, validation results indicate that the downscaled climate data yield satisfactory
performance®2,

Scenario | Climate scenario Land use scenario
S, 1999-2018 2018

S, 2021-2040, 2041-2060 | 2018

S, 1999-2018 2032, 2046

53 2021-2040, 2041-2060 | 2032, 2046

Table 2. Scenario setting for SWAT model-driven dataset.
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Indicator
Classify R? NS
Precipitation 0.516 | 0.521

Maximum temperature | 0.778 | 0.783

Minimum temperature | 0.856 | 0.857

Table 3. Validation of downscaling results for GCMs.

Ranking of Parametric Sensitivity | Designation of Parameter | t-stat | P-Value | Min value | Max value | Fitted value
1 R_CN2.mgt 32.61 | 0.00 -0.20 0.20 -0.13
2 R_SOL_K.sol —15.42 | 0.00 —0.80 0.80 -0.78
3 V_ALPHA_BFEgw 8.13 | 0.00 0.00 1.00 0.23
4 V_GWQMN.gw —4.00 | 0.00 0.00 5000.00 1665.00
5 V_CH_N2.rte —2.05 | 0.04 —0.01 0.30 0.15
6 R_SOL_AWC.sol —1.88 | 0.06 -0.20 0.40 -0.19
7 V_GW_REVAPgw 1.55 | 0.12 0.02 0.20 0.16
8 V_RCHRG_DP.gw —1.45 | 0.15 0.00 1.00 0.30
9 V_CANMXhru —0.89 | 0.38 0.00 100.00 53.50
10 V_GW_DELAY.gw 0.88 | 0.38 0.00 500.00 367.40
11 V_CH_K2.rte —0.41 | 0.68 —0.01 500.00 83.63
12 V_ESCO.hru 0.29 | 0.77 0.00 1.00 0.47
13 V_REVAPMN.gw 0.04 | 0.97 0.00 500.00 0.01

Table 4. Sensitivity analysis of runoff parameters in the DRB. V— means the parameter value is to be replaced
by the given value; R-means the parameter value is multiplied by (1 +a given value).

Validation of land use prediction results

We compared the actual land use data for 2018 with the CA-Markov simulated land use data for 2018 (Fig. 2). The
comparative analysis results show that the Kappa coefficient between the actual values and the simulated values
is 0.776, indicating that the simulation accuracy is high and meets the model simulation accuracy requirements.

Calibration and validation of SWAT model

The Soil and Water Assessment Tool Calibration Uncertainty Program (SWAT-CUP) is utilized for the calibration
and validation of the SWAT model, with the Nash-Sutcliffe efficiency (E,) as the objective function®>3%,
The SWAT-CUP program has been specifically developed to enhance the calibration efficiency of the SWAT
model?7*8%5, The Sequential Uncertainty Fitting version 2 (SUFI-2) program is chosen for specific operations
due to its relatively straightforward implementation, efficient running times, and commendable simulation
performance. The optimal parameter combination for the SWAT model was obtained through repeatedly
iterated by SWAT-CUP. The sensitivity analysis results of the runoff parameters in the DRB are shown in Table 4.
The monthly runoff data from the Jiabao Station from 1969 to 1979 was used as the calibration period for the
model, while the monthly runoft data from 1980 to 1989 was used as the validation period. The final calibration
results show R? is 0.85, Ey is 0.84, while the validation results indicate R? is 0.86, Ey is 0.83, demonstrating
excellent model simulation performance that meets the required accuracy for this study.

Response of runoff to future climate change

The statistical analysis of climate series, derived from the downscaling of the EC-Earth3-Veg climate model of
various scenarios is conducted. The Mann Kendall (MK) trend analysis reveals an increasing trend in historical
precipitation patterns. However, under the SSP2-4.5 scenario, the future (2021-2060) shows a statistically
insignificant decrease in precipitation trends. Conversely, the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5
exhibit an upward trend in precipitation changes. Notably, SSP5-8.5 demonstrates a significant increase trend
(P<0.01) (Fig. S1).

The findings indicate a decrease in precipitation during the middle future (2041-2060) under the SSP3-
7.0 scenario compared to the historical period, while an increase in precipitation is projected for the future
periods (2021-2060) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. The annual average precipitation
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios increased by 141.59 mm, 157.43 mm, 9.84 mm,
and 320.78 mm respectively compared to the historical period in the years 2021-2060 (Fig. 4A). The annual
precipitation amounts will show SSP5-8.5> SSP2-4.5> SSP1-2.6 > SSP3-7.0 in different periods in the future
(Table 5; Fig. 4A-C). The test results indicate a progressive widening trend in the disparities among various
climate scenarios over time (Fig. 4B and C).

The intra-annual precipitation in the four future climate scenarios demonstrates a tendency towards
increased precipitation during wet season (May-October) and decreased precipitation during dry season
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Fig. 4. Box plots depicting precipitation, temperature, and runoff across various climate models during
different time periods. (A: Precipitation for 2021-2060; B: Precipitation for 2021-2040; C: Precipitation for
2041-2060; D: Temperature for 2021-2060; E: Temperature for 2021-2040; F: Temperature for 2041-2060; G:
Runoft under climate impact for 2021-2060; H: Runoff under climate impact for 2021-2040; I: Runoff under
climate impact for 2041-2060; J: Combined impact of climate change and land use change on runoff for 2021-
2060; K: Combined impact of climate change and land use change on runoff for 2021-2040; L: Combined
impact of climate change and land use change on runoff for 2041-2060).

Scenario
Time Historical | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5
1999-2018 | 2446.77 - - - -
2021-2040 | - 2603.40 |2611.60 |2511.32 |2619.57
2041-2060 | - 2573.33 | 2596.80 |2414.06 |2915.53
2021-2060 | - 2588.36 | 2604.20 | 2456.61 | 2767.55

Table 5. Variations in annual precipitation under diverse climate scenarios across different temporal periods
(mm).

(November-April), when compared to historical periods (Fig. 5). The annual precipitation in the historical
period is characterized by a distribution of 73.98% during the wet season and 26.02% during the dry season. The
wet season precipitation of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 accounts for 80.27%, 81.97%, 79.47%,
and 80.44% of the annual precipitation respectively, while the dry season contributes to 19.73%, 18.03%, 20.53%,
and 19.56% respectively. Compared to historical periods, future winter and spring precipitation will decrease,
while summer and autumn precipitation will increase.

The MK trend analysis of annual average temperature under the four future climate scenarios from 2021
to 2060 reveals a statistically significant increasing trend (P <0.05). Specifically, the temperature exhibits an
upward trend in SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 with rates of 0.24 °C/(10 years), 0.36 °C/(10 years),
0.36 °C/(10 years), and 0.50 °C/(10 years) respectively (Fig. S2). Compared to the historical average temperature
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of 24.22 °C, the projected average temperature increase is estimated to be 1.39 °C, 1.34 °C, 1.28 °C, and 1.51 °C
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios in the future (2021-2060) (Fig. 4D). The
projected temperature increases for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the middle future are 1.39,
1.65, 2.10, and 1.98 times higher than the corresponding near future increases (Fig. 4E,F).

Figure 3A illustrates the trend of intra-annual monthly average temperature change across different climate
scenarios from 2021 to 2060. In comparison with the historical period, a significant increase in monthly average
temperature is anticipated for all four future climate scenarios, and the overall pattern of change remains
consistent. The trends in the monthly average temperature for both the near and middle periods of intra-annual
also exhibit similar change patterns (Fig. S3BC).

The SWAT model is employed to assess the response of runoft to future changing environments by integrating
different land use and climate data combination scenario datasets. By comparing the simulation results of runoff
changes under scenarios S and S, we can quantitatively assess the characteristics of future climate-induced
alterations in runoff. The MK test results indicate an increasing trend in runoff changes under the future
climate scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, which the scenarios of SSP5-8.5 reaches a very
significant level (P <0.01) (Fig. S4).

The annual average runoff under S,, compared to S, exhibits temporal inconsistency in both the near future
(2021-2040) and the middle future (2041-2060), across the four future climate scenarios (Fig. S4; Fig. 4G-I). The
runoff under the SSP1-2.6 climate scenario exhibits a marginal increase of 0.16% in the near future compared
to S, while experiencing a notable decrease of — 3.68% in the middle future. Under the SSP2-4.5 and SSP5-8.5
scenarios of S the runoff in the near and middle future exhibited increases of 1.67%, 0.86%, 3.31%, and 17.78%
compared to S, respectively (Table 6). The runoff of SSP3-7.0 exhibits a reduction in the near and middle future,
with a declining ratio of —3.71% and — 7.24% respectively, when compared to S (Table 6).

Impact of land use change on runoff

According to the comprehensive analysis of land use in the DRB in 2018, artificial forests, natural forests, and
cultivated lands constitute the primary land uses, accounting for 57.64%, 19.92%, and 14.79% respectively. The
proportions of water bodies and construction land are relatively smaller at 6.29% and 1.36% respectively. The
land use change maps of the DRB for the future years 2032 and 2046 were derived using the CA-Markov model
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S, 5335 - - 53.35 - -
S,_SSP1-2.6 | 53.44 0.09 0.16 5139 - 1.9 - 3.68
S,_SSP2-4.5 | 54.24 0.89 167 53.81 0.46 0.86
§,_SSP3-7.0 | 51.37 - 198 -3.71 49.49 ~3.86 -7.24
$,_SSP5-8.5 | 55.12 1.77 331 62.84 9.49 17.78

Table 6. Annual average runoffs under diverse climate scenarios across different time periods.

2032 A 2046 A

Legend Legend

- Water - Water
- Construction - Construction
- Cultivate - Cultivate

0 5 10 20 Kilometers [ Artificial forest 0 5 10 20 Kilometers [ Artificial forest
- Natural forest - Natural forest

Fig. 6. Simulation diagram depicting land use change in the Dingan River Basin for 2032 and 2046. The maps
were created by the authors using ArcGIS 10.2 (Environmental Systems Research Institute, USA; https://www.
esri.com/).

‘Water 72.27 (6.29%) 73.77 (6.42%) 76.06 (6.62%)
1(;3‘(‘13"““"“ 15.63 (1.36%) 19.53 (1.70%) | 24.59 (2.14%)
Cultivated land | 169.94 (14.79%) | 217.05 (18.89%) | 220.61 (19.20%)
Artificial forest | 662.28 (57.64%) 611.15(53.19%) | 600.35 (52.25%)
Natural forest 228.88 (19.92%) 227.50 (19.80%) | 227.39 (19.79%)

Table 7. Land use composition across different time periods in the Dingan River Basin (km?). The numbers
in the parentheses in the table represent the proportion of each land use type in relation to the total watershed
area.

(Fig. 6). The land use in 2032 is projected to witness a marginal increase of 0.13% for water bodies, 0.34% for
construction land, and a substantial growth of 4.10% for cultivated land compared to the base period of 2018.
Conversely, artificial forest and natural forest are anticipated to experience reductions of —4.45% and —0.12%,
respectively. By 2046, this changing trend will be further intensified. Compared with the base period of 2018,
there will be a projected increase in the area of water bodies (0.33%), construction land (0.78%), and cultivated
land (4.41%). Conversely, there is expected to be a decrease in the area of artificial forest (—5.39%) and natural
forest (—0.13%) respectively (Table 7).

The impact of land use change on runoff can be quantified by comparing S, with S; through SWAT model
simulation. The findings indicate that land use change is projected to result in a 0.51% increase in annual average
runoff by 2032, followed by a further rise of 0.66% by 2046. Comparing S, and S,, the impact of future land use
change on runoff can be assessed under the future four different climate scenarios. The findings reveal that, in
the near future, runoff is projected to increase by 0.32%, 0.31%, 0.60%, and 0.33% respectively for SSP1-2.6,
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SSP2-4.5, SSP3-7.0, and SSP5-8.5 compared to the land use conditions in 2018. The runoff under the 2046 land
use exhibits an increase of 0.46%, 0.43%, 3.76%, and 0.39% when compared to the corresponding values in the
2018 land use scenario for the middle future projections of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 climate
scenarios respectively.

Integrated impacts of climate change and land use on runoff

The inter-annual variation of runoff

Implement scenario S, to comprehensively analyze the integrated impact of climate and land use changes on
runoff, considering variations in both climatic conditions and land use patterns. The MK change trend test
reveals that the statistical Z values for the four climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
are 0.221, 0.058, 0.384, and 3.041 respectively. This suggests that all four climate scenarios exhibit an increasing
trend in future runoff changes (Fig. S5); notably, the increasing trend under the SSP5-8.5 scenario reaches a
highly significant level (P<0.01). In comparison to S, the SSP1-2.6 scenarios under S, exhibit a 0.49% increase
in runoff in the near future, whereas a —3.24% decrease in runoff is observed in the middle future. Compared
with S, scenario, SSP2-4.5 and SSP5-8.5 under S, scenario will increase runoff by 1.98% and 3.65% in the near
future, and by 1.30% and 18.24% in the middle future, respectively (Fig. 4]-L). The noteworthy point is that
SSP3-7.0, under S, scenario in both the near and middle future, exhibits a reduction in runoff with rates of
—3.13% and — 3.75%, respectively (Fig. 4J-L; Table 8).

The intra-annual variation of runoff

The combined influence of climate change and land use change has resulted in significant alterations to the
intra-annual runoft distribution pattern, characterized by an early peak and a more concentrated distribution
during the wet season (May to October) (Fig. 7). Compared to the intra-annual precipitation distribution, the
intra-annual variation of runoff exhibited an average one-month lag during the historical period (1999-2018).
However, this delay phenomenon is projected to diminish in the future (2021-2060) (Figs. 5 and 7). In the wet
season, the runoft constituted 74.38%, 80.91%, 83.29%, 81.55%, and 81.77% of the total annual runoff under
historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. The historical peak runoff is
recorded in October, while the projected future peak runoff is anticipated in September, indicating a trend
towards earlier occurrences of future peak runoff. The peak runoff of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5 scenarios in the period 2021-2060 exhibited respective increases of 32.43 m?3/s, 58.53 m3/s, 29.37 m>/s, and
79.74 m®/s compared to the historical period. In the near future projections, these increases are projected to be
42.82 m®/s, 49.20 m%/s, 23.64 m%/s, and 65.74 m¥/s respectively; while in the middle future projections they are
expected to reach values of 22.04 m?>/s, 67 0.85 m3/s, 35 0.09 m3/s, and 93 0.75 m?/s respectively.

Discussion

Impact of climate change and land use change on future runoff in DRB

The future runoff of the DRB exhibits an overall increasing trend under the combined influence of climate change
and land use change, which aligns with the findings of previous studies®**°. The change in runoff serves as a
comprehensive reflection of anticipated increases in precipitation, rising temperatures, and the fragmentation of
land use. The alteration in precipitation directly influences the spatial distribution of runoff and the overall water
resources®*1%6162_ The DRB is located in a tropical region characterized by abundant precipitation, elevated
soil moisture content, and runoff generation driven by saturation excess, resulting in a lower threshold for the
transition from precipitation to runoff®>*%. Compared to the average annual precipitation measured during the
base period, future precipitation exhibited significant increases. The increase in precipitation is expected to
induce significant changes in surface runoff over a relatively short timeframe. The variation in temperature is a
significant hallmark of climate change, and its impact on runoff must not be overlooked. The phenomenon of
global warming has been corroborated by an abundance of research findings in recent years®>-%’. The increase
in temperature will directly augment surface evaporation, while vegetation transpiration is expected to show an
initial rise followed by a subsequent decline!>!*1°. These changes will undoubtedly exert a substantial influence
on future runoff dynamics.

Land use change serves as a pivotal indicator of human activities®*®. In contrast to the impact of climate
change on runoft during the generation stage, land use change primarily influences runoff concentration during
subsequent stages®. Different land use types exhibit varying infiltration and absorption effects on precipitation,
leading to diverse runoff yields?**%. The rich biodiversity of forests, along with the interception of precipitation

Land use

2032 2046

Simulation value | Change value | Rate of change | Simulation value | Change value | Rate of change
Scenario (m>/s) (m>/s) (%) (m>/s) (m¥/s) (%)
S, 53.35 - - 53.35 - -
S, SSP1-2.6 | 53.61 0.26 0.49 51.62 -1.73 —3.24
S, SSP2-4.5 | 54.41 1.06 1.98 54.04 0.69 1.30
S, SSP3-7.0 | 51.68 - 1.67 -3.13 51.35 —2.00 —-3.75
Ss_SSPSfS.S 55.30 1.95 3.65 63.08 9.73 18.24

Table 8. The combined impacts of land use and climate change on runoft.
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Fig. 7. The impact of different land use and climate change combinations on the distribution of intra-annual
runoff. (A: 2018 land use +2021-2060 climate scenarios; B: 2018 land use 4+ 2021-2040 climate scenarios; C:
2018 land use +2041-2060 climate scenarios; D: 2032 land use +2021-2060 climate scenarios; E: 2032 land
use +2021-2040 climate scenarios; F: 2032 land use +2041-2060 climate scenarios; G: 2046 land use +2021-
2060 climate scenarios; H: 2046 land use +2021-2040 climate scenarios; I: 2046 land use +2041-2060 climate
scenarios).

by tree canopies and understory vegetation, enhances their substantial water conservation capacity®®’°. The
water conservation capacity of cultivated land is relatively limited due to significant human disturbance and
a homogeneous vegetation cover’'72. Within the integrated effects of climate change and land use change on
runoff, future land use alterations significantly enhance the generation of runoff. For example, compared with
scenario S, in scenario S,, climate change contributes to an increase in runoff of 3.31% and 17.78% for SSP5-8.5
in the near and middle future, respectively. While, in scenario S,, the combined impacts of climate change and
land use change result in an increase in runoft of 3.65% and 18.24% in the near and middle future, respectively.
The findings from the land use analysis conducted in 2032 and 2046 reveal a persistent decline in forested
areas, accompanied by a continuous expansion of both cultivated and constructed lands (Fig. 6; Table 7). This
phenomenon may elucidate the persistent enhancement of DRB runoft associated with land use change. In
the DRB region, the impact of land use on runoft is relatively limited. This may be associated with the elevated
soil moisture content in tropical regions®*. Conversely, changes in land use within arid regions constitute the
primary factor affecting runoff variations, thereby reinforcing our hypothesis>”>. This indicates that runoff
alterations display distinct patterns across different precipitation regions, while the impact of regional land use
characteristics on runoff changes exhibits considerable variability.

Attribution analysis of future climate and land use change

Climate change and land use change are highly complex and interconnected evolutionary processes. As global
warming intensifies, a range of profound changes is emerging within the atmospheric system!*1>38-60.74,
Precipitation and temperature variations are critical meteorological variables that can be easily monitored and
analyzed, supported by a substantial repository of historical observational data accumulated by humans>2+7>76,
Numerous studies have demonstrated that human activities represent a critical factor in driving global
warming!3°15%607477 " Ag temperatures rise, surface transpiration intensifies, thereby increasing precipitation;
however, the simultaneous occurrence of both precipitation and transpiration contributes to a reduction in
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temperature. The interplay between water and heat exchange via precipitation and temperature also influences
regional geomorphological features, resulting in corresponding changes in land use**%%78,

The uneven distribution of water and heat has led to the delineation of temperature zones globally, resulting in
distinct geomorphic features and vegetation cover characteristics’”7#°. The melting of glaciers driven by global
warming results in rising sea levels, thereby directly affecting the spatial distribution of land and water®!#2 The
transformation of land use is driven by the combined effects of climate and human activities, with anthropogenic
interventions introducing greater complexity to these changes. Our study indicates that the trend of runoft is
experiencing a significant increase under the influence of future climate conditions, with average increases of
1.43% and 7.72% in runoff projected for the near and middle future, respectively, compared to the base period.
Additionally, land use changes are expected to contribute an increase of 0.41% and 1.14% to runoff in the near
and middle futures, respectively. Under the combined effects of future climate change and land use changes,
runoff is anticipated to rise by 2.99% and 12.55% in the near and middle futures, respectively. This may be
associated with a substantial increase in projected future precipitation, along with a decrease in forested areas
and the expansion of cultivated and construction land. This is consistent with the results of previous studies®®33.
Future changes in climate and land use patterns are expected to significantly influence the existing hydrological
and thermal balance at the surface, potentially leading to substantial impacts on regional climate and hydrology;
thus, it is essential to continue conducting regional hydrological research.

Model uncertainty analysis

Understanding and analyzing the uncertainties associated with a model can improve the reliability of simulation
results. In our research, rigorous criteria are employed for model calibration and validation to improve the precision
of simulation results. The uncertainty in global climate model data primarily stems from the projections of future
greenhouse gas emission scenarios and the forced responses of climate models to atmospheric emissions®. In
this study, we utilized EC-Earth3-Veg, which has been empirically validated in a series of investigations as
reliable simulation tool for future climate change projections®*-43. While a single GCM’s projections may exhibit
certain advantages in capturing the amplitude of observed multi-decadal precipitation variability, its associated
uncertainty could be greater when compared to an ensemble of multiple GCMs**#>. Fortunately, the comparison
of downscaled historical data from EC-Earth3-Veg for the period 1967-2014 with observed meteorological
data from the DRB indicates that both R* and E, values exceed 0.5, demonstrating a high level of simulation
accuracy in the EC-Earth3-Veg dataset, thereby satisfying the criteria for model simulation®'. While the CA-
Markov model predicts future land use changes, it does not fully account for the extent to which future human
activities will shape land use**-%%. To mitigate the uncertain impacts of human activities on future land use
within the CA-Markov model, we performed a comparative analysis between the simulated data for 2018 and
actual observed data, resulting in a Kappa coefficient of 0.776. This indicates a strong simulation performance
and demonstrates adherence to the model’s accuracy requirements.

The SWAT modelis a semi-distributed hydrological model that integrates specific physical processes. However,
the simulation results may be influenced by uncertainty arising from the stringent accuracy requirements for
driving data and the numerous model parameters®®®’. In response to this, we conducted a sensitivity analysis
on the parameters related to runoff simulation in the SWAT model using SWAT-CUP and evaluated their
sensitivity through the T-test method. The inevitability of model uncertainty presents a challenge; however,
we can utilize systematic verification methods to confine the error within an acceptable range. In the future,
given the escalating complexity of environmental changes arising from human-land interactions, it is essential
to persist in investigating model uncertainty.

Conclusion

In this study, we employed the downscaling technique to examine various scenarios of the EC-Earth3-Veg climate
model within the framework of CMIP6. Furthermore, we integrate the predictive outcomes of the CA-Markov
model for future land use changes to collaboratively drive the SWAT model and assess potential variations in
future runoff within the DRB. The key findings are as follows:

(1) In the future (2021-2060), precipitation in the DRB is projected to exhibit an increasing trend under sce-
narios SSP1-2.6, SSP3-7.0, and SSP5-8.5, whereas a declining trend is anticipated in scenario SSP2-4.5. In
comparison to the historical period, a decreasing trend in spring and winter precipitation is evident, while
an increasing trend is observed in summer and autumn. The temperature across all four climate scenarios
demonstrates a statistically significant increasing trend (P <0.05). Specifically, the projected rate of tem-
perature increase for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 is estimated to be 0.24 °C/(10 years), 0.36
°C/(10 years), 0.36 °C/(10 years), and 0.50 °C/(10 years) respectively. The monthly temperature variation
exhibits consistent patterns across different scenarios.

(2) The predominant land uses included artificial forests, natural forests, and cultivated lands, which accounted
for 57.64%, 19.92%, and 14.79% respectively. As a result of the progressive intensification of human activ-
ities and stringent governmental protection measures for natural forests, the changes in artificial forests,
natural forests, and cultivated lands by 2032 were recorded as — 4.45%, — 0.12%, and 4.10% respectively;
whereas by 2046, these changes were noted as — 5.39%, — 0.13%, and 4.41% respectively.

(3) The comparison of scenarios S;> S, and S, indicates that the combined effects of climate change and land
use in the DRB significantly amplify runoff generation. While land use change consistently facilitates runoft,
its influence remains limited. Climate change emerges as the primary driver of changes in runoff patterns.
In the future, the cumulative effects of climate change and land use change on runoff variations will persis-
tently intensify. The temporal distribution of future runoft is shifted forward by one month relative to the
historical period, exhibiting a greater degree of concentration during the wet season. In comparison to the
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historical period, the projected scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 indicate an expect-
ed increase in runoff during the wet season of 6.53%, 8.91%, 7.17%, and 7.39% respectively.

The research findings enhance the understanding of hydrological processes related to runoff in tropical
deforestation areas under various future climate scenarios and land-use change patterns. These findings can
serve as a valuable reference for future flood prevention, drought mitigation, and water resource management
in the DRB. Furthermore, they hold significant implications for water resource management in similar basins.

Data availability

Relevant data during the current study are available from the corresponding author on reasonable request.
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