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Tuberculosis (TB), ranking just below COVID-19 in global mortality, is a highly complex infectious
disease involving intricate immunological molecules, diverse signaling pathways, and multifaceted
immune processes. N6-methyladenosine (m6A), a critical epigenetic modification, regulates various
immune-metabolic and pathological pathways, though its precise role in TB pathogenesis remains
largely unexplored. This study aims to identify m6A-associated genes implicated in TB, elucidate

their mechanistic contributions, and evaluate their potential as diagnostic biomarkers and tools

for molecular subtyping. Using TB-related datasets from the GEO database, this study identified
differentially expressed genes associated with m6A modification. We applied four machine learning
algorithms—Random Forest, Support Vector Machine, Extreme Gradient Boosting, and Generalized
Linear Model—to construct diagnostic models focusing on m6A regulatory genes. The Random

Forest algorithm was selected as the optimal model based on performance metrics (area under the
curve [AUC]=1.0, p<0.01), and a clinical predictive model was developed based on these critical
genes. Patients were stratified into distinct subtypes according to m6A gene expression profiles,
followed by immune infiltration analysis across subtypes. Additionally, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses elucidated the
biological functions and pathways associated with the identified genes. Quantitative real-time PCR
(RT-gqPCR) was used to validate the expression of key m6A regulatory genes. Analysis of the GSE83456
dataset revealed four differentially expressed m6A-related genes—YTHDF1, HNRNPC, LRPPRC, and
ELAVL1—identified as critical m6A regulators in TB through the Random Forest model. The diagnostic
significance of these genes was further supported by a nomogram, achieving a high predictive accuracy
(95% confidence interval [Cl]: 0.87-0.94). Consensus clustering classified patients into two m6A
subtypes with distinct immune profiles, as principal component analysis (PCA) showed significantly
higher m6A scores in Group A than in Group B (p < 0.05). Immune infiltration analysis highlighted
significant correlations between key m6A genes and specificimmune cell infiltration patterns across
subtypes. This study highlights the potential of key m6A regulatory genes as diagnostic biomarkers
and immunotherapy targets for TB, supporting their role in TB pathogenesis. Future research should
aim to further validate these findings across diverse cohorts to enhance their clinical applicability.
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Tuberculosis (TB) is a highly contagious chronic disease caused by Mycobacterium tuberculosis (MTB). This
disease poses significant challenges in terms of diagnosis and drug resistance>. Although MTB can infect
multiple organs, pulmonary infection is its most common manifestation. The clinical symptoms of TB vary
widely, ranging from asymptomatic latent infection to severe, life-threatening disease®. Currently, isoniazid
is the primary drug used in TB treatment. However, it is associated with a high risk of hepatotoxicity, with
5-33% of patients experiencing drug-induced liver injury during the course of treatment®. This hepatotoxicity
not only reduces the therapeutic efficacy and cure rate of TB but also significantly increases patient mortality
risk. Consequently, there is an urgent need to develop safer and more effective alternative therapies to reduce
treatment risks and improve efficacy.

In recent years, research has increasingly focused on the complex pathogenesis of TB. Studies suggest that
TB develops as a result of interactions among MTB, host genetic factors, and environmental factors’. Based on
this understanding, identifying early diagnostic biomarkers for TB and methods to detect at-risk populations
are essential for effective disease control®. From a genetic perspective, researchers have started to investigate
the potential role of RNA m6A modification in tuberculosis. m6A is a crucial RNA modification that regulates
gene expression, cellular differentiation, and immune response. It is particularly significant in inflammatory
response, antiviral immunity, and tumor regulation”®. However, the specific mechanism of m6A modification
in bacterial infections, especially in MTB infections, remains unclear. Most existing studies on m6A focus on
immunomodulation in viral infections and cancers®!!. In contrast, few studies address its role in bacterial
infections, and there is a notable lack of phased analysis across different pathological stages.

Studies have found that ESXB, a protein secreted by MTB, inhibits m6 A modification and reduces the mRNA
stability of genes associated with the anti-tuberculosis response!>!3. Additionally, the interaction between ESXB
and METTL14, a key factor in m6A modification, has been suggested as a potential target for TB therapy'. These
findings indicate that m6A methylation may play a critical role in the pathogenesis of TB. m6A modification-
related genes may be key regulators in the development and progression of the disease.

In this study, we systematically explored the dynamic changes of m6A modification across different
pathological stages of tuberculosis. This was achieved for the first time by combining large-scale data analysis
with experimental validation. We identified a novel set of m6A-targeted genes. The expression patterns of these
genes are closely related to TB progression and prognosis, providing a fresh perspective on the role of m6A
modification in TB.

Beyond identifying m6A-targeted genes associated with TB, we also analyzed the specific regulatory roles of
these genes in the TB immune microenvironment. By conducting stage-specific sample analysis and immune
cell-specific analysis, we uncovered the dynamic features of m6A modifications in regulating the immune
microenvironment throughout the TB disease course. Compared to previous studies, our work fills a critical
gap in understanding the association between m6A modifications and different pathological stages of TB. This
study provides foundational data that supports future molecular diagnostics and the development of therapeutic
strategies for TB.

Materials and methods
Data collection and processing
For data collection, we obtained the GSE83456 tuberculosis dataset from the GEO database, which includes
peripheral blood samples from 45 tuberculosis (TB) patients and 61 healthy controls. The sequencing platform
used was GPL10558 (Illumina HumanHT-12 V4.0 expression chip). To ensure comparability across samples,
we normalized the expression matrix using the “normalizeBetweenArrays” function in the R package “limma”
To increase the transparency of data preprocessing, we provided a detailed description of our handling of
missing values and outliers. Missing values were imputed using a mean-filling method, and expression data were
normalized by Z-scores to reduce variability across samples. Additionally, quality control checks were conducted
on the data before standardization to ensure sample completeness and data consistency.The experimental design
and workflow are depicted in Fig. 1.

Identification of differentially expressed méa regulatory genes in TB patients

Building on existing research into m6A modifications, we concentrated on 29 m6A-related genes, comprising 12
writer genes (METTL3, METTL14, METTL16, WTAP, VIRMA, ZC3H13, RBM15, RBM15B, CBLL1, YWHAG,
TRA2A, CAPRIN1), 15 reader genes (YTHDCI1, YTHDC2, YTHDF1, YTHDEF2, YTHDF3, HNRNPC, FMRI,
LRPPRC, HNRNPA2BI1, IGFBP1, IGFBP2, IGFBP3, RBMX, ELAVL1, IGF2BP1), and 2 eraser genes (FTO,
ALKBH5)!2. We extracted the expression levels of these m6A-related genes using the “limma” package in R, and
differential expression between TB patients and healthy controls was assessed via the Wilcoxon test. Genes with
p-values < 0.05 were considered statistically significant. The chromosomal locations of these m6A-related genes
were subsequently visualized using the “RCircos” package in R.
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Fig. 1. Experimental flow.

Machine learning-based selection of key m6A regulatory genes

To identify key m6A-regulated genes associated with tuberculosis (TB), we constructed four machine
learning models: Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB),
and Generalized Linear Model (GLM). We utilized the “RandomForest,” “kernlab,” “xgboost} “DALEX;
and “caret” packages in R. To select the optimal model and identify the m6A-regulated genes with the most
significant predictive effect, we plotted the residual and inverse cumulative distribution curves of differentially
expressed m6A genes. All four machine learning algorithms were executed with the seed set to “123” to ensure
reproducibility.

To ensure transparency and reproducibility, the following key parameters and settings were applied for
each model. (1) Random Forest (RF): In the RF model, we set the number of trees (n_estimators) to 500 and
the maximum depth (max_depth) to 10, balancing model complexity with computational efficiency. We used
the Gini impurity as the criterion for node splitting and applied 5-fold cross-validation to evaluate model
performance.(2) Support Vector Machine (SVM): The SVM model employed a Radial Basis Function (RBF)
kernel, with the penalty parameter C set to 1.0 and y set to 0.01. We optimized model performance using Grid
Search and evaluated its effectiveness through 5-fold cross-validation. (3) Extreme Gradient Boosting (XGB): In
the XGB model, we set the learning rate to 0.1, the maximum depth to 6, and the number of trees (n_estimators)
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to 100. Early stopping was used to prevent overfitting, and the model’s performance was evaluated with 5-fold
cross-validation. (4) Generalized Linear Model (GLM): For the GLM model, we applied Lasso regularization to
avoid overfitting. The regularization parameter aa was set to 0.1, and model selection was based on the Akaike
Information Criterion (AIC).

Additionally, we used the Feature Importance Score (FIS) to assess the predictive value of each gene during
feature selection. Genes with an FIS greater than 5 were considered as candidate genes, and the top-ranked genes
based on FIS were ultimately selected as key m6A-regulated genes.

Construction of a clinical prediction model

The identified key m6A regulatory genes were integrated using the “datadist” function from the “rms” package
in R, after which a clinical prediction model was developed using the “Irm” function. The prediction model was
visualized with the “nomogram” package. The model’s performance underwent rigorous evaluation, including
discrimination assessed by the C-index, consistency evaluated through calibration curves, and clinical utility
measured via decision and net benefit curves.

Subtype classification of TB patients based on key m6A regulatory genes

We utilized the “ConsensusClusterPlus” package in R to cluster TB patient samples based on key m6A
regulatory genes. The parameters were optimized as follows: “maxK"=6, “reps"=50, “pItem"=0.8, “pFeature"=1,
“clusterAlg"="pam”, and “distance"="euclidean” TB patients were categorized into six distinct subgroups. The
optimal number of clusters was determined by the Calinski criterion and subgroup correlations. The distribution
of samples across subgroups was visualized using the “Rtsne” package. The expression differences of key m6A

regulatory genes among the subgroups were statistically evaluated using the Kruskal-Wallis test.

Identification of differential genes between m6A subtypes and GO/KEGG enrichment
analysis

Differentially expressed genes between m6A subtypes were identified using the “limma” package in R, with a
stringent cutoff of [log2FC| > 0.4 and p < 0.05. Subsequently, the “clusterProfiler” package was utilized to perform

GO and KEGG enrichment analyses to elucidate the potential mechanisms underlying these differential genes'.

Calculation of m6A scores

Principal component analysis (PCA) was used to calculate m6A scores for TB samples, providing a quantitative
measure of m6A subtype scores. The m6A score was computed using the formula: m6A score=PC1_i, where
PCI represents the first principal component, and i corresponds to the significant expression of m6A genes.

Evaluation of immune cell infiltration

For immune cell infiltration analysis, we applied the single-sample gene set enrichment analysis (ssGSEA)
method to calculate the infiltration scores of various immune cell types in each TB sample. First, we analyzed
the expression level of each gene using ssGSEA, extracting the expression levels of key m6A-regulated genes
from the dataset. To enhance the reliability of the analysis, we documented the gene sets and normalization steps
applied in the ssGSEA analysis.

To further strengthen the scientific validity and reproducibility of our analysis, we introduced a threshold
setting and applied a correction step in the immune infiltration analysis to ensure that the calculated immune cell
abundances accurately reflected the actual state of each sample. Additionally, we performed statistical analyses
on the abundance distributions of different immune cell types to evaluate the variation in immune components
within TB samples.

Experimental validation of key m6A gene expression levels

Peripheral blood mononuclear cells (PBMCs) from MTB-infected patients and healthy controls were collected,
and serum heel cells were isolated by centrifugation at 4000 rpm. All procedures were in accordance with the
Declaration of Helsinki. Ethical approval for this study was obtained from the Ethics Committee of Siyang
Hospital. Total RNA was extracted using the Total RNA Extraction Kit (TIANGEN Biotech Co., Ltd., Beijing,
China), following the manufacturer’s instructions. Reverse transcription was performed using the cDNA First
Strand Synthesis Kit (TTANGEN). Real-time fluorescence quantitative PCR was conducted using the StepOne
qPCR detection system, with qPCR primers listed in Table 1.

Gene Forward primer (5’ to 3°) Reverse primer (5 to 3)

B-actin GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT
HNRNPC | CCCTTCTCCGTCCCCTCTAC | CCCGAGCAATAGGAGGAGGA
ELAVL1 GGGTGACATCGGGAGAACG CTGAACAGGCTTCGTAACTCAT
LRPPRC | CGGAGGACTACTGAGCCCA AGCGGCAGGTATCATTAAAAACT
YTHDF1 | ATACCTCACCACCTACGGACA | GTGCTGATAGATGTTGTTCCCC

Table 1. Sequences of primers used quantitative real-time PCR (RT-qPCR).
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Gene expression

Statistical analyses

Statistical analysis of continuous variables between the two groups was conducted using the non-parametric
Wilcoxon rank-sum test, with p <0.05 considered statistically significant. All analyses were performed using R
software (version 4.3.2) and Prism 10 (GraphPad Software, USA).

Results

Identification of differentially expressed m6A genes in tuberculosis

We identified 10 m6A-targeted genes significantly associated with tuberculosis (TB) through a comprehensive
differential analysis of the GSE83456 dataset, comparing TB patients with healthy controls. Notably, YTHDF1,
HNRNPC, LRPPRC, and ELAVLI] have not previously been reported to be significantly associated with TB.
This group included one writer gene (ZC3H13) and nine reader genes (YTHDF1, YTHDEF3, HNRNPC, FMRI,
LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2, and ELAVLI). Among them, YTHDFI1, HNRNPC, LRPPRC, and
ELAVLI showed statistical significance (p <0.05) in TB patients compared with controls (Fig. 2A, B), suggesting
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Fig. 2. Screening of Differentially Expressed m6A Genes in Tuberculosis. (A) Boxplot of the expression
levels of 10 m6A-related genes between the control and TB groups. (B) Heatmap showing the expression of 4
differentially expressed genes between the control and TB groups. (C) Chromosomal localization of m6A-
related genes. *p <0.05, **p <0.01, ***p <0.001.
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A

a close association with TB progression. Additionally, the chromosomal locations of these 10 m6A-related genes
were mapped to provide genomic context (Fig. 2C).

Selection of key m6A regulatory genes using machine learning

To refine our analysis, we employed four machine learning algorithms—Random Forest (RF), Support Vector
Machine (SVM), Extreme Gradient Boosting (XGB), and Generalized Linear Model (GLM)—to identify key m6A
regulatory genes associated with TB. Comparative analysis of residual values and reverse cumulative distribution
curves revealed that the RF algorithm outperformed the others, demonstrating superior predictive accuracy
(Fig. 3A, B). This led us to adopt the RF model as the optimal approach. ROC curve analysis further confirmed
the RF model’s robustness, with the highest AUC value among the four algorithms (Fig. 3C). Subsequently, the
RF model was used to rank genes by importance, identifying YTHDF1, HNRNPC, LRPPRC, and ELAVL1 as key
regulatory genes based on their importance scores, all exceeding a threshold of 5 (Fig. 3D-E).

Construction of a clinical prediction model

Building on the identified key m6A regulatory genes, we developed a clinical prediction model using the
“Irm” function from the “rms” package in R. This model, designed to estimate the likelihood of TB infection,
demonstrated strong predictive performance with a C-index of 0.816, indicating high accuracy (Fig. 4A-B).
Decision curve analysis (DCA) further validated the clinical utility of this model, suggesting that decisions
informed by the model could offer significant benefits to TB patients (Fig. 4C). Additionally, the clinical impact
curve substantiated the model’s predictive strength (Fig. 4D).

Subtype classification of TB patients based on key m6A regulatory genes

Using the four key m6A regulatory genes, we conducted a clustering analysis, which classified TB patients into
two distinct m6A subtypes: cluster A and cluster B (Fig. 5A). Subsequent differential expression analysis revealed
that YTHDF1, HNRNPC, LRPPRC, and ELAVLI were expressed at higher levels in cluster A compared to
cluster B (Fig. 5B-C). Principal component analysis (PCA) provided further validation, demonstrating that these
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Fig. 3. Selection of Key m6A Regulatory Genes Using Machine Learning. (A) Boxplot of residuals for the four
machine learning algorithms. (B) Reverse cumulative distribution of residuals for the four machine learning
algorithms. (C) ROC curves for the four machine learning models. (D) Selection of key m6A regulatory genes
using the Random Forest (RF) algorithm. (E) Importance scores of the key m6A regulatory genes.
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clinical prediction model. (D) Clinical benefit curve for the prediction model.

four genes effectively distinguished between the TB subtypes, thereby confirming the reliability of the m6A-
based classification (Fig. 5D-G).

To investigate the immunologic impact of these subtypes, we used ssGSEA to assess immune cell infiltration
across TB subtypes. The analysis revealed significant differences in the infiltration of 19 immune cell types
between the m6A subtypes (Fig. 6A). Notably, the expression of YTHDF1, HNRNPC, LRPPRC, and ELAVLI
was positively correlated with increased immune cell infiltration, suggesting a potential link between m6A
regulation and immune responses in TB (Fig. 6B-C, SF1).

Identification of differential genes between m6A subtypes and TB subtype classification

To further corroborate the accuracy of our m6A-based TB classification, we conducted differential gene
expression analysis between the two subtypes. A total of 610 differential genes were identified, and subsequent
GO and KEGG enrichment analyses revealed that these genes were predominantly associated with mitochondrial
and ribosomal functions within the biological process (BP) and molecular function (MF) categories and were
primarily localized to mitochondria and ribosomes in the cellular component (CC) category (Fig. 7A). KEGG
analysis highlighted enrichment in mitochondrial and nucleotide metabolism pathways. Utilizing these 610
differential genes, we employed consensus clustering to classify TB patients into genomic subtypes, which
aligned with the m6A subtypes, further validating the classification (Fig. 7B-E). The expression patterns of these
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Fig. 5. Clustering of TB Patients Based on Key m6A Regulatory Genes. (A-D) Consensus clustering of TB
samples for k=2 to k=5. (E) Heatmap of the expression of four key m6A regulatory genes in cluster A and
cluster B. (F) Boxplot showing the differential expression of the four key m6A regulatory genes in cluster A and
cluster B. (G) PCA analysis between clusters. *p < 0.05, **p <0.01, ***p <0.001.

610 genes were visualized across the genomic subtypes, demonstrating consistent differences that mirrored
those observed in m6A subtypes (Fig. 7F-H).

Finally, PCA-based calculation of m6A scores revealed that both m6A subtype A and genomic subtype A
exhibited higher m6A scores compared to their respective B counterparts (Fig. 7I-J). A Sankey diagram was
generated to visualize the intricate relationships between m6A scores, m6A subtypes, and genomic subtypes,
offering a comprehensive overview of the classification’s accuracy and relevance (Fig. 7K).

RT-qPCR validation of m6A key regulatory genes

We conducted RT-qPCR experiments to verify the expression levels of key m6A regulatory genes. As shown in
Fig. 8, the expression levels of YTHDF1, HNRNPC, LRPPRC, and ELAVLLI in the TB group were significantly
lower than in the control group, consistent with the results of the bioinformatics analysis.

Discussion

The pathogenesis of tuberculosis (TB) is characterized by a critical feature: the ability of Mycobacterium
tuberculosis (MTB) to survive and persist within diverse intracellular environments, particularly within various
myeloid cell populations'®!”. The initial phase of MTB infection is often clinically silent, manifesting primarily
at the molecular and genetic levels. Despite this latent stage, the infection poses a significant threat to patient
health. Recent research has underscored the importance of RNA N6-methyladenosine (m6A) modification in
regulating the onset and progression of TB>!®1°. However, the specific mechanisms by which m6A regulatory
genes contribute to TB pathophysiology remain largely unexplored. In this study, we systematically revealed
for the first time the specific regulatory mechanism of m6A modification in the development and progression
of tuberculosis (TB). Our results indicate that m6A modification is not only involved in the regulation of
TB-related gene expression, but also influences the pathological process of TB by modulating the immune
microenvironment. This finding fills a gap in the existing literature and provides a new molecular perspective on
the immune regulation of TB. Unlike previous m6A studies that focused mainly on cancer and viral infections,
our innovative findings in bacterial infections, especially Mycobacterium tuberculosis infection, further expand
the application prospects of m6A modification?*2..

Our study began with a differential analysis between TB patients and healthy controls, identifying four
significant m6A regulatory genes—YTHDF1, HNRNPC, LRPPRC, and ELAVL]—from an initial panel of
10 candidates. Notably, these genes were significantly downregulated in TB patients. YTHDF1, for example,
encodes an RNA-binding protein that promotes mRNA translation by interacting with the m6A motif within
the 5 UTR?>?. In contrast to YTHDF2, YTHDF1 binds earlier in the mRNA lifecycle, exerting its influence at a
more foundational stage?*. Previous studies have shown that YTHDF1 enhances the expression of WW domain-
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containing E3 ubiquitin protein ligase 1 (WWP1), a critical component of the ubiquitin-proteasome pathway,
which is implicated in various diseases, including infectious conditions*>?. In the context of TB, our findings
suggest that YTHDF1 downregulation could impair WWP1 expression, thereby weakening the host’s ability to
regulate protein degradation processes essential for immune defense. This reduced expression could, in turn,
facilitate the survival and replication of MTB within host cells. Our results, consistent with previous research,
indicate that YTHDF1 mRNA expression is markedly lower in TB patients compared to healthy controls'®.

In addition to YTHDF1, HNRNPC has been implicated in promoting apoptosis and necrosis by mediating
ATF4 m6A modification, potentially serving as a mechanism through which MTB evades host immune
surveillance?’. HNRNPC facilitates the m6A modification of ATF4, a key factor in cellular stress responses
and apoptotic pathways®®. In the context of MTB infection, this regulation may lead to increased host cell
death, thereby disrupting immune defense mechanisms and allowing MTB to evade immune detection?®-3.
By inducing apoptosis, HNRNPC may create a stable intracellular environment conducive to bacterial survival,
ultimately contributing to TB pathogenesis. LRPPRC, a regulator of mRNA encoded by mitochondrial DNA,
plays a significant role in viral infections by inhibiting antiviral signaling mediated by the mitochondrial antiviral-
signaling protein (MAVS), acting as a suppressor in hepatitis C virus infection’'. However, its role in bacterial
infections, particularly with MTB, remains to be fully elucidated. Our study suggests that LRPPRC might
modulate immune signaling pathways similarly during MTB infection, potentially inhibiting MAVS-mediated
antiviral responses essential for controlling intracellular pathogens. This suppression of mitochondrial antiviral
signaling could impair host immunity against MTB, enabling the bacteria to persist within host cells. Although
further experimental validation is necessary, our data indicate that LRPPRC downregulation may contribute
to weakened immune responses in TB patients. ELAVLI, another key gene, is instrumental in angiogenesis,
apoptosis, and inflammation, functioning in both pro-inflammatory and anti-inflammatory processes through
the regulation of PARP13>%, In TB patients, our findings suggest that ELAVL1 downregulation may alter
inflammatory responses within the immune microenvironment. By regulating PARP1, ELAVLL1 influences
processes such as DNA repair and apoptosis, which are crucial for maintaining immune homeostasis. Reduced
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Fig. 7. Clustering of TB Patients Based on Differential Genes Between m6A Subtypes. (A) GO and KEGG
enrichment analyses. (B-E) Consensus clustering of differential genes for k=2 to k=5. (F) Heatmap of

the expression levels of differential genes between genomic subtypes. (G) Boxplot showing the differential
expression of key m6A regulatory genes between genomic subtypes. (H) Differences in immune cell infiltration
between genomic subtypes. (I) Differences in m6A scores between genomic subtypes. (J) Differences in

m6A scores between m6A subtypes. (K) Sankey diagram showing the relationships among m6A scores, m6A
subtypes, and genomic subtypes. ns > 0.05, *p <0.05, **p <0.01, **p < 0.001.
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Fig. 8. m6A-related gene expression validation. (A) ELAL1 gene expression validation; (B) YTDHDFI gene
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ELAVLI expression may weaken inflammatory responses against MTB, impairing the host’s ability to effectively
counteract infection. Collectively, these four m6A regulatory genes—YTHDF1, HNRNPC, LRPPRC, and
ELAVLI—appear to play pivotal roles in the pathogenesis and progression of TB by modulating key immune
and inflammatory pathways.

To enhance the identification of key m6A-regulated genes, we employed four machine learning algorithms
and concluded that the Random Forest (RF) algorithm was the most effective, as demonstrated by its superior
residual values and high AUC in ROC curve analysis. The RF algorithm identified YTHDF1, HNRNPC, LRPPRC,
and ELAVLI as the most critical genes involved in TB pathogenesis. Our findings regarding these novel m6A
target genes may have significant clinical applications in TB. For instance, these m6A-modified genes could
serve as early diagnostic markers for TB, offering a reliable basis for patient staging and prognosis assessment. By
modulating the m6A modification levels of YTHDF1, HNRNPC, LRPPRC, and ELAVLI, it may be possible to
enhance immune responses against MTB, providing a novel therapeutic approach to control disease progression.
These insights not only highlight the potential of m6A modification as a diagnostic and therapeutic target in
TB but also pave the way for future research into the molecular mechanisms of immune regulation in bacterial
infections.
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Furthermore, m6A modification-related genes might represent new therapeutic targets. By modulating the
m6A modification levels of these genes, it may be possible to enhance patient immune responses and control
disease progression. Additionally, we developed a clinical prediction model that enables clinicians to estimate
the likelihood of TB infection by evaluating the expression levels of these four genes. This model enhances TB
diagnostic accuracy, providing a theoretical foundation and experimental support for the future development of
m6A-based diagnostic and therapeutic tools.

Grouping patients based on disease-related biomarkers is a well-established approach in clinical practice.
For instance, a study demonstrated that stratifying Parkinsons disease patients using serum biomarkers
effectively predicted motor and non-motor outcomes, thereby guiding early clinical intervention®. In our
consensus clustering analysis based on key m6A genes, we classified TB patients into two subtypes (Cluster
A and Cluster B) and observed significant differences in immune cell infiltration characteristics between the
subtypes. Specifically, Cluster A exhibited significantly higher levels of B-cell, NK-cell, monocyte, macrophage,
and T-cell infiltration, whereas these levels were notably reduced in Cluster B (p <0.05). This finding suggests
two distinct modes of immune response: the high immunoreactivity of Cluster A may support host control of
Mycobacterium tuberculosis, while the low immune infiltration in Cluster B may indicate a greater ability of the
pathogen to evade immune surveillance.

The differences in immune cell composition between the high immune infiltration subtype (Cluster A) and
the low immune infiltration subtype (Cluster B) underscore the potential clinical significance of these subtypes.
For example, patients in Cluster A may respond more effectively to immune-enhancing therapies, whereas those
in Cluster B may require additional immune activation strategies to boost their immune responses. This subtype
differentiation has potential implications for the development of future personalized therapies. Furthermore,
immune subtype-based stratification in other diseases (e.g., cancer and infectious diseases) has proven valuable
in identifying how different immune microenvironments influence disease progression!. We propose that future
studies should further explore the specific immune responses associated with TB subtypes by characterizing
these subtypes in larger samples or independent datasets. Such studies could provide a theoretical foundation
for developing personalized therapeutic strategies.

Mycobacterium tuberculosis is known to infect macrophages, where it survives and proliferates, thereby
driving TB progression®. Extensive research underscores the critical role of macrophages in TB infection
and granuloma formation, positioning them as key players in disease progression®. Eosinophils, among the
first responders during MTB infection, interact with macrophages to maintain tissue homeostasis and sustain
resident macrophages during infection. Furthermore, Th1 cells have been shown to prevent TB by producing
interferon-gamma (IFN-y) and stimulating anti-MTB responses within macrophages®”*%. These findings
collectively suggest that m6A regulatory genes may modulate TB progression by influencing inflammatory and
immune processes.

To corroborate the accuracy of our m6A-based classification, we identified two genomic subtypes of TB
through differential gene analysis. The m6A scores, calculated via PCA, provided a quantitative reference for
assessing these subtypes’ characteristics, offering valuable insights for future clinical diagnostics and treatment
strategies. Additionally, we validated the expression levels of YTHDF1, HNRNPC, LRPPRC, and ELAVLI in
TB patients through real-time quantitative PCR (RT-qPCR), confirming significant downregulation in TB
patients compared to controls (Fig. 8). These findings further underscore the role of m6A regulatory genes in TB
progression, contributing to a deeper understanding of the disease’s molecular mechanisms.

Although this study highlights the critical role of m6A modifications in TB immunomodulation, several
key questions remain unresolved. For example, the specific functions of individual m6 A-modifying enzymes in
Mycobacterium tuberculosis are still unclear, and the effects of m6A modifications on immune cell migration
and drug resistance warrant further investigation. Future studies could employ knockdown or overexpression
experiments to elucidate how these m6A modification genes influence TB progression, thereby providing
stronger evidence for molecular diagnostics and personalized treatment strategies.

This study also has certain limitations related to technology and data sources. First, as the primary data source,
the GEO database may introduce bias due to limitations in sample size, sampling conditions, and geographical
constraints, potentially affecting the external validity of our findings. Additionally, variability in sample handling
and collection methods may impact data consistency. Although we applied data standardization and multiple
quality control steps to mitigate these biases, future studies should integrate multicenter, large-scale datasets to
better validate the robustness and applicability of our results.

Another limitation is the relatively small sample size in the validation experiment, which may compromise
the robustness of the statistical findings. Future studies should increase sample sizes to improve the consistent
performance of m6A-regulated genes across diverse populations, thereby enhancing the external validity of
the conclusions. Larger sample sizes would also provide more reliable data for examining the functional roles
of these genes in patients with different clinical subtypes of TB, thus laying a stronger foundation for clinical
applications. A large-scale, multicenter study is anticipated to further substantiate our findings and support the
potential application of m6A-regulated genes in TB diagnosis and treatment.

Conclusion

In this study, we systematically elucidated the dynamic regulatory features of m6A modification across different
pathological stages of tuberculosis (TB). We identified a set of m6A target genes and explored their potential
roles in modulating the TB immune microenvironment. These findings address existing knowledge gaps in
TB research and suggest possible avenues for the future development of TB diagnostic markers and targeted
therapies that leverage m6A modification. Our results indicate that m6A modification may act as an important
regulator of TB onset and progression, providing a basis for further investigation into early TB diagnosis and the

Scientific Reports |

(2024) 14:29982 | https://doi.org/10.1038/s41598-024-81790-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

potential design of personalized therapeutic strategies. This study offers insights that could inform future clinical
research and practice.

Data availability

The direct links required to find each data set in the database are as follows: the GEO gene expression and clinical
pathology data set: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83456. The data set downloaded
by this direct link is the original data set.
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