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This manuscript explores the stability theory of several stochastic/random models. It delves into 
analyzing the stability of equilibrium states in systems influenced by standard Brownian motion 
and exhibit random variable coefficients. By constructing appropriate Lyapunov functions, various 
types of stability are identified, each associated with distinct stability conditions. The manuscript 
establishes the necessary criteria for asymptotic mean-square stability, stability in probability, and 
stochastic global exponential stability for the equilibrium points within these models. Building upon 
this comprehensive stability investigation, the manuscript delves into two distinct fields. Firstly, it 
examines the dynamics of HIV/AIDS disease persistence, particularly emphasizing the stochastic 
global exponential stability of the endemic equilibrium point denoted as E∗, where the underlying 
basic reproductive number is greater than one (R0 > 1). Secondly, the paper shifts its focus to 
finance, deriving sufficient conditions for both the stochastic market model and the random Ornstein–
Uhlenbeck model. To enhance the validity of the theoretical findings, a series of numerical examples 
showcasing stability regions, alongside computer simulations that provide practical insights into the 
discussed concepts are provided.
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Random and stochastic systems are becoming widely used as realistic models of physical phenomena than 
deterministic systems. Furthermore, the solution of the deterministic system is itself a mean of the stochastic 
solution of the model. Nowadays, stochastic and random differential equations are drawing a lot of attention 
because of their evolution in systems of our daily life. Therefore, involving randomness in the formulation of the 
differential equations provides an attractive study of the phenomena of interest1. Stochastic differential equations 
(SDEs) now describe applications in many disciplines including engineering, finance, economics, physics, 
population dynamics, biology, and medicine2–9.

Chaotic is commonly used to describe a state of disorder, unpredictability, or lack of control. In various 
contexts, it can refer to a system, situation, or environment characterized by randomness and complexity. Chaos 
theory, a branch of mathematics and physics, explores the behavior of dynamic systems that are highly sensitive 
to initial conditions, leading to seemingly random and unpredictable outcomes. In everyday language, chaos is 
often employed to depict a disorganized or tumultuous situation, where events unfold in a manner that is difficult 
to anticipate or manage. The concept of chaos extends beyond its mathematical origins and is frequently invoked 
to describe the complex and intricate nature of systems ranging from weather patterns and traffic flow to social 
dynamics and personal experiences. Embracing chaos can sometimes be a catalyst for creativity, innovation, and 
adaptation, as it challenges traditional order and opens up new possibilities10,11.

The main contributions of this paper lie in its innovative approach to stability analysis of differential models 
involving stochastic processes and other models involving uncertainty through random coefficients and their 
interdisciplinary applications. Unlike traditional methods, this study leverages random variable coefficients, 
which are not commonly used in existing literature, see12–14. This innovative approach provides deeper 
insights into the models and their results, as the random variables can follow various distributions, offering 

1Department of Physics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-
Kharj 11942, Saudi Arabia. 2NOVA Cairo at the Knowledge Hub Universities, New Administrative Capital, 
Cairo, Egypt. 3Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. 
4Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. 5Department 
of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia. email:  
m_abdelrahman@mans.edu.eg

OPEN

Scientific Reports |        (2024) 14:30608 1| https://doi.org/10.1038/s41598-024-82057-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-82057-8&domain=pdf&date_stamp=2024-12-19


a more comprehensive understanding of the system’s behavior. To the best of our knowledge, no prior works 
have applied this methodology, making our findings both unique and groundbreaking. This novel perspective 
enhances the robustness and applicability of the stability criteria established in this paper, setting it apart from 
previous research7–9.

Unlike previous works, this study constructs novel Lyapunov functions to identify various types of stability, 
including asymptotic mean-square stability, stability in probability, and stochastic global exponential stability in 
the sense of the mean-square. The paper uniquely applies these theoretical findings to both epidemiology and 
finance, providing new insights into the stochastic global exponential stability of the endemic equilibrium point 
in HIV/AIDS dynamics and deriving sufficient conditions for stability in financial models such as the stochastic 
market model and the random Ornstein–Uhlenbeck model. Additionally, numerical examples and computer 
simulations validate the theoretical results and offer practical insights, making the findings more accessible and 
applicable to real-world scenarios. This dual focus and practical validation distinguish this work from existing 
literature.

HIV/AIDS epidemic model and some financial market models can be represented by the nonlinear stochastic 
differential equation (SDE) in the form:

	

{
dx(t) = µ(t, x(t))dt + σ(t, x(t))dW (t) t0 ≤ t ≤ T, x ∈ R
x(t0) = x0

� (1)

Firstly, our study of stability focuses on this general equation. A white noise, W(t), the time derivative of the 
Wiener process, disturbs the right side. By introducing new principles that are different from those of classical 
calculus, a new type of calculus tackles the fact that even Brownian motion is not differentiable anywhere1,15,16. 
Authors in16,17 have examined the existence and uniqueness theorems for the solution of (1). Now we address 
some necessary conditions on this system: 

	1.	� A stochastic process {x(t), t ∈ T } defined on the probability space (Ω, F , P) is called a second-order 

stochastic process endowed with the norm if ∥x∥2
2 = E[x2(t)] < ∞, i.e., E

[∫ T

0

∣∣x2
∣∣ dt

]
< +∞, and 

square-integrable process if 
∫ ∞

0 E
[
x2(t)

]
dt < +∞, where E [ · ] denotes the expectation value operator.

	2.	� Assume that there is a unique global solution x(t, t0, x0) for each x0 and for positive constants M1, M2 such 
that t ∈ [t0, ∞) and x1, x2 are in R+ × R, then 

	

|µ(t, x1) − µ(t, x2)| ≤ M1 |x1 − x2| ,

|σ(t, X1) − σ(t, x2)| ≤ M2 |x1 − x2| .
� (2)

	3.	� Assume that the system admits the trivial solution x(t) = 0, i.e., µ(t, 0) = σ(t, 0) = 0.
	4.	� The process’s initial state, x0, is described in (1) as a second-order R-valued random variable such that 

E|x0|2 < ∞.
	5.	� The following processes are both Borel measurable: µ : [t0, ∞) × R → R, σ : [t0, ∞) × R → R. It is ex-

pected that the coefficients µ and σ will satisfy the Lipschitz condition 2, and be continuous with regard to 
t18.

	6.	� Assume that K be the family of all continuous non-decreasing functions υ : R+ → R+ such that υ(0) = 0 
and υ(x) > 0 for x > 0. Let us define the set Qh as follows, 

	Qh = {h > 0, x ∈ R, t ≥ t0 : ∥x(t)∥2 < h} .Numerous issues about the stability of equilibrium states in 
nonlinear stochastic systems can be simplified to the study of the zero solution of the associated linear system, 
as mentioned in19. According to (1), the linear stochastic system is:

	 dx(t) = F (t)x(t)dt + G(t)x(t)dW (t).� (3)

Theorem 1.1  In a sufficiently small neighborhood of x = 0 such that

	 |µ(t, x) − F · x| + |σ(t, x) − G · x| < δ |x| ,� (4)

and if the zero solution of (3) is asymptotically mean-square stable, then the solution of (1) is stochastically stable.

There is still considerable scope for the application of our study of stability 

	1.	� The mathematical HIV/AIDS model 

	

Ṡ(t) = Λ − βS(t)I(t) − ΛS(t),
İ(t) = βS(t)I(t) − ΛI(t) − δI(t),
Ȧ(t) = δI(t) − ΛA(t) − dA(t),
S(t0) = S0, I(t0) = I0, A(t0) = A0.

� (5)
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 The three compartments S,  I, and A are the fractions of the susceptible population, infected and AIDS 
individuals, respectively. All the parameters involved in the model are non-negative and are described in 

Table 1. R0 = β

δ + Λ , is the average new infections produced by one infected individual and it is called the basic 

reproduction number. E0 = (1, 0, 0) is the disease-free equilibrium. For the global stability of this equilibrium 
for R0 ≤ 1, see Theorem 10 in6. Many recent works on HIV/AIDS mathematical models are mentioned in12. We 
focus on the point at which the disease will persist E∗, the endemic equilibrium 

	
E∗ = (S∗, I∗, A∗) =

(
δ + Λ

β
,

(β − δ − Λ)Λ
β(δ + Λ) ,

δΛ(β − δ − Λ)
β(d + Λ)(δ + Λ)

)
.

	2.	� Stock prices can be described by the Black–Scholes pricing model, which was developed by20. The Black–
Scholes model was given an analytical solution by the authors in21, and this model was numerically handled 
by the authors in22,23. The stability of the Ornstein–Uhlenbeck model with random variable inputs is also 
covered in the study.Our main results begin with the study of the stability of the zero solution of the stochas-
tic and random system rigorously. This is followed by the study of the mechanisms of the stochastic HIV/
AIDS persistence, the stochastic Black–Scholes market model, and the random Ornstein–Uhlenbeck model. 
The second section of this paper introduces the rigorous study of the stability of the stochastic and random 
nonlinear general system. The main case studies are presented in the third section. Some illustrating numer-
ical examples with regions of stability and numerical simulations are shown in Section 4. To close the paper, 
the conclusion and further directions are presented in Section 5.

Stability analysis of random and stochastic systems
We will examine different forms of stability of the system’s trivial equilibrium (1) in this section. For both µ, σ 
being Borel measurable functions and stochastic processes, the following stability measures are examined: 
asymptotic mean-square, exponential mean-square, global exponential mean-square, and stochastic stability. 
Global stability of an equilibrium point may be described as the inevitable fate of the processes regardless of 
its setting situation and size of perturbation (random inputs and/or stochastic terms). Regardless of the initial 
states of the system, global exponential stability makes any trajectory tends to the attractor and the resulting 
oscillations will decay in an exponential rate. Our theoretical study of stability can be extended to cover many 
applications in biology, ecology, finance, etc.

We have the following results.

Theorem 2.1  The zero solution of (1) is stochastically stable, i.e., stable in probability if the chosen Lyapunov func-
tion satisfies

	1.	� EV(t, x) ≥ c1E |x(t)|2.
	2.	� EV(t0, x0) ≤ c2|x0|2.
	3.	� E [V(t, x) − V(t0, x0)] ≤ 0.

Theorem 2.2  The zero solution of (1) is asymptotically mean-square stable if the chosen Lyapunov function satisfies

	1.	� EV(t, x) ≥ c1E |x(t)|2.
	2.	� EV(t0, x0) ≤ c2|x0|2.
	3.	� E [V(t, x) − V(t0, x0)] ≤ −c3

∫ t

t0
E |x(s)|2 ds.

Theorem 2.3  (1) has a zero solution that is exponentially mean-square stable globally if the chosen Lyapunov 
function satisfies

	1.	� EV(t, x) ≥ c1eλtE |x(t)|2.
	2.	� EV(t0, x0) ≤ c2|x0|2.
	3.	� ELV(t, x) ≤ 0.

Proofs of Theorems 2.1 to 2.3 are presented in Appendix A. These theorems establish the stability of the system 
under the influence of a stochastic process (Wiener process), taking into account all imposed conditions and 
assumptions. Furthermore, under certain conditions satisfied by the Lyapunov function, we achieve global 
stability in the mean-square sense.

Parameter Description

β Transmission rate of infection

Λ Rate of birth and natural death

δ Rate of the infected individuals to be AIDS

d Death rate caused by AIDS disease

Table 1.  The physical meaning for model parameters.
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The uncertainty can be considered via the outcome ω of an experiment. Consider the stochastic differential 
equation (SDE) with random coefficients:

	

{
dx(t, ω) = a(ω)f(t, ω)dt + b(ω)g(t, ω)dW (t),

x(t0) = x0.
� (6)

Here, a(ω) and b(ω) are random variables that obey certain conditions, W(t) is a one-dimensional Brownian 
motion, and x(t) := x(t, ω), f(t, ω), and g(t, ω) are stochastic processes.

Theorem 2.4  (6) has a zero solution that is asymptotically mean square stable if

	1.	� a(ω), b(ω) are random variables of 4th order.
	2.	� f(t, ω), g(t, ω) are 4th order stochastic processes.

The proof of Theorem 2.4, presented in Appendix A, establishes the stability of the system under the influence 
of random coefficients and stochastic processes. This is achieved using an appropriate Lyapunov function that 
satisfies specific conditions. The stability of the system is obtained through certain conditions that must be met 
by the random coefficients and stochastic processes. This provides valuable insights into the distributions that 
the random variables can follow.

Applications
Persistence of the stochastic HIV/AIDS model
We perturb the deterministic system (5) by the Brownian motion which is proportional to the deviation of the 
current state of the system from the endemic equilibrium E∗. Therefore, the stochastic HIV/AIDS model will 
be in the form

	

dS(t) = (Λ − βS(t)I(t) − ΛS(t)) dt + σ1(S(t) − S∗)dW1(t),
dI(t) = (βS(t)I(t) − ΛI(t) − δI(t)) dt + σ2(I(t) − I∗)dW2(t),
dA(t) = (δI(t) − ΛA(t) − dA(t)) dt + σ3(A(t) − A∗)dW3(t).

� (7)

The environmental noise is included in the model by considering the standard Brownian motion Wi(t) for 
i = 1, 2, 3 and σ1, σ2 and σ3 are the corresponding intensities. Based on Theorems 2.1, 2.2 and 2.3, we shall 
prove the stochastic stability and stochastic global exponential stability of the nonlinear model (7) through the 
study of mean-square stability and global exponential mean-square stability of its corresponding linear system. 
Using the transformation

	

{
x1(t) = S(t) − S∗,
x2(t) = I(t) − I∗,
x3(t) = A(t) − A∗,

we center the system (7) on the equilibrium E∗ and linearize, we get

	

dx1(t) = (−(Λ + βI∗)x1(t) − βS∗x2(t)) dt + σ1x1(t)dW1(t),
dx2(t) = (βI∗x1(t) + (βS∗ − Λ − δ)x2(t)) dt + σ2x2(t)dW2(t),
dx3(t) = (δx2(t) − (Λ + d)x3(t)) dt + σ3x3(t)dW3(t).

� (8)

Proposition 3.1  Given R0 > 1, if the following conditions

	

β(S∗ − I∗) ≤ 2Λ − σ2
1

β(3S∗ + I∗) ≤ 2Λ + δ − σ2
2 ,

σ2
3 ≤ 2(Λ + d) − δ.

� (9)

are satisfied, then E∗ of (7) is stochastically stable.

The next proposition investigates the conditions of stochastic global exponential stability for the persistence of 
the HIV/AIDS disease inspiring by the results obtained by Theorem 2.3 on the general system (1).

Proposition 3.2  Given R0 > 1, if the following conditions
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σ2
1 + 1

R0
+ ε ≤ 2Λ + β(I∗ − S∗),

σ2
2 + 1

R0
+ ε + β(3S∗ + I∗) ≤ 2Λ + δ,

σ2
3 + 1

R0
+ ε + δ ≤ 2(Λ + d),

� (10)

are satisfied, then the endemic equilibrium of (7) is stochastically globally exponentially stable.

The proofs of Propositions 3.1 and 3.2 are given in Appendix B. These two propositions demonstrate that the 
dynamics of the HIV/AIDS epidemic model are entirely governed by the basic reproduction number.

The Black–Scholes market (B-SM) stochastic model
The risk-neutral probability metric governs the process of stock pricing since, the following linear SDE for P

	

{
dx(t) = rx(t)dt + σx(t)dW (t),
x(t0) = x0 > 0. � (11)

The solution stochastic process x(t), the initial state x0, and the arbitrary constant r are all described in (11), the 
term σx(t)dW (t) provides a suitable explanation of the uncertainty of the stock prices process. As such, the 
stochastic process’s probabilistic behavior is limited to a certain pattern, such as the Gaussian distribution24. The 
amount of the stock price’s random swings is controlled by the volatility σ > 0. In order to verify the stability of 
this model, we will now introduce some appropriate stochastic Lyapunov functions. Consider the model:

	

{
dx(t) = rx(t)dt + σ sin(x(t))dW (t),
x(t0) = x0 > 0. � (12)

Proposition 3.3  Equation (12) is

	1.	� Stable in probability if 2r − λσ < 0.
	2.	� Mean square exponentially stable if σ2 + 2r − λσ < 0.
	3.	� Mean square stable if σ2 + 2r < 0.

The random Ornstein–Uhlenbeck model
The Ornstein–Uhlenbeck process driven by random variable inputs

	 Ṡ(t, ω) = −A(ω)S(t, ω) + σS(t, ω)C(ω),� (13)

is a random model of volatility in finance of the process of asset prices. The process {S(t), t ≥ 0} is the price 
of a stock with a nonnegative random variable drift A(ω) , the volatility σ > 0 and a random variable C(ω).

Proposition 3.4  Equation (13) is

	1.	� Mean square exponentially stable if ∥A(ω)∥4 + 2σ∥C(ω)∥2 < λσ − 1, λ > 0.
	2.	� Mean square stable if σ∥C(ω)∥2 < ∥A(ω)∥2.
	3.	� Stochastically stable if only A(ω) is a nonnegative random variable.

The proofs for the Propositions 3.3 and 3.4 are detailed in Appendix B. These proofs explore the stability of 
the systems under specific conditions related to the parameters and random coefficients. By analyzing these 
conditions, we can determine the stability characteristics of the Black–Scholes model and the Ornstein–
Uhlenbeck process.

Verification
In this section, we introduce some illustrative examples which include one and two-dimensional stochastic and 
random systems. Necessary and sufficient conditions are investigated. Areas of stability and many numerical 
simulations of the solutions are shown. The solution of (1), x(t) can be considered in the integral form

	
x(t) = x0 +

∫ t

t0

µ(s, x(s))ds +
∫ t

t0

σ(s, x(s))dW (s),� (14)

where the last integral is understood as an Itô stochastic integral.
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We employ the Euler–Maruyama numerical approach for the numerical simulation25. This method does a better 
job with tiny values of the step size ∆t. According to (14), the integrals can be approximated as follows

	

∫ tn+1

tn

µ(s, x)ds ≈ µ(tn, xn)∆t and
∫ tn+1

tn

σ(s, x)dW (s) ≈ σ(tn, xn)∆Wn.

Then Euler–Maruyama scheme takes the form

	 xn+1 = xn + µ(tn, xn)∆t + σ(tn, xn)∆Wn.� (15)

This scheme is strongly convergent with order 0.5. It is computationally costly (error and time) to take ∆t very 
small. Therefore, choosing small enough values of ∆t is recommended.

Example 1  Consider the nonlinear stochastic scalar differential equation

	 dx(t) = −ax(t)dt + b sin(x(t))dW (t).� (16)

According to Theorem. 2.2, the Lyapunov function V(t, x) = x2(t) gives an asymptotic mean-square stability 
condition for the zero solution of (16) in the form

	 b2 − 2a < 0.� (17)

The region of mean-square stability is shown by condition (17) in Fig. 1a in (a, b)-space of parameters. Using 
the fundamental Euler–Maruyama scheme (15), numerical simulations of the solution of (16) with x(t) = 0 are 
shown in Fig. 4. At the point (1, 1) in the stability region, Fig. 4a shows 50 blue stable trajectories that converge 
to zero. At the point (1, 2), Fig. 4b shows 50 red unbounded trajectories.

Example 2  Consider the analog nonlinear stochastic scalar differential equation to Example 1 with random 
coefficients A(ω), C(ω), and W(t) is the one-dimensional Brownian process:

	 dx(t, ω) = −A(ω)x(t, ω)dt + C(ω) sin(x(t, ω))dW (t).� (18)

According to Theorems. 2.2 and 2.4, the asymptotic mean-square stability condition for (18) is:

	 ∥C(ω)∥2
4 < 2∥A(ω)∥2.� (19)

If x(t, ω) is independent of A(ω) and C(ω), then ∥C(ω)∥2
2 < 2∥A(ω)∥ is the mean-square stability condition. 

Numerical simulations of the solution of (18) with x(t) = 0 show the stability of 100 trajectories in Fig. 6a–d. 
In these figures, A(ω), C(ω) can follow any random probability distribution under condition (19). We conclude 
that A(ω) cannot follow an unbounded distribution (e.g., Gaussian) for stability. Figure 6e shows a numerical 
simulation of 100 unstable (red) trajectories for specific parameters of the distributions of A(ω) and C(ω). 
The presence of these coefficients as random variables allows for a wider type of probability distributions such 
as Binomial, Beta, Gaussian, etc., and this provides greater flexibility and makes very attractive differential 
equations with random coefficient variables in dealing with real applications.

Fig. 1.  Mean square stability regions.
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Example 3  Consider the two-dimensional system of stochastic differential equation

	

{
dx1(t) = (−ax1(t) + x2(t)) dt + x1(t)dW1(t),
dx2(t) = −bx2(t)dt + x2(t)dW2(t). � (20)

W (t) = (W1(t), W2(t))T  is a standard Wiener process, x(t) = (x1(t), x2(t))T  is a two-dimensional vector 
function where T is the transposition. The system in matrix form

	

(
dx1(t)
dx2(t)

)
=

(−ax1(t) + x2(t)
−bx2(t)

)
dt +

(
x1(t)dW1(t)
x2(t)dW2(t)

)
.

Introducing a Lyapunov function V(t, x) = x2
1(t) + x2

2(t) implies

	 LV(t, x(t)) = −2ax2
1(t) + 2x1(t)x2(t) − 2bx2

2(t) + x2
1(t) + x2

2(t).

	 ELV(t, x(t)) ≤ (2 − 2a)E
[
x2

1(t)
]

+ (2 − 2b)E
[
x2

2(t)
]

.

Hence, according to Theorem. 2.2, the zero solution of (20) is asymptotically mean-square stable if a > 1 and 
b > 1 for arbitrary constants a, b. Figure 1b gives the mean square stability region in (a, b)-space of parameters. 
50 stable trajectories x1(t) (blue) and x2(t) (green) are simulated with x(t) = 0 at the point (1.2, 1.5) in Fig. 5a 
and 50 unbounded trajectories at the point (0.01, 0.02) as shown in Fig. 5b.

Example 4  Consider the two-dimensional random system with random variables B(ω), C(ω), and a nonnega-
tive random variable A(ω). W(t) is a Wiener process:

	

(
dx1(t, ω)
dx2(t, ω)

)
=

(
ax1(t, ω) + A(ω)x2(t, ω)

−bx2(t, ω)
)

dt +
(

B(ω)x1(t, ω)dW1(t)
C(ω)x2(t, ω)dW2(t)

)
,� (21)

The zero solution of (21) is asymptotically mean-square stable if:

	

2a + ∥A(ω)∥2 + ∥B(ω)∥2
4 < 0,

−2b + ∥A(ω)∥2 + 2∥C(ω)∥2
4 < 0.

� (22)

Under these conditions and according to Theorem, 2.3, Fig.  7a–d show the numerical simulation of stable 
solutions for different probability distributions, and Fig. 7e shows unstable (unbounded) solutions for specific 
values of the parameters of the probability distributions.

Example 5  Consider the stochastic nonlinear HIV/AIDS model (7), for R0 > 1 and conditions of stochastic 
global exponential stability of E∗ (10), the disease persists for different values of the parameters involved in the 
system. Figure 8 shows the persistence of the HIV/AIDS epidemic through the stability of E∗. The basic repro-
duction number R0 is sensitive to the change in the transmission rate of the disease β, increasing in β implies an 
increase in R0. The parameter of transmission can be decreased by choosing less risky sexual behaviors, getting 
tested and treated for STDs, etc.

Example 6  We consider the nonlinear stochastic Black–Scholes market model (12). Under the investigated 
conditions of Proposition 3.3, the stochastic stability regions for (12) given by the condition imposed on the 
parameters are shown in Fig. 2 for different values of the parameter λ in (r, σ)-space of parameters. Figure 3 
shows the mean-square exponential stability regions. Increasing λ gives better stability regions. Figure 1c shows 
the mean-square stability region. The numerical simulations of the solution of (12) with x(t) = 0 are shown in 
Fig. 9. At the point (−1, 1), 50 blue stable trajectories are simulated in Fig. 9a and 50 red unbounded trajectories 
in Fig. 9b at the point (1, 1).

Example 7  We consider the random Ornstein–Uhlenbeck model (13). The numerical simulations of the solu-
tion of (13) with x(t) = 0 are shown in Fig. 10 for different values of parameters of the probability distributions 
with λ = 3 in the light of conditions obtained by Proposition 3.4.

Discussion
We deal with nonlinear stochastic differential equations and analyze the stability of solutions based on mean-
square stability conditions. Therefore, A differential equation shows stability at point (1,1) and instability at point 
(1,2), illustrated with Figs. 1, 2, 3 and 4 of stable and unstable trajectories. A similar stochastic equation with 
random coefficients A(ω) and C(ω) is analyzed, showing stability and instability through various probability 
distributions of the coefficients as in Figs. 5, 6 and 7. The Black–Scholes model is examined with stability regions 

Scientific Reports |        (2024) 14:30608 7| https://doi.org/10.1038/s41598-024-82057-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for different values of the parameter λ, with plots demonstrating stable and unstable solutions at different points 
as in Figs. 8, 9. The Ornstein–Uhlenbeck model with random parameters is studied, with plots showing solution 
stability under different parameter values as in Fig. 10.

Stability in the mean-square sense is crucial when analyzing stochastic systems like the Black–Scholes model 
and the Ornstein–Uhlenbeck process. This type of stability ensures that the expected value of the square of the 
system’s state remains bounded over time, which is essential for predicting long-term behavior. In financial 

Fig. 4.  Trajectories of solution of (16) with x0 = 1.5.

 

Fig. 3.  Mean square exponential stability regions of (12).

 

Fig. 2.  Stochastic stability regions of (12).
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models, such as the Black–Scholes, mean-square stability helps understand how sensitive the option prices are to 
fluctuations in market parameters like volatility and interest rates. For the Ornstein–Uhlenbeck process, which 
models mean-reverting behavior, mean-square stability guarantees that the process will consistently return to its 
mean, preventing divergence and ensuring reliable long-term predictions.

Similarly, in our dynamics of the HIV/AIDS model, mean-square stability is vital for understanding the 
progression of the disease under various treatment strategies and random perturbations. This stability ensures 
that the expected value of the square of the infected population remains bounded, providing insights into the 
effectiveness of interventions and the long-term behavior of the epidemic. By ensuring mean square stability, we 
can develop more robust and reliable models that aid in decision-making and policy formulation for controlling 
the spread of HIV/AIDS.

Conclusion
In our comprehensive study, we have delved into the stochastic stability, mean-square stability, and stochastic 
global exponential stability of the trivial equilibrium in both linear and nonlinear stochastic systems. Our 
findings, as presented in6, highlight the mechanisms that could potentially lead to eradicating the disease. This 
investigation has allowed us to explore the dynamics of the persistence of the HIV/AIDS epidemic. Moreover, we 
have examined the dynamics of the random Ornstein–Uhlenbeck model, which plays a crucial role in modeling 
various physical and financial phenomena. Additionally, we have analyzed the stochastic Black–Scholes market 
model, which is essential for the pricing of financial derivatives and understanding market risks.

Fig. 5.  Trajectories of solution of (20) with x1(0) = 1.0 and x2(0) = −1.0.
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Fig. 6.  Trajectories of solution of (18) with x0 = 0.5.
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Fig. 8.  Numerical simulation of the path (S, I, A) of (7) with (S(0), I(0), A(0)) = (0.3, 0.6, 0.55), ε = 0.02, 
and ∆t = 0.013.

 

Fig. 7.  Trajectories of solution of (21) with x1(0) = 1.0, x2(0) = −1.0 and a = −2, b = 2.
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Data availability
The data that support the findings of this study are available on request from the corresponding author [M.A.So-
haly].
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