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In response to climate change mitigation efforts, improving the efficiency of heat networks is 
becoming increasingly important. An efficient operation of energy systems depends on faultless 
performance. Following the need for effective fault detection and elimination methods, this study 
suggests a three-step workflow for increasing automation in managing defective substations on the 
user level within heat networks. The work focuses on a model region in northern Germany. The local 
heat network provides data in roughly hourly intervals, including the supply and return temperatures 
and the volume flow of the substations. Firstly, this study identifies common indicators of faults 
using k-means clustering analysis of the temperature data and expert knowledge: an exceeded return 
temperature level, very low cooling, and inverted temperature readings. With these indicators, 
the subsequent statistical identification approach confirms the successful detection of affected 
substations, with common diagnoses including disabled return temperature limitation units, defective 
motoric valves, and faults in the storage control. Lastly, the study evaluates the impact of faults on 
the system efficiency. Combining the temperature and the volume flow data, the workflow quantifies 
the negative influence of a fault, enabling the prioritization of fault elimination measures in practical 
application to enhance the overall system efficiency.
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Heating systems are widely considered the most suitable solution for areas of high heat demand density1–3. 
However, transitioning existing systems to the 4th generation of district heating, which operates at lower 
temperatures, poses significant challenges4. Effective methodologies are required to reduce operating 
temperatures while accounting for existing network infrastructure.

Substations, which transfer heat from the network to users, are critical components regarding the heat network 
efficiency and often exhibit faults5–8. Faults in the substations typically require increasing either the supply 
temperature or the volume flow9through the substation, counteracting efforts to reduce system temperatures. 
Fault detection at the user level is crucial for enhancing thermal energy systems’ efficiency, as single users can 
significantly impact the overall network performance10. Effective fault management could achieve half of the 
required temperature reduction for the transformation to 4th generation systems8. Besides improving efficiency, 
fault detection enhances reliability and safety11and can achieve cost savings12. Thus, developing feasible fault 
detection methods for user-level substations is essential.

Fault detection methods are mostly data-driven as they typically require large quantities of measurement 
data13. These include supervised (regression, classification) and unsupervised (e.g., clustering) models12. The 
standard strategy of fault detection methods is to compare the measured state of the system with an expected, 
faultless state13. With the rise of smart meters, these approaches have become increasingly relevant14, yet 
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existing methods face challenges like limited scalability, significant manual intervention, and complexity5,9,14,15, 
counteracting the practical application.

The literature emphasizes the need for effective fault detection5,8,9. For instance, Månsson et al.9 underline the 
relevance of a well-operating model for fault detection, while Buffa et al5. highlight the advantages of machine 
learning despite its high data requirements. Manual fault detection is time-intensive5, and substations with low 
overall heat demand are often assigned lower priority or not monitored at all9. Yet, aiming for lower supply 
temperatures, this currently existing fault tolerance8 should not be accepted but regarded as an optimization 
potential. In a related context, Fabre et al.17focus on improving user heating systems by reducing return 
temperatures. Given the potentially large number of substations, Ref17. emphasizes the importance of prioritizing 
those with the most significant negative impact. For this, a limited number of operators consider the heat or 
volume flow of the station7. Thus, fault detection methods should be cost- and data-effective enough to consider 
all substations in a system rather than only those with the highest heat demand and quantify the negative impact 
of the fault on the heating system.

Further studies emphasize the need for reliable, scalable, cost-efficient, and simple solutions that minimize 
manual processing14,15. Data accessibility is one primary inhibitor, e.g., for secondary-side fault detection16. The 
objective must be to use easily accessible data (e.g., primary-side data, not secondary-side data, often challenging 
to collect) to simplify fault diagnosis and minimize manual intervention15.

Automation is essential for effective fault management but requires increased efforts in data labeling12,19. A 
majority of studies focus on anomaly detection with unsupervised learning because labeled data is scarce12. As 
faults are a subgroup of anomalies, existing approaches can lead to an overextension of the resources an operator 
can invest5,12. Ref12. concludes that an effort should be put into further advancing actual fault detection alongside 
anomaly identification.

Clustering is a commonly applied method for grouping data and, thus, generating labels. Calikus et al.10 and 
Gianniou et al.18introduce clustering methods to automatically identify user data patterns in heat networks to 
increase knowledge of thermal energy systems. Ref10. emphasizes the relevance of continuous monitoring for 
detecting errors. The approach allows experts to outline substations that do not meet the behavior expected for 
the assigned control strategy10 and, thus, aids in labeling data.

However, there is no standard monitoring approach to fault detection on the substation level7. Ref7. identifies 
monitoring the return temperature, the temperature difference between the supply and return temperatures, and 
consumption or over-consumption (measured supply in comparison to an expected value) as existing approaches 
for fault detection. Another existing label for fault detection is the loss of user comfort21,22. Certain studies define 
a fault as always affecting user comfort and assign the term anomalies to the remaining phenomena21,22. Others, 
e.g., Ref7,17,20., express that inhabitants often do not notice faults in substations if no loss of comfort occurs. 
However, independent of the chosen terminology, the impact on user comfort can be insufficient as a criterion 
for fault detection. Therefore, methods for fault detection should be more standardized.

Certain studies showcase the application of the time-series data collected for the temperatures and the 
volume flow for fault detection. In the practical application of fault diagnosis, time dependencies, e.g., strongly 
relying on the information in the sequential order of time-series data, inflict an additional dimension and, hence, 
increase the complexity of the approach. In the context of reducing time dependency, Gadd et al.6 suggest the 
“excess flow” (increased volume through substation caused by a fault) and the “thermal signature” (correlation 
of the temperature difference achieved by the substation and the outside temperature) as indicators of substation 
performance. In a subsequent study, Gadd et al.8 inquire about the nature of occurring faults in user substations, 
found to be unsuitable heat load patterns, a low average annual temperature difference, and poor substation 
control. Calikus et al.20establish a method for fault detection working with the so-called “heat power signature” 
(or “energy signature”, the correlation of heat demand and outside temperature6,8,15,20,23) for the detection of 
errors in heat networks. The studies6,8,15,20,23 suggest that relevant information for fault detection can be obtained 
with limited consideration of the time dimension. Thus, research should focus on investigating methods that 
reduce the dependence on the sequential order of time-series data and develop strategies to simplify data pre-
processing without losing relevant temporal information.

An additional benefit of fault management is increasing measurement data quality for research purposes. 
Ref24–27. highlight the importance of high-quality data for advancing heat network models. Improving fault 
detection directly increases network efficiency. However, it also enhances data quality and, thus, indirectly 
supports more advanced data-driven system modeling, which is considered highly relevant for further improving 
system efficiency28.

This study aims to develop an effective workflow for using substation data for fault detection on the user level 
in heating systems, with a focus on achieving a high degree of automation. The objectives of effectiveness and a 
high degree of automation shall be assessed by the following:

First, the workflow should reduce manual intervention. This study aims to contribute to this objective by 
utilizing available primary-side system data and encoding the employed data pre-preparation methods for 
automation. Also, the number of substations to be manually assessed shall be reduced, and the detection of 
faulty substations shall be fully automated.

Second, the method should lessen the reliance on the sequential order of time-series data, ensuring a more 
flexible and efficient process. Therefore, fault detection shall occur based on the sample distribution rather than 
by exploiting the information that the sequential order of the data can provide.

Third, all substations, regardless of their respective size, shall be monitored. To achieve this, the faults’ impact 
on the heating network shall be quantified, allowing for the prioritization of elimination measures. The impact 
quantification shall also be fully automated.

The article is structured as follows: Section "Materials and methods" outlines the research methodology. 
The study introduces the framework of the fault identification methodology, presents the model region, and 

Scientific Reports |        (2024) 14:32166 2| https://doi.org/10.1038/s41598-024-82103-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


provides the measurement architecture for data collection. Additionally, this work demonstrates the concept of 
the temperature signature of substations and introduces the necessary steps for data pre-preparation to use the 
k-means clustering approach. Further, the statistical identification process, as well as the quantification of the 
faults’ impact, are explained. Section "Results" presents the results of the case study, including the identification 
and labeling of indicators with clustering and expert knowledge, fault detection with statistical methods, and the 
impact quantification of the faults. Furthermore, this work presents certain special cases of detected temperature 
signatures. Section "Discussion" provides the discussion. Section "Conclusions" finishes with the conclusions.

Materials and methods
Fault detection framework
In this work, fault detection occurs in a three-step workflow, highlighted in Fig.  1. First, typical patterns of 
substation data indicating faults are determined and labeled with clustering and expert knowledge. Second, a 
statistical approach for detecting faulty substations, automated by encoding, is developed. Third, the same code 
assigns a numerical value to quantify the fault’s impact on the overall system.

Figure 1 illustrates the processing steps in orange and the obtained information in dark blue. The applied 
methods are highlighted in bold. As visible, the acquired raw data of the substations in the model region is 
pre-prepared prior to subsequent processing. As this study focuses on the interdependencies of the user 
substations and the heating system, we use the terms “fault” and “error” to describe substation behavior that has 
a disadvantageous impact on the heat network efficiency.

The pre-prepared data is then input into the workflow. For the first step, this study uses k-means clustering 
to establish the common (faultless) pattern as the reference for identifying anomalous observations in the 
temperature data of the substations in the model region. To achieve transferability, this work takes advantage of 

Fig. 1.  Fault identification workflow. The fault identification occurs in three steps, namely identification of the 
relevant faults with clustering, providing groups of faults to be labeled with expert knowledge, subsequently 
establishing statistical features to automatically detect substations affected by the labeled faults and assign a 
numerical value to quantify the (negative) impact of the faulty substation on the system to prioritize measures 
with thermodynamic fundamental relationships.
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the statistical nature of k-means rather than explicitly defining a specific faultless reference pattern. Clustering-
based methods are unsupervised and can identify patterns among data and assign subsets with similar patterns 
to groups. This step might require comparatively high computational resources. As the clustering provides 
no reason for the decision, expert knowledge is required to provide labels for the groups. It is used to label 
statistically accessible indicators to detect defective substations. In this study, patterns indicating faults are 
labeled with statistically accessible features.

In the second step, these indicators can be used to identify faulty substations automatically through an 
encoded statistical process. The acquired labels and the raw data are the inputs. Such a statistical evaluation 
typically requires less computational effort than clustering. However, this study’s method demands a feature 
indicative of an error, which the clustering approach provides. The statistical approach returns the substations 
affected by at least one of the faults labeled in the first step.

Thirdly, information on the intensity of the negative impact of the detected faulty behavior on the heating 
system can be provided, relying on the thermodynamic relationships of volume flow and temperatures. The 
information on the occurrence of a fault obtained in the second step is insufficient, as it does not provide any 
measure of prioritizing elimination actions. This can overstrain the operator’s resources for fault management. 
Hence, the code automatically returns a numeric quantification of the fault’s impact on the system.

Automation enables repetitive conduction of fault detection and impact evaluation. Therefore, conducting 
the second and third steps of the suggested workflow at regular intervals using the recently recorded data outlines 
existing, newly occurring, and reoccurring faults.

Model region and data acquisition
This study employs exemplary data of the supply and return temperature as well as the volume flow recorded in 
roughly hourly time steps between 1st January and 31st December 2023, of a centrally supplied district heating 
system in Tarp, northern Germany, with 486 substations. Figure 2 a) displays the general structure of the system, 
Fig. 2 b) shows the recorded values of the volume flow, the supply, and the return temperature for a day of January 
(mid-heating season) and July (mid-summer) for one exemplary building in the heating system. Figure 2 c) 
depicts the infeed heat flow for the same days and Fig. 2 d) the infeed heat flow over the hour of the year.

For the infeed of the heat network, the supply temperature ranges between 70 and 105 °C. The substations 
are designed to receive the minimum supply temperature of 70 °C for an outside temperature ≥ 15 °C and up 
to 100 °C for an outside temperature ≤−10 °C. Currently, the return temperature received at the infeed plant 
reaches values between 50 and 55 °C, which is a comparatively high value compared to more modern heating 
systems.

The heat network mainly covers the heat demand of individual and multi-family homes. Certain buildings 
share a common substation. One substation supplies a living quarter (see the upper left corner of Fig. 2 a). One 
industrial customer and buildings used by the public (e.g., schools, gyms, churches) are connected to the system 
as well.

The fault management method of this study rests predominantly on the data of the individual substations, 
as captured exemplarily in Fig. 2 b). Users in the model region can receive heat for domestic hot water and 
space heating or the latter only. Further, it is possible to heat the domestic hot water directly through the heat 
exchanger or use a storage facility, which impacts the temperature level required for the supply and the resulting 
return temperature. Figure 3 depicts a typical measurement architecture on the end-user level within the model 
region.

The measurement architecture captures the sum of the heat supplied for domestic hot water and space heating. 
The motoric valves, as actors, determine the volume flow values. As the scheme in Fig. 3 is an advantageous setup, 
it should be mentioned that the real-case scenarios can (strongly) differ, possibly influencing the efficiency. For 
the direct domestic hot water supply without a storage facility, a low flow rate of primary side heat carrier is 
required for times of no demand. This maintains the level of temperature needed when demand occurs again. 
Hence, in this specific case, no complete stagnation of the substation can occur, but the volume flow is limited to 
avoid excessively high return temperatures.

If measures for eliminating the faults lie in the user’s sphere, the operator can only give advice. Ref7., therefore, 
suggests that a good relationship with the user is highly relevant in fault elimination. However, legally binding 
contracts containing threshold values to be adhered to can exist, as in the model region. Specifically, the return 
temperature maximum to be adhered to on the average is 55 °C. An excessive return temperature causes relevant 
heat losses in the return line. Also, it is indicative of a low cooling of the heat carrier, which occurs for values of 
the volume flow surpassing the optimum. Thus, the hydraulic load of the system is affected. Additionally, the 
losses in the supply line are increased: for a higher capacity flow (product of volume flow and heat capacity), the 
mean overtemperature of the supply line rises. Therefore, a user’s substation with a high return temperature has a 
substantial negative impact on the system. The operator determined that the boundary of 55 °C is the maximum 
level to limit the network losses to an acceptable level. As the user substations are the property of the user and 
also the user’s responsibility, the restriction to 55 °C further aims to provide a legal foundation for the operator 
to oblige the user to take measures.

It should be acknowledged that the limit value of 55 °C is specific to the model region and can appear high 
compared to other heating systems. The value can be adjusted, e.g., for more modern and modernized systems, 
as well as systems conceptualized under a different legal framework.

Temperature signature of substations
In this study, following the terminology of Ref20., the term “temperature signature” refers to the supply temperature 
measurements of a substation displayed over the return temperature readings. Similarly to, e.g., Ref6,8,20,23., this 
study does not primarily rely on the information in the sequential order when treating the time-series data. 
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Instead, the data are investigated with regard to the sample distribution. As temperatures alone indicate the 
efficiency of a thermal energy system9, this work hypothesizes that information on the occurrence of faults can 
be captured without relation to time, employing the supply and return temperature data of user substations 
for the identification of faults. Working with limited time dependency serves the objective of avoiding time-
intensive pre-processing and reduces computational costs.

To further explain the concept, Fig.  4 contains temperature signatures for two substations. On the left, 
the plots distinguish between the summer (1st June to 15th September 2023) and the heating period, and on 
the right, between the existing operational modes. This study considers return temperatures above 55  °C as 
disadvantageous for the system efficiency. On the contrary, the lower the return temperature drops below 55 °C, 
the stronger the advantageous influence becomes. A black solid line in Fig. 4 indicates the equality of supply and 
return temperature.

The distance in pipe length from the infeed strongly influences the temperature signature of substations. 
Aiming for an efficient heat supply, the most advantageous user is situated close to the heat and power plant29 
because the pipe length is minimal, and consequently, the heat losses are low. For this user, the supply temperature 
will range amongst the highest in the system. Such a situation is depicted in Fig. 4 a), b) (same substation as in 
Fig. 2 b)). On the other hand, if the user is remotely located (Fig. 4 c), d)), the heat carrier cools down in the 
distribution pipes and the connection pipe, which affects the temperature signature but does not necessarily 
indicate a fault.

Figure 4 a) and c) distinguish the summer (periods of usually only domestic hot water demand) and the 
heating season (periods of both space heating and domestic hot water demand) to visualize the seasonal impact. 

Fig. 2.  Network structure of the model region, data of one substation and for the infeed heat flow for a day in 
January and July, and dynamic data of the infeed heat flow over one year. The model region in a) is a centrally 
supplied district heating network with predominantly stub lines and one closed circle line; the data in b) 
visualizes the dynamics of one substation over a day; c) highlights that the infeed heat flow over a day follows 
two demand peaks and the general level depends on the season, further visualized by d) the heat infeed over 
the year.
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To account for seasonality, this study assumes that the data should be collected over at least one year, as a fault 
detection method should cover both periods. As the heat exchange for domestic hot water and space heating 
employs separate heat exchangers, faults can be categorized as affecting both heat exchangers or only one of the 
two by the distinction of the periods. Additionally, the point of time the fault occurred can be narrowed down. 
This kind of visualization shall, therefore, be applied in the following.

Additionally, the temperature signatures of the substations (Fig. 4, b), d)) show three general operational 
modes, distinguishable by the volume flow value.

•	 If the substation’s architecture allows for stagnation (zero volume flow, not possible for direct domestic hot 
water heating), the facility cools down (Fig. 4 b), d), blue dots) for periods of no demand, which is advanta-
geous for the system. Stagnation occurs more often in summer (Fig. 4, grey crosses, a), c)), when domestic 
hot water is required only.

•	 In comparison, for periods of relatively constant heat demand, a state of approximately stationary heat supply 
will be reached (Fig. 4, grey dots, b), d)) with intermediate values of the volume flow. The substation’s control 
should adjust the volume flow to achieve the highest possible cooling of the heat carrier. This reduces the 
required volume flow and the resulting return temperature.

•	 When restarting the facility, the volume flow strongly increases, resulting in disadvantageously low tempera-
ture differences (Fig. 4, orange dots, b), d)). The low temperature difference places the values associated with 
high volume flow values on the right in the plots in Fig. 4. Hence, for an efficient substation, a limited number 
of samples should fall into this mode.

For additional, comprehensive visualization of the interdependency of volume flow and temperature signature, 
Fig. S1 and Fig. S2 (Supplementary Information) display the data in Fig.  4 with the extra dimension of the 
volume flow.

Measurements below the black solid line form a particular case caused by storage capacities in the system, 
and there are two possible explanations. Both rely on the fact that the return temperature measuring probe is 
often located physically closer to the heat exchanger:

•	 For a stagnating substation cooling down as in Fig. 4 a), b) (blue dots), the heat stored in the heat exchanger 
warms the return temperature measuring probe, while the supply temperature measuring probe (located 
further away) is unaffected.

•	 For a restarting facility like in Fig. 4 c), d) (orange dots), the cooled-down heat carrier in the distribution pipe 
must be replaced. A long stub lane connecting the substation to the system leads to a higher amount of water 
to be replaced. Until the hot heat carrier is received again, the heat carrier on the primary side can be warmed 
up by the secondary side heat carrier from the heat storage facility.

Fig. 3.  Exemplary measurement architecture of a substation on the user level in the model region in flow 
diagram. The heat supply can cover both domestic hot water and space heating or the latter only and is 
measured as the combined demand on the primary side of the heat exchanger with two Temperature Indicators 
and Recorders (TIR) and a device for the volume flow measurement (FIR).
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As can be seen, the operational mode influences the position of data points in the temperature signature. The 
time dependencies are related to the number of samples. Both combined lead to an accumulation of data points 
in the temperature signature, which is, therefore, relevant information that shall be used for clustering. To 
establish labels for faulty behavior, the faultless patterns must be known, which can range between the two 
extremes of locations depicted in Fig. 4.

Clustering and expert knowledge for identification and labeling of indicators for faulty 
behavior
Clustering is an unsupervised machine learning technique10that aims to identify subgroups of data that 
differ from each other as strongly as possible but contain subsets of data that are as similar as possible30. This 
study employs the principle of k-means clustering. It splits a dataset of i observations into kclusters using two 
conditions30:

•	 The centroid of every cluster is the mean value of the observations in the cluster.
•	 Every observation is assigned to the cluster with the nearest centroid.

The algorithm itself contains five steps30:

	1.	� k observations are chosen randomly as initial centroids from the dataset.
	2.	� The distance of the remaining observations to the initial centroids is calculated.
	3.	� Every remaining observation is assigned to the cluster with the nearest centroid.
	4.	� The mean value of the newly established cluster is treated as new centroid.
	5.	� Steps 2 to 4 are repeated until the algorithm converges.

The substations’ datasets form separate observations. As given, one observation is automatically chosen as the 
initial centroid for each cluster. Thus, applying the method more than once leads to differing results. This study 

Fig. 4.  Temperature signatures of end-user substations outlining the line of equality for supply and return 
temperature. The substations in a), b) are centrally and in c), d) remotely positioned, and the diagrams 
enhance a), c) summer (domestic hot water demand, only; 1st June to 15th Sept., grey crosses) and heating 
period (space heating and domestic hot water demand, black dots), and b), d) the general operational modes 
existing for faultless behavior distinguished by the value of the volume flow (blue: zero for stagnation, grey: 
intermediate for stationary supply, orange: high for restarting), advantageous return temperatures defined as 
below 55 °C; the black solid line indicates equality of temperatures.
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takes advantage of this characteristic. Further, an ML method is unbiased and objective. This ensures that no 
subjective considerations of a (human) expert influence the results.

Data pre-preparation, i.e., feature engineering, must occur to enable comparability of the different substations’ 
datasets. Not all observations show equal numbers of measurements, so the number of data points in the 
observations must be equalized. Further, as described, the data accumulation in the temperature signatures fuses 
the information on the temperature, the volume flow, and the time dependencies and, hence, forms a relevant 
feature for evaluating a substation’s efficiency.

Therefore, to achieve comparability and integrate all the information, this study employs the representation 
of the temperature signatures as heat maps, which visualize data accumulation. For the processing steps in Fig. 
S3 (Supplementary Information), the scatter plots of the substations, as in Fig. 4, are regarded as grids with steps 
of 1 K in the two temperature directions. Evaluating the share of the overall number of samples falling into a 
specific grid position provides information for clustering.

Fig. S3 a) (Supplementary Information) shows the steps to obtain a heat map that represents data accumulation 
from the temperature signature. The modeling environment in this study is Matlab. As the predefined k-means 
clustering algorithm31 demands one-dimensional datasets, the two-dimensional datasets are parallelly 
transformed into single-row vectors by concatenating the rows of the grid from the lowest to the highest supply 
temperature, as visualized and described by the flow chart in Fig. S3 b) (Supplementary Information).

This step enables the comparison of observations with differing data collection rates as long as the recordings 
capture the relevant information on data accumulation. In contrast, limited numbers of collected samples, in 
particular, result in accumulations at specific points. These observations should be excluded. As a comparatively 
large number of substations achieves 90% of data collection, this study employs this share of 167 sets of end-user 
data for the analysis. For data privacy reasons, no traceable indicator identifies the individual substations.

The subsequent step to data pre-preparation is setting the clustering approach’s hyperparameters, in this 
case, the target number of clusters. As shown in Fig. 4, two general, expectable (faultless) behavioral patterns 
of substations exist: the advantageous and the rather disadvantageous patterns with regard to their influence on 
the system. The expectation is that these will form two clusters with a large number of assignments based on the 
expected (faultless) behavior.

Therefore, the hypothesis is that if the target number of clusters is set to three, this third cluster should 
contain only a small subset of the overall number of observations, most likely patterns similar to each other but 
differing strongly from those of the first two clusters. This study hypothesizes that the faulty and anomalous 
substation patterns will be found in this third, smaller cluster.

To identify all of these patterns present in the dataset, all substations prone to being assigned to the third 
cluster must be determined. This study takes advantage of the fact that the initial centroids of the clusters are 
chosen statistically by k-means. When the clustering is conducted repetitively for a sufficient number of times, 
all anomalous patterns will eventually form the third cluster at some point in the repetition.

Furthermore, this study relies on the circumstance that differing patterns should appear only for a small 
number of observations. Therefore, if the third cluster contains a high number of substations, the anomalous 
patterns are not successfully identified. With iterative manual testing, a suitable maximum number of assignments 
for a “small” cluster for the specific case of the model region’s data is determined to be five.

Apparently, certain anomalous patterns occur for a group of substations. If one of these forms the centroid 
of the third cluster, all similar patterns are assigned to this group. Gradually increasing the number defined as 
“small” from one to four leads to the detection of a small number of substations with indeed anomalous but 
unique patterns. For the number of five, considerably more substations with anomalous patterns are detected. 
Increasing the number of clusters further, a growing number of substations with only slightly anomalous patterns 
form clusters.

Figure 5 displays the centroids of the resulting clusters for an exemplary execution of the process of splitting 
the data into three groups. To display the centroids, the single-row vectors returned by the k-means algorithm 
are reordered to the initial matrix shape of the 1-K-grid. Displaying the matrix as a heat map, lighter colors in 

Fig. 5.  Heat maps of exemplary centroids of the clustering process with 3 clusters. Clusters a) advantageously 
operating substations and b) more disadvantageously operating substations contain the general behavior, while 
c) deviating operational patterns indicate anomalies.
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Fig. 5 indicate lower ratios of the collected data falling into the grid position. Hence, the darker the color in a 
specific grid position, the more data were recorded in this grid position for the assigned substations.

Visibly, the first cluster contains the more advantageously operating substations (tendency to left in heat map 
of temperature signature), the second the more disadvantageous (tendency to right in heat map of temperature 
signature), and the third a share of substations with anomalous patterns, as expected. Similar results are returned 
for repetitive conduction, where the substations assigned to the third cluster change. This study, therefore, 
concludes that splitting the observations into three clusters serves the objective of outlining the differing 
temperature signatures but requires repetitive execution to detect all existing anomalies.

To ensure all anomalous patterns are identified, this work executes the clustering process 10,000 times. For 
each substation, we calculate the number of times it is found in a cluster with a maximum of five assignments. 
The choice of 10,000 executions relies on the circumstance that the probability of the substations being in a small 
cluster becomes relatively stable when statistical effects level out. Further increasing the number of executions 
has a neglectable impact on the results. The number of times a substation is assigned to a small cluster indicates 
the degree to which the pattern differs from all others (“degree of anomaly”20). Figure 6 shows a bar graph for 
each substation with at least one assignment to a small cluster in descending order. The substations with the 
patterns with the highest degree of anomaly are found on the left.

The clustering assigns 95 of the 167 substations to a small cluster at least once. Therefore, clustering enables 
the objective reduction of the number of patterns that need to be manually investigated. The patterns that differ 
the strongest from the remaining dataset are assigned to a small cluster in up to 15% of the executions. It should 
be considered, as underlined in Ref17., that anomalous behavior is not directly an indication of a fault and that, 
if indeed a fault exists, the specific cause must be determined. Hence, for this study, all 95 of the substations’ 
patterns identified as anomalous were manually investigated with expert knowledge to obtain labels for the most 
relevant existing patterns indicative of the occurrence of a fault.

Statistical identification of faulty substations and influence quantification
Statistical analysis is a method conducted traditionally7, as it is a computationally efficient option for fault 
detection. Additionally, as a physical representation of the indicator exists, the method is comprehensive. 
However, statistically accessible labels are required. Hence, it can be conducted only once labels for fault 
indication are established.

In this study, the application of the statistical fault identification thus depends on the labels acquired with 
the clustering approach and can only be conducted subsequently. Unlike the clustering approach, the statistical 
evaluation shows low sensitivity to the rate of collected data. Thus, with this second step of the statistical fault 
detection process, all 486 substations in the heating system can be covered.

Further, for an operator with limited resources, more than detecting the faults is required. The greater a fault’s 
influence on the system, the more critical eliminating the cause becomes. Historically, this has led to monitoring 
the substations supplying the most heat, possibly leaving faults in substations with low demand undetected9. 
Thus, all substations should be monitored to improve the system’s general operation. Evaluating the negative 
impact of the faulty substations on the system increases the benefit because the operator can prioritize fault 
elimination measures starting with the most disadvantageous substations.

Thus, the fault’s impact on the system should be quantified. This study employs the volume flow data recorded 
parallelly to the temperature data to reach this objective. The higher the volume flow, the stronger the impact on 
the system becomes.

Fig. S4 (Supplementary Information) provides a flow chart of the processing steps for the statistical fault 
detection and impact quantification. First, the indicators for the occurrence of a fault established in the first step 
of this three-step method are tested for each substation dataset individually. Second, it can be required to assess 
whether additional boundary conditions occur, which can be individual for the indicators (e.g., enough data 
collected, the general temperature level, etc.). Third, the heat transferred for the occurrence of the indicator is 
calculated as a quantification of the faults’ impact. Additionally, it is suggested that a substation is only marked 
as faulty if the calculated heat exceeds a threshold specific to the indicator and the model region. This maintains 

Fig. 6.  Number of inclusions of a substation into a small cluster. The number is indicative of the degree of 
deviation of the related temperature signature from the general pattern, with small cluster meaning max. 5 
assignments; results for 10,000 executions of k-means clustering with a target value of 3 clusters.
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relevance and further narrows the meaningful information to the faults with the highest impact. The code 
automatically returns the relevant information and sorts the substations detected as faulty by the calculated heat 
values in descending order. Once the indicators are provided by step 1 of this study’s three-step method, the 
general framework can be explicitly encoded for steps 2 and 3.

Results
Clustering and expert knowledge-based identification of indicators for common faults in user 
substations
In this first step, this study aims to identify the most common behavioral patterns indicative of faults in the 
context of labeling data with the clustering algorithm.

Figure 7 shows the temperature signatures of six of the ten substations, which are identified most often as 
providing unusual patterns (Fig. 6). The choice contains the most informative plots to cover all of the behavioral 
patterns indicative of faults identified as occurring most often.

The displayed datasets in Fig. 7 tend to exhibit accumulation in the upper right corner, which is disadvantageous 
for the reason of high return temperatures. As a legally binding return temperature limitation should strictly 
avoid more than 55 °C, each substation appears to show a fault leading to this behavior. Figure 7 a) and b) are 
neighboring substations of buildings. As Fig. 7 a) and b) appear to have similar temperature signatures, similar 
faults could have occurred. In the following, expert evaluation shall provide possible causes.

Figure 7 a) and b) exhibit very low cooling of the heat carrier. The control strategy or settings likely do not 
allow for a more advantageous operation.

For Fig. 7 c), many samples appear below the solid black line, indicative of recordings with a higher return 
than supply temperature. This behavior should occur only for a limited number of samples, which is equivalent 
to a low number of recorded hours for this state. Visits to the site revealed that a temperature signature like Fig. 7 
c) indicates a faulty or at least disadvantageous control of the building’s heat storage, possibly redistributing heat 
into the system.

The substation in Fig. 7 d) evidently could reach sufficient cooling, but this state occurs comparatively rarely 
and only in the heating season. If the supply temperature level were low, the inefficient operation could be related 
to the location in the network, as discussed above. However, regarding Fig. 7 a), b), and d), the supply temperature 
is sufficient, especially in the heating period, and never falls below 60 °C, even in summer. Therefore, it must be 
concluded that the substations Fig. 7 a), b), and d) show a constant flow of the heat carrier, possibly because of 
direct heat supply for domestic hot water, but evidently also associated with low cooling when demand exists. 
Hence, the control strategy or the facilities’ architectures do not allow for higher cooling.

In contrast, Fig. 7 e) exhibits stagnation but appears unable to reach advantageous operating points when 
supplying heat, possibly for the same reasons as for Fig. 7 a), b), and d).

Figure 7 f) displays a particular case of behavior, hereby referred to as very low cooling. The volume flow 
is uncontrolled, and no heat is supplied for samples, indicating the same value for the supply and return 
temperatures (accumulation of data samples on the black line in the upper right corner). However, the fault 

Fig. 7.  Selection of 6 temperature signatures of substations with strong deviation from general pattern. (a) 
to (f) distinguish between the heating period (black dots) and summer (grey crosses) with an indication of 
advantageous (blue) and disadvantageous (red) positions of data samples and a reference to the impact on the 
heating system, where the 6 selected substations originate from the 10 substations identified as most strongly 
deviating.
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leading to the very low cooling developed over time and during the heating period, which can be seen from the 
remaining data points. Yet, very low cooling should be distinguished from the behavior of a restarting facility, 
which can cause similarly low temperature differences but for lower temperature levels.

With expert knowledge, this study determined three prevailing types in the model region with the prevailing 
underlying causes in brackets:

	1.	� Exceeded return temperature (disabled, modified, or non-existent return temperature limitation valve)
	2.	� Very low cooling (defective or stuck flow control valve)
	3.	� Inverted temperatures (defective or inadequate control of storage tank)

The very low cooling is a particular case of exceeded return temperatures, where the volume flow is not adjusted 
sufficiently but passes at a high rate in an uncontrolled or very limitedly controlled manner. Yet, as measures 
are often straightforward, a separate treatment of this behavior can be advantageous: As stated in Ref7,17., the 
motoric valves are prone to faults. Often, blocking causes a very low cooling. Ref7. names the first two indicators 
as well. However, the third case could be identified based on the clustering approach as an additional indicator.

Statistical identification of faulty substations and quantification of their impact on the heat 
network
Based on the labeled patterns indicative of faults acquired by the clustering approach, statistically accessible 
features for the identification of faulty substations are generated:

	1.	� The mean return temperature reflects whether this value surpasses the threshold of 55 °C specific to the heat 
network under investigation. The higher the volume flow is for these readings, the higher the impact on the 
system.

	2.	� Similarly, very low cooling can be identified by evaluating the temperature difference between supply and 
return temperature readings. As a boundary condition, the very low cooling is generally characterized by a 
high temperature level. Again, the volume flow readings enable quantifying the impact on the system.

	3.	� Thirdly, the inversion of the temperature potential can be evaluated. For this case, a return temperature 
measurement higher than the supply temperature is most disadvantageous for the heating system if it occurs 
for readings of the volume flow > 0, as heat is redistributed in this case.

�For an exceeded return temperature and very low cooling, this study quantifies the negative impact as fol-
lows. Firstly, only for a return temperature exceeding 55 °C on average does the operator have legal grounds 
to require measures. Employing this value as a reference is suggested. The mean value of the return temper-
ature T 2 is formed and compared to 55 °C. The higher this temperature difference, the stronger the negative 
impact of the fault on the system. Therefore, the theoretical value for the surplus of heat Q55, which should 
have been transferred in the substation to reach 55 °C in the return flow, is calculated (Eq. 1).

	 Q55 = m × cp ×
(
T 2 − 55◦C

)
� (1)

	
m =

∫ tend

tbegin

ṁ(t)dt

Calculating the inverse heat flow requires an additional step. Forming a mean value of the temperatures could 
lead to a leveling out of periods in which the potential has the expected direction (T 1 > T2) and periods of 
inversion (T2 > T1). If the temperature readings indicate an inversion, but if no primary volume flow occurs, 
no heat is transferred. Thus, the returned heat is calculated according to Eq. 2.

	
Qret =

∫ tend

tbegin

Q̇ret (t) dt� (2)

with

	
Q̇ret(t) =

{
ṁ(t) × cp × (T2(t) − T1(t)) for T2 > T1
0 for T2 ≤ T1

Figure 8 outlines the explicit algorithmic flow chart for identifying faults and quantifying their impact resulting 
from the general framework in Fig. S4 (Supplementary Information). In the specific case of the model region, the 
integration is discretized in hourly timesteps, resulting in a summation replacing the integration.

Table 1 gives the results for executing the algorithm encoding steps 2 and 3 of the three-step method. The 
September 2023 data is employed exemplarily with the named thresholds and boundary conditions.

The assigned thresholds aim to maintain relevance regarding the operator’s limited fault management 
resources. Conducting fault detection without any threshold reveals a leveling out of the numerical value 
assigned to the respective impact of the faults. In the case of the explicit sample set, 20 MWh of heat exceeding 
55 °C in the return flow for the first fault, 5 MWh for the very low cooling, and at least 20 kWh for the returned 
heat could be identified as suitable with manual analysis. Below the thresholds, a saturation within the values in 
Table 1 starts to occur.
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The returned heat threshold is specifically lower in order of magnitude than for the other two faults. However, 
detecting malfunctions in the substation control can have a strong influence: As a fault in the substation control 
usually leads to inefficient behavior, the return temperature can exceed the limits for times of high demand. In 
contrast, heat is returned in times of low demand. This means that, on average, the threshold of 55 °C might not 
be exceeded, but the impact can be high nevertheless.

It should be mentioned that evaluating the heat flow for all three cases is expedient only if sufficient samples 
are collected. Otherwise, the results returned for the discrete summation are, evidently, lower. The summation 
of returned heat has shown to be especially sensitive to reading errors for low amounts of collected data. Thus, 
imposing a boundary condition in this case and exclusively considering substation datasets with, e.g., at least 
one week of readings is suggested.

The substations in the “very low cooling” column of Table 1 relate to the numbers for exceeded return 
temperature when sorted in descending order. Thus, the numbers indicate that the approach for the return 

Fig. 8.  Algorithmic workflow of statistical approach for the identification and impact evaluation of faults on 
the user level. The data are processed individually for each substation in three paths to evaluate whether a fault 
exists and determine the degree of influence on the system with the named restrictions, after which the results 
are visualized and saved in a user-friendly manner.
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temperature does indeed include very low cooling, but it does not necessarily appear amongst the highest 
priorities.

The substations that returned noticeably high amounts of heat did not appear in any of the other two lists of 
faulty substations in Table 1, which is why they are referred to alphabetically.

For the investigated period of September 2023, counting without the application of the threshold, a 
considerable share of 49 (10%) of the investigated 486 substations exhibit an exceeded return temperature. Yet, 
only a limited number of these seriously impact the system. Still, the necessity for measures is emphasized by 
the results.

Special cases for temperature signatures related to faults and identified causes
Specific temperature signatures shall be addressed to outline the limits and chances of this study’s methods. 
The objective is to enhance expert knowledge and clarify information that can be derived from a substation’s 
temperature signature.

This study assigns causes to the visible temperature signatures in the context of labeling data. Subsequent 
research can aid in classifying faults automatically and reduce the necessity for manual processing even more. 
Also, the impact of the frequency of conducting fault detection becomes more apparent as the temperature 
signatures give indications of when the fault occurred.

Figure 9 a) to f) show temperature signatures of substations identified as showing a differing pattern or as 
indicative of a fault.

Figure 9 a) gives an example of the most advantageous operation in terms of system efficiency. Visibly, the 
end-user’s facility cools down very effectively, and the heat exchange stops during times of no demand, which 
occurs more often in summer. Naturally, the clustering approach identifies such a pattern as differing, but it is an 
anomaly with a positive effect on the system. Thus, for fault detection, the statistical method is superior in this 
case because it would correctly detect no fault.

In Fig. 9 b), the user evidently has no domestic hot water supply. A mere quantification of the temperature 
difference would lead to a false positive classification as a very low cooling case for the summer data. Thus, this 
study could provide the boundary condition of the general temperature level based on such patterns. Again, this 
emphasizes also the necessity of constant monitoring.

Figure 9 c) displays a case in which the return temperature frequently exceeds the supply temperature. A 
chain of circumstances leads to the pattern. The temperature control of the domestic hot water storage is disabled 
because the temperature sensor of the tank is not mounted correctly. As the pre-defined control program does 
not match, an alternative (unsuitable) program is selected. The return temperature limitation is very slow. 
By heat conduction, the resulting continuous volume flow of the hot water on the secondary side constantly 
warms the return temperature measuring probe, which is close to the heat exchanger in times of primary side 
stagnation. For system efficiency, this pattern is disadvantageous because of high return temperatures. User 
comfort is affected as well, as confirmed by the inhabitants. However, evaluating the average return temperature 
does not identify the fault, as the low return temperature values balance the very high ones. Thus, solely the 
evaluation of the temperature inversion this study established by using the clustering approach reveals the fault. 
The depicted temperature signature is referred to as R in Table 1. The investigation of the model region led to the 
conclusion that all substations on the road show the same chain of faults.

The patterns in Fig. 9 d) and e) firstly appear similar, yet the faults differ strongly. In Fig. 9 d), a visit revealed 
an uncontrolled heat exchanger for domestic hot water. An uncontrolled volume flow at its maximum constantly 
passes. However, the space heating facility shows no anomaly. Thus, the visible pattern is the sum of both. 
Especially in summer, the impact of the domestic hot water heat exchanger dominates.

Results: exceeded return temperature Results: very low cooling

Substation Mean return temperature in °C Surplus heat in return flow in MWh Substation Mean temperature difference in °C Surplus heat in return flow in MWh

1 61.41 94.10 2 3.72 30.05

2 68.16 30.05 5 3.74 8.06

3 66.10 29.48 6 2.31 7.86

4 56.12 20.50 7 1.01 5.36

Results: inverted temperatures and returned heat flow

Substation Returned heat in kWh Substation Returned heat in kWh

A 151.50 J 29.29

B 99.99 K 28.42

C 67.64 L 25.66

D 48.06 M 25.62

E 44.76 N 25.24

F 42.13 O 23.73

G 41.42 P 22.71

H 36.33 Q 21.79

I 30.97 R 20.81

Table 1.  Results of statistical fault detection and impact quantification exemplarily for data of September 2023.
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In contrast, in Fig. 9 e), the control of both heat exchangers employs the return temperature limitation as an 
actor, and no other mechanism exists. The valve executing the limitation is very slow due to aging, so the control’s 
effect is considerably small. Thus, the threshold has been increased above 55 °C, assumingly to reestablish user 
comfort. Especially for times of no or low demand, the cooling of the heat carrier is very low, but the volume 
flow is not reduced to zero.

A comparable effect leads to the pattern in Fig. 9 f). The data samples show a boundary to the right for both 
summer and winter data. These are two different settings of the return temperature limitation valves in the heat 
exchangers for domestic hot water (the required 55 °C) and space heating (approximately 60 °C).

Discussion
With the objective of maximizing automation and minimizing computational costs, this study first labeled the 
most frequently occurring behavioral patterns indicating faults in user substations with expert knowledge based 
on the clustering results. This enabled the development of features for a statistical fault detection process for 
the identified categories. The combination with the volume flow data provides a numerical value indicating the 
impact of the occurring fault on the system.

As shown above, the clustering approach aims to identify temperature signatures indicative of faults by 
assuming that faults lead to anomalous patterns in the recorded data. The clustering approach employs the 
temperature data only, as related research6,15,20,23, and relies on data accumulation instead of the dimensions of 
the volume flow and time. The principle does not depend on the explicit establishment of an expected behavior 
to distinguish between normal and anomalous behavior. Instead, the degree of deviation is determined by an 
evaluation of how often a specific pattern is identified as an anomaly by the clustering method. Encoding the 
employed data pre-preparation and clustering methods contributes to automation by reducing the manual 
processing steps and the number of substations to be manually investigated.

With the clustering approach, the features of a high return temperature and low cooling, known to indicate 
faults7, could be confirmed. A third feature, which has been focused on less so far, the inversion of the potential 
between supply and return temperature, could be identified. This was enabled by the clustering approach, which 
objectively returns the anomalous patterns regardless of prior knowledge. The third indicator proved beneficial 
in detecting additional faulty substations in the system. Hence, subsequent research could apply the principle to 
other model regions to provide additional features.

With statistically accessible labels for fault detection established, the suggested method for the detection of 
faulty substations works fully automated and with limited reliance on the sequential order of the time-series 
data. The faults’ impact on the heating network could be quantified automatically based on the volume flow 
readings. The method can potentially be used with limited adjustments for the detection process in other district 
heating networks. One requirement is sufficient user data recorded for the primary side of supply and return 
temperatures, as well as the volume flow in an adequate temporal resolution. The suggested threshold values in 
this study are case-specific. For example, the values of the calculated heat Q55 and Qretdepend on the considered 
period of one month and the dimensions of the heat network. The workflow is suitable for a network with data 

Fig. 9.  Special cases of end-user temperature signatures in the model region. (a to f) Distinguish between 
heating period (black dots) and summer (grey crosses) with an indication of advantageous (blue) and 
disadvantageous (red) positions of data samples and reference to the impact on the heating system.
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acquisition on the user level. However, if the measurements of the domestic hot water and the space heating 
facilities are separated, the process requires modifications, and different temperature signatures will occur. This 
study suggests executing the statistical fault detection process monthly, as applied in the literature7, to enable 
quick identification and avoid overlooking faults that occur only for certain demand situations.

The relevance of faults on the user’s secondary side has been showcased, e.g., in Ref16,17. In the model region, 
only the primary side user data is recorded. However, once the secondary side data become available on a broad 
scale, these can contribute additional labels for fault detection, providing another relevant area of interest.

Data quality and quantity inflict additional challenges. As displayed above, the model region cannot provide 
complete datasets of all substations. As stated, only 167 of the 486 provided a comparable amount of data of 
90%. This underlines the necessity for high-quality data for the machine learning approaches again. Connections 
for wireless data transmission can be lost, especially in summer, as foliage interferes. The lost connections lead 
to more information collected on the heating season, and statements concerning the summer become more 
complex. Low rates of collected data can lead to misclassifications when detecting faults as statistical impacts 
grow in relevance.

Different reasons can explain similar patterns of temperature signatures. As shown by the results, the 
individuality of the facilities in historically grown heat networks poses the major challenge for identifying the 
cause leading to a specific temperature signature. Therefore, this article addresses the most common temperature 
signatures and assigns the most common underlying causes. However, expert knowledge should further 
contribute to providing underlying phenomena and labeling data.

Fault management contributes to a higher resolution of knowledge on thermal energy systems. The results 
of this study outline the direct benefit implied by successful fault detection for the energy efficiency of heat 
networks. Additionally, the indirect advantages of increasing data quality for modeling purposes to enhance 
system efficiency should be highlighted.

Conclusions
This study’s suggested three-step workflow for fault management on the user level within heat networks aims 
to contribute to the automation of effective fault management methods using data from a model region in 
northern Germany. The workflow utilizes available primary-side system data (volume flow, supply, and return 
temperature) of substations on the user level. Clustering analysis first identifies fault-indicating data patterns, 
which are labeled with expert knowledge to provide statistically accessible features. Secondly, these features 
are used in an automated statistical detection process to identify defective substations. Thirdly, a numerical 
quantification of the fault’s impact on the heating system is calculated, relying on the thermodynamic relationship 
of the temperatures and the volume flow. 

The workflow clusters heat maps of the substations’ temperature signatures, which fuse the information of the 
volume flow and the time dependency with the temperature data. With expert knowledge, statistically accessible 
features for fault detection could be generated for common faults: an exceeded return temperature, very low 
cooling, and inverted temperatures.

Statistical analysis using the features determined with the clustering approach could automatically detect 
faulty substations within the model region. Disabled return temperature limitation units, defective motoric 
valves, and faults in the storage control form the most common underlying causes for faulty substation behavior. 

This study automatically quantifies the negative impact of a detected fault on the energy system regardless of 
the substation size by combining the temperature and volume flow data, which can enable the prioritization of 
fault elimination measures in practical applications. The workflow further outlines thresholds for maintaining 
relevance. 

This study shows that the temperature signature of substations is suitable for identifying data patterns 
indicating faults decisively impacting the efficiency of heat networks. The results validate that faulty user 
substations can be detected successfully with minimal manual processing. While the method proved effective, 
challenges remain in diagnosing faults remotely, emphasizing the need for further studies in diverse model 
regions to enhance data labeling.

Fault management increases user comfort and system efficiency and can have economic advantages while 
also improving data quality for machine and deep learning applications. Thus, the suggested method for 
fault detection contributes to enhancing fault management, improving data-driven modeling, and increasing 
operational efficiency in heat networks.

Employment
Ulf Rieck-Blankenburg has been employed at the Stadtwerke Flensburg GmbH, while this study was conducted.

Data availability
Raw data are not publicly available for the model region dataset to preserve individuals’ privacy under the Euro-
pean General Data Protection Regulation. Anonymized datasets generated during the study are available from 
the corresponding author upon reasonable request and with the consent of the heating system operator.
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