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Temporal trends and predictive
modeling of air pollutants in Delhi:
a comparative study of artificial
intelligence models
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Air pollution monitoring and modeling are the most important focus of climate and environment
decision-making organizations. The development of new methods for air quality prediction is one of
the best strategies for understanding weather contamination. In this research, different air quality
parameters were forecasted, including Carbon Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen
Dioxide (NO,), Ozone (O,), Sulphur Dioxide (SO,), Fine Particles Matter (PM, .), Coarse Particles Matter
(PM, ), and Ammonia (NH,). Hourly datasets were collected for air quality monitoring stations near
Delhi, India, from November 25, 2020 to January 24, 2023. In this context, five intelligent models

were developed, including Long Short-Term Memory (LSTM), Bidirectional Long-Short Term Memory
(Bi-LSTM), Gated Recurrent Unit (GRU), Multilayer Perceptron (MLP), and Extreme Gradient Boosting
(XGBoost). The modelling results revealed that Bi-LSTM model had the best predictability performance
for forecasting CO with (R2=0.979), NO with (R*=0.961), NO, with (R?=0.956), SO, with (R2=0.955),
PM,, with (R?=0.9751) and NH, with (R?=0.971). Meanwhile, GRU and LSTM models performed
better in forecasting O, and PM,, , with (R*=0.9624) and (R?=0.973), respectively. The current
research provides illuminating visuals highlighting the potential of deep learning to comprehend air
quality modeling, enabling improved environmental decisions.

Keywords Air quality forecasting, Air pollution monitoring, Deep learning, Particulate matter,
Environmental assessment

General background of study

Climate change has been a significant issue recently due to its impact on weather conditions and land
temperatures, which individuals or natural phenomena can cause. The main causes of air pollution include
coal and gas combustion for power generation, transportation, industrial and residential developments!. Global
warming is caused by greenhouse gases (GHG), while climate change is caused by global warming. Emerging
nations such as India are facing numerous issues related to air pollution and its detrimental environmental
and public health consequences?®. India is experiencing substantial concerns regarding air quality degradation,
such as the massive population growth, industrial companies, the use of fossil fuels for power generation, poor
agricultural methods, and motor vehicle emissions>*. Some particulate matter and gaseous pollutants are
produced directly from the source and cause air pollution such as in the size of 2.5 and 10 microns (PM, . and
PM, ), carbon dioxide (CO,), Sulphur dioxide (SO,), Nitrogen oxide (NO,), Ammonia (NH,), benzene, volatile
organic compounds (VOCs), carbon monoxide (CO), and ozone (03)5. The initial air pollutants are used in the
general equation to calculate the air quality index (AQI), depending on the geographical region. Besides, these
pollutants are the cause of the following issues such as air pollution, depletion of ozone layer, global warming,
increased average land temperature, climate change, and acid rain®. The air pollutants concentration changes
based on the main atmospheric factors such as precipitation (snowfall, rain, sleet or ice pellets, drizzle, hail,
freezing rain, frost, and rime), wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation
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(SR), and air temperature (T)”. In this context, Al approaches such as machine learning and deep learning
can be developed using various datasets collected from different monitoring sites and stations to create strong
connections between inputs and outputs.

Literature review

As per the open literature®®, complex Al models were developed by various researchers to predict the air
pollutant levels!®!1, For instance, the air quality index of four stations such as New Delhi, Bangalore, Kolkata,
and Hyderabad, was predicted by using three different regression algorithms such as support vector regression
(SVR), random forest (RF), and CatBoost (CR)!2. The RF model showed the lowest root mean square error
(RMSE) in Bangalore, Kolkata, and Hyderabad, with a value of 0.5674, 0.1403, and 0.3826, respectively.
Meanwhile, the CR model obtained the lowest RMSE value (0.2792) in New Delhi. Additionally, the CR was the
superior model in terms of accuracy in New Delhi (R?=79.8622%) and Bangalore (R?= 68.6860%), respectively.
Two different approaches such as deep learning and Holt-Winters statistical model were compared to predict
the PM, ; and PM, ; concentrations'?. The Holt-Winters statistical model exhibited lower RMSE and MSE values
than the deep learnmg model. Also, the PM, ; concentration was forecasted using LSTM, which was integrated
to the particle swarm optimization (PSO) method'%. They collected their datasets from 15 monitoring stations
and achieved a strong accuracy ranging from R*=0.86 to R?=0.99. Also, the training and testing sets showed an
average percentage error over 15 locations of about 6.6% and 6.9%, respectively. In Chennai, the AQI values were
classified using a novel expert system integrated from support vector regression (SVR) and LSTM algorithms!.
Their novel expert system showed a superior performance with R>=0.97 and RMSE=10.9.

A case study in Delhi, a dataset was collected from January 2018 to October 2021 to predict the PM, .
concentration using deep learning model that combined neural networks, fuzzy inference systems (ANFIS),
and wavelet transforms'®. Their novel model showed an outstanding accuracy, such as: 0.95 <R*<0.99 for 1-day
short term prediction, 0.85 < R2<0.94 for 2-day short term prediction, and 0.81 < R2<0.93 for 3-day short term
prediction. A novel hybrid model from GRU and LSTM was developed to predict PM, ; concentration in Delhi'”.
Also, the dataset was validated using five different standalone models, such as LSTM, linear regression (LR),
GRU, K-Nearest Neighbour (KNN), and support vector machine (SVM). The LSTM-GRU was superior to the
individual models with an MAE-value of 36.11 and R?-value of 0.84. Moreover, the AQI values were predicted
in Chennai using historical data from meteorological locations from 2017 to 2022°. The authors developed four
different tree-based models such as XGBoost, RE, Bagging Regressor, and LGBM. XGBoost model showed the
following prediction metrics: R%2=0.9935, MAE=0.02, MSE=0.001, and RMSE =0.04. Twelve pollutants and
ten meteorological parameters from July 2017 to September 2022 were collected over Visakhapatnam, Andhra
Pradesh, India'®. This dataset was used to estimate the AQI value using five models such as LightGBM, REF,
CatBoost, Adaboost, and XGBoost. The CatBoost model showed the following metrics: R%2=0.9998, MAE =0.60,
MSE=0.58, and RMSE=0.76. Meanwhile, the Adaboost model presented the following metrics with an
R?=0.9753. Encoder-Decoder (ED) layers were connected to GRU deep learning model for predicting 1-hour,
8-hour, and 24-hour of PM, . concentrations in New Delhi, India, and the dataset was collected from 2008 to
2010". The hybrid method showed superior performance over the standalone models such as (RF, XGBoost,
ANNs, and LSTM). Standalone versus stacking models were used to estimate 1-hr and 24-hr PM, .%°. XGBoost
showed higher accuracy than RF and LightGBM with R?=0.73. Meanwhile, stacked model (XGBoost as a meta-
regressor) improved the accuracy of standalone XGBoost with R2=0.77. The eastern region exhibited the best
1-hr prediction with R?=0.80 and substantial reduction in Mean Bias (MB=—0.03 pug m~?), followed by the
northern region with R?=0.63 and MB=-0.10 ug m~>. In Chandigarh, eight Al models such as RF, KNN,
LR, LASSO regression, Decision Tree (DT), SVR, XGBoost, and Deep Neural Network (DNN) with 5-layers
were used to predict 24-hr air pollution and outpatient visits for Acute Respiratory Infections (ARI)?!. On ARI
patients, the RF model performed best, with R2=0.606, 0.608 without lag, and 24-hr lag, respectively. Also, on
total patients, R?=0.872, 0.871 without lag, and 24-hr lag, respectively.

China and India, covering 35% of the global population, face widespread urban air pollution, and real-time
and remote sensing assessments remain insufficient. Air quality issues in these rapidly growing economies are
increasingly being addressed by the application of machine and deep learning in recent studies. Six models
i.e,, MLR, SVR, RE, ANN, XGBoost, and LSTM, were used to predict LST for Hyderabad city, India using five-
year (2018-2022) data on air pollution and meteorological parameters (from ambient air quality monitoring
stations) and MODIS LST data??. Considerable influence of PM, . and CO (during summer) and SO, (during
winter) on LST was observed which demonstrated high sensitivity of these parameters on LST. ANN method
demonstrated better accuracy with lower error metrics, comprising of RMSE, MAPE, and MSE, compared to
the other approaches with ranking in the order ANN > RF > SVR > XGBoost > LSTM > MLR. Based on hourly
observations from 2018 in India, integrating temporal and regional features into the LightGBM model led
to a notable enhancement in its performance, achieving a 21% reduction in RMSE for PM, . estimation and
a 19% reduction for PM, *. The ML model predicted an annual nationwide concentration of 68.3 pg/m? for
PM, ., which was consistent with high satellite aerosol optical depth (AOD) values. A real-time assessment of
hazardous atmospheric pollutants across cities in China (Shanghai, Nanjing, Jinan, Zhengzhou and Beijing)
and India (Kolkata, Asansol, Patna, Kanpur and Delhi) was conducted using ground observations, Sentinel-5P
and NASA satellite data from 2012 to 2023*%. GMAO’s SO,, NO, and CO predictions showed high accuracy
with near-perfect PC values and low NRMSE proving model reliability. A Unified Spectro-Spatial Graph
Neural Network (USS-GNN) designed for forecasting O,-NO, concentrations for New Delhi, utilized hourly
observations for the years 2021 and 2022%. The proposed model achieved R? values of 0.650 and 0. 618, RMSE
of 13.950 and 16.120 pg/m? MAE of 10.730 and 12.930 ug/m® for O, and NO,, respectively. Different artificial
intelligence models were proposed to simulate climate parameters (1 ]anuary 1951-31 December 2022) of Jinan
city in China, include ANN, RNN, LSTM, CNN, and CNN-LSTM?®. The hybrid CNN-LSTM model significantly
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reduced the forecasting error compared to the models for the one-month time step ahead. The RMSE values of
the ANN, RNN, LSTM, CNN, and CNN-LSTM models for monthly average atmospheric temperature in the
forecasting stage were 2.0669, 1.4416, 1.3482, 0.8015 and 0.6292 °C, respectively.

Research objectives and novelty

This study addresses the critical need for an innovative approach to air quality forecasting, focusing on predicting
concentrations of eight key air pollutants that significantly impact human health, environmental integrity,
and everyday life. The primary objectives are twofold: (1) to develop accurate forecasting models for Carbon
Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO,), Ozone (Os3), Sulphur Dioxide (SO.), Fine
Particulate Matter (PM,.s), Coarse Particulate Matter (PM,), and Ammonia (NH3); and (2) to rigorously assess
and compare the predictive performance of five advanced standalone artificial intelligence (AI) models tailored
for univariate pollutant forecasting.

The novelty of this research lies in its comparative analysis across five Al models—Long Short-Term Memory
(LSTM), Bidirectional Long-Short Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), Multilayer
Perceptron (MLP), and Extreme Gradient Boosting (XGBoost)—in forecasting hourly pollutant concentrations
in a high-pollution urban setting. Using extensive data from monitoring stations in Delhi, collected between
25/11/2020 and 24/01/2023, the study performs in-depth statistical analysis to explore patterns and dynamics
of each pollutant. Through the use of scatter plots, Taylor diagrams, and forecasting performance matrices, this
study provides comprehensive insights into the distinct strengths and limitations of each model.

In highlighting model efficiency and comparing forecast accuracy metrics, this study provides valuable
guidance for advancing air quality management strategies. The findings provide practical implications for
urban planning and environmental policy, demonstrating that accurate Al-driven forecasting models can be
instrumental in environmental mitigation efforts and health risk assessments in rapidly urban areas.

Data collection and description

As outlined above, the datasets of eight air pollutants were collected from the capital city of Delhi, India, spanning
from 25/11/2020 to 24/01/2023 including the following elements: Carbon Monoxide (CO), Nitrogen Monoxide
(NO), Nitrogen Dioxide (NO,), Ozone (O,), Sulphur Dioxide (SO,), Fine Particles Matter (PM, ), Coarse
Particles Matter (PM, ), and Ammonia (NH,). The dataset contains features recorded at an hourly interval, with
18,776 samples. It appears that the datasets are complete, and no missing values were observed. Table 1 shows
summary statistics for the eight air pollutants, using various measurements such as Mean, Standard Deviation,
Variance, Skewness, Kurtosis, Coefficient of Variation, Median, Interquartile Range (Q3 - Ql), Range (Maximum
- Minimum), Median Absolute Deviation, and Robust Coefficient of Variation. Besides, Fig. 1 shows the
numerical distributions of eight air pollutants through boxplot formats. Boxplots highlighted extreme outliers
that significantly changed the common relationship of the dataset. In this regard, the Winsorizing technique
was implemented to manage outliers by replacing extreme values with values closer to the upper or lower limits,
resulting in a more robust and reliable analysis of the air quality data.

Applied artificial intelligence models

This section outlines the five models employed for predicting air pollutant concentrations. The development and
configuration processes of the models are then reviewed. Finally, the section concludes with a summary of the
forecasting metrics used to evaluate the accuracy of the model predictions.

Multilayer perceptron (MLP)

An MLP is a fundamental component of ANNs?’. It can model complex systems in engineering and data sciences.
An MLP is characterized by the number of layers of interconnected neurons and the number of neurons per layer.
Every layer transforms its input data and feeds it to the next layer in a purely feedforward fashion, contributing to
the network’s decision-making process®®. Figure 2a illustrates an MLP with an input layer, a single hidden layer,
and an output layer. Every neuron implements a weighted sum with a bias term fed to an activation function,
e.g., tanh. Figure 2b shows the structure of a neuron®.

The architecture of an MLP, including the number of layers and neurons in every layer, significantly affects
its performance. Additionally, the use of hyperparameters, such as the learning algorithm, is crucial in training
MLPs to minimize their prediction errors effectively. The objective of the learning algorithm is to solve for the
weights and biases that minimize an objective function®’. MLPs are capable of capturing non-linear data, making
them suitable for various applications, including air pollutant prediction. One crucial property of MLPs is that
the signals propagate from the inputs to the outputs in one direction, i.e., MLPs do not contain feedback loops.
This property of MLPs limits them from capturing long-lasting relationships of time series. This is precisely why
the prediction error rates are higher than the other models.

Long short-term memory (LSTM)
To understand the improvements offered by Long Short-Term Memory (LSTM) networks, the limitations of
recurrent neural networks (RNNs) are first examined, as these are addressed by the LSTM architecture. RNNs
contain both feedforward and feedback loops that facilitate capturing complicated temporal dynamics of
sequential time series data?’. The main limitation of RNNs is that they fail to capture long-term dependency in
the time series, and this is due to the vanishing and exploding gradients?’.

Schmidhuber and Hochreiter’! proposed the LSTM model in 1997 to solve the issue of vanishing and
exploding gradients in RNNs. One of the proposed ideas is the cell state, which is intended to enhance the
hidden state and to propagate the effect of some data through longer sequences. Also, LSTM introduces three
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Fig. 1. Boxplots distributions of eight air pollutants.

elements that are intended to filter the data flowing through the network in such a way to prevent the vanishing
and exploding gradients, and thus maintain that series of long-term dependence. These elements are known as
input gate, forget gate, and output gate, as shown in Fig. 3. In particular, the forget gate selects what information
to remember or forget. The value of the forget gate is a value between 0 and 1, where 0 means to forget the
information and 1 means to remember, and a value in between means partially forget/remember.
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Fig. 2. (a) An example architecture of an MLP consisting of an input layer, a single hidden layer, and an output
layer of neurons (b) An example architecture of a neuron with two inputs and tanh activation function.
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Fig. 3. Detailed LSTM Cell Architecture. Arrows indicate the flow of information, including the feedback
loops for the cell state ( C) and hidden state ( h¢). Note that the summation nodes include bias terms.

Bidirectional long-short term memory (Bi-LSTM)

As proposed by Schuster and Paliwal in®?, Bi-LSTM operates two instances of LSTM, one for processing the
sequence in the forward direction and the other for processing the sequence in the reverse direction, enhancing
the model to learn from the sequence in both directions. Bi-LSTM then combines the responses of both
directions to generate a unified output sequence that can be used to predict data more accurately™.
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Gated recurrent unit (GRU)
GRU improves LSTM by reducing the number of gates from three to two%. One gate is the update gate, and the
other is the reset gate. The primary objective of these gates is to capture the long-term dependency between the
data elements of a time series. The main objective of the update gate is to determine how many dependencies to
remember, whereas for the reset gate, the main objective is to determine how many dependencies to forget. GRU
utilizes a sequence of computations to generate the new hidden state, given the input and the current hidden
state. This sequence of computations, i.e., Eqs. (1)-(4), shown in the following table, is then repeated in the
form of a loop, to improve the accuracy of GRU to predict new data and to effectively capture the long-lasting
relationship between the elements of the time series.

The update gate decides how much to remember

u = o (Wunh™" + Wipz™ +by,) (1)

The reset gate decides how much to forget

r =0 (Wonh ™Y + Weaz +b,) )
The candidate hidden state computation according to reset gate feedback
hO= tanh (Whe (r @ b)) + Wipa™ + by) (3)
The new hidden state computation, according to feedback from the update gate and candidate hidden state
O = (1-u®) & RO 4O X0 (4)

Extreme gradient boosting (XGBoost)

All the previous models are proposed to optimize the performance of the gradient boosting machine (GBM)*,
XGBoost integrates a number of weak learners to form an efficient predictive model as illustrated in Fig. 43¢,
XGBoost generates k decision trees and validates them using a subset of the training data such that the model
generalizes well to new data. Each decision tree creates a residual, i.e., the error in prediction of the current

f1($,/81) f2(.’13,,82) ..... fk(xaﬁk)

Fig. 4. XGBoost architecture consists of k decision trees that iteratively improves the prediction accuracy.
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decision tree, and this residual becomes the target variable for prediction in the next decision tree. XGBoost has
been proven to be effective in predictions requiring high levels of accuracy, e.g., see?®37-43,

Models development and configuration

Figure 5 shows the development and configuration process. The implementation platform was Google
Collaboratory, utilizing Python and powered by GCC 9.4.0. Many libraries were utilized to complete this project,
including NumPy, Pandas, Scikit-learn, and the APIs for TensorFlow Keras. The input dataset contains the hours
of concentrations of eight air pollutants in Delhi between November 25th, 2020, and January 24th, 2023. Prior
to any actions being executed on the input dataset, it was standardized using scikit-learn and then split into
80-20% training and testing sets.

The training set uses a filter to substitute outliers by values that are closer to the upper or lower bound of
the dataset when these outliers are excluded. After that, the filtered data is processed to each of the five models
to complete the learning process. The test data is utilized to evaluate the accuracy of the trained models by
generating a set of six performance metrics, such as RMSE, R, MAE, MSE, standard deviation and WT .

Prior to the training, hyperparameter optimization and tuning were conducted to maximize the performance
of each model. This tuning process was conducted using scikit-learn algorithms specifically developed for such
purposes. The GridSearchCV algorithm was employed for neural network-based models, while for the XGBoost
model, the RandomizedSearchCV algorithm was employed. The optimized hyperparameters for all models are
presented in Table 2.

Forecasting metrics
There are several statistical performance metrics were adopted for the forecasting accuracy evaluation for each
developed predictive model. The mathematical expression of each metric are as follows:

Coefficient of Determination (R?)

Computational Environment

{Input Dataset)

Python version 3.10.12, GCC
9.4.0, Google Collaboratorative

cO | NO

[No. | o

SO: | PM.;

| PM,, |

NH; |

notebook, many libraries,
including NumPy, Pandas,
scikit-learn, and TensorFlow's
Keras API.

A dataset of the hourly levels of the shown airborne particles from monitoring stations around Delhi
for the period from November 25, 2020 to January 25, 2023, amounting to 18,776 data samples.

Training Dataset

Forecasting Evaluation

Standadize data using
StandardScalar of scikit-learn

Split dataset into 80% training Test Dataset
set and 20% testing set.

/—( Models and Hyperparameters %

Winsorizer Filter]

Winsorizing involves replacing extreme
values with values closer to the upper or
lower limits, contributing to a more robust
and reliable analysis of the air quality data.

yperparameters Tuning—

RandomizedSearchCV of scikit-
learn.

Performed using GridSearch or '

-

-

{ ANN-Based Models }———

MLP Bi-LSTM i

LSTM GRU

Tree-Based Model

J

XGBoost

Fig. 5. Models development and configuration.
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Model Hyperparameter | values tested | Best value
n_estimators [50, 100, 150] | Best: 100
XGBoost learning_rate [0.01,0.1,0.2] | Best: 0.1
max_depth [3,5,7] Best: 5
min_child_weight | [1, 3, 5] Best: 1
neurons [50, 100] Best: 50
LSTM epochs [50, 100] Best: 50
batch_size [32, 64] Best: 32
neurons [50, 100] Best: 50
Bi-LSTM | epochs [50, 100] Best: 50
batch_size [32, 64] Best: 32
neurons [50, 100] Best: 50
GRU epochs [50, 100] Best: 50
batch_size [32, 64] Best: 32
neurons [50, 100] Best: 50
MLP epochs [50, 100] Best: 50
batch_size [32, 64] Best: 32

Table 2. Hyperparameters, along with the best values, were tested for LSTM, Bi-LSTM, GRU, ANN-MLP, and

XGBoost models.

Root Mean Square Error (RMSE)

Mean Absolute Error (MAE)

N ~2
R (y,y)=1- %
Zi:l (ylay)
N-1 3
RMSE (y,y) = 2 im0 W9)
N
MAE (y,7) = O N\yz,yz

Mean Squared Error (MSE)

Standard Deviation (o)

Willmott Index (W)

WI(y,g’])zl— Z (yuyz)

(Iy: — mean (y)\ + Iy —

N—
PDpN,

mean (y)|)*

(6)

7)

(8)

)

(10)

where 7 is the predicted air pollutant, y is the actual air pollutant, mean (y) is the mean of actual target output,
o is the Standard Deviation, p is the air pollutant mean, [V is the number of observations.

Results and discussion
This section presents the results and analysis of various ML models (LSTM, Bi-LSTM, GRU, MLP, and XGBoost)
applied to forecast concentrations of eight airborne particles: Carbon Monoxide (CO), Nitrogen Monoxide
(NO), Nitrogen Dioxide (NO,), Ozone (Os), Sulphur Dioxide (SO.), Fine Particulate Matter (PM,.s), Coarse
Particulate Matter (PM;o), and Ammonia (NH3). Each model was evaluated both graphically and statistically.
To assess the predictive performance, a Taylor diagram was used to compare the models based on three key
statistical metrics—correlation, RMSE, and standard deviation—in relation to the benchmarked observational
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dataset. Additionally, scatter plots were generated to visualize the deviations between actual and forecasted
values along the 1:1 line.

Carbon monoxide (CO)

Carbon monoxide was forecasted due to its highly poisonous concern for human health*!. Figure 6 presents
a scatter plot and Taylor diagram along with the forecasting metrics. According to the scatter plot, the CO
concentration was varying between (0-23000). In general, all models showed a good variation around the 45°
line. However, MLP and XGBoost revealed some observations from the identical line. According to Fig. 6a, the
obtained determination coeflicient based on the regression scatter formula was (LSTM =0.97, Bi-LSTM =0.97,
GRU=0.97, MLP=0.94 and XGBoost=0.96). Moreover, the Taylor diagram revealed that the observational
dataset of the CO was located at the standard deviation of 1 as per Fig. 6b. Overall, Bi-LSTM surpassed others
with the highest R? (0.979), lowest RMSE (438.898), and lowest MAE (244.543), indicating precise and reliable
predictions (Fig. 6¢). GRU also performed well, with an R* of 0.977 and RMSE of 456.729. LSTM followed
closely with an R? of 0.971. XGBoost and MLP had a relatively lower accuracy, with MLP having the lowest R?
(0.941) and the highest RMSE (740.927). Therefore, Bi-LSTM demonstrated the best performance, making it the
most effective model for accurate air quality forecasting in this research.

Nitrogen monoxide (NO)

NO is an extremely reactive gas that is initiated during high-temperature fuel burning. It is emitted by automobiles
and non-road vehicles (e.g., boats and construction equipment). Breathing NO with a high concentration can
cause respiratory diseases such as asthma, which could lead to respiratory infections**. According to the scatter
plots visualization (Fig. 7a), the proposed models differed from the identical best-fit line. However, LSTM, GRU,
and MLP demonstrated some observation scatters from a similar line. Numerically, the attained determination
coefficient based on the regression scatter formula was (LSTM =0.94, Bi-LSTM =0.96, GRU =0.95, MLP=0.91
and XGBoost=0.94). In addition, based on the Taylor diagram presentation (Fig. 7b), the observational dataset
of the NO was located at the standard deviation of 1. In this comparison of air quality forecasting models (Fig.
7¢), Bi-LSTM emerged as the top performer with the highest R* (0.961), lowest RMSE (13.922), and MAE
(7.854), indicating accurate and consistent predictions. GRU and LSTM followed, with R values of 0.956 and
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Fig. 6. Actual and forecasted values of CO using different AI-models; (a) Scatter plots, (b) Taylor diagram, (c)
Forecasting metrics.
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Fig. 7. Actual and forecasted values of NO using different AI-models; (a) Scatter plots, (b) Taylor diagram, (c)
Forecasting metrics.

0.948, respectively, and slightly higher RMSEs and MAEs. XGBoost performed well, but had a slightly lower
accuracy (R?=0.943). The lowest performance was achieved by MLP, with an R? of 0.913 and the highest RMSE
(20.852). Overall, Bi-LSTM proved the most reliable model for precise air quality forecasting in this study.

Nitrogen dioxide (NO,)

Increases in mortality and hospital admissions for respiratory diseases are also associated with air nitrogen
dioxide concentrations*. The lungs’ ability to combat microorganisms can be compromised by nitrogen
dioxide, leaving the air more vulnerable to illnesses. Additionally, it may cause asthma to be worse. However,
LSTM, GRU, and MLP revealed some observation scatters from the identical line. According to (Fig. 8a), the
attained determination coefficient based on the regression scatter formula was (LSTM =0.95, Bi-LSTM =0.95,
GRU =0.94, MLP =0.94, and XGBoost=0.94). The Taylor diagram in Fig. 8b indicated that the observational
dataset of the NO, was located at the standard deviation of 0.90 to 1. In this analysis of air quality forecasting
models (Fig. 8c), Bi-LSTM achieved the highest R? (0.956) and the lowest RMSE (11.055) and MSE (122.215),
suggesting its superior accuracy. Also, LSTM performed well, with an R* of 0.953 and a similar RMSE (11.452),
making it a strong contender. GRU followed closely, though with slightly lower accuracy (R* = 0.946) and
higher error metrics. XGBoost and MLP had a lower accuracy, with MLP having the lowest R? (0.937) and the
highest RMSE (13.275). Overall, Bi-LSTM provided the most precise and consistent air quality predictions in
this comparison.

Ozone (03)

Many health problems, such as congestion, coughing, throat irritation, and chest pain, can be caused by breathing
in ground-level ozone**. Bronchitis, asthma, and emphysema can all become worse due to it. Additionally,
ozone can irritate the lining of the lungs and impair lung function. Long-term lung tissue scarring could result
from repeated exposure. Increased vulnerability to diseases, pests, and other stressors such as severe weather
results from elevated ozone levels, which also reduce the yields of commercial forests and crops and the growth
and survival of tree seedlings. As per Fig. 9a, XGBoost and MLP revealed some observation scatters from the
identical line. Numerically, the attained determination coefficient based on the regression scatter formula was
(LSTM =0.95, Bi-LSTM =0.96, GRU =0.96, MLP =0.95, and XGBoost=0.96). The observational dataset of the
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Fig. 8. Actual and forecasted values of NO, using different Al-models; (a) Scatter plots, (b) Taylor diagram, (c)
Forecasting metrics.

O, was located at the standard deviation of 1 according to Taylor diagram in Fig. 9b. In this air quality forecasting
comparison (Fig. 9¢), both GRU and XGBoost excelled with the highest R* values (0.962). GRU achieved a lower
RMSE (12.050) and MSE (145.191), while XGBoost had the lowest MAE (6.409), indicating excellent accuracy
and minimal error. Bi-LSTM and LSTM also performed well with R* values of 0.959 and 0.958, respectively,
but with slightly higher RMSE and MAE values. MLP, while accurate (R* = 0.957), showed the highest RMSE
(12.869). In this part, GRU and XGBoost proved the most effective models for accurate and consistent air quality
predictions.

Sulphur dioxide (SO,)

The combustion of sulphur-containing fuels releases sulphur dioxide (SO,), impacting ecosystems and human
health. SO, harms plants, streams, and forests, and in humans, it worsens respiratory conditions like asthma and
bronchitis, especially during exercise*. Studies also link SO, exposure to higher cardiovascular disease risks.
However, XGBoost and MLP revealed some observation scatters from the identical line. As per Fig. 10a, the
attained determination coefficient based on the regression scatter formula was (LSTM =0.95, Bi-LSTM =0.95,
GRU=0.95, MLP=0.92, and XGBoost=0.91). Based on the Taylor diagram in Fig. 10b, the observational
dataset of the SO, was located at the standard deviation of 1 except MLP (SD=0.86). In this comparison of air
quality forecasting models (Fig. 10c), Bi-LSTM achieved the highest performance with the highest R? (0.955),
the lowest RMSE (11.110), and MAE (6.076), indicating superior accuracy and low error. LSTM also performed
well with an R* of 0.950 and slightly higher RMSE (11.648). GRU followed closely, with similar metrics (R* =
0.949). The accuracy of MLP and XGBoost was lower, with MLP achieving an R? of 0.928 and XGBoost the
lowest R? (0.916) and highest RMSE (15.214). In conclusion, Bi-LSTM was the most effective model for precise
air quality predictions in this study.

Fine particles matter (PM, )

Many scientific investigations have demonstrated that particulate matter decreases visibility and negatively
impacts materials, ecosystems, and climate. PM, particularly PM, ,, alters how light is absorbed and scattered
in the atmosphere, which can affect visibility*>*®. Long-term exposure to fine particles may also increase the
risk of heart disease and be linked to a higher incidence of chronic bronchitis, deteriorated lung function, and
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Fig. 9. Actual and forecasted values of O, using different Al-models; (a) Scatter plots, (b) Taylor diagram, (c)
Forecasting metrics.

lung cancer, according to studies. However, XGBoost and Bi-LSTM revealed some observation scatters from
the identical line. According to Fig. 11a, the attained determination coefficient based on the regression scatter
formula was (LSTM =0.97, Bi-LSTM =0.97, GRU =0.96, MLP = 0.93, and XGBoost=0.96). The Taylor diagram
illustration (Fig. 11b) demonstrated that, the observational dataset of PM, ; was located at the standard deviation
of 1.05. In this analysis of air quality forecasting models (Fig. 11c), LSTM demonstrated the best performance
with the highest R* (0.973), the lowest RMSE (37.549), and MAE (22.183), indicating strong accuracy and
precision. Bi-LSTM closely followed with an R* of 0.971 but had a slightly higher RMSE (38.519). GRU also
performed well, with an R? of 0.969 and comparable metrics. XGBoost achieved a satisfactory R? of 0.961 but
with higher RMSE (45.189) and MAE (25.134). MLP had the lowest overall performance, with an R* of 0.936
and significantly higher RMSE (57.665) and MAE (37.627). In this study, LSTM emerged as the most effective
model for accurate air quality predictions.

Coarse particles matter (PM, )

Particle size contributes to the health and ecological impacts of particulate matter (PM). PM,, particles (10
micrometer or smaller) can reach the lungs upon inhalation, resulting in serious health risks to heart and lung
health. Additionally, PM deposition affects ecosystems by impairing water quality and altering plant growth,
especially due to the metal and organic compounds within PM*’. However, XGBoost revealed some observation
scatters from the identical line. As per Fig. 12a, the attained determination coefficient based on the regression
scatter formula was (LSTM =0.97, Bi-LSTM =0.97, GRU=0.97, MLP =0.94, and XGBoost =0.96). Also, Taylor
diagram showed in Fig. 12b that, the observational dataset of PM, ; was located at the standard deviation of 1.05.
In this comparison of air quality forecasting models (Fig. 12¢), Bi-LSTM achieved the highest performance with
the highest R? (0.975), lowest RMSE (43.126), and MAE (24.414), indicating excellent accuracy. LSTM and GRU
were closely followed, both with R? values of 0.974, but slightly higher RMSE and MAE values. XGBoost had a
moderate performance, with an R? of 0.962 but a higher RMSE (53.085). MLP showed the lowest accuracy with
an R? of 0.949 and the highest RMSE (61.782). Overall, Bi-LSTM proved to be the most accurate model for air
quality prediction.

Ammonia (NH,)
Ammonia is a major contributor to nitrogen pollution. The effects of nitrogen buildup on plant species diversity
and composition within impacted environments are an essential component of ammonia pollution’s impacts
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Fig. 10. Actual and forecasted values of SO, using different AI-models; (a) Scatter plots, (b) Taylor diagram,
(c) Forecasting metrics.

on biodiversity. Ammonia can cause irritation to the skin or eyes or irritation to them when it comes into
contact with it. If ammonia is inhaled, it can cause coughing, wheezing, and shortness of breath, as it can cause
irritation to the respiratory system. Furthermore, ammonia inhalation may cause irritation to the throat and
nose. However, XGBoost revealed some observation scatters from the identical line. According to Fig. 13a, the
attained determination coefficient based on the regression scatter formula was (LSTM =0.96, Bi-LSTM =0.97,
GRU =0.96, MLP =0.93, and XGBoost=0.93). As per Fig. 13b, Taylor diagram showed that the observational
dataset of NH, was located at the standard deviation of 1.05. In this assessment of air quality forecasting
models (Fig. 13c), Bi-LSTM demonstrated the highest performance with an R? of 0.971, the lowest RMSE
(5.283), and the lowest MAE (2.743), indicating superior accuracy and minimal error. LSTM and GRU were
followed closely, with R? values of 0.963 and 0.965, respectively, but slightly higher RMSE and MAE scores. The
accuracy of MLP and XGBoost was lower, with MLP having an R? of 0.939 and the highest RMSE (7.645), while
XGBoost had the lowest R? (0.933) and a high RMSE (8.036). In conclusion, Bi-LSTM was the most effective
model for precise air quality predictions in this study.

Exposure to air pollution is a global public health hazard, with a considerable body of evidence linking short-
term and long-term exposures to a range of health outcomes, including all-cause and cause-specific mortality,
respiratory and cardiovascular conditions, neurodevelopmental deficiencies, and adverse pregnancy and birth
out-comes*®. The current research was fueled by the robustness of deep learning models that predictability
performance of recent research development on machine learning establishment, deep learning revealed superior
performance to the other ML models. The eight air quality parameters were chosen due to their seriousness as
environmental and atmospheric indices. In this regard, the study’s unique methods for predicting air pollution
provide valuable results in various circumstances. Models that are considered to be suitable and beneficial for
daily prediction include LSTM, Bi-LSTM, GRU, MALP and XGBoost. In order to discuss the reliability and
validity of the current intelligence models, Table 3 summarizes the latest air quality studies using multiple
machine and deep learning models under different meteorological conditions.

This study’s significance lies in its model variety, particularly Bi-LSTM, which achieved higher R? values
than other methods. Comparatively, previous studies achieved comparable R? values but were limited to fewer
pollutants or simpler seasonal analyses. In addition, studies in Hyderabad (2022) and Kolkata (2019-2022)
showed strong results with models such as ANN and XGBoost, but focused on fewer pollutants and seasonal
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Fig. 11. Actual and forecasted values of PM, . using different Al-models; (a) Scatter plots, (b) Taylor diagram,
(c) Forecasting metrics.

variations. In contrast, the Delhi study utilized Bi-LSTM, LSTM, and GRU extensively across pollutants
and extended the model’s applicability across multiple seasons, enhancing predictive power for dynamic air
quality conditions in a complex urban area. The high performance and adaptability of the Bi-LSTM model
across pollutants highlight its potential as a robust choice for multi-pollutant air quality forecasting, enabling
policymakers and environmental agencies to make data-driven decisions and mitigate pollution’s impact on
public health.

Conclusion, limitations and future directions

In this study, different air quality parameters were proposed, including CO, NO, NO,, O,, SO,, PM, ., PM,,,
and NH,. Datasets were collected for monitoring stations located near Delhi, India, for the duration of (25-11-
2020/24-01-2023) with an hourly rate. For this purpose, various Al models were introduced, including Long
Short-Term Memory (LSTM), Bidirectional Long-Short Term Memory (Bi-LSTM), Gated Recurrent Unit
(GRU), Multilayer Perceptron (MLP), and Extreme Gradient Boosting (XGBoost). The following findings can
be drawn from the current study:

i. In CO forecasting, the Al models showed the following accuracy: Bi-LSTM =0.979, GRU=0.977,
LSTM =0.971, XGBoost=0.963, and MLP =0.941, respectively.
ii. In NO forecasting, the AI models showed the following accuracy: Bi-LSTM =0.961, GRU=0.956,
LSTM =0.948, XGBoost=0.943, and MLP =0.913, respectively.
ili. In NO, forecasting, the AI models showed the following accuracy: Bi-LSTM =0.956, GRU=0.953,
LSTM =0.946, XGBoost=0.940 and MLP =0.937, respectively.
iv. In O, forecasting, the AI models showed the following accuracy: GRU=0.9624, XGBoost=0.9619, Bi-
LSTM =0.9588, LSTM =0.9579 and MLP =0.9571, respectively.
v. In SO, forecasting, the AI models showed the following accuracy: Bi-LSTM =0.955, LSTM =0.950,
GRU=0.949, MLP =0.928 and XGBoost=0.916, respectively.
vi. In PM,, forecasting, the AI models showed the following accuracy: LSTM =0.973, Bi-LSTM =0.971,
GRU =0.969, XGBoost=0.961 and MLP =0.936, respectively.
vii. In PM,, forecasting, the Al models showed the following accuracy: Bi-LSTM =0.9751, LSTM =0.9744,
GRU=0.9737, XGBoost =0.9622 and MLP =0.9488, respectively.

Scientific Reports|  (2024) 14:30957 | https://doi.org/10.1038/s41598-024-82117-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

() % Observed
a 0.0 -.- LST™M
1800 1 ( ) ‘ 01 o, 0 -@- Bi-LlSTM
) = GRU
1.35} & v
1500 1 oA s -~ XGBoost
o R 1.20-/
—~ ) 1.05}
w»n
4 1200 5 Ay
e © 0.90f
(-~ >
= 900 S
= - 0.75-/
Ry ©
2 0.60F
600 1 LSTM & e
Bi-LSTM 0.45r >
\
GRU \
] 0.30-
300 - ‘ °
©XGBoost 0.15} ‘ e
1
0 T T 000 21 L 1 1 ._L_.L I 1 =
0 500 1000 1500 2000 Yo mn o nw o n o wm o o o
S -4 mM & ©W N O O N m
o o o o o o o — L] —

PM,, (Actual)

Standard deviation
(c) R RMSE | MAE MSE ¢ WI
LSTM = 0974 43.699 | 26.044 | 1909.585 | 43.697 0.978
- Bi-LSTM | 0.975 43.126 | 24.414 |1859.862 | 42.961 0.979
GRU = 0974 44287 = 28.004 | 1961.331 @ 43.121 0.978
MLP | 0.949 61.782 | 38.991 3817.006 60.447 0.960
XGBoost 0.962 53.085 29.727 | 2817.991 | 53.084 0.969

Fig. 12. Actual and forecasted values of PM,  using different Al-models; (a) Scatter plots, (b) Taylor diagram,
(c) Forecasting metrics.

viil. In NH, forecasting, the AI models showed the following accuracy: Bi-LSTM=0.971, GRU=0.965,
LSTM =0.963, MLP =0.939 and XGBoost=0.933, respectively.

This study highlights the potential of AI-based models in air quality forecasting, essential for proactive urban
pollution management. Accurate predictions support real-time alert systems, preventing public health as cities
expand. While high model accuracy was achieved, limitations remain, such as reliance on pollutant data alone,
lacking real-time adaptability to sudden changes in pollution. Future research should incorporate meteorological
and socioeconomic data, enabling more robust, responsive models. Real-time monitoring and long-term trend
analyses could further enhance air quality management, enabling sustainable policy decisions. Interdisciplinary
collaboration will be crucial in advancing these models for efficient, data-driven air quality solutions.
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LSTM 0.963 5.957 18.375 3.387 35.485 5.863 0.971
Bi-LSTM 0.971 5.283 13.197 2.743 27.905 5.278 0.976
GRU 0.965 5.843 16.349 3.221 34.136 5.840 0.970
MLP 0.939 7.645 23.669 4.228 58.445 7.556 0.954
XGBoost 0.933 8.036 13.773 3.438 64.576 8.024 0.945
Fig. 13. Actual and forecasted values of NH, using different AT-models; (a) Scatter plots, (b) Taylor diagram,
(c) Forecasting metrics.
Reference | Study area Air pollutant | ML/DL model Highlights
Lo N XGBoost, RE, Bagging
o Chgnnal, using the historical data AQI Regressor, and XGBoost achieved R2=0.9935, MAE =0.02, MSE =0.001, and RMSE =0.04
available from 2017 to 2022
XGBRegressor
8 Ahmedabad, January 2015, to AQI SARIMA, SVM and LSTM | LSTM showed R?=0.951, MSE=656.623 and RMSE = 25.625.
January 2021
18 Visakhapatnam, Andhra Pradesh, LightGBM, RF, Catboost, . 2 _
from July 2017 to September 2022 AQL Adaboost, and XGBoost Catboost model yielded (R”=0.9998) and (RMSE =0.76).
19 . GRU-ED, RE, XGBoost, GRU-ED showed (R?=0.959, NSE=0.953, MAE=1.770, RRMSE =0.002, and
New Delhi, 2008 to 2010 PM, ANNs, and LSTM MAPE=0.190).
2 Hyderabad using five-year 2%26 Ngg)’ MLR, SVR, RE, ANN, ANN > RF > SVR>XG Boost>LSTM >MLR. ANN outperformed other model
(2018-2022) data an d’ 56‘ 2 XGBoost, and LSTM (R?>0.90) in both summer and winter seasons.
>
o . PM, . showed R?=0.79, 0.80, 0.86 and 0.87, for original, spatial, temporal and
3 ilndl? using regional and temporal | PM, ;and LightGBM spatzfesil—temporal, respectively. PM, , showed R?=0.81, 0.82, 0.87 and 0.88, for
ata in 2018 PM,, - X 10 .
original, spatial, temporal and spatial-temporal, respectively.
25 New Delhi, hourly observations for R2=0.650 and 0.618, RMSE =13.950 and 16.120, MAE =10.730 and 12.930 for
2021 and 2022 0,and NO, USS-GNN 0, and NO,, respectively.
PM, ., PM . .
18 2.5 10 RE DT, KNN, SVR, Ridge, | XGBoost showed R?=0.858 (Winter), R?=0.919 (Pre- Monsoon), R?=0.844
Kolkata from 2019 to 2022 (4 years) i?fégHy 50, Lasso, and XGBoost (Monsoon) and R?=0.862 (Post Monsoon).
" Hyderabad, from January 2018 to PM MLR, DT, KNN, RF, XGBoost: R?=0.82 and MAE=7.01 pg/ m*. LSTM: R?=0.89 and
December 2019 25 XGBoost and LSTM MAE=5.78 ug/ m>.
CO. NO, NO Bi-LSTM model was the best mode CO with (R?=0.979), NO with (R>=0.961),
Current Delhi, from 25/11/2020 to o )SO ’PM 2> | LSTM, Bi-LSTM, GRU, NO, with (R?=0.956), SO, with (R?=0.955), PM,, with (R?=0.9751) and NH,
urre 24/01/2023 PrL NG, | MLP and XGBoost with (R?=0.971). Meanwhile, GRU and LSTM models performed better in
10 @ 3 forecasting O, and PM, ; with (R*=0.9624) and (R?=0.973), respectively.

Table 3. Summary of previous studies on air pollutant prediction using intelligent learning approaches across

India.
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