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Fidelity estimation is a necessary tool for evaluating noise in quantum measurement and quantum 
computation. The traditional fidelity estimation is to calculate the distance between two density 
matrices by employing direct fidelity estimation, which consumes too much copies of state. To 
reduce the number of copies of the state, we develop optimal fidelity estimation by proposing an 
optimal model. It calculates the minimum number of copies of state given a fixed value for the fidelity 
deviation. The result shows it saves a large number of copies of state compared with traditional 
approach (Direct Fidelity estimation) that is developed several years ago.The number of copies of the 
state employed increases slower than linear increase with increase of the dimension of density matrix 
when pauli measurement basis is applied. In addition, it consumes roughly a constant number of copies 
of the state with the increase of dimension of density matrix when the measurement bases are freely 
chosen.

Many complicated problems have recently been solved through quantum computation1,2. The key component 
of quantum computation is quantum entanglement3, which is realized in different quantum systems4–6. These 
quantum systems are primarily achieved through superconducting qubits7, superconducting electronics8 , ion 
traps, quantum optics, quantum-dot physics, atomic physics, and quantum cavities9. In a superconducting 
quantum system, 51-qubit one-dimensional cluster states are realized and achieved fidelities of 0.637. This 
improvement is necessary to realize medium-scale quantum computing10. However, a common issue in all 
these quantum systems is noise. It is generally difficult to eliminate, and even its accurate description poses a 
challenge11,12.

The standard approach for describing quantum systems with noise is to perform quantum tomography13,14. 
However, the resources consumed in this procedure increase exponentially with the number of qubits in system. 
To address this resource problem, several schemes have been proposed, considering the structure of the density 
matrix or process matrix in quantum tomography. For example, matrix product state tomography employs the 
matrix product property to save resources for describing many body quantum systems and this approach is 
certificated by reconstructing a 14-spin simulate state in experiment15. The other property of certain density 
matrices is the low-rank property. It is utilized in some protocol16,17. Apart from the resource obstacle, another 
challenge is to obtain a physical density matrix or process matrix for multi-qubit system in a relatively short 
time. To this end, many efficient estimators and algorithms have been developed to reconstruct the density 
matrix18,19. Similarly, some of these algorithms have been extended to identify or characterize the system’s 
process by calculating specific system parameters. This process is named by quantum process tomography. It 
aims to describe the dynamics of a system. By exploiting the sparsity of the process matrix, compressive sensing 
is implemented with purpose of reducing copies of state20. To achieve the same target, another efficient approach 
is to perform adaptive quantum tomography, which updates the measurement settings based on previous 
measurement results21. This is similar to self-guided quantum tomography, where a gradient algorithm is used to 
search for the state by minimizing the infidelity22. This method has recently been certified through experiment23.

However, characterizing system with no apparent structure remains challenging using these methods. 
For general quantum systems, the resource consumption is directly related to the system’s dimension, scaling 
exponentially as the dimension increases linearly. Therefore, rather than estimating all the parameters of the 
system, we focus on estimating several key parameters.

One of these is the fidelity of the system24. It measures the similarity between the input state and the output 
state of the system, which is often our target metric, as it requires significantly fewer resources and provides 
insights into the noise impact on the quantum gate25–27. When the noise is weak, the fidelity is close to 1. 
Conversely, when the noise is strong, the fidelity approaches 0. Thus, utilization of fidelity is advantageous for 
identifying a quantum system.

When the variation of the noise of quantum system is relatively weak. Average fidelity is proposed and 
estimated by Monte Carlo sampling. It shows the minimum experimental effort scales as 2n for n-qubit system 
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to estimate the average error of a quantum gate28. When the system is consisted by a set of quantum gate, for 
instance, it consists of random sequences of Clifford gates, randomized benchmarking protocol is proposed 
to characterize the average error rate or the average sequence fidelity of the system29. To further evaluate the 
average error of individual quantum computational gate, Interleaved Randomized Benchmarking is developed 
for the case that the average noise variation over all Clifford gates is small30. This protocol is improved for mid-
circuit measurements. It interleaves mid-circuit measurements on an ancilla qubit on a control qubit. Therefore, 
this technique efficiently characterizes the performance of quantum computation31. To evaluate certain specific 
noise in quantum circuit, such as incoherent errors or time-dependent Markovian noise, incoherent infidelity is 
proposed to evaluate it. Similarly, this tool is restricted to the weak noise regime as well32.

When the noise of system is strong, both incoherent infidelity and the average fidelity do not perform well. 
Since the value of minimum fidelity of system might be far below the average fidelity in this scenario, fidelity for 
general case is studied. For instance, a protocol is proposed for cross-platform verification of fidelity. It requires 
local measurement of randomized product bases and is certificated by the 10-qubit quantum entanglement states 
in a trapped ion quantum simulator33. When both of the states are pure for fidelity estimation, it is calculated 
by applying the combination of computational basis and entanglement basis34. Meanwhile, fidelity between one 
pure state and a mixed state is typically estimated by Direct Fidelity Estimation (DFE)35,36 by employing pauli 
basis. It consumes copies of state, which increases linearly with the dimension of system. However, the resource 
consumption of this approach remains substantial for multi-qubit systems, the details are shown in the first 
part of appendix. Most of these protocols for state parameter estimation are compared with each other from the 
aspect of the prior information used, complexity, assumptions used, feasibility and so on37.

Here, we introduce a novel fidelity estimation approach to further minimize the resource consumption.

Optimal fidelity estimation
An optimal method is developed to minimize the number of copies of state for fidelity estimation. The two states 
for fidelity estimation are denoted by ρ1 and ρ2 separately. The state ρ1 is the target state, which is generally a 
pure state. It is a known state and stored in a classical memory, so we can calculate its decomposition in any basis 
for Eq. (1). But the state ρ2 is the state mixed with certain noise, it is a mixed state generally. It is an unknown 
state codified in a quantum system. The goal is to compare the unknown state ρ2 of a quantum system with a 
known target state ρ1. For an n-qubit system, fidelity between ρ1 and ρ2 is defined as

	
F (ρ2, ρ1) = Tr(ρ2ρ1) =

d2∑
j=1

SjTr(Wjρ2) =
d2∑

j=1

Sj

d∑
k=1

ejkTr(Πjkρ2),� (1)

where d = 2n is the dimension of the Hilbert space, Sj  is the coefficient that ρ1 is decomposed into operators 
Wj , where Wj  is the tensor product of Pauli matrices and identity operators. The Πjk  represents the projection 
operator onto the k-th eigenstate of the j-th measurement setting, ejk  is the eigenvalue, and

	 pjk = T r(Πjkρ2)� (2)

is the probability of obtaining the eigenstate. Since pjk  is not directly obtained, it is approximated by relative 
frequencies fjk . Similarly, when Wj  contains identity operator, T r(Wjρ2) is obtained by a linear combination 
of the relative frequencies of other Wj ’ that containing no identity operator.

Therefore, the fidelity of pure state is simplified by substituting Eq. (2) into Eq. (1),

	
F (ρ2, ρ1) =

∑
kj

Sjejkfjk.� (3)

In Eq. (3), each term of F is accurately estimated. To analyze the accuracy of F, the deviation of F is calculated, 
which is mainly impacted by the number of copies of the state. Since the target of distribution of limited copies 
of state is to control the deviation of fidelity ∆F . Specifically, the standard deviation of fidelity ∆F  is

	

∆F =
√∑

kj

( ∂F

∂fkj
)2D(fkj)2,� (4)

in which D(fkj) is the standard deviation of fkj . When tj  copies of state are projected into the bases Πjk  of 
measurement setting Wj  (Wj =

∑
k

ekjΠjk), the variance of the number of copies of the state projected into 
the base Πjk  is tjfkj(1 − fkj), where fkj = tkj/tj  and tkj  represents the number of copy of the state detected 
on the base Πjk . Therefore, the standard deviation of relative frequency fkj  from binomial distribution of copies 
of the state is

	
D(fkj) =

√
fkj(1 − fkj)

tj
. � (5)

Since e2
kj = 1, Eq. (4) is rewritten as
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∆F =
√∑

kj

( ∂F

∂fkj
)2D(fkj)2 =

√∑
kj

(Sj)2(
√

fkj(1 − fkj)/tj)2 =
√∑

kj

(Sj)2fkj(1 − fkj)/tj � (6)

Our target is to obtain a small deviation of F by employing minimum number of copies of the state. Therefore, 
the following optimization problem is constructed:

	

min
tj

d2∑
j=1

tj

s.t.

√∑
kj

S2
j

fkj(1 − fkj)
tj

≤ ϵ0.

� (7)

where ϵ0 is the threshold of noise. The standard deviation of fidelity ∆F  is expected as small as possible given 
certain number of copies of the state t. Therefore, Eq. (7) is rewritten as

	

min
tj

∆F (tj)

s.t.
d2∑

j=1

tj = t
� (8)

By substituting Eq.  (6) into Eq.  (8), one obtains

	

min
Rj

d2∑
j=1

S2
j (1 −

∑d

k=1 f2
kj)

Rj

s.t.
d2∑

j=1

Rj = 1

� (9)

where Rj = tj/t. Lagrange multiplier method is employed to solve the Eq. (9). Therefore, it further leads to 
minimize the

	
L =

d2∑
j=1

S2
j (1 −

∑d

k=1 f2
kj)

Rj
+ λ(

d2∑
j=1

Rj − 1).� (10)

From Eq. (10), partial derivative for Rj  is

	

∂L

∂Rj
= −

S2
j (1 −

∑d

k=1 f2
kj)

R2
j

− λ = 0.� (11)

From Eq. (11), we arrive at

	
R2

j = −
S2

j (1 −
∑d

k=1 f2
kj)

λ
.� (12)

Since

	

d2∑
j=1

Rj = 1.� (13)

By substituting Eq. (12) into Eq. (13), we obtain

	

√
−λ =

d2∑
j=1

|Sj |

√√√√1 −
d∑

k=1

f2
kj .� (14)

By substituting Eq. (14) into Eq. (12), we have
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Rj =
|Sj |

√
1 −

∑d

k=1 f2
kj

∑d2

j=1(|Sj |
√

1 −
∑d

k=1 f2
kj)

.� (15)

Meanwhile, fkj  is approximated by T r(Πjkρ1) when noise is weak. To estimate fkj  accurately, adaptative approach 
is applied. It updates the fkj  after measuring a small number of copies of the state ρ1. To be specific, several steps 
are included to perform this approach. Firstly, the initial relative frequency is denoted by f0

jk . It is calculated by 
f0

jk = T r(ρ1Πjk). Secondly, measurement is performed according to Born rule p(0)
jk = T r(ρ2Πjk) by using a 

constant number of copies of the state ρ2. Thirdly, a distribution of number of copies of state on different basis 
in the same measurement setting is obtained and represented by (tw

c1, tw
c2, tw

c3, ... tw
ck , .... tw

cd ), where the number 
of copies of state on the k − th basis is denoted by tw

ck , w represents the number of current iteration. Fourthly, 
the relative frequency is obtained by the equation fw

k = tw
ck/

∑d

k=1 tw
ck . Lastly, the relative frequency is updated 

according to the formula pw+1
jk = (wpw

jk + fw
k )/(w + 1). After that, go back to the second step and perform 

the same process. Stop the iteration when the stop criterion Max|pw
jk − pw+1

jk | < small constant is satisfied.
In the optimal fidelity estimation, accurately calculating the standard deviation of fidelity ∆F  before 

performing measurements is challenging, as the relative frequency fkj  has not yet been obtained. The solution 
involves using a small number of copies of the state to measure the state ρ2 and obtain an estimated relative 
frequency with a large deviation p(0)

jk = T r(ρ2Πjk) . This estimated relative frequency p(0)
jk  is then used to 

compute the standard deviation of fidelity ∆F  and determine the number of additional copies of the state 
required for measurements in different bases Πjk . This approach helps distribute the copies of the state in an 
optimal way.

When 1 −
∑d

k=1 f2
kj  is approximated as a constant for different j’s. Then, Eq. (15) is simplified as following:

	
Rj ≈ |Sj |∑d2

j=1 |Sj |
.� (16)

Therefore, the main steps of obtaining fidelity by optimal fidelity estimation is summarized and the pseudo code 
is shown in Fig. 1.

Furthermore, the resources used for the optimal fidelity estimation are analyzed. By solving Eq.  (7), the 
solution is

Figure 1.  Main steps of optimal fidelity estimation for single qubit system by applying pauli operator.
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tj = ⌈

√
Kj(

∑d2

j′=1

√
Kj′ )

ϵ2
0

⌉

<

√
Kj(

∑d2

j′=1

√
Kj′ )

ϵ2
0

+ 1

� (17)

in which

	
Kj = S2

j (1 −
d∑

k=1

f2
kj) � (18)

and

	
Kj′ = S2

j′ (1 −
d∑

k′=1

f2
k′j′ ). � (19)

Here the scaling of the average number of copy of state consumed is derived. The purity of density matrix ρ is

	
T r(ρ2) = T r(

d2∑
j=1,j′=1

SjWjSj′ Wj′ ) � (20)

	
= T r(

d2∑
j=1,j′=1

SjSj′ σj1σj′1 ⊗ σj2σj′2 ⊗ .... ⊗ σjnσj′n) � (21)

	
=

d2∑
j=1,j′=1

SjSj′ T r(σj1σj′1)T r(σj2σj′2)...T r(σjnσj′n) � (22)

	
=

d2∑
j=1

S2
j 2n. � (23)

We consider two cases for the density matrix. The first case is a pure state, where the purity is equal to one.

	 T r(ρ2) = 1. � (24)

One has

	

d2∑
j=1

S2
j = 1

d
. � (25)

On average,

	
S2

j = 1
d3 . � (26)

Therefore,

	
Sj = 1

d1.5 . � (27)

From Eq. (18), one has

	
Kj ≈ 1

d3 . � (28)

From Eq. (17), one obtains

	
tj ≈ 1

dϵ2
0

. � (29)

Therefore, the total number of copies of state is roughly
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d2∑
j=1

tj ≈ d

ϵ2
0

. � (30)

For the second case, ρ is a mixed state, where the purity is less than one. Therefore, one has

	

d2∑
j=1

S2
j <

1
d

, � (31)

From Eq. (17) and Eq. (18), the total number of copies of the state is given by

	

d2∑
j=1

tj <
d

ϵ2
0

. � (32)

The advantage of the optimal fidelity estimation is mainly from three aspects. Firstly, the target state information 
is applied to select the measurement settings. This leads to that the number of measurement setting selected is 
much smaller than the direct fidelity estimation for a large number of states. Therefore, the limited number of 
copies of state is used more wisely and efficiently. Secondly, instead of randomly generate copies of state and 
distribute them randomly on different measurement settings, optimal fidelity estimation applies the information 
of target state ρ1 to have the initial estimation of relative frequency and calculates the fixed optimal ratio of 
number of copies of the state to distribute on different measurement settings. This saves many copies of the 
state since certain measurement settings may not require to be performed measurement. In contrast, a small 
number of copies of the state is still applied for each of these measurement settings in direct fidelity estimation. 
The number of measurement settings that do not require to perform measurement generally increases fast as the 
dimension of state increases. Lastly, optimal fidelity estimation has no restrictions on measurement basis setting. 
It is selected freely. When the information of target state ρ1 is applied, only one measurement setting is enough 
to calculate fidelity. In contrast, direct fidelity estimation is restricted to pauli measurement and the number of 
measurement setting is d2 for d dimension system. The numerical comparison is performed in the second part 
in the numerical simulation results.

Numerical simulation results
Comparison with direct fidelity estimation by pauli measurement
In this section, our optimal fidelity estimation is numerically compared with traditional Direct Fidelity 
Estimation(DFE). Eq. (16) is applied to a single qubit density matrix and a two-qubit density matrix separately.

For the single qubit system, the density matrix ρ1 is decomposed as

	
ρ1 = 1

2(I + Sxσx + Syσy + Szσz).� (33)

where σx, σy , and σz  are Pauli matrices, and Sx, Sy , and Sz  are the corresponding coefficients. The total number 
of copies of the state is denoted as Nc1. The optimal distribution of copies of state in the three Pauli settings is by 
Nc1Rx, Nc1Ry  and Nc1Rz . Based on Eq. (16), Rx, Ry , and Rz  are

	
Rx = |Sx|

|Sx| + |Sy| + |Sz| , Ry = |Sy|
|Sx| + |Sy| + |Sz| , Rz = |Sz|

|Sx| + |Sy| + |Sz| .� (34)

Therefore, the fidelity between a single-qubit state ρ1 and ρ2 is precisely estimated by Eq.  (34). Numerical 
simulation is performed to compare this protocol with Direct fidelity estimation.

In numerical simulation, a single-qubit state ρ1 is randomly generated. The real parts of four elements of 
ρ1 are all roughly equal to 0.5 and the imaginary parts of the entries are nearly equal to zero. ρ1 is taken as the 
target pure state. ρ2 is produced by mixing gaussian noise into this pure state ρ1. The true fidelity between the 
mixed state ρ2 and the target pure state ρ1 is denoted by Ftrue. Therefore, it is directly obtained. Then, the direct 
fidelity estimation and the optimal fidelity estimation are applied separately to estimate the Ftrue. Denote the 
fidelity obtained from the direct fidelity by Fd and the one obtained from the optimal fidelity estimation by 
Fop. To have a fair comparison, the number of copies of the state used, the target state, the gaussian noise and 
the measurement settings (Pauli measurement) are exactly the same during the estimation by two methods. To 
eliminate the statistical fluctuations, we repeat the estimations by 100 times and calculate the average value of the 
gap |Fd − Ftrue| and |Fop − Ftrue|, which is denoted by Ave|Fd − Ftrue| and Ave|Fop − Ftrue|.

	
Ave(|Fd − Ftrue|) =

∑100
q=1 |Fdq − Ftrue|

100 ,� (35)

where Fdq  is the q-th estimated fidelity by direct fidelity estimation.
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Ave(|Fop − Ftrue|) =

∑100
q=1 |Fop,q − Ftrue|

100
� (36)

where Fop,q  is the q-th estimated fidelity by optimal fidelity estimation.
As shown in Fig.  2, Ave(|Fd − Ftrue|) is denoted by black point and Ave(|Fop − Ftrue|) is denoted 

by red point. The results show that Ave(|Fd − Ftrue|) is larger than Ave(|Fop − Ftrue|) in the cases of 
different number of copies of the state. Obviously, when a large number of copies of the state is employed, the 
accuracies of the estimation of fidelity for both methods are much higher since the deviation from the true 
fidelity Ftrue is smaller. Inspired by the Eq. (31) and Eq. (32), the scaling of the number of copy of the state and 
the precision of the estimation of fidelity are calculated for both methods. The number of copies of the state 
is 0.06246/(|F − Ftrue|2) for traditional direct fidelity estimation, the value is 0.03088/(|F − Ftrue|2) for 
optimal fidelity estimation. Therefore, the number of copies of the state costed in optimal fidelity estimation is 
roughly half of the number costed in the direct fidelity estimation in this case.

In addition, Eq. (16) is applied to the two-qubit density matrix as well. Firstly, the density matrix of the two-
qubit state ρ is decomposed as

	
ρ = 1

4(I ⊗ I) + Six(I ⊗ σx) + Siy(I ⊗ σy) + · · · + Szz(σz ⊗ σz).� (37)

where Six, Siy , ..., Szz  are the corresponding coefficients for different bases. Suppose the total number of copies 
of the state is Nc2. The optimal distribution of these copies of the state in different bases (σx ⊗ σx, σx ⊗ σy , and 
so on) is according to Nc2Rxx, Nc2Rxy , Nc2Rxz , Nc2Ryx, · · · , and NcRzz , where

	
Rxx = |Sxx|

|Sxx| + |Sxy| + · · · + |Szz| , · · · Rzz = |Szz|
|Sxx| + |Sxy| + · · · + |Szz| .� (38)

Notice that there are some terms in Eq. (37) that contain the identity operator I. The expectation values of these 
operators are obtained as a linear combination of measurement operators containing no I. For example, the term 
Six(I ⊗ σx) is accounted for by normalizing the remaining measurement results that involves σx on the second 
qubit. Therefore, the fidelity for a two-qubit system is obtained using all the measurement expectation values.

The optimal fidelity estimation is compared to the DFE. In numerical simulation, the two-qubit Schrödinger 
Cat state is applied, as shown in the second part of appendix. The similar simulation with Single qubit case is 
performed. The results show that Ave(|Fd − Ftrue|) is larger than Ave(|Fop − Ftrue|) for the cases of different 
number of copies of the state, as shown in Fig. 3.

Comparison of optimal fidelity by single measurement setting with direct fidelity estimation
When the measurement setting is not limited to pauli measurement and Positive Operator-Valued Measure 
(POVM) Πk  is prepared with any form, the number of copies of the state is further reduced for fidelity estimation. 
Since the state ρ1 is the target state, which is a pure state and already known before measurement, we construct 

Figure 2.  Comparison of the single qubit case for two fidelity estimation methods: the average value of 
|Fd − Ftrue| from 100 estimations by traditional method (direct fidelity estimation) is represented by black 
dot, the average value of |Fop − Ftrue| from 100 estimations by our optimal fidelity estimation is denoted by 
red dot, where Fd is the fidelity estimated by direct fidelity estimation, Fop is the fidelity estimated by optimal 
fidelity estimation, Ftrue is the true value of fidelity. Error bar is the standard deviation of the |Fd − Ftrue| or 
|Fop − Ftrue|.
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POVM bases with the same form as ρ1. Therefore, the state ρ2 is measured using the bases of ρ1 according to the 
formula of fidelity for pure state Eq. (1). Therefore, the relative frequency is taken as the fidelity directly, which 
further leads to a reduction in resources.

To certificate the reduction of resources, we perform the numerical estimations by two methods separately. 
Firstly, two different quantum states are randomly generated. One is a pure state, the other is the pure state mixed 
with certain noise. The fidelity between the two states is around 0.55. By setting the gap between the true fidelity 
Ftrue and the estimated fidelity to be 0.01, we simulate the numerical estimation process in computer and 
calculate the number of copies of the state that arrives at the accuracy 0.01 for both methods. After repeating this 
process for 100 times, we calculate the average number of copies of the state consumed to estimate these fidelities 
and mean square error of the number of copies of the state for two methods separately. The similar estimations 
are repeated by setting the same accuracy gap 0.01 between the estimated fidelity and the true fidelity for two-
qubit, three-qubit, four-qubit and five-qubit density matrices. As shown in Figs. 4 and 5, black point represents 
the average number of copies of the state consumed by direct fidelity estimation, red point represents the average 
number of copies of the state consumed by optimal fidelity estimation. It is observed that the black points are all 
above the red points, which shows that optimal fidelity estimation consumes less copies of state than the direct 
fidelity estimation. The required number of copies of state increases exponentially with the linear increase of the 

Figure 4.  Comparison of the number of copies of the state required for different dimension density matrices 
by two fidelity estimation methods. Random density matrices are applied. Target state ρ1 is a pure state, ρ2 
is a mixed state. When only one measurement setting is applied for optimal fidelity estimation, the number 
of copies of state is calculated and represented by red dot. It is compared with the traditional method (direct 
fidelity estimation), denoted by black dot. Each point is the average number of copies of state costed when the 
same accuracy of fidelity estimation is achieved from 100 estimations, F ′s are the estimated fidelities by two 
approaches separately, Ftrue is the true value of fidelity. Error bar is the standard deviation of the |F − Ftrue|.

 

Figure 3.  Comparison of the fidelity of Two-qubit density matrix by two fidelity estimation methods: Each 
point is the average gap between the estimated value and the true fidelity Ftrue calculated by 100 estimations 
separately. Black dot represents the estimation by traditional method (direct fidelity estimation), while red dot 
represents the estimation our optimal fidelity estimation. Error bar is the standard deviation of the estimated 
gap between the estimated fidelity and true fidelity.
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number of qubit by direct fidelity estimation. In contrast, the number of copies of the state increases slower than 
d/ϵ2

0 and is independent of dimension of density matrix d, which is roughly a constant with the increase of the 
number of qubit by optimal fidelity estimation.

Therefore, optimal fidelity estimation saves a large number of copies of the state.

Conclusion and outlook
An optimal method is developed for estimating the fidelity of a quantum state. It is compared with direct fidelity 
estimation under the same condition. The results show that optimal fidelity estimation has a significant reduction 
of the number of copies of the state costed, achieving the same level of accuracy in fidelity estimation. Optimal 
fidelity estimations are realized in both measurement setting of pauli basis and random measurement setting. It 
is suitable for any states, which include sparse state and any other states. In the future, more specific restricts of 
the measurement basis setting can be considered and more specific restricts from different physical systems can 
be added in the optimization problem, so that the schemes can be easily applied in different quantum systems 
for detecting error and noise.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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