

OPEN

Author Correction: Possible roles of Wnt in the shell growth of the pond snail *Lymnaea stagnalis*

Published online: 09 December 2024

Shigeaki Ohta, Koji Noshita, Katsunori Kimoto, Akito Ishikawa, Hideaki Sato, Keisuke Shimizu & Kazuyoshi Endo

Correction to: *Scientific Reports* <https://doi.org/10.1038/s41598-024-74794-7>, published online 03 November 2024

The original version of this Article contained errors, where the reference citations 48, 49 and 50 were incorrectly cited in the text.

As a result, in the “Materials and methods” section, under the sub-heading “RT-qPCR of the candidate readout genes of the Wnt signaling pathway in *L. stagnalis*”,

Total RNA was extracted from four individuals of *L. stagnalis* following the protocol of Isowa *et al.*¹⁹, for each of the BIO-treated (and with the phenotype of shell malformation) and the control samples. The experiments of BIO treatment and subsequent RNA extractions were performed twice independently to serve biological duplicates, which are named Dataset-A and Dataset-B (see Table S4 for details). Complementary DNA was prepared, and quantitative PCR was performed using the StepOne Real-time PCR system (Applied Biosystems, Foster City, USA), based on the protocol of Ishikawa *et al.*³⁵. Two sets of primers (20–22 nucleotides in length; Table S5) were designed for each of *Pangolin* and *Frizzled2* genes, using Primer3Plus (<https://primer3plus.com/cgi-bin/dev/primer3plus.cgi>; last accessed May 3, 2024). A pair of primers designed by Young *et al.*⁴⁸ for *L. stagnalis* was used to amplify an *EF1a* gene sequence as the endogenous control. For each combination of the templates (control and BIO-treated of Dataset-A and Dataset-B) and the primer sets (Lst *Pangolin*-1-F and Lst *Pangolin*-1-R (*Pangolin*-1), Lst *Pangolin*-2-F and Lst *Pangolin*-2-R (*Pangolin*-2), Lst *Frizzled2*-1-F and Lst *Frizzled2*-1-R (*Frizzled2*-1), Lst *Frizzled2*-2-F and Lst *Frizzled2*-2-R (*Frizzled2*-2), and the primer set for *EF1a*) (Table S5), three to four technical replicates were included. The qPCR consisted of 95 °C for 30 s; 40 cycles of 95 °C for 15 s, 56 °C for 30 s, and the gene expression levels were quantified using the comparative CT method (Livak and Schmittgen⁴⁹).

Now reads:

Total RNA was extracted from four individuals of *L. stagnalis* following the protocol of Isowa *et al.*⁴⁸, for each of the BIO-treated (and with the phenotype of shell malformation) and the control samples. The experiments of BIO treatment and subsequent RNA extractions were performed twice independently to serve biological duplicates, which are named Dataset-A and Dataset-B (see Table S4 for details). Complementary DNA was prepared, and quantitative PCR was performed using the StepOne Real-time PCR system (Applied Biosystems, Foster City, USA), based on the protocol of Ishikawa *et al.*³⁵. Two sets of primers (20–22 nucleotides in length; Table S5) were designed for each of *Pangolin* and *Frizzled2* genes, using Primer3Plus (<https://primer3plus.com/cgi-bin/dev/primer3plus.cgi>; last accessed May 3, 2024). A pair of primers designed by Young *et al.*⁴⁹ for *L. stagnalis* was used to amplify an *EF1a* gene sequence as the endogenous control. For each combination of the templates (control and BIO-treated of Dataset-A and Dataset-B) and the primer sets (Lst *Pangolin*-1-F and Lst *Pangolin*-1-R (*Pangolin*-1), Lst *Pangolin*-2-F and Lst *Pangolin*-2-R (*Pangolin*-2), Lst *Frizzled2*-1-F and Lst *Frizzled2*-1-R (*Frizzled2*-1), Lst *Frizzled2*-2-F and Lst *Frizzled2*-2-R (*Frizzled2*-2), and the primer set for *EF1a*) (Table S5), three to four technical replicates were included. The qPCR consisted of 95 °C for 30 s; 40 cycles of 95 °C for 15 s, 56 °C for 30 s, and the gene expression levels were quantified using the comparative CT method (Livak and Schmittgen⁵⁰).

The original Article has been corrected.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2024