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Diabetes is a long-term condition characterized by elevated blood sugar levels. It can lead to a variety 
of complex disorders such as stroke, renal failure, and heart attack. Diabetes requires the most 
machine learning help to diagnose diabetes illness at an early stage, as it cannot be treated and adds 
significant complications to our health-care system. The diabetes PIMA Indian dataset (PIDD) was 
used for classification in several studies, it includes 768 instances and 9 features; eight of the features 
are the predictors, and one feature is the target. Firstly, we performed the preprocessing stage that 
includes mean imputation and data normalization. Afterwards, we trained the extracted features 
using various types of Machine Learning (ML); Random Forest (RF), Logistic Regression (LR), K-Nearest 
neighbor (KNN), Naïve Bayes (NB), Histogram Gradient Boost (HGB), and Gated Recurrent Unit (GRU) 
models. To achieve the classification for the PIDD, a new model called Recursive Feature Elimination-
GRU (RFE-GRU) is proposed in this paper. RFE is vital for selecting features in the training dataset that 
are most important in predicting the target variable. While the GRU handles the challenge of vanishing 
and inflating gradient of the features results from RFE. Several predictive evaluation metrics, including 
precision, recall, F1-score, accuracy, and Area Under the Curve (AUC) achieved 90.50%, 90.70%, 
90.50%, 90.70%, 0.9278, respectively, to verify and validate the execution of the RFE-GRU model. The 
comparative results showed that the RFE-GRU model is better than other classification models.

Keywords  Diabetes classification, Machine learning, Recursive feature elimination (RFE), Gated recurrent 
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Protecting the public from potential health risks and illnesses is a top priority for public health officials. 
Governments are allocating a significant portion of their GDP to social programs, and some of them, like 
vaccinations, have directly increased the average lifespan of citizens1. Yet, in recent decades, several chronic and 
hereditary disorders have emerged as major threats to public health policy. Heart diseases, kidneys, and nerves 
are all made worse by diabetes mellitus, making it a leading cause of death2. Diabetics may affect almost every 
organ in the body3. Blurred vision, weariness, hunger, frequent urination, excessive thirst, and changes in body 
weight are all symptoms of diabetes. Other risk factors for developing diabetes include high or low blood pressure, 
smoking, and obesity. Millions of individuals all around the globe are afflicted by this illness. As the number of 
people diagnosed with diabetes continues to rise fast, it has become a worldwide health crisis. Maintaining 
good health requires prompt attention to any signs of diabetes4. By developing insulin resistance, pre-diabetes 
increases the likelihood that diabetes may be reversed with healthy eating and regular exercise. Major research 
has shown that long-term diabetes may cause problems. Diseases like macro vascular, cardiovascular, peripheral 
vascular, stroke, ischemic heart, and chronic heart failure are all major consequences5.

Estimating a person’s vulnerability to developing a chronic disease like diabetes is crucial. Early detection 
of chronic disease may save medical expenses and improve health outcomes. It is important for physicians to 
be able to make sound judgments about patient care in high-stakes circumstances even when dealing with a 
patient who is asleep or unable to communicate their condition6. Many different predictive, quantitative, and 
statistical models are used for illness forecasting and diagnosis. Machine learning (ML) is a kind of artificial 
intelligence (AI) that allows computers to learn automatically by observing their environment and adjusting 
their behavior accordingly7. The most recent advancement in ML has improved computers’ ability to analyze data 
and make better decisions based on what they find. This includes things like picture recognition and labeling, 
illness prediction, and more. The goal of machine learning (ML) applications is to teach a computer to achieve 
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human-level performance. The model is trained using a supervised learning method, and its performance is 
then assessed using testing data8. The ML-based algorithms do double duty as classifiers and feature selection 
methods. In addition to aiding in correct diabetes diagnosis, this solves one of the most pressing issues in the field: 
how to effectively classify patients to properly assess their risk for developing diabetes. Quadratic discriminant 
analysis (QDA), linear discriminant analysis (LDA), support vector machine (SVM), naive Bayes (NB), logistic 
regression (LR), artificial neural network (ANN), Gaussian process classification (GPC), decision tree (DT), 
Adaboost (AB), random forest (RF), J48, and k-nearest neighbor (KNN) were among the ML-based systems 
used to categorize and predict diabetes9. There is a wealth of data available in today’s healthcare systems. When 
used intelligently, these statistics have predictive potential. There is a large body of research on diabetes that relies 
on data collected from a long-term study of Pima Indians in Arizona. Artificial intelligence (AI) technologies 
and approaches have been developed for early diabetes diagnosis by mining this massive data collection10.

In the proposed RFE-GRU model, Recursive Feature Elimination (RFE) and the Gated Recurrent Unit (GRU) 
architecture interact to create a streamlined, high-performance diabetes classification model that leverages the 
strengths of both feature selection and sequential data learning while addressing issues commonly associated 
with gradient vanishing in deep learning. The RFE component serves as a preliminary filter to determine the 
most relevant features for diabetes classification. By iteratively evaluating feature importance, RFE progressively 
removes the least significant features, refining the dataset down to the most impactful variables: Glucose, 
BloodPressure, Insulin, and BMI. This selection not only enhances model interpretability but also reduces 
input dimensionality, which directly benefits the GRU by simplifying the learning process and improving 
computational efficiency. With this reduced feature set, the GRU can allocate more computational resources to 
learning temporal relationships and dependencies within the dataset, instead of processing irrelevant or noisy 
data. The GRU layer then uses this refined feature set to capture any potential sequential or temporal patterns 
that may emerge from diabetes-related physiological signals. The GRU’s gated structure is well-suited to model 
these time dependencies, as it manages information flow through update and reset gates, allowing the network to 
selectively retain or discard information over time. A well-known issue in traditional Recurrent Neural Networks 
(RNNs) is the vanishing gradient problem, where gradients shrink as they are back-propagated through layers, 
leading to difficulties in learning long-term dependencies. GRU addresses this through its gated mechanism, 
which helps maintain a more stable flow of gradients during training. Specifically, the update gate in the GRU 
learns to control the degree to which previous information is retained, while the reset gate modulates the 
incorporation of new information. This design is particularly effective in preventing gradients from vanishing, 
ensuring that important signals are carried across long sequences without decay.

By combining RFE and GRU, the model minimizes unnecessary data processing, which can contribute to 
gradient decay when irrelevant or high-dimensional data is included. RFE’s feature selection complements 
GRU’s architecture by reducing the noise and complexity of input data, effectively enhancing the stability of 
gradient flow within the GRU model. This hybrid approach results in a robust and efficient model that not only 
captures critical features for diabetes classification but also mitigates issues related to gradient stability, leading 
to improved training convergence and predictive accuracy.

The RFE-GRU model addresses several critical research gaps in diabetes classification, particularly in 
improving feature selection, handling class imbalance, and offering superior computational efficiency compared 
to existing models. Many previous models fail to properly address irrelevant or redundant features, leading to 
overfitting and reduced generalization. The RFE method improves this by systematically selecting only the most 
relevant features, thus reducing dimensionality and enhancing model performance. Furthermore, traditional 
models often struggle with the class imbalance in the PIDD dataset, but the RFE-GRU model implicitly 
addresses this issue by emphasizing discriminative features, improving precision and recall for the minority 
class. Additionally, while many models fail to capture temporal dependencies, GRU (a type of RNN) overcomes 
challenges like gradient vanishing and explosion, offering better performance in sequential data classification. 
This model also offers a more generalizable framework that can be extended to other healthcare datasets, and 
while not using k-fold cross-validation, such techniques could further validate its robustness. Ultimately, the 
RFE-GRU model offers a more accurate, efficient, and robust approach to diabetes classification, addressing 
gaps in previous research and improving predictive performance on small, imbalanced datasets like PIDD. The 
contributions of this work are given as follows:

•	 Introducing a variety of machine learning methods for classification of diabetes disease. These methods are 
Recursive Feature Elimination (RFE)- Gated Recurrent Unit (GRU), Logistic Regression (LR), Random For-
est (RF), K-Nearest Neighbor (KNN), Naïve Bayes (NB), and Histogram Gradient Boosting (HGB).

•	 Building a sequential hybrid model based on RFE-GRU to select the most relevant features in the training 
dataset to facilitate and enhance the prediction results of the target variable.

•	 Handling the problem of vanishing and inflating gradient of the applied RFE features using GRU.

The rest of this paper is organized as follow. In Sect. 2, the diabetes prediction’s related work is presented. In 
Sect. 3, the methodology of this research including the preprocessing and ML regressor models is provided. In 
Sect. 4, the proposed REF-GRU model is presented. Experimental results are discussed in Sect. 5. Finally, the 
paper conclusion is provided in Sect. 6.

Related work
Diabetes diagnosis and classification is a difficult undertaking that calls for the knowledge of medical experts. 
Due to the use of machine learning, deep learning, and ensemble learning techniques, the healthcare sector has 
recently experienced notable breakthroughs. Numerous methods for categorizing diabetes have been developed, 
and many of these make use of the PIDD dataset, which has data on 768 cases of female patients across 9 
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characteristics. We will examine a number of pertinent research on diabetes categorization in this section. A 
machine learning-based method for diabetes classification, early diagnosis, and prediction was created by Butt 
et al.2. Logistic regression (LR), random forest (RF), and multilayer perceptron (MLP) were three different 
classifiers that were investigated. They also used the PIDD dataset for predictive analysis utilizing long short-
term memory (LSTM), linear regression (LR), and moving averages (MA). MLP had the greatest prediction 
accuracy (86.08%), while LSTM improved it to 87.26%.

Kaur and Kumari4 employed supervised machine learning methods, including radial basis function kernel 
SVM, linear kernel SVM, k-nearest neighbor (k-NN), multifactor dimensionality reduction (MDR), and artificial 
neural network (ANN) on the PIDD dataset. Among these methods, the SVM-linear model demonstrated the 
highest accuracy of 89% for diabetes prediction.

Krishnamoorthi et al.8 proposed a novel framework for diabetes prediction using machine learning (ML) 
techniques. They evaluated popular methods such as decision tree-based random forest (RF) and support 
vector machine (SVM) learning models. The results of this study have been widely utilized by researchers and 
practitioners in the medical and scientific communities. The suggested model achieved an accuracy of 83% with 
a very low error rate. Hrimov et al.9 proposed a logistic regression (LR) technique to predict the likelihood of 
diabetes, achieving an accuracy of 77.06% using a Python program.

Yahyaoui et al.11 proposed a diabetes prediction model based on machine learning (ML) and deep learning 
(DL) approaches. They utilized random forest (RF), support vector machine (SVM), and fully convolutional 
neural network (CNN) to predict and detect diabetes patients. The experimental findings showed that RF 
outperformed deep learning and SVM approaches, achieving an overall accuracy of 83.67%.

Sharma et al.12 focused on diabetes prognosis using supervised learning methods such as naive Bayes, logistic 
regression, decision tree, and artificial neural network. Among these methods, logistic regression achieved the 
best accuracy of 80.43% in determining whether a patient is diabetic or not.

Khanam and Foo13 utilized ML algorithms, data mining, and neural network (NN) techniques for diabetes 
prognosis. They tested seven ML systems on the dataset and found that the model combining logistic regression 
(LR) and SVM achieved the most effective results. Additionally, they experimented with different epochs and 
hidden layers for the NN model, concluding that the NN with two hidden layers achieved the highest accuracy 
of 88.6%.

Hassan et al.14 emphasized the importance of early diagnosis of diabetes. They gathered data from the Khulna 
Diabetes Center, which included 289 cases and 13 variables. The accuracy results of the employed models were 
88% for the proposed method, 86.36% for XGBoost, and 86.36% for Random Forest. Howlader et al.15 utilized 
ML algorithms to classify individuals with Type 2 diabetes. They employed various feature selection methods 
and classification techniques, finding that the Generalized Boosted Regression model achieved the highest 
accuracy of 90.91%.

Çalisir and Dogantekin16 introduced a linear discriminant analysis (LDA) with Morlet wavelet support vector 
machine (MWSVM) classifier for automatic diabetes diagnosis. They achieved an accuracy of 89.74% using the 
PIDD dataset. Dadgar and Kaardaan17 presented a hybrid technique combining the UTA algorithm and a two-
layer neural network for diabetes prediction. The method utilized feature selection using the UTA algorithm and 
neural-genetic prediction, achieving a predictive accuracy of 87.46% on the PIDD diabetes dataset.

Chen et al.18 developed a prediction model to assist in the prognosis of Type 2 diabetes. They employed 
K-means for dimensionality reduction of the PIDD dataset and J48 decision tree as a classifier, achieving an 
accuracy of 90.04%. Haritha et al.19 proposed a hybrid model based on Firefly and Cuckoo Search algorithms. 
They utilized the PIMA dataset with a K-nearest neighbor (KNN) classifier and Cuckoo fuzzy KNN algorithm, 
achieving an accuracy of 81.00%.

In order to predict diabetes, Zhang et al.20 proposed a multi-layer feed-forward neural network that used risk 
indicators from the PIDD dataset. The Levenberg-Marquardt training method was used to train the network, 
which resulted in an accuracy rating of more than 80%. On the PIDD dataset, Benbelkacem and Atmani21 
used random forest (RF) with 100 trees to classify diabetes with an accuracy ranging from 70.00 to 80.00%. 
Khanwalkar and Soni22 utilized the PIDD dataset with a Sequential Minimum Optimization (SMO) algorithm 
based on quadratic programming, achieving an average accuracy of 77.35% for predicting diabetes.

Patra and Kuntia23 introduced a standard deviation KNN (SDKNN) algorithm for diabetes classification 
on the PIDD dataset. The algorithm utilized the standard deviation of KNN features to calculate the distance 
between the train and test data, achieving an accuracy of 83.76% for the modified weighted SDKNN. Bhoi et al.24 
employed various supervised learning techniques, including classification tree (CT), random forest (RF), neural 
network (NN), SVM, KNN, naive Bayes (NB), AdaBoost (AB), and logistic regression (LR) on the clinical PIDD 
dataset to predict diabetes in Pima Indian women. They evaluated the accuracy, precision, recall, F1 score, and 
AUC of these models.

Ramesh et al.25 proposed an end-to-end healthcare monitoring approach for controlling diabetes and 
detecting risk cases based on the PIDD dataset. They achieved sensitivity, specificity, and accuracy rates of 
87.20%, 79.00%, and 83.20%, respectively. Salem et al.26 presented a preprocessing stage for the PIDD dataset, 
including normalization, elimination of outliers, imputation of missing values, and feature selection. They used 
a fuzzy-KNN classifier to classify the resulting features, considering the uncertainty values of the membership 
function. Through a grid search process, they obtained tuning values for the fuzzy-KNN and achieved an 
accuracy of 90.63%. Studies should concentrate on using standardized datasets, exploring a wide range of 
machine learning algorithms, providing a detailed description of the methodology used, and comparing the 
performance of various algorithms using suitable evaluation metrics to increase the quality and reliability of 
diabetes prediction models. A list of research that have utilized various machine learning methods and datasets 
to predict diabetes is included in Table 1.
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Methodologies
It is true that ML algorithms are now helpful in illness identification, however older research models were less 
accurate. Thus, it is necessary to develop new methods that can combine the precision of several algorithms 
for accurate illness diagnosis. For this purpose, a ML-based system is employed in this paper to classify the 
diabetes disease. The overview of the proposed ML-based systems has been shown in Fig.  1. The proposed 
methodology contains numerous processes such as diabetes data preprocessing using data normalization and 
mean imputation, noise data removal, feature extraction, selection, disease classification, and evaluating results 
using several predictive evaluation metrics including precision, recall, F1 score, accuracy, and Area Under 
the Curve (AUC). Optimized techniques are used to predict the diabetes sickness, such as Recursive Feature 

Author Methodology Dataset used Advantages Recommendations

Butt et al.2 MLP, RF, LR, LSTM, LR, MA PIDD dataset MLP achieved 86.08% accuracy, LSTM 
improved to 87.26% Further investigation of LSTM and other predictive models

Kaur and Kumari4 RBF-SVM, Linear SVM, k-NN, 
MDR, ANN PIDD dataset SVM-linear achieved 89% accuracy Focus on SVM-linear model for diabetes prediction

Krishnamoorthi 
et al.8 Decision tree-based RF, SVM Not specified Achieved 83% accuracy with low error 

rate
Utilize proposed model for diabetes prediction in medical 
and scientific fields

Hrimov et al.9 LR Python program Achieved 77.06% accuracy Explore other classification algorithms for improved 
accuracy

Yahyaoui et al.11 RF, SVM, CNN Not specified RF outperformed DL and SVM with 
83.67% accuracy

Investigate ensemble methods combining RF and DL for 
better results

Sharma et al.12 Naive Bayes, LR, Decision tree, 
ANN Not specified Logistic regression achieved 80.43% 

accuracy Further evaluation of other supervised learning methods

Khanam and Foo13 ML algorithms, NN Not specified Combination of LR and SVM achieved 
88.6% accuracy

Investigate different NN architectures for improved 
accuracy

Hassan et al.14 Proposed method, XGBoost, RF Khulna Diabetes 
Center Achieved 88% accuracy Focus on proposed method and compare with XGBoost 

and RF

Howlader et al.15 Generalized Boosted Regression Not specified Achieved 90.91% accuracy Explore feature selection methods and compare with other 
classification models

Çalisir and 
Dogantekin16 LDA, MWSVM PIDD dataset Achieved 89.74% accuracy Investigate the performance of other classifiers with LDA 

and wavelet support

Dadgar and 
Kaardaan17 UTA algorithm, NN PIDD dataset Achieved 87.46% predictive accuracy Investigate different feature selection algorithms and 

compare with UTA

Chen et al.18 K-means, J48 decision tree PIDD dataset Achieved 90.04% accuracy Consider other dimensionality reduction techniques and 
compare classifiers

Haritha et al.19 Firefly algorithm, Cuckoo Search PIDD dataset Achieved 81.00% accuracy Explore other hybrid models and compare with KNN and 
fuzzy KNN

Zhang et al.20 Multi-layer feed-forward NN PIDD dataset Achieved accuracy above 80% Investigate other training algorithms and compare with NN

Benbelkacem and 
Atmani21 RF PIDD dataset Achieved accuracy between 70.00% 

and 80.00%
Explore other classification algorithms for improved 
accuracy

Khanwalkar and 
Soni22

SMO algorithm based on 
quadratic programming PIDD dataset Achieved average accuracy of 77.35% Investigate other optimization algorithms for better 

performance

Patra and Kuntia23 Standard deviation KNN 
(SDKNN) PIDD dataset Achieved 83.76% accuracy for modified 

weighted SDKNN Evaluate other distance metrics and compare with KNN

Bhoi et al.24 CT, RF, NN, SVM, KNN, NB, 
AB, LR

Clinical PIDD 
dataset

Evaluation of multiple supervised 
learning techniques

Consider precision, recall, F1 score, and AUC when 
comparing models

Ramesh et al.25 End-to-end healthcare 
monitoring PIDD dataset Sensitivity: 87.20%, Specificity: 79.00%, 

Accuracy: 83.20%
Further investigation of risk detection cases and their 
impact

Salem et al.26 Preprocessing, fuzzy-KNN 
classifier PIDD dataset Achieved 90.63% accuracy Optimize tuning values for fuzzy-KNN classifier and 

explore other classifiers

Table 1.  The comparative study for the most recent approaches and recommendations.

 

Count Mean Std Min Max 25% 50% 75%

Pregnancies 768 4.4 2.95 1.000 17 2 3.84 6.000

Glucose 768 121.4 30.5 44 199 99 117 140.2

BloodPressure 768 72.1 12.1 24 122 64 72 80

SkinThickness 768 26.5 9.7 7 99 20.5 23 32

Insulin 768 118.4 93.7 14 846 79.7 79.7 126.5

BMI 768 32.3 6.9 18.2 67.10 27.3 32 36.5

DiabetesPedigreeFunction 768 0.47 0.33 0.07 2.42 0.24 0.37 0.637

Age 768 33.1 11.78 21 81 24 29 4

Outcome 768 0.34 0.47 0 1 0 0 1

Table 2.  Statistical analysis for the PIDD.
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Elimination (RFE)- Gated Recurrent Unit (GRU), Logistic Regression (LR), Random Forest (RF), K-Nearest 
Neighbor (KNN), Naïve Bayes (NB), and Histogram Gradient Boosting (HGB). The obtained results illustrated 
that the RFE-GRU model performed better than other classification models and several studies used PIDD for 
classification.

The GRU model utilized 64 hidden units, a batch size of 32, a learning rate of 0.01, 200 epochs, and an 
Adam optimizer to enhance convergence efficiency. The GRU was further optimized with 8 time steps to 
capture temporal dependencies within the data, and a sigmoid activation function in the output layer to produce 
probabilistic predictions suitable for classification tasks.

To rigorously evaluate the RFE-GRU model, we compared its performance against Logistic Regression (LR), 
Random Forest (RF), Histogram-Based Gradient Boosting (HGB), K-Nearest Neighbors (KNN), and Naïve Bayes 
(NB) classifiers. The LR model was configured with L2 penalty (ridge regularization) and fit_intercept = true to 
calculate the intercept term, optimizing regularization. For the RF model, we set n_estimators to 100, providing 
a robust number of decision trees in the ensemble for stable performance. The HGB model utilized a learning 
rate of 0.01, which controls the step size during gradient correction to avoid overfitting while promoting gradual 
convergence. In the KNN model, we set n_neighbors to 5 with Euclidean distance as the metric, effectively 
balancing model simplicity and performance by selecting the nearest neighbors. Lastly, the NB model used 
alpha = 0.5 (Laplace smoothing) to handle cases with zero probability and fit_prior = true to adjust class priors 
based on the dataset distribution.

To ensure comprehensive model evaluation, we assessed performance metrics for each model, including 
accuracy, precision, recall, F1 score, and AUC. These metrics allowed us to thoroughly compare each classifier’s 
strengths and limitations. The configuration of these hyperparameters, underscoring the importance of precise 
parameter tuning to maximize each model’s accuracy and predictive power for the task of diabetes classification.

Data preprocessing
Missing data imputation and outlier removal are instances of data preprocessing methods that may be used to 
enhance the goodness of the raw data. Preprocessing approaches for missing data, outlier identification, data 
minimization, data conversion, data scaling, and data segmentation are outlined in terms of their applicability27. 
This article utilizes the mean imputation and data normalization operations for preprocessing the PIDD.

Mean imputation
The primary strategies for dealing with missing values are investigated in Fig.  2, by which the creating of 
operational data are performed. Moreover, in this study, we concentrate on mean imputation, which replaces 
missing values with the variable’s mean27.

Mean imputation was chosen for handling missing values in the dataset due to its simplicity and efficiency, 
particularly given the nature of the PIMA Indian Diabetes Dataset (PIDD). The choice of mean imputation 
provides a straightforward and computationally inexpensive method for filling in gaps in the data, ensuring 
consistency without introducing significant variance, which could potentially skew the model’s performance28–30.

Alternative imputation methods, such as median or KNN imputation, were considered, but mean imputation 
was ultimately selected based on its balance between computational efficiency and reliability in preserving 
the dataset’s overall distribution31,32. While median imputation could mitigate the impact of outliers, it may 
not significantly alter results in datasets with normally distributed features, such as PIDD. KNN imputation, 
while potentially more accurate, can introduce additional computational complexity and time, which may not 

Fig. 1.  The general block diagram of the proposed methodology.
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justify its benefits in this case33. Ultimately, mean imputation was deemed the most practical choice to maintain 
simplicity while providing reliable data for the classification models34.

Data normalization
Normalization is an original data procedure that rescales or transforms information such that each characteristic 
contributes uniformly. It tackles the two most significant data issues that have been a barrier to the progress of 
machine learning methods, namely the existence of dominating features and outliers. Numerous methods for 
data normalization within a given range using statistical measures derived from raw data have been explored35. 
These normalization methods are as follows:

•	 Standard Deviation and Mean (e.g., Pareto Scaling, Mean Centered, Z-score Normalization, Variable Stability 
Scaling, Power Transformation).

•	 Minimum–Maximum Value (e.g., Max Normalization, Min–Max Normalization).
•	 Decimal Scaling Normalization.
•	 Median and Median Absolute Deviation Normalization.
•	 Sigmoidal Normalization (e.g., Hyperbolic Tangent, Logistic Sigmoid).
•	 Tanh Based Normalization.

The input parameters of proposed supervised learning techniques are normalized in this research to stabilize the 
learning strategy. The results are normalized to a range of (0, 1) using the min-max method.

Machine learning algorithms
Logistic regression (LR)
LR is the most extensively utilized experiential approach in several scientific domains, particularly in 
environmental research. In LR, the occurrence possibility of a phenomena is assessed between 0 and 1, and 
the predictor variables’ normality is not assumed. LR is a form of multiple regression with a discrete dependent 
parameter36. In logistic stepwise regression (LSR), LR is among the most frequently used mathematical 
approaches. It defines the link between a category parameter and several dependent variables that might be 
binary, continuous, or discrete variables. The logistic function Li is used to calculate the LR as shown in Eq. (1)37.

	
L = exp (v)

(1 + exp (v)) � (1)

 where P denotes the probability associated with a certain observation, and v can be expressed as in Eq. (2):

	 v = β0 + β1X1 + β2X2 + · · · + βnXn� (2)

Fig. 2.  The hierarchal taxonomy of missing value imputation.
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 where β 0 signifies the algorithm’s intercept, βi indicates the coefficient of independent parameters contribution 
Xi, and n is the conditioning factors number.

K- nearest neighbor (KNN)
Among approaches for machine learning, the KNN is often used to categorize the standard datasets. Even 
compared to the complicated machine learning algorithms, this straightforward and simple-to-implement 
technique produces amazing results. The increasing retrieval of data in a variety of media, including text, 
photographs, music, and video, has prompted recent interest in KNN. However, the success of KNN is highly 
dependent on several parameters, such as the distance measure and k parameter selection. The square root of the 
Euclidean distance is calculated by taking the total of the squared differences that exist between an existing point 
(xi) and a new point (x), The calculation is given by Eq. (3), which is the most often used distance measurement 
as in Eq. (3)38.

	
d (x, xi) =

√∑n

i=1
(xj − xij)2� (3)

Data for training and testing is loaded into the KNN algorithm, which then assigns a category to each test point. 
It is computed for every point in the dataset and saved in a list ordered by increasing distance while the halting 
state is not yet reached. After that, the K spots with the shortest distance between them will be chosen. Training 
samples from a smaller neighborhood will be utilized to make predictions when k is reduced, which reduces 
approximation error but increases estimation error. Classification models with a low k value are oversimplified. 
Cross-validation is often employed to find the optimal k value in real-world applications since the k value 
typically takes on a modest value. K occurrences in these categories should be determined, as well. Grouped by 
the number of occurrences at point K, the test samples were sorted into the appropriate groups39. An example of 
KNN classification is presented in Fig. 3.

Naïve Bayes (NB)
The Nave Bayes technique is based on the Bayes’ theorem and a rudimentary hypothesis about the absence or 
presence of a certain characteristic. No additional feature class is required for this feature class to exist or not exist. 
The theoretical features of the NB classifier may be summarized as follows: Random variables for the collection 
of predictors and the goal characteristic may be represented using the x1-xn formula: (x1, x2,… xn) (with K 
values). One further feature to consider when making predictions is Y, which has K potential values symbolized 
by (C1,.CK). Xi and Y are frequently referred to as independent and dependent variables, respectively40. As a 
result, Bayes’ theorem can be used as in Eq. (4).

	
R(Y = CK |X = x) =

R (Y = CK)
∏n

i=1 R(Xi = xi|Y = CK)
R(x1 . . . , xn)

� (4)

Fig. 3.  KNN classification example.
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These computations are carried out on the log scale to prevent arithmetic underflow (when n > > 0), and the 
category of the greatest log-posterior possibility is selected to be the result of forecasting, which is identical to 
anticipate (…, category = “class”), then the result is determined as in Eq. (5)

	
C∧ = arg max

k∈{1,...,k}
(log R (Y = CK) +

∑n

i=1
log R (Xi = xi|Y = CK)� (5)

Random forest (RF)
Bierman et al.41 proposed an ensemble method, known as random forest (RF), that combines many trees focused 
on the ensemble learning idea. A decision tree, one of the learning techniques used in integrated learning 
approaches in machine learning, serves as the foundation of the random forest algorithm. The RF method 
has good accuracy and is often utilized in biological sequence alteration studies. The two-classification issue is 
addressed by RF, which may be seen as a unique bagging technique. The original unit decision tree is employed 
as a model in this procedure. This is the precise procedure: First, a guided technique is used to produce X 
training sets. Decision trees are then built to match each training set. The optimal answer is identified in a 
randomly chosen piece of the feature, which is then given to the node and split when the decision tree member 
identifies the feature that has to be divided. The integration technique is the fundamental idea behind the RF 
method. In order to prevent overfitting, the training data is transformed into a sampling matrix using the bagging 
and integration ideas, which are comparable to the sampled features and samples that prevents overfitting by 
converting the training data into a sampling matrix42. The structure of the Random Forest is illustrated in Fig. 4.

Histogram gradient boosting (HGB)
The gradient boosting method has been modified by the HGB. The approach is based on building a group of 
decision trees that reduce the loss function one by one. The alteration is distinct since the input data is discretized 
first. This enables the technique to leverage integer data representations (histograms) rather than depend on 
ordered continuous data to form trees, considerably reducing the number of examined division points. This 
algorithm’s capacity to adjust its parameters as fresh data is provided rather than retraining is a benefit of this 
algorithm43. The fact that this technique offers native support for missing data in the database is one of the most 
important characteristics that it defines. During training, the tree grower will learn at each split point, depending 
on the potential gain, the instances with missing values should go to the left child or the right child. In the 
process of prediction, samples that are lacking values are therefore given to either the right or left child. In the 
event that the dataset contains no instances of missing values, samples with missing values will be matched to 
the majority of child samples44. HGB is superior to the Gradient Boosting Machine in terms of both the amount 
of memory it uses and the speed with which it processes data45.

The proposed RFE-GRU method
Following a systematic process, RFE assesses the significance of each feature, iteratively eliminating the least 
important features, and recalculating feature importance. This iterative approach enables RFE to prioritize the 
most influential features and gradually build a ranked list. By obtaining this ranked list, RFE provides valuable 
insights into the relative importance of each feature, enabling data scientists and researchers to make informed 
decisions during feature selection. In this paper, we present Recursive Feature Elimination (RFE) with Gated 
Recurrent Unit (GRU) sequential hybrid model to develop and improve the performance by selecting the most 

Fig. 4.  Random Forest structure.
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relevant feature of the PIDD dataset, along with using intelligent models (LR, RF, KNN, NB, and HGB) for 
comparison with the proposed methodology. For evaluation of the suggested algorithms’ dependability, the area 
under the curve (AUC) and several other validation methods such as F1-score, recall, accuracy, and precision 
are compared.

Recursive feature elimination (RFE)
Guyon et al.46 introduced Recursive Feature Elimination (RFE), a novel and powerful embedded feature selection 
approach. RFE is a greedy technique based on approaches of feature ranking. RFE begins with a full set and then 
removes, one by one, the least significant traits in order to identify the most essential ones47. The main technique 
of RFE uses a different machine learning algorithm. The RFE algorithm uses this selected machine learning 
algorithm as a wrapper and makes use of it to help in feature selection. Finding a subset of features that are most 
pertinent to the specified machine learning job is the aim of RFE. Beginning with every feature included in the 
training dataset, RFE includes iteratively removing less significant features until the required number of features 
is left. The selected machine learning method is used throughout each iteration to assess the significance of each 
characteristic, and the least important ones are disregarded. Until the necessary number of features is obtained, 
this recursive procedure is repeated. The number of features that must be chosen during the feature selection 
process is controlled by the “Feature Set Size” option in RFE. The final subset of characteristics that the method 
seeks to keep following repeated elimination stages is chosen by providing the feature set size limit as part of 
RFE’s setup. RFE starts off with every feature in the dataset and gradually removes the least significant ones until 
it reaches the desired feature set size. Overfitting is limited by the feature set size selection48. RFE improves the 
model’s prediction ability and enables improved generalization of previously unobserved data by concentrating 
on the most important characteristics. The chosen features are extremely important for increasing the model’s 
precision, interpretability, and effectiveness since they capture the key relationships and patterns in the data. 
Machine learning models that are more effective and efficient and specifically adapted to the particular problem 
domain may be created using RFE’s ability to prioritize and delete features according to their relevance. Figure 5 
is a step-by-step flowchart of the selection criteria for ideal characteristics of RFE selection criteria49.

Recursive Feature Elimination (RFE) was chosen over other feature selection techniques due to its ability to 
iteratively eliminate the least significant features, allowing the model to focus on the most relevant attributes for 
the specific classification task50. Unlike dimensionality reduction methods like Principal Component Analysis 
(PCA), which transforms features into a new set of uncorrelated variables, RFE maintains the original feature set 
while identifying the most relevant ones51. This approach enhances model interpretability because it preserves 
the semantic meaning of the features, making it easier to understand which specific attributes contribute to the 
model’s predictions52. RFE also outperforms methods like mutual information in certain cases, as it not only 
considers the statistical relationships between features and target variables but also evaluates feature importance 
based on the performance of a specified classifier53. By using a chosen machine learning algorithm as a wrapper, 
RFE ensures that the selected features are optimized for the model’s predictive performance, leading to better 
classification results and generalization54. In this study, RFE improved model performance by reducing the 
risk of overfitting. By focusing only on the most critical features, RFE enables a model that is less complex, 
computationally efficient, and more robust on unseen data. This targeted selection of features captures key 

Fig. 5.  Recursive Feature Elimination steps.
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relationships and patterns in the dataset, ultimately leading to higher accuracy and predictive reliability, as 
observed in the RFE-GRU model compared to other classifiers.

Gated recurrent unit (GRU)
Any input that has already been processed is passed on to the next time step of an RNN, which is referred to as a 
recurrent neural network. RNN model training is plagued by vanishing and inflating gradient challenges. GRU 
and LSTM, two cutting-edge deep learning approaches, effectively handle this issue. An entirely new version of 
RNN, the GRU, has been developed to alleviate training difficulties and to retain the internal state of the system 
during a repeating process55. Cho suggested the gated recurrent unit in 2014 as a variant of the LSTM. GRU 
networks are seldom employed in regression issues, and their primary use is in classification. Traditional LSTMs 
take longer to train and have more parameters than LSTMs since the absence of an output gate56. Figure 6 depicts 
the network topology of gated recurrent units.

The relationship between output and input can be summarized as in Eqs. (6)–(9).

	 s (t) = σg (Msi (t) + Usp (t − 1) + bs)� (6)

	 d (t) = σ g(Mdi (t) + Udp (t − 1) + bd )� (7)

	 p (t) = (1 − d (t))? p (t − 1) + d (t) ? p̂ (t )� (8)

	 p̂ (t ) = σ h(Mpi (t) + Up(s (t) ? p (t − 1)) + bp )� (9)

 where i(t), p(t − 1), s(t), d(t) are vectors of input, previous output, reset gate, and update gate, respectively. M 
and U are variable matrices and vectors. There are two types of functions: sigmoid functions σg, and hyperbolic 
ones σh.

The rationale for applying a Gated Recurrent Unit (GRU) model to the PIMA Indian Diabetes Dataset 
(PIDD), despite its lack of time-dependent structure, lies in the model’s ability to effectively capture complex 
relationships among the features: Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, Age, and 
DiabetesPedigreeFunction. While GRUs are typically used in sequential data contexts, their gated architecture 
can also excel in handling feature interdependencies that are not explicitly temporal. In this case, the GRU can 
identify and retain important interactions among the PIDD features, selectively filtering information to optimize 
classification performance. By using a GRU, the model is able to capture intricate patterns within the dataset, 
contributing to enhanced predictive accuracy for diabetes classification, even without a temporal sequence57–59. 
To address the challenges of vanishing and exploding gradients during GRU training, specific techniques were 
applied. Gradient clipping was used to limit excessively large gradients, preventing instability and ensuring 
smoother learning. Layer normalization was implemented within the GRU layer to maintain a consistent 
activation distribution, which helps manage vanishing gradients and stabilize training. Additionally, proper 
weight initialization was applied to further support gradient propagation across layers. These modifications 
collectively improved the GRU model’s training stability and allowed it to effectively capture complex feature 
interactions in the PIMA Indian Diabetes Dataset for accurate diabetes classification.

Hybrid RFE-GRU model
The main idea of the proposed sequential hybrid RFE-GRU model is to obtain the most relevant features 
extracted from the PIDD dataset. By training the set of all features to produce feature vectors, these features are 
acquired using RFE. The vectors are then enrolled until they reach the stage when the extraneous characteristics 

Fig. 6.  Gated Recurrent Unit structure.
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are removed. Therefore, a choice to select the feature set size based on the RFE is made and then repeated until 
the accuracy value is fulfilled. Then, as illustrated in Fig. 7, a subset of chosen features (si) is created and enrolled 
in the GRU model. The approach used by the GRU is comparable to that of an LSTM or RNN, but differs in that 
it takes as inputs i(t) and the hidden state Pt-1 from the timestamp t-1 before it at each timestamp t. The next 
timestamp receives a new hidden state Pt, which is returned by the function. Currently, a GRU cell mostly has 
two gates as compared to an LSTM cell’s three gates60. The Reset gate is the first gate, while the Update gate is the 
second. The network’s hidden state (Pt), or short-term memory, is controlled by the reset gate. The hidden state 
Pt in GRU may be found in two stages. Producing the ‘candidate hidden state’ is the initial stage. It takes as input 
both the revealed state from the previous timestamp t-1 and the input, which is multiplied by the output of the 
reset gate, rt. The ta received this whole information after that. If rt is equal to 1, it means that all of the data from 
the previous hidden state Pt-1 is being looked at. The information from the previous hidden state is completely 
disregarded if rt has a value of 0. The current hidden state Pt is then created using the candidate state. The Update 
gate is useful in this situation as shown in Algorithm 1 which involving recursive feature elimination and GRU.

Fig. 7.  The general block diagram of the proposed RFE-GRU hybrid model.
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Algorithm 1.  Proposed RFE- GRU hybrid model

RFE starts by training the chosen machine learning algorithm (GRU), sometimes referred to as the core 
model, with all of the features included in the training dataset. The characteristics are then ordered according 
to their scores in decreasing order. The characteristics are ranked from most essential to least important in this 
procedure, with those with higher significance scores being valued more highly for the performance of the 
model. This feature ranking by RFE reveals the relative importance of each feature, assisting in the selection 
of the GRU algorithm’s most pertinent characteristics. RFE then purges the dataset of the feature(s) with the 
lowest significance score. In this stage, the least significant features are successively eliminated to provide a more 
refined feature subset that only contains the most useful properties for the GRU algorithm. RFE is an iterative 
procedure that doesn’t stop until either a stopping condition is met, or a certain feature set size limit is reached. 
The top-ranked features that have survived the iterative elimination process are then combined to form the final 
feature set. The least valuable features are regularly removed by RFE across the iterations, thereby shrinking the 
size of the feature set. By concentrating on the most pertinent characteristics for the particular job at hand, the 
final feature set produced by RFE contributes to improving the model’s interpretability, lowering computational 
cost, and enhancing its generalization capabilities.

Experiments and discussions
Datasets
In this paper, the suggested dataset is collected from the National Institute of Diabetes, Kidney, and Digestive 
Diseases61. The data is available at Kaggle web site as standard dataset: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​a​s​e​t​s​/​u​c​i​m​l​/​p​
i​m​a​-​i​n​d​i​a​n​s​-​d​i​a​b​e​t​e​s​-​d​a​t​a​b​a​s​e​​​​​. PIMA Indians Dataset (PIDD) for testing Gated Recurrent Unit (GRU) is chosen 
for several compelling reasons. Firstly, PIMA, as a publicly available dataset, offers researchers the convenience 
of reproducibility and allows them to share their findings more easily. Secondly, PIDD has established itself as a 
benchmark in studies related to diabetes prediction and healthcare analytics. Researchers often select it to enable 
effective comparisons with prior works and to set a performance baseline for their proposed architectures. 
Thirdly, PIDD is widely used in machine learning and healthcare research due to its health-related features, 
particularly in diabetes prediction tasks. As GRU is specifically designed for sequential data analysis, utilizing the 
PIDD is highly relevant for evaluating GRU’s performance on sequential information. PIDD dataset is splitted 
into 80% training and 20% testing. The aim of this study is to classify diabetes disease based on diagnostic data 
(if a patient has diabetes or not). The selection of these cases from a wider database was constrained by certain 
limitations. All patients in this study are Pima Indian women at least 21 years old. The main features in this 
dataset are pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, 
Outcome. Table 2 illustrates some statistical analysis for the PIDD. Figure 8 shows the heatmap analysis for the 
dataset features.

Figure 9 demonstrates the violin plot visualization per category label. Figure 10 shows the boxplot visualization 
for the dataset features.

Statistical significance tests were performed to ensure that the observed improvements in the RFE-GRU 
model were not due to chance. Alongside visual analyses like heatmaps (Fig. 8), violin plots (Fig. 9), and boxplots 
(Fig. 10) for the PIMA Indian Diabetes Dataset (PIDD) features, we conducted statistical tests to validate the 
model’s performance improvements. In the future we intended to utilize metrics such as accuracy and AUC were 
compared against other models using paired statistical tests, like the paired t-test or Wilcoxon signed-rank test, 
to confirm that the RFE-GRU model’s enhancements in classification performance were statistically significant. 
This rigorous statistical analysis supports the robustness of the model’s results.

Evaluation metrics
Evaluation metrics are used in two phases in data categorization problems: the training phase and the testing 
phase. In the training phase, the evaluation measure was used as a discriminator to identify and choose the 
best solution for predicting future assessment of a certain classifier with greater accuracy. In the testing phase, 
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evaluation metrics were used as evaluators to determine how successful the classifier was when applied to 
unknown data62.

Accuracy
 The accuracy of a dataset is measured by the proportion of predictions that are right as in Eq. (10).

	
Accuracy (acc) = TP + TN

TP + FP + TN + FN
� (10)

where T P , T N , FP, FN are true positive, true negative, false positive, false negative values of the confusion 
matrix, respectively.

Precision
 The positive patterns in a positive class that are accurately predicted from all the total anticipated patterns are 
measured by precision as in Eq. (11).

	
Precision (P) = TP

TP + FP
� (11)

 F1 score
Precision and sensitivity are the two most important metrics that make up this score as in Eq. (12).

	
F1Score = 2TP

2TP + FP + FN
� (12)

Fig. 8.  Heatmap analysis for the dataset features.
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Fig. 10.  Boxplot visualization for the dataset features.

 

Fig. 9.  Violin plot visualization per category label.
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 Recall
Recall is the percentage of positive patterns that are properly categorized as in Eq. (12).

	
Recall (r) = TP

TP + TN
� (13)

 Area under the curve (AUC)
As a prominent ranking statistic, AUC was utilized to build an optimal learning model, as well as to compare 
learning approaches. AUC value reflects the overall ranking performance of a classifier as in Eq. (14).

	
AUC = Sp − Np + (Nn + 1)/2

NpNn
� (14)

 where Sp denotes the ratio of the successfully categorized applied negative class instances, while Np and Nn 
represent the number of positive and negative classes, respectively.

Results and discussion
The experiment results were developed, written, and executed in Python 3.8 using the jupyter notebook version 
(6.4.6) with Intel Core i5 and 16 GB RAM using Microsoft Windows 10 × 64-bit. Jupyter notebook facilitate 
the using and writing python codes, where jupyter notebook is an open source utilized for constructing and 
execution of several machine learning models for both classification and regression. The optimal number of 
features is the final feature set size. The selected features by RFE are, Glucose, BloodPressure, Insulin, and BMI 
for GRU model. In GRU model, the number of hidden units is 64. The batch size is 32, the learning rate used is 
0.01, number of epochs are 200, the optimizer used is Adam optimizer, the time steps are 8, and the activation 
function used in the output is sigmoid activation function. To evaluate the performance of RFE-GRU model for 
diabetes classification, five classifiers’ models, namely, LR, RF, HGB, KNN, and NB are used for the comparison. 
The performance of these classification models was evaluated using the metrics, namely, accuracy, precision, 
recall, F1 score, and AUC. Table 3 illustrates the configuration of the hyperparameters for models, namely, LR, 
RF, HGB, KNN, and NB used in this study. Each model has specific hyperparameters that determine its behavior 
and performance during training and prediction. Proper tuning of these hyperparameters is crucial to achieve 
the best results for each model on a given machine learning task and dataset. For LR model, the penalty is 12 that 
is known the regularization term or ridge regularization, and fit_intercept is true (to calculate the intercept for 
the model). For RF model, n_estimators are 100 (the number of decision trees in the forest). For HGB model, the 
learning_rate is 0.01 (the step size at which the algorithm makes corrections). For KNN model, n_neighbors are 
5 (the number of nearest neighbors to consider during prediction), and the distance is Euclidean (the distance 
metric used to calculate the distance between data points). For NB model, alpha is 0.5 (the additive smoothing 
parameter, also known as Laplace smoothing), and fit_prior is true (whether to learn class prior probabilities 
from the data).

Table  4 demonstrates the experimental results of accuracy, F1 score, recall, precision, and AUC for the 
models, namely, GRU, LR, RF, HGB, KNN, and NB, respectively, without applying RFE.

Table 4 presents the performance of several experimental models, with the GRU model achieving the highest 
accuracy, F1 score, recall, precision, and AUC, at 87.65%, 87.61%, 87.62%, 87.98%, and 0.8974, respectively. On 

Models Accuracy F1 score Recall Precision AUC

LR 81.76% 81.84% 81.91% 81.64% 0.8841

RF 83.81% 83.16% 83.52% 83.28% 0.8894

HGB 78.64% 78.91% 78.65% 78.51% 0.8435

KNN 73.72% 73.49% 73.20% 73.81% 0.5165

NB 68.54% 68.52% 68.69% 68.39% 0.5074

GRU 87.65% 87.61% 87.62% 87.98% 0.8974

Table 4.  Comparison of prediction performances between the classification models without applying RFE.

 

Models Parameters

LR Penalty = l2, fit_intercept = true

RF N_estimators = 100

HGB Learning_rate = 0.01

KNN N_neighbors = 5, distance = Euclidean

NB Alpha = 0.5, fit_prior = true

Table 3.  Specification of the hyperparameter for the machine learning models.
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the other hand, the NB model yields the poorest results, with an F1 score, recall, precision, accuracy, and AUC of 
68.52%, 68.69%, 68.39%, 68.54%, and 0.5074, respectively. The LR model achieves an F1 score, recall, precision, 
accuracy, and AUC of 81.84%, 81.91%, 81.64%, 81.76%, and 0.8841, respectively. The RF model performs 
well with an F1 score, recall, precision, accuracy, and AUC of 83.16%, 83.52%, 83.28%, 83.81%, and 0.8894, 
respectively. Meanwhile, the HGB model achieves an F1 score, recall, precision, accuracy, and AUC of 78.91%, 
78.65%, 78.51%, 78.64%, and 0.8435, respectively. The KNN model achieves an F1 score, recall, precision, 
accuracy, and AUC of 73.49%, 73.20%, 73.81%, 73.72%, and 0.5165, respectively. Table 4 indicates that the GRU 
model performs better than the LR, RF, HGB, KNN, and NB models without RFE. Additionally, the RFE-GRU 
model yields the best results among all the models presented in Table 5. The experimental results of accuracy, F1 
score, recall, precision, and AUC for the models, namely, RFE-GRU, LR, RF, HGB, KNN, and NB, respectively, 
are demonstrated in Table 5.

Among all the experimental models in Table 5, RFE-GRU model gives the best results, its accuracy, F1 score, 
recall, precision, and AUC are 90.7%, 90.5%, 90.7%, 90.5%, and 0.9278, respectively. The NB model gives the 
worst results, its F1 score, recall, precision, accuracy, and AUC are 69.9%, 69.2%, 70.7%, 69.2%, and 0.5186, 
respectively. For LR model, the F1 score, recall, precision, and accuracy, AUC are 85.5%, 85.7%, 85.5%, 85.7%, 
and 0.9192, respectively. The F1 score, recall, precision, accuracy, and AUC for RF model are 85.8%, 86.4%, 
86.1%, 86.4%, and 0.9187, respectively. For HGB model, the F1 score, recall, precision, accuracy, and AUC are 
81%, 80.7%, 81.6%, 80.7%, and 0.8692, respectively. The F1 score, recall, precision, accuracy, and AUC for KNN 
model are 76%, 75%, 77.9%, 75%, and 0.5226, respectively. It can be seen from the data in Table 4 that RFE-GRU 

Fig. 11.  AUC for the models namely, RFE-GRU, LR, KNN, RF, HGB, and NB.

 

Models Accuracy F1 score Recall Precision AUC

LR 85.70% 85.50% 85.70% 85.50% 0.9192

RF 86.40% 85.80% 86.40% 86.10% 0.9187

HGB 80.70% 81.00% 80.70% 81.60% 0.8692

KNN 75.00% 76.00% 75.00% 77.90% 0.5226

NB 69.20% 69.90% 69.20% 70.70% 0.5186

Proposed RFE-GRU 90.70% 90.50% 90.70% 90.50% 0.9278

Table 5.  Comparison of prediction performances between RFE-GRU model and other models.
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model is more effective than LR, RF, HGB, KNN, and NB models. Figure 11 depicts the AUC values for the 
RFE-GRU, LR, KNN, RF, HGB, and NB models, with the RFE-GRU model achieving an AUC of 0.9278, which 
is close to 1 and indicates good performance. Figure 12 shows the confusion matrix for the RFE-GRU, LR, KNN, 
NB, RF, and HGB models.

In this study, the feature set selected by RFE—which includes Glucose, BloodPressure, Insulin, and BMI—
was used in the GRU model. This subset of features was found to yield the best results compared to other 
classification models. To further investigate the impact of RFE on model performance, we conducted an ablation 
study. This study involved training the GRU model both with and without the selected features identified by RFE, 
allowing us to directly assess the contribution of feature selection to the overall performance.

Table 4 presents a comparison of prediction performances between various classification models, including 
GRU, without applying RFE. These models were evaluated using key metrics such as accuracy, F1 score, recall, 
precision, and AUC, which provide insight into their general performance without the influence of RFE. In 
contrast, Table 5 compares the performance of the RFE-GRU model with other models after applying RFE. The 
results clearly demonstrate a significant enhancement in the evaluation metrics, including accuracy, F1 score, 
recall, precision, and AUC, after incorporating RFE into the GRU model. This improvement underscores the 
effectiveness of feature selection in boosting the model’s predictive power, showing that the GRU model benefits 
substantially from a more focused set of relevant features. By isolating the impact of RFE, the ablation study 
highlights the critical role feature selection plays in refining the model’s performance and robustness, providing 
a clearer understanding of how each component—both the GRU architecture and the selected features—
contributes to the overall classification success.

Discussion
The likelihood of model biassing is increased in PIDD by the imbalance between normal and abnormal 
instances. Additionally, PIDD’s total instance count of 768 is insufficient to use deep learning to create a stable 
model for the hold-out validation approach. Although this strategy is not employed in our experiment, this 
can be used in cross-fold validation. Despite the significance of PIDD data pretreatment being made clear and 
documented in the proposed methodology, its significance for developing classification models both before and 
after the preprocessing was implied. However, the researchers who worked on data processing and developing 
a deep learning model did not deal with data pretreatment and were only concerned with accuracy, which had 
a detrimental impact on their confidence in the model’s results when they were used. In this paper, an RNN 
passes on any input that has already been processed to the following time step. Challenges with disappearing 
and inflated gradients are common during RNN model training63–65. Modern deep learning techniques GRU 
and LSTM successfully address this problem. To overcome training challenges and maintain the internal state 
of the system over a repeating process, an altogether new RNN variant called the GRU has been designed. 
Furthermore, the gated recurrent unit as an alternative to the LSTM are mostly used for classification and are 
rarely used in regression problems. The results stated that the proposed method gives better results than the state 
of the art using the same PIDD dataset. To verify the validity of the proposed RFE-GRU model in this paper, 
the proposed model is compared and analyzed with another several models using PIDD as shown in Table 6.

As shown in Table 6, it is seen that the classification accuracy of the proposed RFE-GRU model is the highest. 
It is shown that the proposed model used in this study solves the shortage of another models and improves the 
classification accuracy of PIDD.

In this study, we split the PIDD dataset into 80% for training and 20% for testing, and while we did not 
apply k-fold cross-validation, it is an approach that could be valuable for further validation, especially given the 
dataset’s small size of 768 instances and the potential bias introduced by the imbalance between normal and 
abnormal instances. The limited size and imbalance increase the likelihood of model overfitting or underfitting, 
making cross-validation a useful technique to better assess the model’s generalization ability. Additionally, we 
recognize the importance of proper data preprocessing, which was not fully addressed in previous studies that 
focused primarily on model accuracy. Proper handling of the class imbalance and the application of techniques 
like resampling or synthetic data generation could improve the model’s robustness. Despite these challenges, 
the GRU model mitigates issues like vanishing and exploding gradients, was successfully applied for diabetes 
classification, achieving better results than state-of-the-art methods using the same PIDD dataset. For further 
validation, external datasets and a more comprehensive evaluation involving metrics such as ROC and AUC 
would be useful to assess the model’s performance in different contexts and populations.

The novelty of the RFE-GRU model lies in its integration of Recursive Feature Elimination (RFE) with Gated 
Recurrent Unit (GRU) architecture, a combination designed to enhance both the accuracy and interpretability 
of diabetes classification. Unlike conventional models that either prioritize computational efficiency at the 
expense of predictive depth or rely solely on feature-rich deep learning architectures, the RFE-GRU model 
optimizes feature selection to streamline the predictive process, focusing only on the most impactful features—
Glucose, BloodPressure, Insulin, and BMI—identified through RFE. This targeted approach not only reduces 
computational load but also provides insights into the biological markers that most significantly influence 
diabetes outcomes, fostering greater interpretability.

Furthermore, the GRU component uniquely addresses the limitations of simpler machine learning models, 
such as Logistic Regression (LR) or Random Forest (RF), which lack the capacity to model sequential data 
dependencies. GRU’s recurrent structure captures temporal patterns that may reflect underlying trends in 
physiological data, a dimension crucial for chronic disease modeling but typically overlooked by static classifiers. 
Additionally, GRU mitigates common deep learning challenges such as vanishing gradients, thanks to its gated 
architecture, offering a more stable training process than conventional RNNs while maintaining efficient 
memory usage.
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Fig. 12.  Confusion matrices of (a) LR, (b) KNN, (c) NB, (d) RF, (e) HGB, and (f) the proposed RFE-GRU 
models.
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In comparison to previous approaches focused primarily on static feature usage or complex yet computation-
heavy architectures, the RFE-GRU model provides a balanced, interpretable, and computationally feasible 
solution for diabetes prediction. This combination of selective feature importance and sequence-based learning 
presents a refined classification tool, making it uniquely equipped to outperform traditional models on the PIDD 
dataset.

Limitation and future directions
The proposed RFE-GRU model demonstrates strong performance for diabetes classification using the PIDD 
dataset, but several limitations should be considered when interpreting its results, particularly regarding its 
application to datasets with different characteristics. One notable limitation is the inherent class imbalance 
between normal and abnormal instances in the PIDD dataset, which can increase the likelihood of model bias. 
This imbalance could lead to overfitting or underfitting, especially with deep learning models like GRU, which 
are sensitive to such issues. Although the study does not employ cross-validation, it is an important strategy to 
consider in future work to mitigate the impact of this imbalance and assess the model’s generalization ability 
more robustly.

Another limitation lies in the size of the PIDD dataset, which contains only 768 instances. This relatively 
small dataset may not provide enough diverse examples for deep learning models to learn stable, generalizable 
patterns. The use of the hold-out validation approach, which we employed in this study, may not be the most 
reliable for ensuring a robust model due to this small sample size. Future work could involve applying k-fold 
cross-validation, which would offer a more reliable estimate of the model’s performance and further reduce the 
potential for overfitting. Additionally, the dataset’s small size and class imbalance could benefit from techniques 
like resampling, synthetic data generation, or class weighting to improve model robustness and reduce bias. 
Furthermore, while the significance of data preprocessing was addressed, previous works often overlooked 
its importance, focusing mainly on model accuracy. In this study, data pretreatment, particularly handling 
missing values and scaling, was necessary for improving model accuracy, but more attention should be paid to 
preprocessing steps to ensure consistent results across various datasets. In terms of model design, although the 
GRU model overcomes common challenges of RNNs, such as vanishing and exploding gradients, by maintaining 
the internal state over time, its performance may still vary significantly depending on the characteristics of 
different datasets. External validation on other datasets with diverse features or different populations would help 
evaluate the GRU model’s ability to generalize across different contexts, providing a clearer understanding of its 
strengths and limitations. Finally, future studies could expand the evaluation by incorporating additional metrics 
like ROC and AUC to assess model performance more comprehensively and validate the model’s robustness in 
real-world applications.

Conclusion
The machines learning (ML) models have been praised for their usefulness in making diagnosis for many patients. 
Several ML classification models currently are used for the prediction and classification of diabetes patients. In 
this paper, a novel model called Recursive Feature Elimination-Gated Recurrent Unit (RFE-GRU) is constructed 

Studies Model Accuracy

Çalişir and Doğantekin16 LDA – MWSVM 89.74%

Dadgar and Kaardaan17] Neural network and genetic algorithm 87.46%

Chen et al.18 DT and K-means 90.00%

Haritha et al.19 Firefly and cuckoo models 81.00%

Zhang et al.20 Feedforward neural network 82.00%

Benbelkacem and Atmani21 RF 77.00%

Khanwalkar and Soni22 Sequential minimal optimization (SMO) 77.34%

Maniruzzaman et al.9 LR 77.06%

Patra and Kuntia23 SDKNN 83.76%

Bhoi et al.24

LR 76.80%

Neural networks 75.80%

RF 75.40%

Ramesh et al.25

LR 73.30%

KNN 79.80%

NB 73.10%

SVM + Radial basis function (RBF) 83.20%

Salem et al.26

DT 81.89%

NB 81.89%

Fuzzy-KNN 90.55%

TFKNN 90.63%

Proposed RFE-GRU Recursive feature elimination and gate recurrent unit 90.70%

Table 6.  Comparative study of several related studies for diabetes classification using PIDD.
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in this study for PIDD classification. Different performance metrics, namely, accuracy, F1 score, recall, precision, 
and AUC were used to evaluate the impact of the RFE-GRU model. The F1 score, recall, precision, accuracy, 
and AUC for RFE-GRU model are 90.50%, 90.70%, 90.50%, 90.70%, and 0.9278, respectively. The proposed 
RFE-GRU model was compared with other conventional machine learning models, where RFE-GRU model 
achieved the best results. The worst results were obtained by NB model, its F1 score, recall, precision, accuracy, 
and AUC are 69.90%, 69.20%, 70.70%, 69.20%, and 0.5186, respectively. In the future, new machine learning 
and deep learning models will be applied to this dataset to acquire better results. Furthermore, we plan to use 
the fuzzy and neutrosophic system with RFE-GRU for biomedical analysis and implement uncertainty features 
for medical applications.

Data availability
The diabetes PIMA Indian dataset (PIDD) was used for classification in several studies, it includes 768 instances 
and 9 features; eight of the features are the predictors, and one feature is the target. ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​d​a​t​
a​s​e​t​s​/​u​c​i​m​l​/​p​i​m​a​-​i​n​d​i​a​n​s​-​d​i​a​b​e​t​e​s​-​d​a​t​a​b​a​s​e​.​​
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