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Trains scheduling problem with
multiple lines
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This study explores the problem of train scheduling (or) train timetabling and its impact on the
administration of railway management. This is a highly dependable and effective public transportation
system. The problem considers both single and multiple tracks along with multiple platforms with
varying train capacities (like speed, passengers, and so on). Let the tracks link two major stations
source and destination with intermediate stations. A subset of intermediate stations will function

as junctions. A finite number of trains be available at the source for the passengers/cargo transit
movements. The profit which is generated from the shipment of passengers between a pair of stations
is known in advance. The train’s travel time between the stations and halting time at the stations are
predefined. The arrival and departure times at the stations are calculated through the travel time and
halting time. All the trains should starts from the source station and continue the journey through the
intermediate stations to reach the destination station. Overtaking of the trains is permitted only at
the intermediate stations. The trains must make a halt at one or more intermediate stations before
reaching the destination. Now the objective is to find the best train operating schedule that maximizes
the profit within the admissible travel time threshold. A zero-one integer linear programming is used
to model this problem mathematically. For a better understanding of this problem, a case study is
considered from the Indian railway network with two major stations Chennai and Hyderabad. A branch
and bound (B& B) algorithm is proposed to determine an optimal operating schedule. In addition,
the experiments are carried out on a wide range of randomly generated instances of small and medium
sizes, to test the efficiency of the algorithm. The computational results indicate that the algorithm is
capable of finding the optimal schedules within a reasonable amount of time.
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Public rail transportation involves several stages, which include analyzing passenger demand, determining
routes, scheduling trains, planning rolling stock, and managing crews. This paper focuses on the train scheduling
problem/train timetabling problem (TTP) and it is related to combinatorial optimization. In general, the rail
network system connects distinct places termed as stations with multiple rail tracks. To be precise, the stations
and the rail track/connectivity between a pair of stations are referred as the nodes and arcs of a network
respectively. On each arc, a weight factor such as travel time, profit, distance, cost, etc. may be defined. The
TTP determines an optimal train schedule for the route plan, stopping plan, arrival and departure times. This
guarantees a smooth travel experience for passengers and helps to prevent any conflicts among the different
trains.

The literature shows a significant amount of research carried out on the TTP in the last one to two decades
due to the high utilization of passenger movements. The early works of TTP can be found in Szpigel!, in which
each pair of stations are connected by a track section, permits the presence of only one train at a given time on
this single-track line and aims to minimize the weighted average of the train travel times. A mixed integer linear
programming model is used to express the TTP mathematically and solved with the B&B method. The algorithm
carefully resolves the train conflicts with the effective lower bounds. However, the computational results are
limited to small size instances.

Jovanovic and Harker? considered this TTP for the tactical scheduling of the freight rail road traffic which
supports the weekly or monthly train scheduling operations with an aim of minimizing the deviation between
the planned and the actual train schedules. In order to model the train movements and interactions over the
given track, a deterministic process interaction simulation technique was incorporated in the B&B algorithm.
Each level of the search tree mechanism used in the B&B represents the resolution of conflict between a pair
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of trains and the nodes indicate the potential meet points to resolve the conflicts. The algorithm is capable of
providing an overview of the speed limits on the single track section.

Cai and Goh® gave an example of finding a feasible solution to the TTP with 12 passing loops, solved through
a greedy heuristic approach. Higgins et al.* investigated the single line TTP with the aim of resolving conflicts
between the trains and suggested different heuristic approaches such as local search, genetic algorithm, and tabu
search. The algorithms tested on the different instances with the number of trains ranging from 15 to 50. The
computational results shows GA is producing promising solutions within the reasonable amount of time than
the other tested heuristics.

Oliveira and Smith® modeled the TTP as a special case of the job-shop scheduling problem. The problem
arises when two trains arrive at the same track section at the same time, conflicts are happen and resolved by
adjusting the timings of the trains. The objective is to minimize the delay of trains. A constraint programming
approach is proposed and experimented on some real-life problems. Caprara et al.® studied the TTP with a
single track that connects two major stations with a finite number of intermediate stations. The problem is nicely
interpreted in a graph theoretic view in which nodes represents the arrival/departures at some station within
the given time instant. An integer linear programming is used to model this TTP and solved with the help of the
Lagrangian relaxation technique. The algorithm tested on the instances acquired from Ferrovie dello Stato Spa,
the Italian railway company, and obtained good solutions with in a short computational time.

Ghoseiri et al.” developed a multi-objective optimization model for the TTP that considers both single
and multiple tracks along with multiple platforms with varying train capacities. One objective is reducing
fuel consumption and another objective is minimizing the passenger’s journey time. Numerical examples are
provided and solved through two approaches: the first approach involves identifying the Pareto frontier utilizing
the e-constraint method, while the subsequent approach involves performing multi-objective optimization
through the distance based method.

An interesting variant of the TTP was studied by Vansteenwegen and Van Oudheusden® with a focus on
reducing the waiting times of passengers and late arrivals of trains to improve the passenger service. A two phase
linear programming approach was applied to the Belgian railway network. In the first phase the ideal buffer
times were calculated and in the subsequent phase constructed an improved timetable with ideal buffer times.
The delayness of the trains run time was improved up to 49% with the help of linear programming. Later in
2007 they® extended this approach to the intercity network of Belgian railways consisting of 14 high speed trains
connecting the main cities of Belgium. D’ariano et al.!” studied the TTP faced some difficulties during the traffic
control. A B& B algorithm was developed and included some implication rules for computational experiments.
Also presented a case study on the Dutch railway network and obtained optimal or near optimal solutions within
a reasonable amount of time.

Some of the earlier works on TTP appeared on the issue of train delays can be found in Kroon et al.!! and
Liebchen and Stiller!2. Kroon et al.!! developed a stochastic optimization model that can be used to allocate
additional time supplements and buffer times within the existing timetables. This model was tested on Dutch
passenger trains it was shown through the evidence that the slight modifications to the existing timetables can
effectively reduce the average delays and some improved results are reported in tables in detail. Liebchen and
Stiller'? studied both aperiodic (non-periodic) and periodic timetables to ensure the secure journey of passenger’s
travel time against a certain amount of lateness. Two heuristics were proposed and thoroughly examined, with a
detailed analysis of their respective advantages and disadvantages.

Another variant is the train unit assignment problem (TUAP) defines a list of scheduled train routes, with
the number of passenger seats required and a collection of train units each having a specific quantity of available
passenger seats. Cacchiani et al.!’ presents a heuristic approach based on the Lagrangian relaxation for TUAP to
tackle the constraints associated with seat requirements. The approach was tested on real-world instances and
the obtained results were poor for the case study. For that Later, the same authors'* proposed a new fast heuristic
algorithms based on Lagrangian relaxation and compared it with the already existing method. These results are
illustrated the capacity to achieve favorable solutions within a reasonable amount of time frame.

Jamili et al.'® deals with scheduling different types of trains on a single railway track and produced periodic
train timetables. A periodic event scheduling problem (PESP) is modeled to generate the primary train
timetables. A hybrid meta-heuristic algorithms are based on simulated annealing (SA) and particle swarm
optimization (PSO) was developed to find the best solutions to large scale problems, and also experimented with
through a case study on an Italian railway.

Another important variant of the TTP is observed on minimizing the passenger waiting time at the
stations with additional constraints. Barrena et al.!® proposed two mathematical programming formulations
for aperiodic train timetables on a single railway track. A fast adaptive large neighborhood search (ALNS)
meta-heuristic was developed to find the best solutions to large-scale problems within a short computational
time. Niu et al.'” focused on the model where train skip-stop patterns are given, established a unified quadratic
integer programming approach with linear constraints, which was applied to real-world test instances through
numerical experiments, and the obtained some improved results. Further, Jiang et al.'® extended the skip stop
variant of the TTP with multiple trains by inducting extra stops or skipping certain stops on a double line track.
A heuristic method based on Lagrangian relaxation was proposed, tested on various instances taken from the
Chinese railway network with atmost 387 trains and obtained the improved train operating schedules.

Shang et al.!® focused on system wide equity performance in an overcrowded urban rail transit (URT)
network using a multi-commodity flow formulation. The objective was to minimize the overall expenditure by
all the passengers within the passenger space time network through the implementation of a skip-stop pattern.
A Lagrangian relaxation was proposed to optimize the train skip-stop model and tested on the instances taken
from the Beijing rail network, obtained an approximate solution that ensures a minimal gap in the lower bound
within the least computational time.
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Albrecht et al.?° investigated the TTP in the context of track maintenance. A problem space search (PSS)
meta heuristic algorithm is designed to determine the minimum sum of train and track maintenance delays.
The algorithm efficiently generates a large number of alternative train schedules from which they extract the
information on the best operative schedules for the track maintenance. A detailed case study was discussed on
a single track rail network in Queensland, Australia. Later, Zhang et al.?! proposed a bi-objective optimization
model in a railway network, in which the first objective is to minimize the total travel time of passengers and
the second objective is to minimize the track maintenance cost. A heuristic algorithm based on Lagrangian
relaxation was developed and experimented on the Chinese railway network. The experimental results indicate
that the algorithm efficiently determines the best operative train schedules on large-scale rail networks.

Alaghband and Farhang Moghadam?? focused on the optimization of freight train scheduling on a single
track that aims to minimize trains travel time, allocate freight to freight trains, and reduce the delayness of the
trains at the destination. An integer linear programming models are used to represent both scheduling and
allocation problems. A novel inspired PSO heuristic algorithm was proposed and experimented on randomly
generated data sets to validate the efficiency of the algorithm. The algorithm is capable of solving large scale
problems in the railway network.

Zhang et al.?® investigated the optimization of both train timetabling and platforming problems, taking
into account of various resources such as track segments, station throat areas, and platforms. A mesoscopic
perspective is utilized to develop a three-part space time (TPST) framework for designing a train schedule and
assigning tracks at stations simultaneously. The objective is to minimize total weighted train running costs. To
validate the effectiveness of the model, experiments were conducted on both small and medium sized railway
networks, involving the change of some parameters. Detailed reports are provided on the quality of the solution,
which was obtained with less computation time. Zhang et al.>* addressed the problem of optimizing train
timetabling, platforming, and network maintenance simultaneously within a high-speed railway network. A
0-1 integer programming approach was used to model the total weighted train running time and deviations in
track maintenance start times. A heuristic method is proposed that dynamically updates the time windows to
control the train paths and reduce the solving time for the designed planned trains. These results indicate that
the capability of finding high quality solutions fastly within a short amount of time. In the TTP the pilgrim’s
departure times are addressed by Owais?>. A dynamic graph theory formulation is used to minimize the pilgrim’s
waiting time at the stations. They incorporate two levels of decisions: the first one involves making real-time
decisions, often relying on a greedy method to achieve a quick response and the second one is the decisions are
based on learning and are continuously optimized over time.

Some authors studied different models within URT networks. Wang et al.?¢ investigated the TTP in a URT
network. The train scheduling includes three types of events: departure and arrivals, fluctuations in passenger
arrival rates, and specific routes of passenger arrivals. The objective is to minimize the trains operation cost and
the passenger’s total travel time. A sequential quadratic programming (SQP) and genetic algorithm (GA) are
proposed and tested for the effectiveness of the algorithms through the case study. The obtained schedules are
compared with two existing schedules with a fixed departure headway. The train schedule obtained using the
SQP method results in lower energy consumption and ensures more passengers reach their destinations within
the time period. The travel time for the passengers that completed their trip obtained by the GA is lower than the
obtained within the period by the SQP method.

Later Wu et al.”” studied the URT operation based on energy saving operation scheduling technique. A firefly
algorithm for urban rail transit operation scheduling (FURTOSO) was developed and tested on the Chengdu
metro line. The aim was to decrease the energy consumption and reduce the urban pollution during the operation
of URT. To test the performance of this algorithm, it was compared with bacterial foraging optimization (BFO),
particle swarm optimization (PSO), and genetic algorithm (GA) through 50 independent runs. The FURTOSO
algorithm achieves optimal values in 76 iterations, while the BFO algorithm takes 815 iterations, PSO requires
135 jterations, and GA needs 203 iterations. FURTOSO demonstrates superior performance when compared to
the other three algorithms.

Buurman et al.?® studied a multi objective problem which is minimizing the difficulties of train operators and
maximizing the flexibility for contractors. € — constraint method and NSGA-II were proposed and experimented
through a case study on the Dutch railway network. The experiments demonstrated that the e— constraint
method outperforms NSGA-II in identifying superior pareto optimal solutions. The e— constraint method is
only suitable for smaller size problems and specifically it encountered difficulties network containing more than
15 arcs. A modified shortest path method that considers the limitations of path finding for train traffic supports
NSGA-II. Sahebi et al.?? was proposed a robust programming model for train movement scheduling that takes
into account that dwell intervals at each station and headway between the two successive trains. With the real-
world data, a robust optimization approach propose an optimal train schedule that minimizes passenger waiting
time and maximizes electrical energy converting from the kinetic energy. A GA is applied to real data from a
subway line in the Tehran metro to find the optimal solution.

Very recently, Huang et al.** studied on designing and optimizing train schedules to satisfy the passenger
demands. A multi objective programming model is developed to maximize the quality of service provided to
passengers and minimize the train operating cost and passenger travel efficiency. The dynamic programming
approach is used to simulate the train operation and GA was proposed and experimented on the large and small
routes that are dynamically generated. The computational results are indicate that the algorithm effectively solves
the practical cases and its train timetable within a short amount of time. Weert et al.*! addressed the problem
with the aim is to minimize the passenger’s delays events requests from the passenger operators are taken into
consider. The simulated annealing meta heuristic is used to find the initial solution and MILP is solved with
the B& B and experimented through a case study on Dutch railway network. The case study demonstrates that
scheduling is more convenient to the passenger without wait no longer time.

Scientific Reports |

(2024) 14:31129 | https://doi.org/10.1038/s41598-024-82499-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

In addition to this, some more models are discussed on the route network problems in the literature. The
bus stop waiting times and bus network design problems are addressed by Owais and Hassan? and Almutairi et
al.3. Owais et al.** addressed the transit route network design problem as a multi-objective set covering problem.
This problem involves three sequential stages that are route generation, route selection, and evaluation (multi-
objective analysis). A route constructive genetic algorithm is proposed to generate a large number of candidate
routes that corresponds to design objectives. Subsequently, a set covering problem (SCP) is formulated for the
selection stage. The algorithm was tested on some benchmark network problems. The results shows that the
algorithm is able to produce pareto (or near pareto) optimal solutions. Later, the transit assignment models
with a graph formulation are studied by Owais and Ahmed>. Now a days travel demand prediction stage is the
most important stage in any transportation network. Owais®® presents some travel demand models and studied
machine learning and micro simulation tools is incorporated in multi-model networks.

It is observed that most of the studies relates on optimizing the train delayness, train operating costs,
passenger’s total travel time, and track maintenance cost with single and bi-objective cases under the several
constraints with different heuristic and exact methodologies. However, there is a limited attention was given in
the context of optimizing the total profit of the trains operating schedule. The present TTP variant contributes to
find the feasible train schedule which optimize the total profit within the travel time threshold under the several
practical constraints. A case study with two major stations in Indian railways is considered, which looks for the
maximum profit within a specified travel time. A B& B algorithm is developed to find an optimal solution. The
enhancement of rail network is inevitable to faster the large scale passenger movements and cargo shipments
from one location to another far locations. The risk and air pollution in train traveling is much lower than on
road travelling.

The remaining paper is organized as follows: section "Problem description and mathematical formulation"
provides a detailed problem description of the TTP and its mathematical formulation. Section "Branch and
bound algorithm" presents the discussion on the Branch and bound algorithm. Section "Numerical illustration”
includes the numerical illustration of TTP and the extensive computational results are reported in section
"Computational experiments" and section "Conclusion" is the concluding remarks of TTP.

Problem description and mathematical formulation
The Table 1 gives a list of notations used to describe the TTP.

LetG = (N, A, P, T) be a general directed acyclic rail network, where A/ denotes a node set, .4 be an arc set
and P and T respectively denotes the collection of profit and travel time factors defined on each arc in 4. The
nodeset V' = {1,2,...,n} contains a set of n nodes with source node 1 and destination node d, in which each
node represents a station. An arc a;; € A indicate that there exist a train track that connects the station ¢ and
station j. Let us consider a set of m— trains say IC = {1, 2, ..., m} be available at the source station and runs
from source to destination for moving the passengers/cargos. Additionally, if a train k runs on an arc a;; that
connects a pair of stations ¢ and 7, then the non-negative parametric values Pr;; € P and Tk; € T respectively
defines the expected profit and the expected travel time of train k along the arc a;;. In addition to this, when

a train departs a station 7 and arrives a station 7, then the departure time at station ¢(= 1,2,...,n — 1) and
the arrival time at station j(= 2,3, ..., n) of train k respectively denoted as Dy; and Ay;. The halting time of
train k at station ¢ is denoted by Hys,¢ = 1,2,...,n — 1. The travel time threshold J is allowed between the

Notations | Description

n Number of stations

N Node set

A Arc set

¢ Source station

d Destination station

m Number of trains

c A set of trains

P Set of expected profits defined on each arc of A

Prij The expected profit of train k along the arc G

T Set of travel times defined on each arc of A

Thij The travel time of train K along the arc G5

Hy; Halting time of train K at the station %

Dy The departure time of train K at the station ¢

Ak j The arrival time of train K at the station j

Sk A subset of stations from N that are visited by the train k

) Travel time threshold of the train K from source to destination station

153 The bound value of the terminal node of the branch

Xkij Binary decision variable

Table 1. Notations.
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source and destination stations. Furthermore, it is assumed that the trains should start from the source station,
can run on several alternative routes (multiple lines) to reach the destination station with the maximum number
of passengers passing through a set of intermediate stations. A feasible path of a train &k contains a subset of
stations Si from A with source and destination stations. Let the cardinality of Si be cv. If a train k is arrived
at the station j from station ¢ then the decision variable X;; = 1, otherwise X;; = 0. Now, the objective is to
determine the best train operating schedules between the source and destination stations which maximizes the
profit within the travel time threshold subject to the constraints.
The following assumptions are used to model the TTP.

« The profit between the stations, arrival, departure, and halting timings at the stations are predefined.

o All trains start from the source station and reach the destination station with multiple routes through the
intermediate stations.

« Each train enters the station j and departs the station 7 at most once at the intermediate stations.

« To ensure the safety of trains, the departure and arrival times of any two trains will not be the same the two
trains are not coming on the same track in the opposite direction.

 Opvertaking is permitted only at the stations.

« Trains do not have a permanent stop at any intermediate stations until they reach their destination.

« All the stations have sufficient platforms for all trains.

Maximizeii:ipkij)(kij (1)
k=1 i=1 j=1

Subject to the constraints

n

ZXk¢j=1,]€€’C (2)

j=1

ZX’“'J' <lLieN,kek

o 3)
ZXMJ‘ < 1,j€./\/’,k€K:
=1
n—1 n—1
ZXyiiji #ZXMJ'DM,J’ eNyteKy#t (4)
i=1 i—1
ZXyijij#ZXtijAtjviGN,y,tGK,y#t (5)
Jj=2 Jj=2
Agj < Dyj,i,j e NLEeEK (6)
D0 Ty + His) Xoiy <5,k €K @
i€SE JESk
0, d,p € S, ke K
Zsz‘P_ ZXkPj :{ 1, gil,g * 8
1€Sy JESK
2§ZZinj:ak—l,kelC )
i€Sy €S,
n—1
Zsz‘d:LkEIC (10)
i=1
Xkij € {0,1} (11)

The objective function given in (1) looks for maximum profit while operating a set of trains from source station
¢ to destination station d. Constraint (2) specifies that all trains depart from the source station ¢. Constraint (3)
denotes that a train k departs from station 7 and enters station j atmost once. Constraint (4) refers that any two
trains departure time should not be same at the source and intermediate stations. Constraint (5) tells that any
two trains arrival times should not be same at the intermediate stations and destination station. Constraint (6)
denotes that the arrival time of train £ at the station j is less than or equal to the departure time of train k at the
station j. Constraint (7) represents that the travel time of each train k does not exceed the time threshold value
d. Constraint (8) preserves the continuity of the path of train & but it does not prevent the occurrence of illegal
paths. For example, let S ={1, 2, 3, 4, 5, 6}. The arcs corresponds to the pair of stations (1, 3), (3, 4), (4, 5), (5,
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6) forms a path satisfying the constraints (2)-(8), but station 2 is not included. So, it is an illegal path. To identify
the occurrence of such an illegal paths constraint (9) is included. Constraint (9) represents that the path length
of train k is bounded between 2 and o — 1. Constraint (10) says that all trains must arrive to the destination
station d. A binary decision variable is given in constraint (11).

Branch and bound algorithm

The branch and bound method is an algorithmic approach used to find the optimal solution for numerous
optimization problems, especially in discrete and combinatorial optimization problems. The detailed description
of the B&B algorithm is as follows. The B&B carefully examines all the possible permutations implicitly and
provides an optimum solution in a sequential manner that starts with an initial node, construct a set of
subproblems with branching and eliminates the subproblems which are not feasible or not been further
decomposed or not contributing global optima using bounding strategies. The search mechanism of B&B looks
like a tree structure. The B&B algorithm can be embedded with different search strategies to speed up the process.
The popular search strategies are the depth-first search, breadth-first search, and the best-bound search™’ etc.
The search tree starts with a starting node as a source station (¢), generating a set of possible nodes through
branching that are connecting to ¢ in the first state. Each of the connected node pair in the generation represents
an arc that links a pair of stations meaning that the existence of train track between the pair of stations. Next,
calculate the bounds at the new nodes generated in the tree structure. Let 3 be the best bound value of the
terminal node of a branch found so far in the search. Either the bound value of the terminal node is not larger
than f3 or the branch is not a partial feasible then discard all nodes that are successors of that node as it cannot
contribute to global optimum. Thus, the subtree with that node is rejected implicitly. However, this rejection
cannot affect the optimum solution. Further, continue the search in different states recursively by decomposing
the branches into sub-branches of smaller size. Each of the sub-branch is regarded as a subproblem. In the
process of search if the bound value of the subproblem at a node of the current branch is maximum and is partial
feasible when it is compared with its previous bound value then take the current node for further branching or
decomposition by neglecting the existing subproblem, otherwise continue to decompose the problem with the
existing subproblem.

The complete enumeration of all the subproblems for higher-dimension problems is not practical. Thus,
we have to carefully limit the search space without losing the optimal solution. Therefore, the proposed B&B
algorithm implicitly enumerates all the possible subproblems along the tree structure and simultaneously stores
partial feasible subproblems. Further, the search explores to the uncovered nodes of the solution space iteratively
and constructs a complete tree (that starts with the source station and ends with the destination station) with
the simpler rules of branching, bounding and termination. Upon generating a complete tree, the algorithm
returns with an optimal solution and then the train operating schedules corresponds to the optimal solution
will be traced with simple backtracking mechanism. A more recent works on branch and bound can be found
in Refs.?¥~%0, The limitation of the algorithm is that, it requires a significant amount of memory to explore the
entire search for an optimum solution and to store the solution tree, especially for large-size instance problems
with too many sub-branches.

In brief, the above framework of B&B involves three important components which have a significant
influence on its performance: the first one is search strategy (the sequence in which subproblems within the
tree are examined), the second one is branching strategy (how the solution space is partitioned to generate new
subproblems within the tree), and the termination (Fathoming) rules (rules that prevent the exploration of
suboptimal branches of the tree).
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Proposed branch and bound algorithm

Step 1: Initialization
n «<number of stations
m <number of trains
P = [Pyij] <Profit matrix
T = [Ty;;] «Travel time matrix
H = [Hy;] <Halting time matrix
Step 2: The algorithm starts with a source station, say ¢ in the initial state (state=0)
Set By =0,k =1,2,3...m go to step 3.
Step 3: state=state+1
Generate a set V; of nodes that are connected with the nodes of the immediate
predecessor state V;_4, go to step 4.
Step 4: Pick anode j € V;, construct a sub-branch with the node j and the nodes in V_.
Each of the sub-branch can be regarded as a sub-problem and carefully examine
for feasibility, go to step 5.

Step 5: Calculate the arrival and departure times using the travel time matrix and halting
times of each train k for each of the sub-problem and go to step 6.
Step 6: For each train k, if the arrival and departure constraints are given in the

inequalities (4) and (5) holds good, go to step 7.
Else discard the respective sub-problem of the corresponding train k.

Step 7: If the train k meets the travel time threshold § given in the constraint (6) for a
sub-problem, go to step 8.
Else discard the current sub-problem for the respective train k.

Step 8: Determine the bounds for each of the sub-problem and record the bounds
separately for each train at the tail node of that sub-branch.
If the bound is higher and the arrival time is lower at the tail node of the current
sub-problem when compared with its previous sub-problem then discard all
successor branches of the exiting sub-problem, go to step 10.
Else goto 9.

Step 9: If the bound is lower and the arrival time is higher at the tail node of the current
sub-problem when compared with its previous sub-problem then discard all
successor branches of the current sub-problem go to step 11.
Else go to step 10.

Step 10:  Record the current sub-problem as partial feasible branch.
Update the bounds f; and the path matrix Ej;; of the current node for further
sub-branching and go to step 11.

Step 11:  If I is empty go to step 12.
Else go to step 4.

Step 12:  Repeat the steps 3 to 11 until there is no further branching of a node go to step
13.

Step 13:  Record the maximum of S84 that is an optimal bound or the maximum expected
profit of train k.
To trace an optimal path of train k, start from the destination station d that
corresponds to the optimal bound f;, perform a simple backtracking
mechanism on the path matrix Ej;; which takes to source station ¢ and
simultaneously store the nodes that are appear along the path in the set Sy
The set S, will give the optimal train operating schedule from source to
destination, go to step 14.

Step 14:  Stop

Flow chart
The systematic procedure of the B&B algorithm is presented in the form of a flow chart in Fig. 1.

Numerical illustration

In this section, the concepts of the proposed TTP is explained by considering a suitable rail network between two
prominent Indian metro cities Chennai and Hyderabad. Let the source station ¢ be Chennai and the destination
station d be Hyderabad. We constructed an appropriate network G = (N, A, P, T) by considering the multiple
operative routes (multiple lines) available between the stations Chennai and Hyderabad with a set of intermediate
stations/ junctions from an Indian rail network. The network G contains a total of |A/| = n = 20 stations. Let
us imagine that there are three trains (m = 3) operating between the stations Chennai and Hyderabad which
will starts/depart from source station at different times of a day and runs on the network G. The departure time
in hours and minutes format of train k(= 1, 2, 3) at the source station is Dy = {9 : 10,11 : 25,12 : 30}. The

Scientific Reports |

(2024) 14:31129 | https://doi.org/10.1038/541598-024-82499-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Initialize the model parameters:
n,m,P,T, and Hy; of a rail network G

[ Set ¢ =1, Vy = {¢}, state=0 ]
v

State=state+1, generate the node set V; that are L
connected with Vg_4

[Construct all the possible sub-branches with the help of V; and V;_ 1J
v

Select a sub-branch from the list. Calculate the
arrival and departure times for each train k.

No (Discard the current
sub-branch *

Is the current sub-
branch partial feasible?

[Compute the bounds By j of the current sub-branch]

Is the current bound higher
than the existing bound?

[Record the bound fy; and the route of the branch in the path matrix Ey;; ]

Is all the sub-branches in the
current state are examined?

Check for the existence of further Yes
branching with the nodes in 1 ?

No
[ Print the maximum bound and perform backtracking to trace ]

the optimal route for each train k form the path matrix Ey;;

Fig. 1. : Flowchart of the proposed B&B.

expected travel times T};; of train k between a pair stations ¢ and j and the normalized halting times Hy; of
train k at the station j are taken uniformly from the “Where is my train” application. If the train k departs from
station ¢ and arrives to station j, then the arrival time of train k at the station j be Ay;, obtained by adding
the travel time between the stations ¢ and j to the departure time at station ¢. Thus, Ax; can be expressed
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SN | Station Name Station Code | Halting Time (H kj ) in minutes
1 | Chennai MAS 0
2 | Katpadi KPD 5
3 Arakkonam AJ] 2
4 | Renigunta-Tirupati RU/ TPTY 8
5 | Pakala PAK 2
6 | Gudur GDR 2
7 | Tenali TEL 2
8 | Anantapur ATP 5
9 | Kadapa HX 5
10 | Nandyal NDL 2
11 | Guntur GNT 10
12 | Vijayawada BZA 10
13 | Gooty GY 5
14 | Dhone DHNE 5
15 | Guntakal GTL 5
16 | Kurnool City KRNT 5
17 | Nalgonda NLDA 2
18 | Warangal WL 7
19 | Secunderabad sC 2
20 | Hyderabad-Kacheguda | KCG -

Table 2. The expected halting times at the distinct stations.

(10, 5, 25)

1 hr 55 min )
(2hr 18 min )
(15, 10, 20)

(48 min)

Fig. 2. A rail network G with multiple operative lines between the stations Chennai and Hyderabad.

as Arj = Dig + Thij, i =1,2,...,,n— 1,5 = 2,3,...,n. Similarly, if the train k arrives to station j, then
it will be departed by following the specific halting times at station j. The departure times at station j can
be expressed as Dy; = Ay; + Hij,j = 2,3,...,n. The arrival times of train & at the source station and the

departure times at the destination station are assumed to be zero. The details pertaining to the selected stations
such as station name, station code, and the halting times at the stations are given in Table 2. Further, the stations
are indexed from 1 to 20, where station 1 and station 20 respectively denote the source and destination stations.
The notation ‘-’ used in Table 2 indicate that the train & halts at the destination permanently. On each arc
a;j € A, the expected profit Py;; € P and the expected travel time Tj;; € T are defined. The information is
summarized in the network shown in Fig. 2.

The expected profits of each train between a pair of stations are generated at random in the interval [5, 30].
The ordered triplet (Py;j, Paij, Psij) on an arc a;; € A in Fig. 2, denote the expected profit of train 1, train 2
and train 3 between the pair of stations ¢ and j, respectively. The expected travel times between a pair of stations
are defined on an arc a;; € A are taken in hours and minutes format of Indian standard time of 24 h of a day.
In addition, the overall running time of each train between the source station and the destination station should
not surpass the travel time threshold §. Let § = 20 hours. All the trains should start from the source station
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and reach the destination station with the possible maximum number of passengers/cargos through a set of
intermediate stations. Now, the objective is to determine the optimal operative schedules of trains which will give
us the maximum total profit. A modified B&B algorithm discussed in Section "Branch and bound algorithm" is
used to find an optimal solution of the constructed network G. The algorithm systematically generate and store
the feasible sub-problems with the help the effective branching and bounding strategies simultaneously. This
systematic search procedure of the proposed B&B shown in the Figs. 3, 4 and 5 with corresponds to the train
k(= 1,2, 3) independently for better understanding of readers.

The branching starts with an initial state 0 at the source station ¢ = 1 with an initial bound Bx¢ = 0. List the
stations that are connected with the source station ¢ say V1 = {2, 3,6}. Construct the possible sub-branches
with the stations in V; and the initial station ¢ in state 1. Calculate the bounds and check the feasibility of each
of the sub-branch as explained in Section "Proposed branch and bound algorithm". The calculated bounds are
projected at each of the tail node of the respective sub-branch. Next, continue to generate a set of stations say
Vo = {4,5, 7} that are connected with the stations in V in state 2 and followed calculate the bounds and check
for feasibility of the current sub-branches. Record the latest bounds at the tail nodes of each of the current sub-
branch. In similar manner, continue the search until there is no further branching.

Infeasible and optimal solutions

Figure 3, explains the detailed branching and bounding process of determining the best operative schedule
for train 1. Note that, two cases arises in fathoming a sub-branch. In the first case if a tail node connected
with two sub-branches then fathom a sub-branch which has low profit with higher travel time, as it cannot
produce optima, indicated as ' * ' and in the second case fathom the sub-branch whose travel time is more
than 6, as it is infeasible, indicated as '#’. For example, in Fig. 3, observe that the bound at the tail node
4 along the sub-branch 1 — 2 — 4 is 15 units of profit with the travel time 4 h 03 min, whereas the sub-
branch 1 — 3 — 4 contributes the profit 20 units with the travel time 3 h 10 min. Therefore, the sub-branch
1 — 2 — 4 fathomed due to the low profit with higher travel time at the tail node 4. The expected profit and
the travel time at the tail node of the fathomed sub-branch is represented as an ordered pair. The sub-branch
1 — 3 — 4 will be stored for further branching with the bound at the tail node 4 as 20 units. Consider the
sub-branch 1 - 6 — 7 — 11 — 17 — 19, that produce 100 units of profit with 11 h 41 min of travel time,
while the sub-branch 1 - 6 — 7 — 11 — 12 — 18 — 19 produce 155 units of profit with 12 h 57 min of
travel time. Although the sub-branch1 — 6 — 7 — 11 — 12 — 18 — 19 give the higher profit than the sub-
branch1 -6 — 7 — 11 — 17 — 19, and it may be discarded in a future state with infeasibility or the case
of exceeding the time threshold 6. Hence, do not fathom the sub-branch 1 — 6 — 7 — 11 — 17 — 19 at its
current state as there may be a chance that it can appear in the solution due its low travel time. Further, the search
is continued till the destination station is arrived. Figure 4 show the branching process for train 2. Observe from
Fig. 4, Train 2 takes 21 h 05 min of travel time along the sub-branch1 -3 -4 -9 — 10 — 11 — 12 — 18
. Thus, this sub-branch is fathomed due to the violation of the travel time threshold §.

The set of implicitly enumerated feasible operative routes through the systematic B&B algorithm for
the trains 1, 2 and 3 observed from Figs. 3, 4 and 5 are summarized in Table 3. The columns 1 through 5 in
Table 3, respectively denotes the train index, feasible operative routes of train k, k = 1,2, 3, the number of
stations (#m1) involved in each of the feasible route, the consumption of travel time and the profit generated
on the respective route. Note that, there are five feasible routes for train 1 from Chennai to Hyderabad with
varied profit and travel time, in which the route 1 - 6 — 7 — 11 — 17 — 19 — 20 takes least travel time
11 h 58 min with the profit 125 units. Another route 1 -6 — 7 — 11 — 12 — 18 — 19 — 20 makes
180 units of profit with travel time 13 h 14 min. Since, the objective is to find a route with maximum profit,
thus the route 1 -6 — 7 — 11 — 12 — 18 — 19 — 20 is selected as best operative route for train 1.
Thus S1 = {1,6,7,11,12,18,19, 20.}. The train — 2 have three distinct feasible solutions within the travel
time threshold 4. The route 1 -3 -4 — 9 — 13 — 14 — 16 — 20 generates maximum profit 165 units
with travel time 16 h 48 min among other routes and is regarded as best operative route for train 2. Thus
S2 =1{1,3,4,9,13,14,16,20} . As many as seven feasible routes for the train 3 within §, among all those
routes, theroutel -3 -4 — 5 — 8 — 13 — 15 — 16 — 20 is considered as best operative route with 210
units of profit and 17 h 13 min travel time. Thus S3 = {1,3,4,5,8,13, 15,16, 20} . Therefore, the optimal
profit or total maximum profit generated by all the three trains on the given network within the time threshold
¢ = 20 hours is 555 units and the optimal routes of the three trains covers 18 intermediate stations between the
stations Chennai and Hyderabad. In addition, the maximum profits and the travel times observed for the three
trains corresponds to the best operative routes is shown through a comparative bar plot in Fig. 6. Train 3 makes
greatest profit among all the three trains considered. However, train 3 travel time between the two metro stations
is higher than the other two trains travel time.

Train 1 starts from the source station Chennai at 9:10, runs through its optimal route, arrives the next station
Gudur at 11:23 and departs after 2 min of halt, later arrives Vijayawada at 16:45 and halts 10 min, and finally
reaches the destination station Hyderabad at 22:24. Train 2 may starts from Chennai at 11:25 reaches Hyderabad
at 4:13 next day. Train 3 may start from Chennai at 12:30 reaches Hyderabad at 5:43 next day. The detailed arrival
and departure schedules at various stations of the optimal operative routes for the three trains provided in Table
4. If we set the time threshold value as § = 15 hours, then the optimal profit within the ¢ is found to be 310
units from the list of operative routes given in Table 3 and this profit is reduced by more 40% of the previous
optimal profit. Further, the time threshold § is reduced to 12 hours, then the optimal profit is observed to be 240
units from Table 3 and this solution is much lowered than the earlier solutions. Note that, the § can significantly
influence the search region and an optimal solution.

The optimal operative routes for the three trains that are connected with the two metro stations Chennai
and Hyderabad is shown graphically in Fig. 7. The stations are scattered on a Euclidian plane. An ordered pair
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Fig. 3. Branching process of train 1.
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Fig. 4. Branching process of train 2.

(Agkj, Di;j) at the station node represents an arrival and departure times of trains, Dy and Agq represents the
departure time of trains at the source station and arrival time of trains at the destination stations respectively.
The profit Pyi; generated by the train k between a pair of stations ¢ and j is projected on an arc that connects
stations ¢ and j. It is observed that a few intermediate stations are in common in the optimal routes of train 2
and train 3.

Computational experiments

This section provides the computational results of TTP with the proposed B& B algorithm. The algorithm
is coded in MATLAB and tested on a PC with 1.00 GHz Intel (R) Core (TM) i5-1035G1 CPU and 4 GB of
RAM running the Microsoft Windows 10 operating system. The performance of B& B tested by generating the
distinct test cases in MATLAB. The test cases are classified based on the number of stations () are ranging from
25 to 100 stations and the number of trains (m) are ranging from 3 to 10 trains. The profit and the travel time
(minutes) between the stations are randomly generated in [10, 80] and [15, 90], respectively. The halting time
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Fig. 5. Branching process of train 3.

(minutes) at the stations are randomly generated in the interval [5, 10]. For each random number generation, a
uniform distribution is used in MATLAB.

The experiments are carried out on a class of test instances by varying the values of n and m. For readers clear
understanding, the complete information of each test case and their solutions are given in Table 5. In Table 5,
SN denote the serial number, n represents the number of stations in the test case, distinct trains involved in test
case, Dy and Ayq respectively represents the expected departure and arrival times at the source and destination
stations, d be the travel time threshold in hours, #m1 be the number of stations appear in an optimal route of
train k, the travel time of train k from the source to destination station, the profit generated by train k between
the source and destination stations and finally 7°(s) gives the CPU runtime.

The observations on Table 5 are given as follows.

Scientific Reports |

(2024) 14:31129 | https://doi.org/10.1038/s41598-024-82499-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Train type | Feasible routes of the trains ##m1 | Travel time | Profit

1-3—24—-5—-8—>13—14— 16— 20 16h48m |85
1-3—+4—-5—-8—=>13—-15—=16— 20
Tran—1 |1 56 —>7—11 > 17— 19 — 20
1-6—>7—>11—-12— 18 — 20
1-6—>7—11—12— 18— 19— 20

17h13m 95

11h58m 125
13h52m 135
13h14m 180

11h58m 70
17h 04 m 125
16 h48 m 165

1—-6—>7—>11—> 17— 19 — 20
Train—2 |] +3—+4—-9—13—15— 19— 20
1-3—24—-9—13—>14— 16 — 20

11h58m 45
13h20m 55
13h14m 60
15h55m 140
16 h 48 m 180
17h 57 m 185
17h 13 m 210

1-6—>7—11 17— 19 — 20
1-6—>7—>11—-12—18 = 20
1-6—>7—>11—12— 18 - 19 — 20
Train—3 |1 -3 —54—5—8— 14— 16 — 20
1-3—-54—-55—-58—-13—-14 - 16 — 20
1-3—-54—-55—-58—-13—->15—19— 20
1-3—-54—-55—-58—>13—>15—16 — 20

O | 0|0 || ®| NN | ||| 0|0

Table 3. The detailed feasible operative routes for the trains.

I Train 1
T Train 2
B Train 3

180
17h 13m

16h 48m

13h 14m

Profit Travel time

Fig. 6. A comparative bar plot of travel time and profit of the three trains.

The algorithm carefully examines the existence of feasible branches, eliminates unwanted branches with the
help of effective bounding strategies.

The results indicate that the algorithm is capable to solve the higher dimension instances of TTP optimally
within a reasonable computational time.

The solution of the algorithm highly influenced by the parametric values n, m, Prij, Tkij, 9.

When the parametric values n and m increases the total profit and the computational time increasing.

In each test case, the total travel time and the total profit may differs significantly across the various trains.
The travel time threshold is taken up to three days of continuous journey.

The algorithm is capable to obtain the alternate optimum routes of TTP, if exists.

Fig. 8 depicts the comparative bar plot of CPU runtimes of a total of 10 different test cases given in Table 5.
From Fig. 8 the overall trends of CPU runtime indicate that the runtime increases as the parametric values n
and m increases.
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SN | Station Name Station code | Train 1 Train 2 Train 3
Departure
Arrival time Dgarture time Arriv?al time | De all'ture time Arrivtal time | time
1j ( 1j ) 23 25 33 (D 33 )

1 Chennai MAS 0 9:10 0 11:25 0 12:30
2 | Katpadi KPD - - - - - -
3 Arakkonam AJ] - - 12:18 12:20 13:23 13:25
4 | Renigunta/ Tirupati RU\TPT - - 14:35 14:43 15:40 15:48
5 Pakala PAK - - - - 16:37 16:39
6 Gudur GDR 11:23 11:25 - - - -
7 | Tenali TEL 15:03 15:05 - - - -
8 Anantapur ATP - - - - 20:52 20:57
9 Kadapa HX - - 17:56 18:01 - -
10 | Nandyal NDL - - - - - -
11 | Guntur GNT 15:20 15:30 - - - -
12 | Vijayawada BZA 16:45 16:55 - - - -
13 | Gooty GY - - 20:50 20:55 21:55 22:00
14 | Dhone DHNE - - 22:50 22:55 - -
15 | Guntakal GTL - - - - 22:50 22:55
16 | Kurnool City KRNT - - 23:43 23:48 01:13 01:18
17 | Nalgonda NLDA - - - - - -
18 | Warangal WL 19:30 19:37 - - - -
19 | Secunderabad sC 22:07 22:09 - - - -
20 | Hyderabad- Kacheguda | KCG 22:24 0 04:13 0 05:43 0

Table 4. The expected arrival and departure times of trains at distinct stations.

(O Sstations
== QOptimal route of train 1
=== Optimal route of train 2
16 — === Optimal route of train 3

(16:45,_16:55) 04:13
05:43
14
(15:20, 15:30)
12—
10+ 30 (17:26,18:01) (20:50, 20:55)
(21:55, 22:00)
8! ; R
570 53:43,23:48)
11:25 a0 (01:13, 01:18)
6f 12:30 a =
(14:35,74:43
. (15:40,15:48)
2l
L 1 | 1
1 2 3 4 5 6 4 8 9 10

Fig. 7. An optimal schedule of three trains from source to destination stations.

Further, the descriptive statistical analysis on the performance of the proposed B&B is provided in Table 6. We
experimented 18 test cases which are randomly generated by setting different values for n, m and ¢ in the earlier
specified intervals. In each test case we performed 5 independent runs and results a total of 90 instances. For
each test case with 5 independent runs, we recorded the minimum, maximum, average and standard deviation
in the optimal solutions were obtained and as well the average travel time per train and CPU runtimes. The
optimal solutions are highly dependent on the profit and travel time matrices. The larger value of standard
deviation indicating that the optimal solutions obtained in those five runs within each of the testcase were
widely spread in the solution space. All the optimal solutions are obtained in the less amount of CPU runtime. A

comparative bar plot of the average profit of all the instances from Table 6 is shown in Fig. 9.

Conclusion

This paper presents a mathematical model of TTP, aims to find an optimal operative schedules for trains which
runs between a pair of any two major stations. This TTP variant is mathematically formulated with 0-1 integer
linear programming. The operating schedules of TTP provides a routing plan and the train’s arrival and departure
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SN |n | Traintype Die | A kd | & | #m1 | Travel time | profit T(S)
T1 2:05 23:24 27 21h19m 1382
T2 4:15 26:54 28 22h39m 1416
1 29 | T3 5:45 23:14 |24 |20 17h29m 1096 | 0.34
T4 6:25 25:38 23 19h13m 1093
T5 7:10 27:08 25 19h 58 m 1055
T1 3:00 32:04 31 29h4m 1436
T2 3:50 28:32 30 24h42m 1373
2 35 | T3 4:20 30:55 |30 | 33 26h35m 1595 | 0.57
T4 5:05 33:53 34 28h48m 1654
T5 6:45 29:10 27 22h25m 1441
T1 6:00 56:14 48 50h 14 m 2422
T2 6:50 56:25 48 49h35m 2626
T3 7:35 54:40 51 47h5m 2534
3 55 | T4 8:10 56:31 | 51 | 49 48h21m 2489 | 0.71
T5 8:45 58:33 48 49h 48 m 2433
T6 9:30 59:30 49 50 h 2285
T7 8:30 60:20 52 51h 50 m 2685
T1 3:15 57:33 59 54h18m 2718
T2 4:00 54:51 53 50h51m 2889
4 65 T3 4:40 59:40 - 57 55h 2979 077
T4 5:10 55:34 52 50h24 m 2573
T5 6:00 60:51 59 54h51m 2903
T6 6:45 59:37 54 52h52m 2682
T1 4:00 60:17 60 56h17m 3338
T2 4:50 62:08 62 57h18m 2423
T3 5:30 60:24 64 56 h 54 m 3272
5 75 | T4 6:10 66:01 | 60 | 64 59h51 m 3162 | 1.32
T5 7:00 64:32 65 57h32m 3067
T6 7:40 67:24 65 59h44m 3234
T7 8:15 65:18 66 57h3m 3227
T1 6:00 58:56 62 52h56m 3318
T2 6:45 67:41 67 60 h 56 m 3359
T3 7:40 65:50 64 58h 10 m 3281
6 80 | T4 8:30 69:20 | 61 | 68 60 h 50 m 3586 | 1.30
T5 9:15 65:18 70 56h13m 3007
T6 10:00 | 70:25 66 60h25m 3267
T7 10:45 | 71:21 66 60 h 36 m 3424
T1 5:00 66:01 79 6lhlm 3908
T2 5:40 69:27 77 63h47 m 4013
T3 6:15 71:06 77 64h51m 3924
T4 7:00 71:17 74 64h17m 3975
7 8 T5 7:45 70:43 6 75 62h58m 3790 198
T6 8:30 73:10 74 64h 40 m 3720
T7 9:10 72:29 78 63h19m 4054
T8 10:00 | 72:32 74 62h32m 3948
T1 2:30 63:56 78 61 h26 m 3720
T2 3:10 65:40 76 62h30m 4115
T3 4:00 68:56 74 64h 56 m 3989
s 90 T4 4:50 69:23 . 73 64h33m 3979 Lss
T5 5:20 68:09 73 62h49m 3865
T6 6:00 70:06 75 64h6m 3951
T7 7:00 66:07 77 59h7m 3941
T8 7:45 70:45 75 63h 3652
Continued
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CPU runtime values
~
T

SN |n | Traintype | Do | Apg | § | #ma | Travel time | profit T(s)
T1 2:00 64:27 76 62h27m 3889
T2 2:40 70:32 80 67h52m 3908
T3 3:20 69:56 76 66 h 36 m 4009
T4 4:00 70:26 79 66h 26 m 4074
T5 4:50 70:53 79 66h3m 4133
’ . T6 5:30 73:23 68 81 67h53m 4035 31
T7 6:15 73:08 77 66h 53 m 3946
T8 7:00 74:30 75 67h30m 4124
T9 7:35 74:54 74 67h19m 3892
T10 8:30 76:22 83 67h52m 4244
T1 3:30 72:02 82 69h2m 4268
T2 4:15 74:18 83 70h3m 4261
T3 5:00 76:12 84 71h12m 4384
T4 5:45 77:32 84 71h47 m 4172
10 100 T5 6:30 77:25 7 82 70 h 55m 4343 208
T6 7:10 79:10 80 72h 4078
T7 7:50 76:33 77 68h43m 3906
T8 8:20 79:03 85 70h43 m 4599
T9 8:55 80:34 83 71h39m 4151
T10 9:30 81:09 83 71h39m 4170

Table 5. Experimental results on randomly generated instances.

A comparative bar plot of CPU runtimes of instances
2.5

15
1
0.5

o I
1

Instances indexed in Table 5

Fig. 8. A comparative bar plot of CPU run times of different test instances in Table 5.

times at the stations. The TTP have applications in different areas includes air traffic control, logistics and supply
chain management, etc. This study contributes a B& B algorithm which carefully examine all the branches,
eliminates the unwanted branches efficiently and obtain the best operative schedules for TTP. The concepts
of TTP and B& B algorithm was explained by considering the rail network between two major Indian metro
stations Chennai and Hyderabad. The extensive computational experiments carried out on distinct randomly
generated test instances indicate that the algorithm is capable to find the optimal solutions and the descriptive
statistical analysis on the performance of B&B algorithm show that the algorithm takes fairly less amount of CPU
runtimes. The TTP can be extended to study with multiple objectives, skip-stop plans, rail freight transportation,
passenger seat availability and allocations etc. In addition, the formulation of new search strategies in B&B by
integrating with evolutionary algorithms can be developed to faster the algorithm in providing the optimal

solutions.
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n |m |§ | Minimum | Maximum | Average | Standard deviation | Average travel time | Average CPU runtime
25 |3 24 | 3109 3332 3212 81.19 15h42m 0.19
5 5100 5829 5596 293.61 16h27 m 0.20
10 10,830 11,387 11,171 310.08 16h 04 m 0.17
30 |3 |24 3915 4180 4015 104.20 19h57m 0.16
5 6481 6958 6691 185.17 20h 07 m 0.15
10 13,086 13,754 13,446 | 237.50 19h30m 0.24
40 |3 |30 | 4907 5437 5163 221.95 26 h 06 m 0.18
5 8867 9306 9062 206.03 26h22m 0.18
10 17,930 18,504 18,116 | 225.11 26h 36 m 0.34
50 |3 |40 6786 7028 6889 103.09 35h29m 0.22
5 10,849 11,604 11,238 275.40 33h36m 0.34
10 22,253 22,988 22,645 349.99 33h 16 m 0.53
70 |3 |60 | 9408 9892 9555 201.53 56 h 44 m 0.45
5 15,878 16,689 16,169 | 330.72 46h25m 0.54
10 28,552 32,884 31,404 1687 45h 57 m 0.94
100 | 3 70 | 13,599 14,409 13,833 326.16 66h57m 0.67
5 22,612 23,195 22,915 225.60 65h31m 1.10
10 45,040 46,416 45,577 | 528.5 66h02m 2.07

Table 6. Descriptive statistical analysis of B&B.

A comparative bar plot of average profit of all the instances
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Fig. 9. A comparative bar plot of the average profit values.
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