
Gaussian decomposition method 
for full waveform data of LiDAR 
base on neural network
Jie Liu, Xinjie Zhang, Jing Lv, Xinyu Li & Libin Du

The full waveform data from airborne LiDAR (Light Detection and Ranging) provides information on 
the distance of the target. Accurately extracting the ranging information from the full waveform data 
is crucial for generating point clouds. This paper introduces a method for Gaussian decomposition of 
full waveform data using a convolutional neural network. The method employs an improved densely 
connected convolutional neural network and the EM (Expectation Maximization) algorithm to extract 
information from the data. The method involves two key steps. First, The FWDN network preprocesses 
the full waveform data to enhance signal quality by reducing noise, and then the improved EM 
algorithm extracts Gaussian parameters (amplitude, expectation, and full width at half maximum) to 
obtain ranging information. Based on simulation and measured data, the decomposition success rate 
of this method is more than 98% with an average range accuracy of less than 1.5 cm compared to other 
methods. The method has significant potential for application in the field of mapping, 3D modeling.

Airborne LiDAR (Light Detection and Ranging) is an active detection equipment that plays a crucial role in 
ocean mapping, 3D modeling and military reconnaissance1–4. It works by transmitting pulses of laser light and 
receiving backscattered echoes of the target to measure the distance and other information, which in turn forms 
the 3D coordinates of the target. LiDAR records the echo intensity of each transmitted pulse, and this data is 
called full waveform data5. The waveform data records the echo intensity magnitude in a time series, which is 
used to calculate the distance between the LiDAR and the target.

For the existing full waveform algorithms, they can be mainly categorized into three types. They are echo 
detection, waveform decomposition, and deconvolution6–8. Echo detection focuses on extracting the target 
location directly from the full waveform using local maxima, first order derivative, and thresholding to detect 
the target location. Waveform decomposition involves decomposing the target echo by combining mathematical 
function models. The waveform is regarded as the superposition of this function model composition. 
Commonly used function models include the Gaussian function model, generalized Gaussian function model, 
and logarithmic Gaussian function. Deconvolution is the process of recovering the target response from the 
echo waveform using the transmit waveform, provided that the laser transmit waveform and echo waveform 
are known.

Among these three methods, the echo detection is easy to implement, requires minimal computational effort, 
and can identify obvious target points. However, it may result in false or missed detections for weak echo targets 
or echoes mixed with noise. Deconvolution method is capable of obtaining high resolution target reflections, but 
it is sensitive to noise and clutter, requires data with a good signal-to-noise ratio, and also takes more time than 
other methods due to the large amount of computation. In contrast, waveform decomposition can better handle 
situations involving multiple target echoes. By fitting a model to the waveform, the impact of noise on the target 
echo positions can be reduced, allowing for the extraction of more precise target location information.

The waveform decomposition method typically involves three steps: selecting an appropriate function 
model to decompose the full waveform data, commonly utilizing the Gaussian function as the base function 
for decomposition; preprocessing the full waveform, typically through methods such as Gaussian filtering9, and 
wavelet decomposition filtering10, and determining the number of Gaussian components and initial parameters, 
followed by using an optimization algorithm to fit the preprocessed full waveform data. The Gaussian function 
is commonly used for waveform decomposition. This is because LiDAR pulses are typically approximated as 
Gaussian shapes, and when they interact with an object, the resulting echo signals are also approximated as 
Gaussian shapes11. The parameters of the Gaussian function, such as the expectation value and full width at half 
maximum, correspond to the position and width of the echo signal, making it easy to interpret and analyze.
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Hoften12 et al. were the first to propose decomposing full waveform data with a Gaussian model using the 
least squares method (LSM) and the Levenberg–Marquardt (LM) algorithm13 to obtain the Gaussian parameters 
of the decomposed waveforms. Chauve14 et al. proposed an augmented Gaussian model to decompose the 
waveforms, which included the use of a generalized Gaussian function focusing on the extraction of geometric 
information. Li15 et al. employed a variable-threshold empirical mode decomposition (EMD) filtering method 
and an LM optimization algorithm to decompose the original full waveform echo into several independent 
Gaussian components. Meanwhile, Cheng16 et al. utilized adaptive noise threshold estimation to eliminate both 
background and random noise before decomposing the waveform using an improved EM waveform. With the 
explosive growth of deep learning in recent years, the application of deep learning to full waveform data has 
become more and more widespread17–19.

This study proposes a data preprocessing method called One-Dimensional Full Waveform Dense Network 
(FWDN) that uses convolutional neural networks to learn full waveform data features. FWDN employs one-
dimensional convolution and dense connectivity, and the joint loss function optimizes both amplitude and 
waveform information. An improved EM algorithm is then used to realize Gaussian decomposition. In addition, 
a complete waveform dataset is created using the collected data to train and validate the network.

Methods
The method for Gaussian decomposition of full waveform data using a convolutional neural network can be 
divided into two steps. The first step involves preprocessing the raw full waveform data by inputting it into 
FWDN that performs noise reduction on the data. The next step involves decomposing the full waveform 
data using a Gaussian model. An improved EM algorithm is used to decompose the Gaussian parameters of 
the network-processed full waveform data, resulting in the decomposed Gaussian parameters that include 
amplitude, expectation and full width at half maximum (FWHM). The processing flowchart of the method is 
shown in Fig. 1.

Gaussian function model
The full waveform data refers to the time-dependent signal received by LiDAR after the laser is reflected by the 
target. The Gaussian function is a commonly used model for waveform decomposition20. The LiDAR emits 
a laser pulse waveform that approximates a Gaussian waveform. To decompose the full waveform data, the 
Gaussian function is selected as the base model. This full waveform data is considered to be generated by the 
superposition of multiple Gaussian waveforms. Therefore, the full waveform data can be expressed in Eq. (1) as:

	 f (t) =
∑N

i=0 Aie
−4·ln2·(t−µi)2

(εi)2 + η (t) � (1)

where N  is the number of components of the Gaussian function, Ai、µi and εi are the amplitude, expectation 
and FWHM of the i th Gaussian component function, η (t) is the noise in the full waveform data, and f (t) is 

Fig. 1.  Flowchart of the method.
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the full waveform signal. The FWHM are converted to the standard deviation σ in the Gaussian function in 
Eq. (2) as follows:

	 ε = 2σ
√

2ln2 � (2)

Each full waveform data can be represented by the function model of Eq.  (1), which facilitates subsequent 
FWDN processing and extraction of Gaussian decomposition parameters.

FWDN
The raw full waveform signal contains both the echo signal of the target and noise signal, as shown in Fig. 2. 
This noise signal affects the accuracy of the extracted data21. Therefore, preprocessing the full waveform data is 
necessary to improve the quality of the extracted target echo.

In contrast to traditional full waveform data preprocessing, this study uses a Backpropagation (BP) neural 
network for waveform preprocessing. The BP neural network is trained via the backpropagation algorithm to 
adjust the weights and biases within the network using the gradient descent method.

The structure of the network is based on densely connected networks22, and a densely connected network 
using a one-dimensional convolutional kernel is designed for preprocessing full waveform data. The network’s 
densely connected approach enables the use of features learned in different layers in subsequent layers, making 
feature transfer across layers more efficient and mitigating the phenomenon of gradient vanishing. This is 
because each layer is directly connected to the subsequent layer. The network simplifies model complexity and is 
easy to train and apply by multiplexing and reducing the number of parameters.

The structure of FWDN consists of four parts: the input layer, dense block, transition layer, and output layer. 
The input layer normalizes the input full waveform data, the dense block extracts full waveform data features, 
the transition layer compresses the number of data channels and reduces model complexity, and the output layer 
produces the processing results. The overall structure of the network is shown in Fig. 3.

The input layer receives the full waveform data in batches and undergoes a one-dimensional convolution. 
This increases the data dimension, allowing for the learning of deeper features from subsequent dense blocks. 
The convolution layer can be represented by the composite function Hι (·), which includes normalization, 
activation function, and convolution operations.

Fig. 3.  FWDN Network Architecture.

 

Fig. 2.  Raw full waveform signal.
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Each dense block in the network is composed of seven dense layers. These layers are composed of 2 
convolutional kernels of different sizes of one-dimensional convolution and activation functions, The current 
dense layer is directly connected to all previous dense layers. If the output of the current dense layer is denoted 
as xι, it can be expressed as:

	 xι = Hι ([x0, x1, · · · , xι−1]) � (3)

The growth rate k is another important parameter of the dense layer. k controls how much the number of 
channels grows. If the growth rate of each dense layer is k and the number of channels of data before input is k0
, the number of channels of data passing through  dense layers can be expressed as:

	 kl = k0 + k ∗ l � (4)

Each dense block will increase the number of channels, and a transition layer is introduced between adjacent 
dense blocks to reduce the number of channels. The transition layer uses 1*1 convolution to reduce the number 
of channels and compress the data dimension. The network parameter structure is shown in Table 1.

The joint loss function is designed as a loss function using Negative Signal to Noise Ratio (Negative SNR) and 
Mean Square Error (MSE) composition. Using a joint loss function instead of a single loss function allows for 
the focus on multiple features in the data. Negative SNR is relatively sensitive to changes in amplitude, and MSE 
measures the degree of difference between the output value and the true value. By using both as loss functions, 
the purpose of optimizing two objectives is achieved23. The loss function is shown in Eq. (5).

	 fLoss = −λ1SNR (ŷ, y) + λ2MSE (ŷ, y) � (5)

where λ is the weight coefficient and ŷ and y are the network output value and ideal value. Equation (6) and (7) 
represent the formulas for SNR and MSE:

	
SNR = 10log10

∥ŷ∥
2

∥ŷ−y∥
2 � (6)

	 MSE = 1
m

∑m

i=1 (y − ŷ)2 � (7)

Improved EM algorithm
The computational iterations of the EM algorithm can be divided into an expectation step (E-Step) and 
a maximization step (M-Step). E-Step estimates parameters based on known data, and then uses them to 
calculate the expected value of the likelihood function. M-Step calculates the parameters that maximize the 
likelihood function. These two steps are carried out alternately until the convergence condition is reached. The 
EM algorithm can fit each Gaussian parameter and obtain the Gaussian parameters that meet the convergence 
conditions for the Gaussian function model. The formulas are shown in Eqs. (8)-(11).

	
Qij = pj fj (xi)∑m

j=1
pj fj (xi) � (8)

	 pj =
∑n

i=1
Qij

n
� (9)

	
µj =

∑n

i=1
Qij ·i

n·pj
� (10)

	
σj =

√∑n

i=1
Qij(i−µj)2

n·pj

� (11)

Layers Kernel size Output size Parameters

Input layer \ (1 × 1 × 4096) \

Convolution (1 × 3, 1) (16 × 1 × 4096) 96

Dense block 1
[

(1 × 5, 1)
(1 × 1, 1)

]
× 7 (128 × 1 × 4096) 373,700

Transition layer (1 × 1, 1) (16 × 1 × 4096) 3120

……

Dense block 8
[

(1 × 5, 1)
(1 × 1, 1)

]
× 7 (128 × 1 × 4096) 373,700

Transition layer (1 × 1, 1) (16 × 1 × 4096) 3120

Convolution (1 × 1, 1) (1 × 1 × 4096) 49

Output layer \ (1 × 4096) \

Table 1.  Network parameter structure.

 

Scientific Reports |         (2025) 15:5639 4| https://doi.org/10.1038/s41598-024-82543-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where Qij  is the probability of the i th number in the j th component of the Gaussian curve and m is the 
number of Gaussian components. The EM algorithm’s initial values are obtained by prediction, which can lead to 
convergence to a local optimal solution instead of the global optimal solution. To address this issue, magnitude 
constraints such as pj , µj , and σj  are utilized. The improved EM algorithm formulations are presented in 
Eqs. (12)-(15).

	
Qij = pj fj (xi)∑m

j=1
pj fj (xi) � (12)

	
pj =

∑n

i=1
Qij ·Ni

n·
∑n

i=1
Ni

� (13)

	
µj =

∑n

i=1
Qij ·Ni·i

n·pj ·
∑n

i=1
Ni

� (14)

	
σj =

√∑n

i=1
Qij ·Ni(i−µj)2

n·pj ·
∑n

i=1
Ni

� (15)

Dataset
The impact of the network model is not solely determined by its structure, but also by the dataset used. The full 
waveform data used in this paper is obtained from the single-wavelength bathymetric LiDAR developed by our 
research group. The waveform has a time resolution of 0.1 ns, with a sampling length of 4096. Therefore, echo 
data represent the echo intensity within a time span of 409.6 ns.

Due to the necessity for ideal waveforms in training the network, the raw full waveform data acquired by the 
LiDAR contains noise and therefore cannot be directly used for network training. Consequently, ideal waveforms 
need to be generated from the raw full waveform data, and noise is then added to these ideal waveforms to create 
the full waveform dataset for network training. The waveforms are shown in Fig. 4. GaussPy24, a python tool 
for implementing the autonomous Gaussian decomposition, is employed to decompose the raw waveform data, 
thereby extracting the amplitude, expectation, and FWHM of the waveforms. The aforementioned parameters 
are used to generate the ideal waveform yid (t). Subsequently, noise data η (t) collected by the LiDAR is added 
to the ideal waveform. In this way, a waveform dataset comprising both ideal and noise-containing waveforms is 
generated. The dataset includes 50,000 ideal waveforms and corresponding noise-containing waveforms, with a 
distribution ratio of 8:1:1 for the training, validation, and test sets.

Results
Evaluation metrics
In order to better reflect the performance of the FWDN network and compare it with other algorithms, it is 
essential to define evaluation and comparison metrics. Establish the following four indicators to evaluate the 
results. The coefficient of determination (R2) is used to measure the similarity between the output waveform 
and the ideal waveform, reflecting the network’s processing performance. The final decomposition results are 
evaluated using the separation success rate (Sfw), expectation bias (µbias), and FWHM bias (εbias) to validate 
the accuracy of the Gaussian parameters extracted by both FWDN and EM algorithms.

Coefficient of Determination (R2)

Fig. 4.  Raw waveform and ideal waveform.
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R2 = 1 −

∑4096
i=1

(
ŷi−yi

)2

∑4096
i=1

(yi−yi)2
� (16)

where, y represents the mean of the waveform data. The coefficient of determination (R2) ranges from 0 to 1, 
with a higher value indicating a greater similarity between the two waveforms.

Separation Success Rate (Sfw)

	 Sfw = F Wsucc
F Wsum

� (17)

where, the total number of waveforms in the entire dataset is denoted as F Wsum. Considering a waveform 
successfully decomposed when the correct number of Gaussian components is extracted, the count of waveforms 
with successful decomposition is denoted as F Wsucc.

Expectation Bias (µbias)

	 µbias =
∑M

i=1
|µci−µai|
M

� (18)

where, µc represents the estimated expectation parameter, µa is the expectation parameter corresponding in 
ideal waveform. M is the number of Gaussian parameters in a single waveform. The waveforms used to calculate 
the expectation bias are those that have been successfully decomposed. Similarly, the following FWHM bias and 
amplitude bias are used to calculate using successfully decomposed waveforms.

FWHM Bias (εbias)

	 εbias =
∑M

i=1
|εci−εai|
M

� (19)

where, εc is the estimated FWHM parameter and εa is the corresponding FWHM parameter at the ideal 
waveform.

Amplitude Bias (Abias)

	 Abias =
∑M

i=1|Anorm
ci −Anorm

ai |
M

� (20)

where, Anorm
c  is the estimated amplitude parameter of the normalized waveform and Anorm

a  is the corresponding 
amplitude parameter of the ideal waveform after waveform normalization. The normalization process employs 
a 0–1 normalization approach.

Evaluation of FWDN result
The FWDN network was trained using the training set, and the training environment was built using Python 
3.7 and Pytorch 1.11 on an Intel Xeon Platinum 8255C CPU, Nvidia GeForce RTX 3090, and Ubuntu 20.04. 
The neural network was trained for 128 epochs, and the model parameters corresponding to the epoch with the 
minimum loss were saved. The loss curve for the network is depicted in Fig. 5. Due to the presence of a negative 
SNR in the loss function, its value can become negative.

After completing the training of the network, the effectiveness of the network is evaluated using the test 
set. Ideal waveform, test waveform, and the network’s output waveform are shown in Fig. 6. From the figure, it 
can be observed that there is a high degree of similarity between the output waveform and the ideal waveform. 
Specifically, the R2 values calculated for these waveforms are 0.98954 and 0.99472, respectively. Additionally, the 
average R2 value calculated for all waveforms in the test set is 0.99043.

Three different filtering methods, namely one-dimensional Gaussian filtering(GF), wavelet soft 
thresholding(WST) and Empirical Mode Decomposition (EMD) filtering, are selected for comparison with 
FWDN. The R2 averages obtained by processing the waveforms of the test set using these three methods are 
shown in Table 2 along with the R2 averages of the FWDN. The average R2 of three methods is much lower than 
the average R2 of FWDN, and the degree of similarity between the processed and ideal waveforms is not high.

The results of the four methods applied to the two waveforms in Fig. 6 are shown in Fig. 7. By comparing the 
five waveforms in Fig. 7 (a) and (b), the waveforms processed by the GF, WST, and EMD methods all have a large 
range of temporal deviations at the peaks, while the noise filtering is not thorough enough at the other locations. 
This temporal deviation and incomplete noise filtering may affect the accuracy of the Gaussian decomposition, 
resulting in a large error between the extracted distance and the actual distance.
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Figure 7 shows a comparison of the waveforms processed by the four methods with the ideal waveform. The 
table in the figure shows the R2 values of the waveforms processed by these methods. It is evident from the 
figure that the waveforms processed by GF, WST, and EMD exhibit significant deviations, especially in the peak 
regions of the target echo. Furthermore, these methods are suboptimal for filtering noise in the flatter regions 
of the waveform, resulting in insufficient noise suppression. This negatively impacts the accuracy of subsequent 
Gaussian decomposition of the waveform. Accurate decomposition is crucial for extracting distance features, 
and these deviations introduce errors between the estimated and actual distances. In contrast, the FWDN 
method demonstrates superior performance, better handling noise and maintaining closer alignment with the 
ideal waveform.

Method GF WST EMD FWDN

R2 0.43248 0.52536 0.83223 0.99043

Table 2.  The average R2 obtained by processing the waveforms in four methods.

 

Fig. 6.  Comparison of waveforms before and after processing by the FWDN.

 

Fig. 5.  Training loss curve.
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Evaluation of decomposition result
After network processing, an improved EM algorithm is used to decompose the waveforms, extracting 
the amplitude, expectation and FWHM parameters of each Gaussian component to describe waveform 
characteristics. Figure  8 shows two waveforms after processing with FWDN and decomposition using the 
EM algorithm. The decomposition results demonstrate that the decomposed waveforms closely match the 
ideal waveforms. Figure 8(a) shows that the Gaussian parameters of the two components can be successfully 
decomposed when they are separated and do not overlap. Figure 8(b) shows that when the two components 
are close to each other, their waveforms overlap significantly. The FWDN can restore the waveforms to be 
almost identical to the ideal waveform, and successfully decompose the Gaussian components of both sets of 
echoes. The maximum deviation expected in each component is 0.072 ns, which corresponds to a distance of 
approximately 1.08 cm in the figure.

To verify the precision of the extraction, four evaluation metrics Sfw、µbias 、εbias and Abias mentioned 
in Section evaluation metrics are used. Use all waveforms of the test set to calculate Sfw , and then use the 
waveforms evaluated by Sfw  to calculate the average expectation bias (µbias), the average FWHM bias 
(εbias) and the average amplitude bias(Abias), and their standard deviations are calculated. In addition, the 
decomposition results of GF, WST and EMD methods are added as a comparison to verify the effectiveness of 

Fig. 8.  Gaussian decomposition result.

 

Fig. 7.  Comparison of four methods for processing the same waveform.
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the method. As evidenced by the results presented in Table 3, the FWDN method demonstrates a commendable 
degree of efficacy. It is noteworthy that the FWDN method achieves an average expectation of 0.089 ns, which 
corresponds to a spatial error of approximately 1.33  cm. Furthermore, the method exhibits a low standard 
deviation of 0.042 ns. Furthermore, the FWDN method demonstrates a notable reduction in FWHM bias, with 
an average value of 1.265 ns, which is considerably lower than that of the GF (4.048 ns), WST (3.101 ns), and 
EMD (1.973 ns) methods. With regard to amplitude bias, the FWDN method exhibits a distinct advantage with 
an average value of 0.025 and a standard deviation of 0.017, surpassing the performance of other methods.

Measured full waveform data decomposition
The full waveform data were obtained using a single-wavelength LiDAR developed by our research group, and 
the full waveform data were extracted using the method proposed in this paper. The wavelength of the laser 
utilized in the LiDAR system is 532 nm. The experiment set up two flat plates as targets with a portion of each 
plate positioned on the laser spot emitted by the LiDAR. By adjusting the distance between the two target plates, 
the full waveform data containing the two target echoes was acquired, as shown in Fig. 9.

The full waveform data contains the echoes of two flat plates, and the waveform data is decomposed into 
two Gaussian signals using the Gaussian decomposition method to calculate the distance between the two flat 
plates. The distance between the two flat plates is measured using a total station, and this value is taken as the 
true value. Subsequently, the calculated distance is compared with the true value in order to verify the accuracy 
of the extraction method.

By varying the distance between the two plates, the experiment collected four sets of full waveform data 
at different distances. The distances measured using a total station were 0.50 m, 6.30 m, 14.40 m and 26.90 m, 
respectively. Figure 10 shows the full waveform data and its Gaussian decomposition results under these four 
sets of distances. Specifically, the distances calculated by Gaussian decomposition in Fig. 10 are 0.5135 m, 6.3042 
m, 14.3820 m and 26.9195 m, respectively. Table 4 lists the average distance value d and standard deviation σd

. The experimental results indicate that this method demonstrates high accuracy in handling full waveforms at 
various distances and is capable of accurately decomposing waveform components even under conditions of 
significant overlap. The error of distance extraction is controlled at the centimeter level with a small standard 
deviation, indicating the method’s.

In order to ascertain the efficacy of the processing method on real collected waveforms, scanning experiments 
were conducted in an outdoor setting using LiDAR. The resulting collected and processed waveforms are 
presented in Fig.  11. The figure presents a comparison between the raw waveform, the processed waveform 
and the result of Gaussian decomposition. This method reduces noise, improves waveform quality, and extracts 
accurate target distances from the raw waveform.

Conclusion
This study introduces a method for the Gaussian decomposition of LiDAR full waveform data using a 
convolutional neural network and an improved EM algorithm. The introduction of FWDN effectively filters out 
the noise, improves the accuracy of Gaussian parameter extraction, achieves centimeter-level ranging accuracy, 

Fig. 9.  Schematic diagram of experimental data acquisition.

 

Method Sfw µbias(ns) σ − µbias(ns) εbias(ns) σ − εbias(ns) Abias σ − Abias

GF * 0.746 1.294 0.598 4.048 2.169 0.066 0.035

WST * 0.783 0.893 0.404 3.101 1.334 0.113 0.036

EMD * 0.925 0.379 0.166 1.973 0.996 0.060 0.020

FWDN * 0.986 0.089 0.042 1.265 0.770 0.025 0.017

Table 3.  Comparison of evaluation indicators under different methods. *The waveforms processed by these 
four methods are decomposed using the improved EM algorithm.
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and enables accurate decomposition in complex multi-echo environments with overlapping waveforms. A 
comparative analysis of the FWDN method with the GF, WST and EMD methods reveals that it exhibits superior 
performance across all evaluation metrics, demonstrating better robustness and consistency. The method has 
significant potential for application in the field of mapping, 3D modeling, and other fields that require high-
precision ranging. The further research could concentrate on expanding the data set in order to enhance the 
adaptability of the network. Furthermore, the implementation of more advanced network architectures can also 
result in enhanced accuracy and performance.

Distance
Experiment 1
(0.50m)

Experiment 2
(6.30m)

Experiment 3
(14.40m)

Experiment 4
(26.90m)

d(m) 0.5157 6.2991 14.3895 26.9035

σd(m) 0.0179 0.0208 0.0194 0.0225

Table 4.  Mean and standard deviation of distances obtained from Gaussian decomposition at different 
distances.

 

Fig. 10.  Acquired waveforms and Gaussian decomposition result.
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Data availability
The datasets used in this study are not publicly available, but can be obtained from the corresponding author 
upon reasonable request.
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