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We propose an overview of the Rytov approximation in diffuse optics of biological tissues, for the 
inverse and forward problems. First, we show a physical interpretation of the Rytov approximation 
as a type of partial pathlength (named fluence rate partial pathlength) which is distinct from the 
usual partial pathlength for reflectance measurements. Second, we study the accuracy of the Rytov 
approximation for the calculation of Jacobians considering absorption perturbations and reflectance 
measurements. For higher absorption and lower reduced scattering values the discrepancy between 
the true Jacobian (i.e., the reflectance partial pathlength) and that obtained with the Rytov 
approximation (i.e., the fluence rate partial pathlength) can be up to about 70% for diffusion theory 
calculations and up to about 25% for Monte Carlo simulations. For higher reduced scattering values, 
the discrepancies become less than 10%. Third, we propose a calibration method that can circumvent 
numerical inaccuracies when the calculation of Jacobians is carried out in presence of highly absorbing 
layers. Finally, fourth, we also propose an original formula derived from the Rytov approximation for 
reflectance measurements, and we show how it performs for the forward problem, when we consider 
defects with large absorption contrast with respect to the background.
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There is a vast amount of literature about the Born or Rytov approximation/series for solving the Helmholtz 
equation that arises in many fields of research. Applications include studies of weakly scattering media1–3, 
seismic waveforms in geophysics4,5, and optics in highly scattering media6,7. In this work, we focus on the 
latter, particularly on diffuse optics of biological tissues, where these two approximations have been applied for 
linearizing the integral equations obtained for solving the diffusion equation (DE) (the DE can always be reduced 
to a Helmholtz equation by a change of variables6). These integral equations link the source of perturbation (e.g., 
a change in the optical properties) to the change in fluence rate inside the medium or the change in exiting flux 
(or reflectance) measured by an optical detector on the surface of the medium. A linearization of these equations 
allows for a straightforward inversion of the integral equations for recovering the change in the optical properties. 
This is a fundamental step also for nonlinear methods of spatial reconstruction. Two major applications in diffuse 
optics of biological tissues are near infrared spectroscopy (NIRS) [or diffuse optical tomography (DOT)]6,8,9 and 
fluorescence imaging10,11. The advantages of the Rytov over the Born approximation have been discussed in 
several works6,8,9. They can be associated with the fact that while the Born approximation is linear in the change 
of the optical properties, the Rytov approximation contains higher powers of these changes, and for this reason 
it can describe some nonlinear effects.

More recently, with the advent of graphic processing units (GPU), Monte Carlo (MC) simulations have 
become increasingly important for simulating light propagation in tissues12–14. MC simulations allow for solving 
the radiative transfer equation (RTE)15 for any geometry and spatial distribution of the optical properties 
without approximations. Due to the increased speed in computation of GPU, MC simulations can be efficiently 
used as a forward problem solver embedded in inversion procedures16. Also, MC simulations allow for the 
fast computation of sensitivity functions (i.e., Jacobians) under general conditions of validity of the RTE16. In 
this regard, a coupled forward-adjoint method has been proposed for improving the variance of the sensitivity 
functions obtained with conventional methods17,18. For the case of sensitivity to absorption changes, the 
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conventional methods consist of mean pathlength calculations based on the intersection of detected photon 
trajectories with a region of interest (for which the Jacobian is calculated). In fact, for media verifying the 
microscopic Beer–Lambert law, the Jacobian of both the fluence rate and the reflectance with respect to the 
absorption coefficient of a region of interest have the physical meaning of mean pathlength of “detected photons” 
in the region of interest (see for example Eq. (11) in section "A random multivariate approach to perturbation 
theory of photon transport"). The coupled forward-adjoint method is rigorous and can be used in total generality 
within the validity of the RTE. However, due to the prohibitive memory requirement for typical problems in 
NIRS and DOT, the method has been used only for applications where one considers relatively short source-
detector separations (less than about 5 mm) where small tissue volumes are probed (e.g., skin)17. For NIRS-
DOT applications, whenever diffusion conditions are satisfied, a coupled forward-adjoint method based on the 
Rytov approximation has been proposed for the computation of Jacobians with Monte Carlo simulations19,20. If 
the measurement of interest is the fluence rate at a field point (r) due to a source point at r0, under the Rytov 
approximation, the continuous wave (CW) Jacobian for localized absorption perturbations with volume dV  at 
location r′, is obtained from the computation of three Green’s functions: (1) the Green’s function of the fluence 
rate at r′ due to a point source at r0, Gϕ0 (r0 → r′); (2) the Green’s function of the fluence rate at the field 
point r due to a point source at r′, Gϕ0 (r′ → r); (3) the Green’s function of the fluence rate at the field point r 
due to a point source at r0, Gϕ0 (r0 → r). For fluence rate calculations, the use of the reciprocity relationship 
(Gϕ0 (r′ → r) = Gϕ0 (r → r′)) makes this approach particularly effective. In fact, the Jacobian at all voxels 
requires only two MC simulations: (1) the direct simulation defined by placing an isotropic point source at r0 to 
calculate Gϕ0 (r0 → r′) for all r′; (2) an adjoint simulation obtained by placing a point source at r to calculate 

Gϕ0 (r → r′) for all r′. The Jacobian is obtained by 
Gϕ0 (r0→r′)Gϕ0 (r→r′)

Gϕ0 (r0→r) dV , where dV  is the volume of the 

absorption perturbation at r′. In this case, the only hypothesis needed for using the Rytov approximation is that 
diffusion conditions are satisfied. However, we notice that by using MC-based Green’s functions of the fluence 
rate, we are considering a hybrid method that can be effective for the calculation of Jacobians for a wide range 
of the baseline optical properties; most likely more effective than for the case when DE based Green’s functions 
are used.

For the calculation of Jacobians for reflectance measurements, the last two steps of the Jacobian calculation 
for the fluence rate must be modified in the following way21: (2a) the reflectance per unit source power calculated 
at the detector (rb) due to a point source at the voxel r′, R0 (r′ → rb); (3a) the reflectance per unit source power 
calculated at the detector due to a point source at r0, R0 (r0 → rb). In this case, the Jacobian is obtained as 
Gϕ0 (r0→r′)R0(r′→rb)

R0(r0→rb) dV . In step (2a) a generalized reciprocity relationship based on the properties of RTE17,22 

can be used to replace R0 (r′ → rb) with the calculation of the Green’s function of the fluence rate at r′ due to 
an adjoint source at rb (i.e.,Gϕ0 (rb → r′)), which is specified by the detector’s position, size, and emittance 
angle (which must match the acceptance angle in the direct calculation; see section "Relationship between the 
correct forward-adjoint method and the present work")17. This calculation should also consider the refractive 
index mismatch between diffusive and outer medium. Again, this allows for the calculation of the Jacobian at all 
voxels with only two simulations. Adjoint method calculations for reflectance measurements are also known in 
diffusion theory (DT) by use of a Robin source6. Also, in most literature where the DE is used23–26 the Jacobians 

for reflectance and fluence rate measurements are considered equivalent because of the adoption (not always 

openly disclosed) of the partial current boundary condition (PCBC)6,15: R0 (r → rb) = Gϕ0 (r→rb)
2A(nr) , where 

A (nr) is a constant that depends on the local refractive index mismatch (nr) between diffusive and outer 
medium at rb.

In this work, we investigate the calculation of Jacobians for absorbing perturbations, by showing several 
comparisons using both DT and MC simulations. MC simulations are used for both the calculation of fluence 
rate in the Rytov approximation, and for the calculation of the mean pathlengths for reflectance measurements 
(i.e., the correct Jacobians) in regions of interest. The main purpose of this work is to test, for a wide range 
of optical properties, the performance of the Rytov approximation for the calculation of Jacobians when the 
measurement of interest is the reflectance. A good part of our effort is dedicated to pointing out the physical 
meaning of the Rytov and Born approximations. This viewpoint provides a more intuitive picture on the photon 
transport process. For this purpose, we reframe the general perturbative approach to photon migration by using 
a definition of the fluence rate based on a random multivariate probability density function derived from the 
microscopic Beer–Lambert law (section "A random multivariate approach to perturbation theory of photon 
transport"). The concept of fluence rate partial pathlength moment is introduced and an explicit formula for 
a general moment is provided under diffusion conditions. The Born and Rytov approximations of the DE are 
introduced in section "Born and Rytov approximations and their physical meaning". It is immediately recognized 
how these expressions depend on the fluence rate partial pathlength (⟨li⟩ϕ) in a region of interest. In section 
"Calculation of reflectance based on Born and Rytov approximations" we provide an original formula for the 
reflectance under the Rytov approximation. The difference between the fluence rate and the reflectance partial 
pathlengths (⟨li⟩R) are discussed more in detail. In section "Relationship between the correct forward-adjoint 
method and the present work" we briefly review the rigorous coupled forward-adjoint method17 and we provide 
the links to the present work. In sections "Diffusion theory calculations” and "Monte Carlo simulations” the 
details of diffusion and MC calculations are provided, respectively. The results are described in section "Results". 
Section "Comparison of MC and diffusion theory results for the calculation of reflectance pathlengths" is 
dedicated to the comparison of reflectance partial pathlengths obtained independently with two MC codes 
and with DT. Section "Comparison of MCX and diffusion theory results for the calculation of fluence rate and 
reflectance pathlengths" is dedicated to the comparison of the Jacobians obtained with the Rytov approximation 
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for both DT and MC calculations. The reflectance partial pathlength obtained with MC (the true parameter of 
interest) is also shown for comparison. In section "Comparison of fluence rate pathlengths in presence of a highly 
absorbing thin layer" the same comparisons of section "Comparison of MCX and diffusion theory results for the 
calculation of fluence rate and reflectance pathlengths" are shown for a medium containing a highly absorbing 
thin layer. Section "Calculations of reflectance perturbation due to a strong localized absorption change" shows 
two examples of reflectance change for a wide range of absorption change that spans the linear and nonlinear 
regime. In this section we compare MC and DT calculations under the Born, Rytov and higher order (up to the 
fourth order) Born series. In section "Discussions" the results are discussed, and in section "Conclusions and 
future work” we summarize the main results in the conclusions.

Theory
A random multivariate approach to perturbation theory of photon transport
The physical basis of this section is the microscopic Beer–Lambert law21,27,28 (mBLL) which allows for a random 
multivariate framework of photon transport in a medium with an arbitrary spatial distribution of the scattering 
and absorption coefficients. This is the approach used in Monte Carlo methods for solving the RTE15. Here we 
replicate the method used in our previous publication21 but instead of focusing on the reflectance at a boundary 
point, we focus on the fluence rate at an arbitrary point inside a turbid medium. The theory is described for the 
continuous-wave domain (CW) but it can be developed also for time-domain and frequency-domain.

We divide a medium (of arbitrary non-concave geometry) into N  regions (of arbitrary shape) characterized 
by absorption and scattering coefficients µai, µsi(i = 1,2, ..., N), respectively. When light is emitted by a point 
source at r0, the fluence rate at a point r can be defined by using a random multivariate probability density 
function (pdf) f0 (l1, l2, . . . , lN )  normalized such that:

	
Gϕ0 (r0 → r) =

∫

RN+
f0 (l1, l2, . . . , lN ) dl1dl2 · · · dlN � (1)

where Gϕ0  is the Green’s function of the fluence rate ([Gϕ0 ] = L−2), and f0 (l1, l2, . . . , lN ) is the pdf 
([f0] = L-N−2) that a photon emitted at r0 and found at r spends the pathlengths l1, l2, . . . , lN  in the regions 
1,2, ..., N , respectively. Note that strictly speaking f0 is not a pdf, since it is not normalized to “1”. However, this 
fact is irrelevant for developing our arguments. For conciseness, in Eq. (1), we consider the dependence of f0 on 
r0 and r as implicit. For an arbitrary perturbation of the absorption coefficient ∆µai(i = 1, ..., N), based on 
the microscopic Beer–Lambert law27, the new pdf will be:

	 fp (l1, l2, . . . , lN ) = f0 (l1, l2, . . . , lN ) e
−

∑N

i=1
li∆µai � (2)

The integration of fp in RN+ yields Gϕp (r0 → r), i.e., the Green’s function of the perturbed fluence rate:

	
Gϕp (r0 → r) =

∫

RN+
fp (l1, l2, . . . , lN ) dl1dl2...dlN � (3)

By using a multivariate Taylor expansion of the exponential, we obtain:

	
Gϕp (r0 → r) = Gϕ0 (r0 → r)

∞∑
k1,k2,...,kN =0

(−1)k1+k2+...+kN
⟨lk1

1 lk2
2 . . . lkN

N ⟩
ϕ

k1!k2! . . . kN ! ∆µa1
k1 ∆µa2

k2 . . . ∆µaN
kN � (4)

where ⟨lk1
1 lk2

2 . . . lkN
N ⟩

ϕ
 is the mixed pathlength moment of order k1 + k2 + · · · + kN  defined by the relation:

	
⟨lk1

1 lk2
2 . . . lkN

N ⟩
ϕ

=
∫

RN+ lk1
1 lk2

2 ...lkN
N f0 (l1, l2, . . . , lN ) dl1dl2 . . . dlN∫

RN+ f0 (l1, l2, . . . , lN ) dl1dl2 . . . dlN

� (5)

The mixed pathlength moment of order k1 + k2 + · · · + kN  can be also defined as:

	
⟨lk1

1 lk2
2 . . . lkN

N ⟩
ϕ

= (−1)k1+k2+...+kN

Gϕ0 (r0 → r)
∂k1+k2+...+kN Gϕ0 (r0 → r)

∂µk1
a1 . . . ∂µkN

aN

� (6)

We can find an expression for the moments by solving the perturbative CW RTE21 which relates the change 
of absorption ∆µa (r) to the change in the radiance between an initial (L0) and a perturbed state (Lp), 
∆L (r, ŝ) = Lp (r, ŝ) − L0 (r, ŝ):

	
ŝ · ∇ [∆L (r, ŝ)] + µt (r) ∆L (r, ŝ) = µs (r)

∫

4π

p (̂s′ → ŝ) ∆L (r, ŝ′) dŝ′ − ∆µa (r)Lp (r, ŝ)� (7)

where L (r, ŝ) is the radiance, i.e., the number of photons travelling along the direction ̂s per unit time, per unit 
area orthogonal to ̂s, per unit solid angle ([L] = L−2Sr−1T−1), which depends on both spatial (r) and angular 
(̂s) variables; p (̂s′ → ŝ) is the phase function ([p] = Sr−1). Also, µt = µa + µs where, µt, µs and µa are the 
extinction, scattering and absorption coefficients, respectively. If the RTE for the initial and perturbed state have 

Scientific Reports |        (2024) 14:31266 3| https://doi.org/10.1038/s41598-024-82682-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


a source term S (r, ŝ) = δ (r − r0) δ (̂s − ŝ0), the solution of Eq. (7) is known as the Dyson equation for the 
Green’s function of the radiance29:

	
GLp (r0, ŝ0 → r, ŝ) = GL0 (r0, ŝ0 → r, ŝ) −

∫

V

dr′
∫

4π

∆µa

(
r′) GLp

(
r0, ŝ0 → r′, ŝ′

)
GL0

(
r′, ŝ′ → r, ŝ

)
dŝ′� (8)

where GL (r0, ŝ0 → r, ŝ) is the Green’s function of the radiance that is found at r in the direction ̂s when light 
is emitted at r0 in the direction ̂s0 ([GL] = L−2Sr−1). We note that the same method can also be used for the 
perturbative DE21,30.

The solution of the Dyson equation is expressed by the Neumann series31–33. Each order of the Neumann 
series can be integrated over the solid angle ŝ which provides the corresponding order of approximation for 
Gϕp (r0, ŝ0 → r) (i.e., the Green’s function of the fluence rate at r). Comparison with Eq.  (4) allows one to 
find the expression of the moments. We will provide the expression for a general mixed moment for the Dyson 
equation of the DE (see Eq. 13). For the RTE, it will suffice to find the first order moment, which corresponds 
to the first order of the Neumann series. For an isotropic source S (r, ŝ) = 1

4π
δ (r − r0), the corresponding 

Green’s function for the radiance will be GLiso (r0 → r, ŝ) = 1
4π

∫
4π

GL (r0, ŝ′ → r, ŝ) dŝ′. For a uniform 
change of absorption in the region V , the first order term of the Neumann series yields (from Eq. 8):

	
GLp,iso (r0 → r, ŝ) = GL0,iso (r0 → r, ŝ) − ∆µa

∫

V

dr′
∫

4π

GL0,iso

(
r0 → r′, ŝ′

)
GL0

(
r′, ŝ′ → r, ŝ

)
dŝ′� (9)

Integration of Eq. (9) over the angular variable ̂s yields:

	
∆Gϕ (r0 → r) = −∆µa

∫

V

dr′
∫

4π

dŝ

∫

4π

GL0,iso

(
r0 → r′, ŝ′

)
GL0

(
r′, ŝ′ → r, ŝ

)
dŝ′� (10)

where ∆Gϕ (r0 → r) = Gϕp (r0 → r) − Gϕ0 (r0 → r).

By using Eqs. (6) and (10) we obtain:

	
⟨li⟩ϕ = lim

∆µai→0
− 1

Gϕ0 (r0 → r)
∆Gϕ (r0 → r)

∆µai
=

∫
Vi

dr′ ∫
4π

dŝ
∫

4π
GL0,iso (r0 → r′, ŝ′) GL0 (r′, ŝ′ → r, ŝ) dŝ′

Gϕ0 (r0 → r)
� (11)

where ⟨li⟩ϕ is the average pathlength spent in the region of interest when photons are emitted from  r0 and later 
found at r. We name this type of partial pathlength as fluence rate partial pathlength. It is also the absorption 

Jacobian of the logarithmic Green’s function, ln
(

Gϕ(r0→r)
Ψref

)
, where Ψref  is an arbitrary reference intensity per 

unit source power ([Ψref ] = L−2). If we can assume that under certain conditions of highly diffusive media 
GL0 (r′, ŝ′ → r, ŝ) ≈ GL0,iso (r′ → r, ŝ), or GL0,iso (r0 → r′, ŝ′) ≈ 1

4π
Gϕ0 (r0 → r′) (or both) then we 

can decouple the two Green’s functions in Eq. (11) and carry out the two angular integrations separately. In this 
way we obtain:

	
⟨li⟩ϕ =

∫
Vi

Gϕ0 (r0 → r′) Gϕ0 (r′ → r) dr′

Gϕ0 (r0 → r)
� (12)

We shall see in the next section that this expression is also obtained from the Rytov approximation for the DE [We 
note that more appropriately in DT GL0,iso (r0 → r′, ŝ′) ≈ 1

4π
Gϕ0 (r0 → r′) + 3

4π
J0 (r0 → r′) · ŝ′, where J0 

is the net flux vector15. If we plug this expression into Eq. (11) and we make no assumption for GL0 (r′, ŝ′ → r, ŝ) , 
we will arrive to Eq.  (12) with the additional term − 3

4πGϕ0 (r0→r)

∫
Vi

J0 (r0 → r′) · J0 (r → r′) dr′ on the 
right side. This term is supposed to be negligible with respect to the fluence term].

When diffusion conditions are met, we can solve the perturbative diffusion equation to calculate 
Gϕp (r0 → r) by use of the Neumann series. The general expression of the mixed pathlength moment of order 
n = k1 + k2 + .. + km involving m regions (m ≤ N ) is given by Sassaroli et al.21:

	
⟨lk1

1 lk2
2 ...lkm

m ⟩ϕ = k1!k2! . . . km!
Gϕ0 (r0 → r)

∑
℘(i1,i2,...,in)

∫

Vi1

Gϕ0 (r0 → ri1 ) Gϕ0 (ri1 → ri2 ) dri1

∫

Vi2

Gϕ0 (ri2 → ri3 ) dri2 × · · · ×
∫

Vin−1

Gϕ0

(
rin−1 → rin

)
drin−1

∫

Vin

Gϕ0 (rin → r) drin� (13)

where ℘ (i1, i2, . . . , in) is the permutation of n integers with repetitions. The first k1 integers i1, i2, . . . , ik1  
are assigned to region “1” (i1= i2 = · · · = ik1 = 1), the next k2 indices are assigned to region “2” 
(ik1+1= ik1+2 = · · · = ik1+k2 = 2), etc. Therefore, the number of permutations is n!

k1!k2!...km! . Further, 
Gϕ0 (ri → rj) is the Green’s function for the fluence rate for a source at ri and a field point at rj . The mixed 
moment of Eq. (13) is a measure of the interaction between different points of the medium. It can be thought 
as proportional to the probability that a photon emitted at r0 and found at r will visit k1 points of region 1, k2 
points of region 2 etc. The normalization is provided by the probability that a photon emitted at r0 and found 
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at r will visit n points (n = k1 + k2 + .. + km) of the whole medium. Another way to rephrase the previous 
statement is in terms of the number of scattering events. We note that Eq. (12) is a particular case of Eq. (13), 
as expected. We also note that Eq. (13) is formally valid also for the moments obtained under the validity of the 
RTE, if we substitute Gϕ0

(
rij → rij+1

)
 with GL0

(
rij , ŝij → rij+1 , ŝij+1

)
 and integration is carried out 

over both spatial and angular domains.

In this work we choose to focus on the simple situation where one region is subject to a uniform absorption 
change ∆µai. Therefore, from Eq. (4) we have:

	
Gϕp (r0 → r) = Gϕ0 (r0 → r)

∞∑
k=0

(−1)k
⟨lk

i ⟩ϕ

k! ∆µai
k � (14)

where ⟨lk
i ⟩ϕ is the self-moment of order k, which is proportional to the probability that a photon emitted at 

r0 and found at r visits k points of the region of interest. We note that the expression of ⟨lk
i ⟩ϕ is included in 

the general expression of a mixed moment (Eq. 13). For reflectance calculations, Rp (r0 → r) has the same 
form of Eq. (14) but with Gϕ0 (r0 → r) replaced by R0 (r0 → r), and ⟨lk

i ⟩ϕ replaced by ⟨lk
i ⟩R21. The general 

expression of the mixed moment of Eq. (13) is also valid for reflectance calculations with the only substitution 
of the last integrand Gϕ0 (rin → r)  with R0 (rin → rb), where rb is a boundary point where the detector is 
located.

Born and Rytov approximations and their physical meaning
Equation  (14) is valid for arbitrary changes of the absorption coefficient, however, more commonly 
the perturbative diffusion equation is solved according to the Born or Rytov approximations, 
which assume small changes in the absorption coefficient. The Born approximation assumes that 
∆Gϕ (r0 → r) = Gϕp (r0 → r) − Gϕ0 (r0 → r) ≪ Gϕ0 (r0 → r)15. In other words, the change in the 
Green’s function should be much smaller than the unperturbed value. This is equivalent to retaining the first 
order expansion of Eq. (14) (i.e., infinitesimal changes of the absorption coefficient):

	 Gϕp (r0 → r) ≈ Gϕ0 (r0 → r)
[
1 − ⟨li⟩ϕ∆µai

]
� (15)

The Rytov approximation seeks a solution to the diffusion equation of the type:

	 Gϕp (r0 → r) = Gϕ0 (r0 → r) e−ψ(r0,r)� (16)

After some calculations (Supplementary Information S1) we arrive to the expression for the exponent:

	
ψ (r0, r) = 1

Gϕ0 (r0 → r)

∫

V ′
Gϕ0

(
r0 → r′) {

∆µa

(
r′) −

[
D

(
r′) ∥∇ψ

(
r0, r′) ∥2

]}
Gϕ0

(
r′ → r

)
dr′� (17)

The assumption of the Rytov approximation is to neglect D (r′) ∥∇ψ (r0, r′) ∥2 in the integrand, therefore we 
obtain (for ∆µa (r′) = ∆µai):

	
ψ (r0, r) = ∆µai

Gϕ0 (r0 → r)

∫

V ′
Gϕ0

(
r0 → r′) Gϕ0

(
r′ → r

)
dr′ = ⟨li⟩ϕ∆µai� (18)

The formula derived by the Rytov approximation for the exponent yields the product of the fluence rate partial 
pathlength and the change in the absorption coefficient.

Now we observe that Eq. (16) can be rewritten as:

	
Gϕp (r0 → r) = Gϕ0 (r0 → r) e−⟨li⟩ϕ∆µai = Gϕ0 (r0 → r)

∑∞

k=0
(−1)k

⟨li⟩k
ϕ

k! ∆µai
k � (19)

Three important considerations follow: (1) the Rytov approximation (unlike the Born approximation) is not linear 
with ∆µai, therefore it can describe some nonlinear effects due to absorption changes (see section "Calculations 
of reflectance perturbation due to a strong localized absorption change"); (2) by comparing Eqs. (19) and (14) 
the physical approximation inherent in the Rytov approximation is that ⟨lk

i ⟩ϕ can be substituted by ⟨li⟩k
ϕ. This 

assumption is usually a poor one and leads to miscalculations for large values of ∆µai (see section "Calculations 
of reflectance perturbation due to a strong localized absorption change"). (3) We can easily verify that the Born 
and Rytov approximations coincide when ∆µai → 0 i.e., when only the first term of Eq. (14) is retained.

In conclusion, the Rytov approximation has the natural physical interpretation that its exponent is the 
product of the fluence rate partial pathlength times the change of the absorption coefficient in a region of 
interest. Therefore Eq. (19) shows an elegant link between the Rytov approximation and Beer–Lambert law for 
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clear media when a change of the absorption coefficient occurs in a region of the medium: Id = I0e−Li∆µai , 
where I0 and Id are the detected intensities before and after the absorption change (∆µai), respectively, and 
Li is the direct pathlength of photons crossing the region. We can see that they are formally the same equation 
with the substitution of Li with ⟨li⟩ϕ. Equation (19) also implies that for the calculation of perturbations of the 
fluence rate due to absorption changes, higher order terms of the series (Eq. 19) depend on ⟨li⟩k

ϕ instead of ⟨lk
i ⟩ϕ 

(Eq. 14).

Calculation of reflectance based on Born and Rytov approximations
Now we address the calculation of the reflectance under the Born and Rytov approximations by using Fick’s 
law: Rp (r0 → rb) = −D (rb) ∇Gϕp (r0 → r)|r=rb

· n̂ (rb), where n̂ (rb) is the unit outward vector at the 
boundary point rb. This means that we assume a detector at rb with a 90° acceptance angle. When the fluence rate 
is obtained from the Born approximation (Eq. 15), by carrying out the gradient and considering the expression 
for ⟨li⟩ϕ (Eq. 12) we obtain:

	 Rp (r0 → rb) = R0 (r0 → rb)
[
1 − ⟨li⟩R∆µai

]
� (20)

Therefore, the Born approximation for the reflectance has the same form as for the fluence rate, except the mean 
pathlength in the region of interest is considered for photons exiting the medium (i.e., ⟨li⟩R). The expression for 
⟨li⟩R is easily obtained by applying Fick’s law to Eq. (15):

	
⟨li⟩R = 1

R0 (r0 → rb)

∫

V ′
Gϕ0

(
r0 → r′) R0

(
r′ → rb

)
dr′� (21)

here, R0 (r′ → rb) is the reflectance for a point source at r′ calculated at rb. When the fluence rate is obtained 
from Rytov approximation, after some calculations (Supplementary Information S2) we obtain:

	 Rp (r0 → rb) = R0 (r0 → rb) e−ψ(r0,r) [
1 − ∆µai

(
⟨li⟩R − ⟨li⟩ϕ

)]
� (22)

where, ψ (r0, r) is given by Eq. (18). Therefore, the Rytov approximation for the reflectance has the same form 
as for the fluence rate only if ⟨li⟩R = ⟨li⟩ϕ. Even though the expressions of these mean pathlengths are distinct, 
when r = rb their values can be very close to each other. In fact, for the calculation of ⟨li⟩ϕ we consider the 
average pathlengths of photons emitted at r0 that cross the region of interest and are found at rb. A subset of 
these photons will exit the medium at the same point, and it can be anticipated that the average pathlength 
calculated from this subset (which is ⟨li⟩R) yields similar values in several situations of interest in diffuse optics. 
Even from the standpoint of MC simulations these two pathlengths have distinct definitions. If we consider a 
photon visiting a field point r as “detected” in terms of fluence rate, the main difference between fluence rate and 
reflectance pathlengths is that a photon can be detected multiple times for fluence rate measurements, but only 
one time for reflectance measurements (Supplementary Information S3). These considerations also highlight, by 
directly reasoning with the physics of photon migration, the approximate nature of the PCBC used for solving 
DE. According to this boundary condition we would have ⟨li⟩R = ⟨li⟩ϕ, and the form of Rytov approximation 
for the reflectance perturbation would be the same as the Rytov approximation itself (Eq. 16). This is the most 
common approach adopted in the literature.

We also note that the expressions for the perturbed reflectance obtained under Born approximation (Eq. 20) and 
Rytov approximation (Eq. 22) coincide when ∆µai → 0. In fact, Eq. (22) can be rewritten as:

	
ln

(
Rp (r0 → rb)
R0 (r0 → rb)

)
= −ψ (rs, r) + ln

{[
1 − ∆µai

(
⟨li⟩R − ⟨li⟩ϕ

)]}
� (23)

When ∆µai → 0 and Rp (r0 → rb) → R0 (r0 → rb), by taking the Taylor expansion of the logarithms of 
Eq. (22) we have that:

	
Rp (r0 → rb)
R0 (r0 → rb) − 1 = −⟨li⟩R∆µai� (24)

which is Eq. (20). Of course, this is true also for the perturbed fluence rates obtained under the Born and Rytov 
approximations, which in the limit ∆µai → 0 must coincide.

Relationship between the correct forward-adjoint method and the present work
The main advantage of the coupled forward-adjoint method is to reduce the variance of the estimate of the 
absorption Jacobians in general situations where RTE is valid17,18. The method is also efficient because 
it allows one to provide a map of the absorption sensitivities in a region of interest by using only two MC 
simulations for each source-detector pair. The method relies on the reciprocity theorem in the RTE34 
GL0 (r1, ŝ1 → r2, ŝ2) = GL0 (r2, −ŝ2 → r1, −ŝ1) which describes the reversibility of light paths. For a 
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medium with varying refractive index the theorem has a modified form35. To see the importance of the adjoint 
method, let us consider a case where the physical quantity of interest is the fluence rate at a point r (detector) when 
photons are emitted isotropically at r0 (source). The traditional method to calculate the absorption Jacobian at 
a region of interest is to propagate the photons from the source and calculate the pathlength travelled by each 
photon in the region of interest (r′). This number is stored in memory and will be used only if a photon reaches 
the detector (r). Therefore, depending on the details of the simulation (i.e., size of the region of interest, size of 
source and detector, source-detector distance, optical properties of the medium) much of the computation will 
not be used because only a small fraction of the photons that intersect the region of interest are detected. To 
alleviate this problem, we can use the reciprocity theorem in Eq. (11) which we rewrite as follows:

	
⟨li⟩ϕ =

∫
Vi

dr′∫
4π

dŝ
∫

4π
GL0,iso (r0 → r′, ŝ′) GL0

(
r, −ŝ → r′

, −ŝ′) dŝ′

Gϕ0 (r0 → r) =
4π

∫
Vi

dr′∫
4π

GL0,iso (r0 → r′, ŝ′) GL0,iso (r → r′, −ŝ′) dŝ′

Gϕ0 (r0 → r)
� (25)

and thus:

	
⟨li⟩ϕ =

4π
∫

Vi
dr′∫

4π
GL0,iso (r0 → r′, ŝ′) G⋆

L0,iso
(r → r′, ŝ′) dŝ′

Gϕ0 (r0 → r)
� (26)

where G⋆
L0,iso

(r → r′, ŝ′) is the solution of the adjoint RTE equation for an isotropic point source at r17,18. This 
equation governs the radiance when the roles of source and detectors are swapped. We can see from Eqs. (25) 
and (26) that we achieve our goal by multiplying two Green’s functions’ fields: one from the source at r0 to the 
region of interest at r′ in the direct simulation (GL0,iso (r0 → r′, ŝ′)), and the other from the detector at r to 
the region of interest at r′ in the adjoint simulation (G⋆

L0,iso
(r → r′, ŝ′)). In this situation any photon that 

reaches the region of interest in the two simulations counts for the calculation of the Jacobian. We note that 
Eq. (26), apart from the normalization, has the same form as in the work of Gardner, 2014 Eq. (4)18. Also, with 
our approach, the interrogation density function proposed by Hayakawa, 2007 Eq. (5.1)17 has a straightforward 
physical interpretation as the ratio of partial over total mean pathlengths: ⟨li⟩ϕ/⟨L⟩ϕ and ⟨li⟩R/⟨L⟩R for 
fluence rate and reflectance measurements, respectively. These ratios are naturally normalized to 1 when we 
integrate over the whole medium. We note that for the calculation of ⟨li⟩R one must also consider the refractive 
index mismatch between the diffusive and the outer medium. The general formula for ⟨li⟩R for an isotropic 
point source at r0 is:

	
⟨li⟩R =

∫
Vi

dr′∫
Ω [1 − rio (̂s · n̂)] ŝ · n̂dŝ

∫
4π

GL0,iso (r0 → r′, ŝ′) GL0 (r′, ŝ′ → rb, ŝ) dŝ′

∫
Ω [1 − rio (̂s · n̂)] GL0,iso (r0 → rb, ŝ) ŝ · n̂dŝ

� (27)

where Ω is the acceptance angle of the detector in the medium, n̂ the unit vector directed outward to the medium 
at the location of the detector (̂s · n̂ ≥ 0), and rio is the reflection coefficient for unpolarized light for photons 
propagating from the diffusive to the outer medium. Here for simplicity, we have considered a point detector (at 
rb). Even for reflectance calculations a map of the absorption sensitivity can be obtained by using only a direct 
and an adjoint MC simulation. Before describing these two simulations, we note that in general the two angular 
integrals of Eq. (27) cannot be decoupled. Under diffusion conditions the decoupling is possible (see section "A 
random multivariate approach to perturbation theory of photon transport"), and Eq. (27) reduces to Eq. (21). 
In this situation the direct simulation is used for the calculation of GL0,iso (r0 → r′, ŝ′) ≈ 1

4π
Gϕ0 (r0 → r′) 

and the denominator of Eq. (27), i.e., R0 (r0 → rb). The adjoint simulation is used for estimating R0 (r′ → rb) 
(Eq.  21), which is obtained by the Green’s function GL0 (r′, ŝ′ → rb, ŝ) of Eq.  (27), by considering that 
GL0 (r′, ŝ′ → rb, ŝ) ≈ GL0,iso (r′ → rb, ŝ). The appropriate adjoint simulation to calculate R0 (r′ → rb) at 
all points r′, is again obtained by using the reciprocity theorem: GL0 (r′, ŝ′ → rb, ŝ) = GL0 (rb, −ŝ → r′, −ŝ′)
. Integration over ̂s′ in Eq. (27) yields Gϕ0 (rb, −ŝ → r′). Therefore, we can provide the following “recipe” for 
the adjoint MC simulation: we inject the photons in the medium at rb isotropically within the acceptance angle 
Ω; each photon is assigned a weight w = 1

4π
[1 − rio (̂s · n̂)] ŝ · n̂, and its contribution to the fluence rate at 

r′ is calculated. In the expression of w the effect of the refractive index mismatch is considered in the factor 
wr = [1 − rio (̂s · n̂)]. Alternatively, one can use random numbers to decide if an emitted photon is either 
reflected or transmitted in the medium. In both cases, the number of emitted photons is used for normalization. 
We point out that the adjoint simulation does not require the knowledge of the exact angular distribution of 
the detected radiance in the direct simulation, but only the knowledge of the spatial and angular features of the 
detector.

Methods
Both diffusion theory (DT) calculations and MC simulations were obtained for nine combinations of 
the optical properties in a semi-infinite medium geometry. The values of the absorption coefficient 
were: µa = (0.005, 0.01, 0.02) mm−1, while the values of the reduced scattering coefficient were: 
µ′

s = (0.5, 1, 1.5) mm−1. The reduced albedo ( µ′
s

µ′
s+µa

) covered the range (0.961, 0.997), where the first and 
last endpoints correspond to  (µa, µ′

s) = (0.02, 0.5) mm−1 and (µa, µ′
s) = (0.005, 1.5) mm−1, respectively.
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Diffusion theory calculations
The partial pathlength in a region of interest was calculated for exiting photons (here defined as reflectance 
pathlengths, ⟨li⟩R) or for photons crossing an observation point inside the medium or at its boundary (here 
defined as fluence rate pathlengths ⟨li⟩ϕ). The formulas used for the two cases are:

	
⟨li⟩R =

∫
V

Gϕ0 (r0 → r′) R0 (r′ → rb) dr′

R0 (r0 → rb)
� (28)

and

	
⟨li⟩ϕ =

∫
V

Gϕ0 (r0 → r′) Gϕ0 (r′ → rb) dr′

Gϕ0 (r0 → rb)
� (29)

where r0 = (x0, y0, z0) = (0,0, 1/µ′
s), is the location of the point source, r′ = (x′, y′, z′) is a point inside the 

region of interest, rb = (ρ, 0,0) is the position of the detector, and V  is the region of interest. Gϕ0 (ri → rj) 
is the Green’s function of the fluence rate for a point source at ri and calculated at rj . R0 (ri → rb) is obtained 
by Fick’s law: R0 (ri → rb) = −D∇Gϕ0 (ri → r)|r=rb

 (where, D = 1
(3µ′

s)  is the diffusion coefficient). 
Extrapolated boundary conditions (EBC) were used for the calculations of Gϕ0  and R0 in the semi-infinite 
medium geometry where the surface is orthogonal to ẑ (Fig.  1). The solutions have been given in previous 
publications21,36. While the correct definition of fluence rate partial pathlength at the detector’s position implies 
that r = rb = (ρ, 0, 0) (see Fig. 1), for comparison with MC data we have also used r = (ρ, 0, s/2) (where 
s/2 = 0.5 mm corresponds to half a voxel size in the MC code MCX; see section "Monte Carlo simulations”) 
and r = (ρ, 0, 1/µ′

s).

For the calculations of reflectance change for a wide range of localized absorption changes (see Eq. 14), higher 
order moments, here considered up to the fourth order, are needed. We used an approximate formula which we 
have proven to be effective and faster than calculating multiple volume integrals21:

	
⟨ln

i ⟩R ≈ cn−1⟨li⟩R

[∫

V

Gϕ0,∞

(∣∣rc − r′∣∣) dr′
]n−1

n ≥ 2� (30)

where, Gϕ0,∞ (|rc − r′|) is the Green’s function of the DE in the infinite medium geometry, when the point 
source is at the center (rc) of the region of interest. The factors cn−1 (n = 2, 3,4) are numeric quasi-constants 
(they are rather independent of the optical properties of the medium, the location and partly the size of the region 
of interest). The values of the numeric quasi-constant are:  c1 ≈ 1.5, c2 ≈ 3.5, c3 ≈ 10 (see Supplementary 
information S4). A schematic of the medium, the source-detector system and the regions of interest are shown 
in Fig. 1.

Fig. 1.  Schematic of the diffusive medium used, featuring one pencil beam source (S) and three detectors at 
the distance ρ = 15, 25, 35 mm. In all the figures (except Figs. 7,8) the medium was homogeneous. For the 
Figs. 7,8 the medium contained a high-absorbing 1 mm thick layer. Two regions of interest were used: (1) a 
cube having a side of 6 mm (for the Figs. 2, 3, 9, 10); (2) a cube having a side of 1 mm (for the Figs. 4,5,6,7,8). 
For the calculation of Jacobians (Figs. 2, 3, 4,5,6,7, 8) the region of interest had the same optical properties 
of the bulk medium. For the forward problem calculations (Figs. 9, 10), the region of interest had a different 
absorption coefficient than the bulk medium. The outer and inner refractive indices are no = 1 and ni = 1.4, 
respectively.
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For the calculations of Eqs. (28), (29), the region of interest was divided in smaller voxels (1 mm side) and for 
comparison with MC results, we considered detectors of areas that matched those used in MC.

Monte Carlo simulations
We used two MC codes, one in FORTRAN37 and MCX (2020 release)12. The FORTRAN MC terminated when 
100,000 photons were detected in each of the three detectors (Fig. 1). For MCX we launched 1 billion photons 
and detected a number of photons in the range (5 × 104, 4.6 × 105). Both MCs are white MC codes, i.e., the 
photons are injected in a non-absorbing medium and the distribution of the absorption coefficient is considered 
a posteriori by assigning to each detected photon a specific weight. Both MC codes were used for the calculation 
of ⟨li⟩R according to the formula:

	
⟨li⟩R_MC =

∑ntotal

j=1 lije−µailij e−µaoloj

∑ntotal

j=1 e−µailij e−µaoloj
� (31)

where ntotal is the number of detected photons, µai and µao are the absorption coefficients inside and outside 
the region of interest, respectively, lij  and loj  are the pathlengths spent inside and outside the region of interest 
by the jth detected photon, respectively. Note that for the comparison of ⟨li⟩R_MC  obtained with the two MC 
codes, we have considered only the case µai = µao. On the contrary, for the calculation of reflectance change, 
we have used both µai ≥ µao and µai ≤ µao. The comparison between the two MC codes was run for the 
case of isotropic scattering (asymmetry parameter g = 0), and an outer and inner refractive index of no = 1 
and ni = 1.4, respectively. For both MCs we considered a pencil beam with the first scattering event occurring 
along the z axis. Also, we considered detectors of area (1, 4, 16) mm2 at the source-detector separations 
ρ = 15, 25, 35 mm, respectively.

Based on Eq. (29), MCX was also used for the calculation of  ⟨li⟩ϕ with the following caveats: (1) a pencil beam is 
used as a source at (0,0,0); the fluence rate calculated by this simulation provides an estimation of Gϕ0 (r0 → r′) 
in Eq.  (29); (2) an isotropic point source is placed in the middle of the first voxel r = (ρ, 0, s/2), where s 
is the voxel size; this allows for the calculation of Gϕ0 (r′ → rb) by use of the reciprocity theorem with the 
approximation that rb ≈ (ρ, 0, s/2); (3) the normalization factor is obtained by the calculation of the fluence rate 
at r = (ρ, 0, s/2) when the source is a pencil beam at (0,0,0). Steps 2) and 3) are also replaced by the following: a 
pencil beam is placed at the detector position rb = (ρ, 0, 0)  and is used for evaluating Gϕ0 (r → rb) of Eq. (29) 
by the reciprocity theorem. The normalization factor is the fluence rate from the pencil beam at (0,0,0) calculated 
at a point r = (ρ, 0,1/µ′

s) (denominator of Eq. (29)). The reason for these two methods is because in one case 
we wanted to apply the correct Rytov approximation which for the adjoint simulation implies an isotropic source 
placed at the boundary. The best one can do is to place the source at the center of the first voxel. In the other 
case we were looking for a strategy to obtain the best match with the reflectance mean pathlengths. The MC 
simulations were carried out for g = 0.9. In all the fluence rate calculations, the fluence rates are calculated at the 
center of a 1 mm3 voxel and represent the average value inside the voxel. In the figures where MC calculations 
of ⟨li⟩ϕ are shown, we also report ⟨li⟩R_MC  by the same MCX code. For the calculation of ⟨li⟩R_MC  the 
detector’s radius was  0.45, 1.8 mm at the source-detector distance of 15 and 25 mm, respectively; the third 
receiver, at the distance of 35 mm, had a radius of 4.3 mm for the highest reduced albedo and 6.2 mm for the 
other combinations. This was done to speed up the convergence of the calculation at the farthest source-detector 
separation. However, this choice affected the accuracy of the comparisons at this receiver (see discussion in 
section "Comparison of MCX and diffusion theory results for the calculation of fluence rate and reflectance 
pathlengths" and the supplementary information S5).

We also used MCX for comparison of ⟨li⟩ϕ and ⟨li⟩R_MC  for a medium with a 1 mm thick highly absorbing 
layer (mimicking melanin) embedded in it (see Fig. 1). The optical properties of the bulk of the medium and 
the thin layer were (µab, µ′

sb) = (0.01, 1) mm−1 and 
(
µa,mel, µ′

s,mel

)
= (2, 1) mm−1, respectively. The 

absorption of the thin layer can be representative of melanin in epidermis. The source-detector separation was 
ρ = 35 mm and the area of the detector 1 mm2. The region of interest (for which the Jacobian is calculated) 
also in this case was a cube of side 1 mm (Fig. 1). To obtain good statistics we injected 130 billion photons.

Last, the FORTRAN MC was used for perturbation calculations with the geometry of Fig. 1 and with the 
features described at the beginning of this section. For each source-detector separation we calculated the change 
of reflectance due to a change of the absorption coefficient in a single cubic region (of side 6 mm) half-way 
between source and detector and at a depth of z = 12 mm. The change of absorption coefficient inside the cube 
spanned the range ∆µa ∈ (−0.02, 0.04) mm−1.

Results
In section "Comparison of MC and diffusion theory results for the calculation of reflectance pathlengths" the 
comparison of MCX12 and the FORTRAN MC37 is carried out for the estimation of ⟨li⟩R_MC . Two cases are 
shown corresponding to the lowest and the highest reduced albedos. In the same plots ⟨li⟩R (Eq. 28) and ⟨li⟩ϕ
(Eq. 29) are also shown. In section "Comparison of MCX and diffusion theory results for the calculation of 
fluence rate and reflectance pathlengths" are shown the comparisons of ⟨li⟩R_MC  and ⟨li⟩ϕ, the latter obtained 
with both MCX and diffusion theory by using Eq. (29). In this section we also considered the optical properties 
relative to the lowest and highest reduced albedos, together with a case referred to typical optical properties, 
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i.e., (µa, µ′
s) = (0.01, 1) mm−1. In section "Comparison of fluence rate pathlengths in presence of a highly 

absorbing thin layer" we present the results for the medium with a thin highly absorbing layer. Finally, in section 
"Calculations of reflectance perturbation due to a strong localized absorption change" we present the results of 
perturbation of detected intensity caused by a large range of the absorption contrast between region of interest 
and background medium.

Comparison of MC and diffusion theory results for the calculation of reflectance pathlengths
In Fig. 2 we show the comparison of ⟨li⟩R_MC  obtained with the FORTRAN MC and MCX for the case of the 
cube of side 6 mm (Fig. 1). The calculations were run for (µa, µ′

s) = (0.02, 0.5) mm−1 (lowest reduced albedo). 
The results obtained with MCX are shown together with their errors obtained by running three independent 
simulations. In the same plots ⟨li⟩R and  ⟨li⟩ϕ obtained with DT (Eqs. 28, 29, respectively) are also shown. For 
the case of ⟨li⟩ϕ the fluence rate was calculated at z = 0 (i.e., the detector was at r = rb = (ρ, 0,0)). The results 
obtained with the two MC codes match within statistical error, which is shown only for the MCX code. Even 
with this choice of the optical properties, we can see a good agreement between the two MC results and with 
DT, especially with ⟨li⟩R, as is expected. The maximum discrepancy between the two types of mean pathlengths 
according to DT is about 70% at the source-detector separation ρ = 15 mm and depth of the region of interest 
z = 12 mm, and becomes smaller at ρ = 25 mm and ρ = 35 mm. In Fig. 3 we show the same comparison for 
the highest reduced albedo: (µa, µ′

s) = (0.005, 1.5) mm−1.
There is an excellent agreement between the two MC codes and between them and DT, especially for ⟨li⟩R. 

The discrepancy between the two types of mean pathlengths are less than about 10% for all cases considered. For 
other values of the optical properties, we found an excellent agreement between MC codes, while the agreement 
between the two types of pathlength depended mostly on µ′

s and little on the values of µa. These tests show the 
consistency of the independent methods of calculation.

Comparison of MCX and diffusion theory results for the calculation of fluence rate and 
reflectance pathlengths
In Fig. 4 we show the comparison of fluence rate partial pathlengths (Eq. 29) calculated with both MC and DT 
for the optical properties: (µa, µ′

s) = (0.02, 0.5) mm−1. In this case the region of interest was a cube of 1 mm 
side (Fig. 1) and was scanned at the depths z = 6.5, 12.5, 20.5 mm (top, middle and bottom row, respectively).

For the calculation of ⟨li⟩ϕ with MCX, the direct simulations were carried out for a pencil beam at (0, 0, 
0). The adjoint simulations were carried out in two different ways: (1) for the case of an isotropic point source 
at (ρ, 0, s/2) (⟨li⟩ϕ_MCX(z= s

2 )); (2) for a pencil beam at (ρ, 0,0) (⟨li⟩ϕ_MCX(z=1/µ′
s)), respectively. For 

the denominator of Eq. (29), r was chosen either as r = (ρ, 0, s/2) (s = 1 mm is the voxel size) for case 1), 
or r = (ρ, 0,1/µ′

s) for case 2). The reflectance partial pathlength calculated with MCX (⟨li⟩R_MCX ), using 
detectors’ areas specified in section "Monte Carlo simulations”, are also reported. MCX results are plotted with 
their standard deviations obtained with three independent simulations.

We note that for ⟨li⟩ϕ the results are more sensitive on the details of the adjoint calculation and the 
normalization factor, especially for this case (lowest reduced albedo). All the different methods have different 
biases with respect to ⟨li⟩R_MC , which is the real target for reflectance calculations. We note a discrepancy 
among the methods also at the depth of z = 20.5 mm. One clear advantage of using the adjoint method with the 
MC method is the improvement of the statistical error on ⟨li⟩ϕ with respect to the conventional method for the 
calculation of ⟨li⟩R_MC . This is visible more clearly at z = 20.5 mm. The comparisons of partial pathlengths 
for the optical properties (µa, µ′

s) = (0.01, 1) mm−1 and (µa, µ′
s) = (0.005, 1.5) mm−1 are shown in 

Figs. 5 and 6, respectively. From these figures we can see that the difference between DT and MC calculations 
becomes almost negligible. This is also true for the two types of mean pathlengths regardless of the details of the 
calculations. In Figs. 5 and 6 the discrepancies between ⟨li⟩ϕ and ⟨li⟩R_MC  at the source-detector separation of 
35 mm for locations close to the detector are an effect of the large detectors used for the calculation of ⟨li⟩R_MC
: the detector’s radius is 6.2 mm in Fig. 5, and 4.3 mm in Fig. 6. The discrepancies disappear once we choose a 
detector of smaller size (see Supplementary Information S5). We finally note that the calculation of ⟨li⟩ϕ with 
DT and r = (ρ, 0, s/2) represents a slight overestimation of the same type of calculation for r = rb = (ρ, 0, 0) 
which amounts to about 5–6% at the shortest source-detector separation for (µa, µ′

s) = (0.02, 0.5) mm−1. 
The overestimation becomes 1–2% in all the other cases. One may infer that a similar consideration would apply 
to MC calculations.

Comparison of fluence rate pathlengths in presence of a highly absorbing thin layer
Last, in Fig.  7, we want to explore how Rytov approximation behaves for a medium containing a highly 
absorbing layer (Fig. 1). By studying this case we can get a sense about the correctness of this approximation 
for the calculation of Jacobians, in the presence of discrete strong absorbers like blood vessels. We show the 
comparison between ⟨li⟩R_MC  and ⟨li⟩ϕ for a medium with 1 mm thick layer at the depth of z = 6.5 mm
. The optical properties of the bulk of the medium are (µab, µ′

sb) = (0.01, 1) mm−1, while for the absorbing 
layer 

(
µa,mel, µ′

s,mel

)
= (2, 1) mm−1.

The absorption of the thin layer can be representative of melanin in the epidermis, but the location can be 
representative of a blood vessel. The source-detector separation is ρ = 35 mm and the area of the detector 
1 mm2. The region of interest (cube of 1 mm side) was scanned along the x axis at a depth of z = 12.5 mm. We 
considered ⟨li⟩ϕ calculated in the same two ways as in Figs. 4, 5 and 6. As we can see, the three calculations show 
a good agreement to within statistical errors. These results give us confidence that the Rytov approximation can 
be applied for the calculation of absorption Jacobians also in presence of strong absorbers. However, we want to 
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caution about possible problems when the thin absorbing layer is at the boundary (as a true melanin layer). To 
avoid these problems, we have proposed a calibration method38.

These results are shown in Fig. 8, where we can see that the discrepancies between the two pathlengths are 
large, especially when we consider an adjoint simulation with a pencil beam at the detector’s location and the 
normalization is carried out at r = (ρ, 0,1/µ′

s) (orange symbols). We notice that the main difference between 
the correct Jacobian (black symbols) and the blue and orange symbols is an amplitude factor. This is mostly 
due to the rapid decrease of the fluence rate inside the melanin layer which causes a large overestimation of the 
denominator in Eq. (29) when we approximate the true normalization factor (i.e., the fluence rate at z = 0) with 
those used in the simulations. One solution could be to use a much smaller voxel size; however, the simulation 
will have to run for a longer time to have the same statistical significance. Besides, there might also be a small 
effect due to the highly absorbing layer, which close to the detector implies that photons travelling along certain 
directions are more likely to be detected. Another solution is to apply a calibration method. The calibration 
method we have proposed38, imposes that the total mean pathlength calculated in the whole medium by using 
the Rytov approximation at each voxel coincides with the total mean pathlength ⟨L⟩R_MC . In other words, 

the mean pathlength in a voxel “i” according to the Rytov approximation ⟨li⟩ϕ = Gϕ0 (r0→r′
i)Gϕ0 (r′

i→rb)
Gϕ0 (r0→rb) dV  

is multiplied by a factor β such that β
∑N

i=1⟨li⟩ϕ = ⟨L⟩R_MC . This calibration is done for the two adjoint 

Fig. 2.  Comparison of ⟨li⟩R_MC  (Eq. 31) obtained with MCX (⟨li⟩R_MCX ) and FORTRAN MC 
(⟨li⟩R_MCF ) and with those obtained with DT (Eqs. 28, 29), ⟨li⟩R and ⟨li⟩ϕ(z=0). The cube of side 
6 mm (Fig. 1) was scanned along the x axis at three different depths: z = 6, 12, 20 mm (top, middle and 
bottom row, respectively; z is the center of the cube) and for the three detectors of Fig. 1 at the distance 
ρ = 15, 25, 35 mm (1st, 2nd, and 3rd column, respectively). The optical properties of the medium are: 
(µa, µ′

s) = (0.02, 0.5) mm−1 (lowest reduced albedo). Double arrows indicating the discrepancy between 
⟨li⟩R and ⟨li⟩ϕ(z=0) (i.e., 

(
⟨li⟩R − ⟨li⟩ϕ(z=0)

)
/⟨li⟩ϕ(z=0)) are shown at the source-detector distance ρ = 15 

(panels (a), (d) and (g)).
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simulations discussed above, i.e., for the adjoint simulation with the isotropic source (for which β = 1.76) and 
the pencil beam (for which β = 9.41). The calibration method shows excellent comparison with ⟨li⟩R_MC .

Calculations of reflectance perturbation due to a strong localized absorption change
In this section we show two comparisons between calculations of reflectance change with respect to a baseline 
value (i.e., ∆R

R0
) for a wide range of absorption change (i.e., ∆µa) between the region of interest and the 

background medium. The purpose is to show the performance of the Rytov approximation for reflectance 
(Eq. 22) with respect to the Born approximation and higher order Born series up to the fourth order. For higher 
order Born series we used a heuristic method proposed previously21 (section "Diffusion theory calculations”).

For each source-detector pair of Fig. 1 we chose a single cubic defect of side 6 mm placed at the depth of 
z = 12 mm and half-way between the source and the detector. The exact coordinates of each defect are provided 
in the title of Fig. 9. The baseline optical properties of the diffusive medium were: (µa, µ′

s) = (0.005, 1.5) mm−1

. MC simulations were run for g = 0. The change of the absorption coefficient between the defect and the 
background medium spanned the range ∆µa ∈ (0, 0.04) mm−1 with increments of 0.001 mm−1. The reason 
to target large absorption change is to describe perturbations due to the presence of blood vessels. Figure 9 shows  
∆R
R0

 calculated with the first four order of the Born series (the 1st one is the Born approximation discussed in 
section "Born and Rytov approximations and their physical meaning"), with the reflectance under the Rytov 
approximation (Eq. 22), and with the FORTRAN MC code. As expected, the results obtained with the Rytov 
approximation have a smaller discrepancy with respect to MC results than 1st order Born series. However, 
the higher order Born series outperforms the Rytov approximation (as expected). In Fig. 10 we show another 
example for different optical properties of the background medium (µa, µ′

s) = (0.02, 1.5) mm−1 and for 
values of ∆µa ∈ (−0.019, 0.04) mm−1.

Fig. 3.  As in Fig. 2 but for the optical properties (µa, µ′
s) = (0.005, 1.5) mm−1 (highest reduced albedo).
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These two results are not surprising since the Rytov approximation (unlike the Born approximation) depends 
on higher powers of ∆µa, but the coefficient of each power is ⟨li⟩k

ϕ and not the correct higher order moment 
⟨lk

i ⟩ϕ. One way to improve the Rytov approximation will be proposed in section "Conclusions and future work”.

Discussions
In this work we have revisited the current use of the Rytov approximation in diffuse optics. One of the main 
applications we focused on is the well-known use of the Rytov approximation for a fast computation of Jacobians 
with MC simulations. This method can be very time-efficient and effective to reduce statistical errors when 
compared to the traditional method of mean pathlength estimation, whenever diffusion conditions are verified. 
We have shown that the Rytov approximation has a natural physical meaning, once we reframe the photon 
transport process by using a statistical approach derived from the microscopic Beer–Lambert law. Given a region 
of interest where the Jacobian for absorption changes is calculated, and an observation point where the fluence 
rate is measured, the exponent in the Rytov approximation represents the mean partial pathlength travelled 
by photons inside the region of interest times the change of the absorption coefficient. We have called this 
partial pathlength, the fluence rate partial pathlength. We have argued that this partial pathlength and the partial 

Fig. 4.  Comparison of ⟨li⟩ϕ obtained with MCX and DT according to Eq. (29), and ⟨li⟩R_MC . A cube of 
side 1 mm was scanned along the x axis at three different depths: z = 6.5, 12.5, 20.5 mm (top, middle and 
bottom row, respectively) and for the three detectors of Fig. 1 at the distance ρ = 15, 25, 35 mm (1st, 2nd, 
and 3rd column, respectively). The symbols refer to MCX results for: ⟨li⟩R_MC  (⟨li⟩R_MCX ), ⟨li⟩ϕ obtained 
with an isotropic point source at r = (ρ, 0, s/2) (⟨li⟩ϕ_MCX(z= s

2 )), and for ⟨li⟩ϕ obtained with a pencil 
beam at = (ρ, 0,0)  (⟨li⟩ϕ_MCX(z=1/µ′

s)) for the adjoint calculations. The lines refer to DT calculations of 
⟨li⟩ϕ with r = (ρ, 0, s/2) (⟨li⟩ϕ(z= s

2 )), and with r = (ρ, 0,1/µ′
s) (⟨li⟩ϕ(z=1/µ′

s)). The optical properties are: 
(µa, µ′

s) = (0.02, 0.5) mm−1. A double arrow indicating the maximum discrepancy between ⟨li⟩R_MCX  

and ⟨li⟩ϕ_MCX(z= s
2 ) (i.e.,

(
⟨li⟩R_MCX − ⟨li⟩ϕ_MCX(z= s

2 )

)
/⟨li⟩ϕ_MCX(z= s

2 )) is shown in panel (a).
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pathlength defined for detected photons (named the reflectance partial pathlength) are distinct even when the 
observation point coincides with a detector point at the boundary. However, by physical arguments we can 
infer that these two pathlengths are similar in many situations of interest, even beyond DT. We can think of two 
correct methods to use MC simulations to calculate these two partial pathlengths. One way is to use a coupled 
forward-adjoint method17 inspired by perturbation theory of RTE (Eqs. 25–27). This way can be efficient for 
variance reduction, but it may not be suitable for typical problems of DOT and NIRS, due to the high memory 
requirements. The other method, the conventional one, is to calculate the pathlength travelled by each detected 
photon inside a region of interest (see Supplementary Information S3). This method is suitable for NIRS and 
DOT applications and can be made more efficient by using the pseudorandom features of random number 
generators19,37. However, due to large memory requirements, even this method may not be suitable to calculate 
sensitivity maps for a fine voxelization of the medium. We stress that these are the only two methods for the 
calculation of the absorption Jacobian in a general situation under the validity of RTE. Whenever diffusion 
conditions are met, one can use the Rytov approximation together with the reciprocity theorem to speed up the 
computation of Jacobians19. However, we note that the notion of “meeting diffusion condition” is not a binary one, 
but it is true at different levels of approximation depending on the parameters of each case. This consideration 
prompted us to carry out more in-depth tests between the Jacobians obtained with the Rytov approximation 
(i.e., ⟨li⟩ϕ) and those obtained with reflectance measurements using both DT and MC (i.e., ⟨li⟩R and ⟨li⟩R_MC
, respectively). We have carried out comparisons for nine different combinations of the optical properties that 
span typical values found in NIRS and DOT. In a first series of tests (Figs. 2, 3), we have compared ⟨li⟩R_MC  
obtained with two independent MC codes and with DT (Eq. 28). In the same figures we also reported ⟨li⟩ϕ 
based on DT (Eq. 29). The comparison of the two MC codes shows excellent agreement in all the cases studied. 
DT calculations have shown different levels of agreement with MC data, depending on the optical properties 
of the medium and the source-detector separation. For the case of (µa, µ′

s) = (0.02, 0.5) mm−1 both ⟨li⟩R 
and (especially) ⟨li⟩ϕ show some discrepancy with the partial pathlength calculated by MC simulations (Fig. 2). 
For the case of ⟨li⟩ϕ, these discrepancies reach to about 70% at ρ = 15 mm, and z = 12 mm. We note that 
the discrepancies between ⟨li⟩ϕ and ⟨li⟩R would not exist if one adopted PCBC. However, it is unlikely that 

Fig. 5.  As in Fig. 4 for typical values of the optical properties: (µa, µ′
s) = (0.01, 1) mm−1

 

Scientific Reports |        (2024) 14:31266 14| https://doi.org/10.1038/s41598-024-82682-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the results obtained with PCBC would be a better match with MC results. In fact, the literature has shown 
different results about the comparison of DE solutions based on EBC (like in this work) and PCBC, with MC 
results39–41. Therefore, we think that the most plausible explanation for these discrepancies is a combination 
of factors, including the relatively short source-detector separation, the choice of the optical properties (i.e., 
higher absorption and lower reduced scattering coefficients) and the approximate nature of any boundary 
condition for the DE. One should be aware of these factors if DT is used for the calculation of Jacobians. The 
more the diffusion conditions are fulfilled (i.e., larger source-detector separation and higher reduced scattering 
coefficient) the less discrepancies are found between MC and DT calculations, and between the two types of 
partial pathlengths (Fig. 3). These results are confirmed also in Figs. 4, 5, and 6, where we have used MCX for 
the calculation of ⟨li⟩ϕ. In this case, the shortcomings due to the approximate boundary conditions of DE are 
taken out of the picture. As a result, we can see a better agreement between ⟨li⟩R_MC  and ⟨li⟩ϕ. The adjoint 
MC simulations for the calculation of ⟨li⟩ϕ were run in two different ways: (a) by considering an isotropic 
point source at r = (ρ, 0, s/2); (b) by considering a pencil beam at rb = (ρ, 0,0). The normalization factor 
was chosen as Gϕ0 (r0 → r) for case a) and  Gϕ0 (r0 → r1) for case b) where r1 = (ρ, 0,1/µ′

s). In the same 
figures we have also reported the corresponding DT calculations of ⟨li⟩ϕ (Eq. 29) and ⟨li⟩R_MC  calculated 
with MCX. For the lowest value of the reduced albedo (Fig. 4), method (a) shows discrepancy up to ~ 25% with 
respect to ⟨li⟩R_MC  at a depth of 6.5 mm and for ρ = 15 mm; method (b) yields the best comparison with 
⟨li⟩R_MC . As diffusion conditions are more and more satisfied (Figs. 5, 6), both methods are substantially 
equivalent and ⟨li⟩ϕ ≈ ⟨li⟩R. Therefore, these results suggest that method b) is a better choice for a wider range 
of optical properties.

In this work we bring to the attention of the scientific community the fact that the correct adjoint simulation 
for the calculation of the Jacobians for reflectance measurements should use an appropriate adjoint source at 
the detector’s site (section "Relationship between the correct forward-adjoint method and the present work"). 
This fact has been previously stated in some literature of DT6 and MC17. In other words, the calculation of the 
detected reflectance due to an isotropic source at the voxel r′ is equivalent to the calculation of the fluence rate 
at the same voxel due to an appropriate adjoint source located at the detector. We have described in detail the 

Fig. 6.  As in Fig. 4 for values of the optical properties: (µa, µ′
s) = (0.005, 1.5) mm−1.
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properties of this adjoint source in section "Relationship between the correct forward-adjoint method and the 
present work". This would allow the calculation of ⟨li⟩R by using MC-calculated fluence rate and reflectance. To 
the best of our knowledge this feature is not currently implemented in MCX. Most probably this method could 
yield better results than the calculation of ⟨li⟩ϕ with method b) above.

By using only MC simulations, we have also reported two comparisons between ⟨li⟩R_MC  and ⟨li⟩ϕ for a 
medium with a highly absorbing thin layer (having a thickness of 1 mm) embedded in it. The purpose of these 
examples was twofold: (a) We wanted to show that the Rytov approximation (when applied correctly) is a valid 
method for the calculation of Jacobians even in presence of a strong absorber. The optical properties of the thin 
layer were typical of melanin even when it was embedded at a depth of 6.5 mm (Fig. 7); (b) we wanted also to 
point out some “dangers” of the Rytov approximation when it is not applied correctly (Fig. 8). The example of 
Fig. 8 is particularly useful, given the widespread use of MCX for pulse oximetry simulations, where one of the 
current topics is the study of the effect of the melanin layer. In this case, the presence of the melanin layer causes 
a strong gradient of the fluence rate close to the boundary, and one would have to resort to a finer voxelization of 
the medium. To bypass this problem, in Fig. 8 we have also shown some results obtained with a novel calibration 
method that we have recently proposed38. This method yields an excellent agreement with ⟨li⟩R_MC .

Finally, we have tested a novel formula for reflectance calculations under the Rytov approximation Eq. (22). 
We have calculated the change of reflectance caused by three localized absorption perturbations (a different 
one for each source-detector distance) for a wide range of the absorption contrast. As expected, the Rytov 
approximation performs better than the Born approximation but worse than the higher order Born series. 
Despite the Rytov approximation being nonlinearly dependent on ∆µa, it is based on the wrong assumption 
that ⟨li⟩k

ϕ can substitute ⟨lk
i ⟩ϕ. We expect that higher order Rytov approximation3 can show faster convergence 

than higher order Born series, as it is discussed in the next section.

Conclusions and future work
In this work we have reviewed the use of the Rytov approximation in diffuse optics, especially the burgeoning 
application in MC simulations for the calculations of Jacobians. Under the validity of diffusion conditions, 
we have shown the natural physical meaning of the Rytov approximation, in terms of the fluence rate partial 
pathlength, which is directly related to the photon migration process. Based on this physical meaning, we have 
argued that for typical values of the optical properties in NIRS and DOT, the fluence rate pathlength is a close 
representation of the reflectance pathlength. In other words, in these situations the Rytov approximation can be 

Fig. 7.  Comparison of ⟨li⟩R_MC(⟨li⟩R_MCX ) and ⟨li⟩ϕ(⟨li⟩ϕ_MCX(z= s
2 ), ⟨li⟩ϕ_MCX(z=1/µ′

s)) 
obtained with MCX for a homogeneous medium containing a 1 mm thick highly absorbing layer with its 
center at the depth z = 6.5 mm (Fig. 1). The optical properties are: (µab, µ′

sb) = (0.01, 1) mm−1 and (
µa,mel, µ′

s,mel

)
= (2, 1) mm−1, for the bulk of the medium and for the thin layer, respectively. The source-

detector separation is ρ = 35 mm and the area of the detector is 1 mm2 (for the calculation of ⟨li⟩R_MC
). The region of interest (cube of 1 mm side) was scanned along the x axis at a depth of z = 12.5 mm. The 
blue and orange symbols correspond to the adjoint simulations with isotropic source and the pencil beam, 
respectively.
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used as a good surrogate of ⟨li⟩R_MC , especially if one uses a particular adjoint simulation with a pencil beam at 
the detector’s site and normalization of the fluence rate calculated at the diffusion length (1/µ′

s). One alternative 
way, which is more logical for reflectance measurement is to use an appropriate adjoint simulation (based on 
general properties of the reciprocity theorem) that directly targets this type of measurement. This method is 
known in the scientific literature6,17 but not currently implemented in MCX.

In principle the method of mean pathlength estimation trough propagation of the photons and intersection 
with a region of interest is valid in general conditions without any approximation. Future work will be directed 
for finding strategies where this method can be used to provide detailed sensitivity maps of the absorption 
coefficient avoiding memory issues. We also plan to do more testing and to refine the calibration method 
proposed in Blaney et al.,38. One method can be to define several calibration factors, for example as many as 
some macroscopic regions of interest. For example, in a layered model of the finger one could define layer-
specific calibration factors. Last, we plan to use the Rytov series together with the heuristic calculation of higher 
order moments for a faster convergence of perturbation calculations for large absorption contrasts. This method 
can be useful to speed up the convergence of forward problem calculations. In fact, the relationships between 
the different orders of the Born and Rytov series are well known3. These relationships can be reframed with the 
pathlength moments, which for the case of higher order Rytov series, leads to combinations of higher and lower 
moments and their powers. For example, while the second order normalized Born series leads to 1

2 ⟨l2
i ⟩∆µ2

ai, the 
second order Rytov series is: ψ2 = 1

2

[
⟨l2

i ⟩ − ⟨li⟩2]
∆µ2

ai. It is well possible that the higher order Rytov series 
will improve the convergence of perturbation calculations.

Fig. 8.  Comparison of ⟨li⟩R_MC  (⟨li⟩R_MCX ) and ⟨li⟩ϕ(other symbols) obtained with MCX for a medium 
with a 1 mm thick layer at the boundary with the outer medium (i.e., depth of the center of the layer is 
z = 0.5 mm). The optical properties, source-detector separation, area of the detector, and voxel size are as 
in Fig. 7. The region of interest (cube of 1 mm side) was scanned along the x axis at a depth of z = 6.5 mm. 
The blue and orange symbols correspond to the adjoint simulations with isotropic source (⟨li⟩ϕ_MCX(z= s

2 )
) and the pencil beam (⟨li⟩ϕ_MCX(z=1/µ′

s)), respectively. The cyan (⟨li⟩ϕ_MCX(z= s
2 )withβ)and green 

(⟨li⟩ϕ_MCX(z=1/µ′
s)withβ) symbols correspond to the adjoint simulations after applying the proposed 

calibration method (which identifies a factor β) to the blue and orange plots, respectively.
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Fig. 10.  As in Fig. 9 but for different values of the background medium optical properties: 
(µa, µ′

s) = (0.02, 1.5) mm−1. The change of absorption coefficient was: ∆µa ∈ (−0.019, 0.04) mm−1

 

Fig. 9.  Comparison of reflectance change ∆R
R0

 calculated with the first four orders of Born series, with 
Rytov approximation and with the FORTRAN MC code at the source-detector separation of ρ = 15 mm 
(left panel), ρ = 25 mm (center panel) and ρ = 35 mm (right panel). For each source-detector pair the 
location of the defect (a cube of side 6 mm) is indicated in the title. The baseline properties of the medium 
are (µa, µ′

s) = (0.005, 1.5) mm−1. The change of absorption coefficient between defect and background 
medium spans the range ∆µa ∈ (0, 0.04) mm−1 with increments of 0.001 mm−1.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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