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The article is motivated by an application to the EarlyBird cohort study aiming to explore how 
anthropometrics and clinical and metabolic processes are associated with obesity and glucose control 
during childhood. There is interest in inferring the relationship between dynamically changing and 
high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include 
the selection of the important set of metabolites and the accommodation of missing data in both 
response and covariate values. With this motivation, we propose a flexible but parsimonious Bayesian 
semiparametric joint model for the outcome and the covariate generating processes, making novel 
use of nonparametric mean processes, latent factor models, and different classes of continuous 
shrinkage priors. The proposed approach efficiently addresses daunting dimensionality challenges, 
simplifies imputation tasks, and automates the selection of important predictors. Implementation 
via an efficient Markov chain Monte Carlo algorithm appropriately accounts for uncertainty in various 
aspects of the analysis. Simulation experiments illustrate the efficacy of the proposed methodology. 
The application to the EarlyBird cohort study illustrates its practical utility in enabling statistical 
integration of different molecular processes involved in glucose production and metabolism. From this 
study, we were able to show that glucose levels from 5 to 16 years of age are associated with different 
circulating levels of metabolites in the blood serum and can be fitted over time for a wide range of 
shapes of trajectories. The metabolites contributing the most to explaining glucose trajectories tend 
to be involved in different central energy metabolomic pathways. The methodology provides a tool to 
generate new hypotheses related to obesity and glucose control during childhood and adolescence.

Metabolomics refers to comprehensive studies of amino acids, lipids, organic acids, or nucleotides, collectively 
known as metabolites, in biological systems. Metabolites’ levels change in response to genetic or environmental 
changes. Metabolomics can thus provide detailed information about the biochemical mechanisms happening in 
an organism, potentially leading to discoveries of important biomarkers that can be used to diagnose, monitor, 
or predict the risk of diseases1–8.

Generated by nuclear magnetic resonance (NMR) and/or mass spectrometry (MS), metabolomics datasets 
commonly involve tens of metabolites. Methods for analyzing static metabolomics data have been well 
developed9,10. However, longitudinal studies of the evolution of the course of time of the metabolites are becoming 
increasingly common11–14. Identifying the important metabolites responsible for the onset or progression of 
certain diseases is a challenging task, especially when dealing with complex datasets that include missing values. 
Efficient statistical methods to address these challenges within a coherent framework are however lacking. This 
need for sophisticated inference methods in high-dimensional longitudinal metabolomics datasets with missing 
values is the main motivation behind this article. The methods presented here, however, are broadly applicable 
to longitudinal studies beyond metabolomics, so the exposition of the statistical approach is kept fairly general.

The earlybird study: overview, inferential goals and analytical challenges
The rising prevalence of pre-diabetes and type 2 diabetes is a growing and alarming problem, associated with 
several short-term and long-term metabolic and cardiovascular complications15–17. However, the understanding 
of the underlying mechanisms that link the regulation of glucose and insulin in the early years of life is still 
incomplete.

The EarlyBird cohort study18,19 is a non-interventional prospective longitudinal study of healthy UK 
children, designed to explore how anthropometrics and clinical and metabolic processes are associated with 
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glucose control during childhood and adolescence. The full cohort comprises 307 children, 170 of which are 
boys (the sub-cohort considered in this study due to availability of metabolomics data comprises 129 subjects, 
92 boys, and 37 girls), who were followed up with medical examination on an annual basis from 5 to 16 years of 
age (12 time points). The collected data included anthropometrics, glucose, and insulin measures. In addition, a 
metabolic profiling approach was applied to the serum samples collected from the children at each time point, 
using proton nuclear magnetic resonance (1H-NMR) spectroscopy. This method allowed the collection of 
quantitative information on the serum content in lipoprotein-bound fatty acyl groups found in triglycerides, 
phospholipids and cholesteryl esters, and major low molecular weight molecules present in blood, such as amino 
acids and other major organic acids. Based on internal databases, several 1H-NMR signals are assigned and 
representative peaks are integrated to provide quantitative information on the different biochemical compounds. 
1H-NMR signals that could not be assigned based on experimental datasets and internal reference databases 
are coded as U.X, where X corresponds to the 1H-NMR chemical shift where the signal was detected. The final 
dataset contains 82 1H-NMR-derived measurements (metabolites) for each time point, 4 of which were highly 
correlated and were removed to generate a second analysis set. The Materials and Methods section provides 
additional details.

There is evidence in both adults and children that glucose levels high within the normal range are indicative 
of future diabetes. One-third of children showing transient hyperglycemia in the absence of any serious illness 
can be expected to develop diabetes within one year20,21. Therefore, we consider serum glucose to be the principal 
indicator of disease propensity. We also consider fasting blood glucose at the age of 16 years as closer to adult 
concentration values. Likewise, impaired fasting glycemia (IFG) identified at age 16 is considered to be a strong 
predictor of type 2 diabetes later in young adulthood. IFG is defined by the American Diabetes Association 
criteria with level from 5.6 mmol/L (100mg/dL) to 6.9 mmol/L (125 mg/dL).

In the present study, we employ novel longitudinal models to assess the association between fasting glucose 
concentration (the response y) and individual clinical variables, metabolites and select anthropometric 
measurements (the covariates x). Different metabolomic pathways have been postulated to elucidate the roles 
metabolites play in glucose production in the liver. The Cahill or glucose-alanine cycle22,23, for example, refers to 
the metabolic pathway of the transport of carbons and amino groups from the muscle to the liver, whereas the 
Cori or lactic acid cycle24 corresponds to the set of reactions that transports lactate from the muscle to the liver, 
where it is converted to glucose in the absence of oxygen and is then metabolized back to lactate to later re-enter 
the liver. The Krebs or citric acid cycle25,26, on the other hand, is important in synthesizing glucose into other 
key biochemical products. Assessing the relevance of different metabolites in influencing glucose concentration 
in the EarlyBird study helps quantitatively elucidate these relationships in glucose metabolism in children and 
adolescents.

Significantly compounding the analytical challenges, glucose concentration, clinical variables, and 
metabolites all contain missing values with different missingness patterns (Figs. 1 and 2). The metabolites have 
missing values when the blood sample is not present, either because the subject did not attend the annual visit or 
because the sample was of poor quality after storage or not of enough volume for the NMR analysis. Clinical data 
are also missing for similar reasons. Specifically, the clinical variables measuring physical activity and respiratory 
quotient (variables 5 and 9 in Fig. 2) required additional visits and additional effort from the participants. In the 
case of the first variable, the children had to wear a device to determine their physical activity. The respiratory 
quotient measures the basal metabolic rate and was obtained by putting a face-mask on the children for 30 
minutes. These intrusive measurements showed poorer compliance than the rest of the measurements obtained 

Figure 1.  Missingness patterns of samples in the subcohort of the EarlyBird study. The grey cells represent 
observed values, and the white cells represent missing values. From left to right - missingness patterns in 
fasting glucose levels, in metabolite samples, and in clinical variables. The red cells on the left panel show 
additional missing values present only in fasting glucose levels.

 

Scientific Reports |        (2024) 14:31336 2| https://doi.org/10.1038/s41598-024-82718-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


during their annual visit and were missing when the participants did not attend the additional visits. Glucose 
concentration had some additional missing values, shown in red in Fig. 1, attributable to human recording errors. 
The missingness mechanisms may be assumed to not depend on the true unobserved values of the missing data 
points and hence ignorable in nature (See Background and Section S.1 in Supplementary Information).

In addition to missingness, the high correlation between some of the metabolites is also an issue. 
Multicollinearity is evident from plots of variance inflation factors (Supplementary Figs. S.11 and S.13). 
Furthermore, the trajectories of the predictors are also widely different, with variability changing over time (Fig. 
3).

The challenges presented by this complex dataset therefore include the confounding effect of growth in the 
metabolic signal, the presence of differently patterned missing values in the predictors and the response, the high 
dimensionality of the predictors, and their widely variable trajectories.

Our inferential tasks include the imputation of the missing values in y and x, which can be used in a variety of 
downstream analyses, inference on the relationships between y and x, and the selection of important covariates.

Background
The literature on longitudinal data and missing values is extensive. See, for example, books27–34, and review 
papers35–40, and the references therein.

The Bayesian paradigm provides a useful framework for handling missing data29,41,42. Specifying an 
appropriate joint probability model for the observed data, missing data, missingness mechanism, and the 
associated model parameters, Bayesian inferential machinery can naturally accommodate problems with 
missing data. Uncertainty in imputing the missing values is taken into account, and their finite sample estimates 
can also be readily obtained from samples drawn from the posterior.

The missingness mechanism can be ignored when the missing values are missing at random (MAR), i.e., the 
missingness does not depend on the missing data conditional on the observed data43. Bayesian inference then 
naturally relies on working with a joint model p(y, x). It is often convenient to factorize p(y, x) as p(x)p(y|x) 
and then focus separately on p(x) and p(y|x). Jointly imputing the missing x values using a model p(x) that 
properly accommodates their dependencies is especially beneficial when the components are strongly correlated, 
as is the case in the EarlyBird cohort. It is also natural to exploit the relationship encoded in p(y | x) to impute 
the missing y’s. This regression model can also play a role in imputing the missing x, although it is typically not 
very informative in that context. Flexible and innovative modeling strategies for p(x) and p(y|x) are crucial in 
further simplifying the imputation tasks and making the inferential exercises more robust.

We first discuss the challenges in building flexible and useful marginal models p(x). For time-
invariant multivariate covariates with missing values, it may be practically convenient to work with 
p(xj |x1, . . . , xj−1, xj+1, . . . , xp) for each j44,45. However, such sequential regression models may not 
correspond to a valid joint probability model for x. A related strategy, without this limitation, factors the 
joint distribution as p(x1, . . . , xp) = p(xp|x1, . . . , xp−1) . . . p(x2|x1) p(x1) and then models each one-
dimensional conditional distribution separately46,47. With an increase in the dimension of the covariates, 
specifying a separate model for each component quickly becomes a difficult task. Additional complications arise 
when the covariates also evolve temporally, as in the EarlyBird study. The longitudinal trajectories of the different 
covariates, which look widely different, now have to be additionally modeled. The correlation structure among 
the xj ’s may also be changing with time. The development of flexible and automated models for longitudinally 
evolving high dimensional covariates, accommodating widely varying individual trajectories without requiring 
to specify and fine-tune a separate model for each covariate while also allowing easy missing data imputation, is 
thus extremely challenging. Addressing this problem is an important focus of this article.

Figure 2.  Number of missing values in the EarlyBird study in clinical variables (variables 1–10 on the y-axes) 
and metabolite samples (variable 11 on the y-axes) across different ages (left panel) and in total (right panel).
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Building a regression model p(y|x) poses additional challenges. For a small number of covariates, traditional 
linear mixed models can be considered48–50. Unconstrained analysis involving all covariates, however, leads 
to complicated models with inflated variance, loss of predictive power, and difficulty in interpretation. The 
identification of important predictors is also of practical and scientific importance. The literature on variable 
selection in static, complete data settings is enormous. In recent years, it has become common to rely on 
optimizing a goodness-of-fit loss function having a penalty added to favor parsimony. Famous methods of this 
type include LASSO51, adaptive LASSO52, SCAD53, and elastic net54 among others. Adaptations to missing-data 
problems are not straightforward as they involve computing and optimizing penalized log-likelihood functions 
based only on the observed data. However, the EM algorithm can potentially be used55–57.

Popular Bayesian strategies for variable selection include placing two-component ‘spike and slab’ priors on 
the regression coefficients58–60. Such priors place a point mass or spike at zero characterizing the redundant 
covariates and a continuous component or slab representing the signals. Adapting such approaches to missing 
data problems is conceptually straightforward by placing a probability model on the high-dimensional 
covariates and conducting posterior computation under the resulting joint model using MCMC61. However, the 
computational burden can be quite daunting, as even computation without missing predictors, or a model on 
p(x), is pretty challenging. To reduce the computational burden in the absence of missing data, it is popular to 
rely on continuous shrinkage priors that are concentrated at zero with heavy tails62–65. These methods can induce 
variable selection via thresholding63 or use of appropriate loss functions66,67. Adapting these techniques to build 
parsimonious regression models for longitudinal datasets involving high-dimensional covariates with ignorable 
missing values is another important goal of this article.

Toward these goals, we developed a detailed joint model to analyze the EarlyBird data set. The model 
was carefully designed to conform to a more general modeling framework, described in Section S.1 in the 
Supplementary Information, which simplifies the imputation tasks in both response and covariate values in 
longitudinal data with ignorable missingness. Specifically, we used nonparametric mean processes to capture 
widely varying covariate trajectories. We used latent factor formulations of the residual process to accommodate 
time-varying correlation structures, while meeting the related dimensionality challenges. Importantly, the implied 
conditional independence relationships also greatly simplified the imputation tasks. Taking a more structured 
approach, we model the response variable using a parametric regression model that accommodates the effects of 
the covariates and those of the aging process. Different classes of shrinkage priors stabilize estimation and help 
automate selection of the latent factors and important predictors via posterior variable selection summaries.

Figure 3.  Mean longitudinal trajectories of four different standardized covariates. Clockwise from top left: 
unsaturated fatty acids, 3-hydroxybutyrate, creatinine, and acetate. The whiskers around the mean show one 
standard deviation unit in each direction.
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Materials and methods
Study population
The EarlyBird cohort study incorporates a 1995/1996 birth cohort recruited in 2000/2001 when the children 
were 5 years old (307 children, 170 boys). Several clinical and anthropometric variables were measured on an 
annual basis from the age of 5 to the age of 16. Untargeted metabolomics was performed in a subset of the full 
cohort (129 subjects, 92 boys), for a total number of 82 metabolites. The study was conducted in accordance 
with the ethics guidelines of the Declaration of Helsinki II; ethics approval was granted by the Plymouth Local 
Research Ethics Committee (1999), and parents gave written informed consent and children verbal informed 
assent.

Anthropometric variables
The 4 anthropometric variables are described in Table 1. BMI was derived from direct measurement of height 
(Leicester Height Measure; Child Growth Foundation, London, U.K.) and weight (Tanita Solar 1632 electronic 
scales), performed in blind duplicate and averaged. BMI SD scores were calculated from the British 1990 
standards.

Clinical variables
The 10 clinical variables recorded in the EarlyBird study are described in Table 1. Peripheral blood was collected 
annually into EDTA tubes after an overnight fast and stored at -80◦ C. Insulin resistance (IR) and beta cell 
function were determined each year from fasting glucose (Cobas Integra 700 analyzer; Roche Diagnostics) 
and insulin (DPC IMMULITE) (cross-reactivity with proinsulin, 1%) using the homeostasis model assessment 
(HOMA-IR and HOMA-B, respectively).

Serum metabolomics
To measure the metabolites, 400µL of blood serum were mixed with 200µL of deuterated phosphate buffer 
solution 0.6 M KH2PO4, containing 1mM of sodium 3-(trimethylsilyl)-[2,2,3,3-2H4]-1-propionate (TSP, 
chemical shift reference δH = 0.0ppm). 550µL of the mixture were transferred into 5mm NMR tubes. 1H-NMR 
metabolic profiles of serum samples were acquired with a Bruker Avance III 600 MHz spectrometer equipped 
with a 5mm cryoprobe at 310K (Bruker Biospin, Rheinstetten, Germany) and processed using TOPSPIN (version 
2.1, Bruker Biospin, Rheinstetten, Germany) software package as reported previously. Standard 1H-NMR one-
dimensional pulse sequence with water suppression, Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence 
with water suppression, and diffusion-edited sequences were acquired using 32 scans with 98K data points. 
The spectral data (from δ0.2 to δ10) were imported into Matlab software with a resolution of 22K data-points 
(version R2013b, the Mathworks Inc, Natwick MA) and normalized to the total area after solvent peak removal. 
Poor quality or highly diluted spectra were discarded from the subsequent analysis.

1H-NMR spectrum of human blood plasma enables the monitoring of signals related to lipoprotein bound fatty 
acyl groups found in triglycerides, phospholipids, and cholesteryl esters, together with peaks from the glyceryl 
moiety of triglycerides and the choline head group of phosphatidylcholine. This data also covers quantitative 
profiling of major low molecular weight molecules present in blood. Based on internal database, representative 
signals of metabolites assignable on 1H CPMG NMR spectra were integrated, including asparagine, leucine, 
isoleucine, valine, 2-ketobutyric acid, 3-methyl-2-oxovaleric acid, alpha-ketoisovaleric acid, (R)-3-hydroxybutyric 
acid, lactic acid, alanine, arginine, lysine, acetic acid, N-acetyl glycoproteins, O-acetyl glycoproteins, acetoacetic 
acid, glutamic acid, glutamine, citric acid, dimethylglycine, creatine, citrulline, trimethylamine, trimethylamine 

Name Description Type

Sex Gender (female or male). Dichotomous

Weight cat Weight category: grouping of children according to their average baseline weight: 0 Underweight (centile <= 2); 1 Normal weight ( 2< 
centile < 91); 2 Overweight (91<= centile < 98) and 3 Obese (centile >= 98). Ordinal

ch gest Gestational age of child measured in weeks. Continuous

ch bwt sds Birth weight SD scores. Continuous

ch bmisd Standardized BMI SD scores. Continuous

Insulin Plasma level of insulin measured through a standard biochemistry assay. Continuous

HOMA2-B Improved homeostatic model assessment of beta cell function, computed with the program HOMA Calculator v2.2.2 using the fasting 
plasma glucose and fasting plasma insulin levels. Continuous

HOMA2-IR Improved homeostatic model assessment of insulin resistance, computed with the program HOMA Calculator v2.2.2 using the fasting 
plasma glucose and fasting plasma insulin levels. Continuous

ch mvpa Moderate-and-vigorous physical activity measured through 7-d actigraph accelerometry. Continuous

ch skf Sum of skin-fold thickness at five sites on the left-hand side of the body (triceps, biceps, sub-scapular, supra-iliac and umbilical) by 
skin-fold calipers. Mean of two measurements. Continuous

ch wcsd Waist circumference, assessed by metal circumference measure. Mean of two measurements. Continuous

ch wtsds Weight. Mean of three repeated measurements taken, rounded to the nearest 100 g. Continuous

RQ Respiratory Quotient, corresponding to the ratio of carbon dioxide exhaled to oxygen inhaled as the body expends its energy reserves. Continuous

ch bmi centile BMI centile. Continuous

Table 1.  Anthropometric and clinical variables recorded in the EarlyBird cohort.
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N-oxide, taurine, proline, methanol, glycine, serine, creatinine, histidine, tyrosine, formic acid, phenylalanine, 
threonine, and glucose. In addition, in diffusion edited spectra, signals associated to different lipid classes were 
integrated, including phospholipids containing choline, VLDL subclasses, unsaturated and polyunsaturated fatty 
acids. The signals are expressed in arbitrary unit corresponding to a peak area normalized to total metabolic 
profiles, which is representative of relative change in metabolite concentration in the serum.

Statistical analysis
Let yit denote the response for subject i at time t, and xijt the associated jth covariate, 
i = 1, . . . , n; t = 1, . . . , T ; j = 1, . . . , p.

Modeling the covariates Simple parametric models are insufficiently flexible for accommodating the wide 
variety of shapes of the longitudinal covariate trajectories (Fig. 3). Fine-tuning such models individually for each 
separate predictor to adapt them to different shapes is practically infeasible in high-dimensional applications like 
ours. Ideally, we would want to build flexible automated models which can accommodate widely varying shapes 
without any supervision. To this end, we model the covariate-generating process as

	

µx,t = µx,t−1 + ϵt, ϵt ∼ MVNp(0, ∆ϵ),
xit = µx,t + bx,i + ξit, bx,i ∼ MVNp(0, ∆x,b), ξit ∼ MVNp(0, Σx,t).

Here MVNp(µ, Σ) denotes a p-variate normal distribution with mean vector µ and covariance matrix Σ. 
The Markovian but otherwise unstructured mean process µT

x,t = [µx,1t, . . . , µx,pt], that characterizes the 
temporal evolution of [x1, . . . , xp]T, is crucial in accommodating widely varying trajectories of different xj ’s 
in an automated way. The associated error process ϵt has covariance ∆ϵ = diag{σ2

ϵ,1, . . . , σ2
ϵ,p}. The random 

vector bT
x,i = [bx,i1, . . . , bx,ip], with covariance ∆x,b = diag{σ2

x,b,1, . . . , σ2
x,b,p}, collects individual-specific 

random effects. We assign conjugate inverse-Gamma priors on the variance parameters as

	 σ2
x,b,j ∼ Inv-Ga(ax,b,σ, bx,b,σ), σ2

ϵ,j ∼ Inv-Ga(aϵ,σ, bϵ,σ).

Here Inv-Ga(a, b) denotes an inverse-Gamma distribution with shape parameter a and scale parameter b.

Exploratory analysis indicated some of the covariates to be highly correlated with changing correlation patterns 
over time. Time indexed covariance matrices for the ξit, namely Σx,t, greatly improve model flexibility but their 
large dimensions also present significant modeling challenges. To address this issue, we consider factor analytic 
representations as

	 ξit = Λtηit + uit, ηit ∼ MVNp(0, I), uit ∼ MVNp(0, ∆u,t),

where Λt = ((λtjh))p,qt
j=1,h=1 = [λ1t, . . . , λpt]T are p × qt loading matrices, ηT

it = [ηit1, . . . , ηitqt ] 
are latent factors and uit are associated idiosyncratic errors with covariance matrix 
∆u,t = diag(σ2

u,t) = diag(σ2
u,1t, . . . , σ2

u,pt). Marginalizing out the latent factors, we have 
Σx,t = ΛtΛT

t + ∆u,t. Since any positive definite matrix Σp×p admits a low rank and diagonal matrix 
decomposition Σ = ΛΛT + ∆ for some Λp×q  and ∆ = diag[σ2

1 , . . . , σ2
p] for some 0 ≤ q ≤ p, in theory, the 

latent factor model is completely flexible. Σ involves p(p + 1)/2 elements, whereas the number of parameters 
in a latent factor specification with q columns is p(q + 1). Often q ≪ p produces very good approximations of 
Σ while achieving a significant reduction in the number of parameters. In practice, data-driven and automated 
selection of q can be achieved using sparsity-inducing priors as described below. The overall strategy is 
particularly relevant in our application with a high-dimensional Σx,t at every t.

Separate latent factors ηit for each time point t is still too flexible for high-dimensional settings like ours, 
especially since entire samples of covariates can be missing (Fig. 1) in which case the ηit are informed entirely 
by the regression of yit on xit. Taking a middle path between a restrictive diagonal covariance matrix and a fully 
flexible model, we allow the latent factors ηi to be shared across time points, further greatly reducing model 
complexity. Integrating out both ηi and bx,i thereby induce flexible variance and cross-covariance structures 
cov(xit) = ΛtΛT

t + ∆u,t + ∆x,b for all t and cov(xit, xit′ ) = ΛtΛT
t′ + ∆x,b for all t ̸= t′.

Precluding the necessity to pre-specify the number of latent factors, we next allow the loading matrices 
to have a-priori a potentially infinite number of columns. Sparsity-inducing priors, that favor more shrinkage 
as the column index increases, can then be used to shrink the redundant columns toward zero. We do this 
via the multiplicative gamma process shrinkage priors68 (MGPS) that allow easy posterior computation. For 
t = 1, . . . , T  and h = 1, . . . , ∞, we assign priors as follows

	

λtjh ∼Normal(0, ϕ−1
λ,tjhτ−1

λ,th), ϕλ,tjh ∼ Ga(νλ/2, νλ/2),

τλ,th ∼
∏h

ℓ=1 δtℓ, δλ,tℓ ∼ Ga(aλ,ℓ, 1), σ2
u,jt ∼ Inv-Ga(au,σ, bu,σ).

Here Normal(µ, σ2) denotes a Normal distribution with mean µ and variance σ2, and Ga(α, β) denotes a 
Gamma distribution with shape parameter α and rate parameter β. The parameters {ϕλ,tjh}p

j=1 control the local 
shrinkage of the elements in the hth column of Λt, whereas τλ,th controls the global shrinkage. When aλ,h > 1 
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for h = 2, . . . , ∞, the sequence {τλ,th}∞
h=1 is stochastically increasing and thus favors more shrinkage as the 

column index h increases. The shrinkage prior also helps alleviate rotational non-identifiability by assigning the 
strongest effects to the foremost factors.

Modeling the response Conditional on the covariates xit, we model the response generating process as

	 yit = µy,t + by,i + xT
itβ + vit, by,i ∼ Normal(0, σ2

y,b), vit ∼ Normal(0, σ2
v).

The mean process µy,t captures the temporal evolution of y and is modeled as

	 µy,t = pT
s,tα,

where pT
s,t = [1, f(t, 1), . . . , f(t, s)], f(t, ℓ) being a normalized version of tℓ, and αT = [α0, α1, . . . , αs] 

denotes the associated coefficients. Sparsity-inducing priors, that favor more shrinkage as the degree of the 
polynomial increases, are used to favor simpler lower-degree relationships. We do this by adapting the MGPS 
priors as

	 αk ∼ Normal(0, τ−1
α,k), τα,k ∼

∏k

ℓ=1 δα,ℓ, δα,ℓ ∼ Ga(aα,ℓ, 1).

As before, when aα,ℓ > 1 for ℓ = 2, . . . , s, the sequence {τα,k}s
k=1 is stochastically increasing, thereby favoring 

more shrinkage of the higher order coefficients towards zero.

Spline-based semiparametric regression models69 could also be used to flexibly model µy,t. The polynomial 
regression model with MGPS shrinkage priors on the coefficients, however, allows us to straightforwardly assess 
departures from simpler parametric alternatives, including a first-degree linear model.

The variables by,i, with variance σ2
y,b, denote individual specific random effects in yit. The effect of the 

predictor xit on yit is captured via linear regression with coefficients βT = [β1, . . . , βp]. To stabilize inference 
and favor the selection of important predictors in the presence of high-dimensional covariates with many 
possibly insignificant components, we use sparsity-inducing continuous priors on the regression coefficients. 
Unlike the columns of factor loading matrices and elements of α, there is no natural prior ordering of the 
elements of β making MGPS priors an inappropriate choice here.

The starting point of our search for an appropriate prior for β is a ‘spike and slab’ prior 
βj ∼ πδ0 + (1 − π)Normal(0, σ2

β), j = 1, . . . , p. Such priors, however, often have poor performance in high-
dimensional settings, especially when the parameter vector is highly sparse. Choosing π = 1/2, for example, 
leads to an exponentially small prior probability of 2−p assigned to the null model. Although this issue can be 
mitigated by assigning a hierarchical beta prior on π70, posterior sampling in high-dimensional settings will 
still require a stochastic search over an enormous space, leading to slow mixing and convergence71. Continuous 
shrinkage priors such as the Bayesian LASSO62, the horseshoe64 and the Dirichlet-Laplace (DL)65 mimic the 
spike and slab strategy by having a peak at zero to capture sparsity and heavy tails to capture significance, but 
improve computational issues by allowing efficient posterior sampling through hierarchical auxiliary variable 
constructions. Importantly, however, unlike the Bayesian LASSO and the horseshoe that only mimic the 
marginal behavior of point mass mixture priors, the DL prior also mimics the joint behavior of hierarchical 
spike and slab type mixture priors, thereby having better control of the joint sparsity of the parameter vector.

A DL prior on the regression coefficients can be specified as

	 βj ∼ DE(ϕβ,jτβ), (ϕβ,1, . . . , ϕβ,p) ∼ Dir(aβ , . . . , aβ), τβ ∼ Ga(paβ , 1/2).

Here DE(σ) denotes a double exponential distribution with location 0 and scale σ, and Dir(α1, . . . , αp) 
denotes a Dirichlet distribution with concentration parameter (α1, . . . , αp). For aβ < 1, with ϕβ,j  integrated 
out, the marginal distribution of βj  given τβ  has a singularity at zero. The parameter τβ  determines how the tails 
of the marginal distribution decay as |βj | increases. The hyper-prior on τβ  allows uncertainty in this parameter 
and learning from the data. The DL prior can be equivalently represented as

	

βj ∼ Normal(0, ψβ,jϕ2
β,jτ2

β), ψβ,j ∼ Exp(1/2),
(ϕβ,1, . . . , ϕβ,p) ∼ Dir(aβ , . . . , aβ), τβ ∼ Ga(paβ , 1/2),

which facilitates straightforward posterior computation via an efficient block Gibbs sampler.

Finally, we assign conjugate priors on the variance parameters as

	 σ2
y,b ∼ Inv-Ga(ay,b,σ, by,b,σ), σ2

v ∼ Inv-Ga(av,σ, bv,σ).

In many applications, especially in epidemiological studies with children and young adults as subjects, the 
natural growing or aging process might be expected to have some effect on the outcome of primary interest y. 
The mean process µy,t separates this effect from that of the covariates. Unlike µx,t which captures the temporal 
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evolution of xit but is of no independent interest to us and hence is left unstructured, understanding µy,t, the 
natural evolution of y as the subjects age, is often an important goal in epidemiological studies. To this end, we 
took a more structured approach towards modeling µy,t and used a polynomial function of time that is easy to 
interpret and, if needed, related tests of hypotheses can also be easily performed.

Posterior inference and missing data imputation For posterior inference, we rely on samples drawn from 
the posterior using a Markov chain Monte Carlo (MCMC) sampler, missing data imputation being a naturally 
integrated part of the sampler. The model described above is designed carefully to conform to a more generic 
framework for longitudinal data with ignorable missingness, described in Section S.1 in the Supplementary 
Information, which simplifies the imputation steps of the MCMC sampler for both missing response and 
covariate values.

The design of the sampler exploits the conjugacy of the priors and the conditional independence relationships 
encoded in different layers of the hierarchy. The latent factor formulation of the model for the covariates plays a 
particularly important role in inducing conditional independence between different components of xit for each 
i at each t, simplifying the sampling of their missing values. We also evaluate post-processing model and variable 
selection criteria based on samples drawn from the posterior. See Section S.2 in the Supplementary Information 
for additional details.

Results
This section summarizes the results of our proposed approach applied to the EarlyBird dataset. To our 
knowledge, this is the first time we can report a comprehensive metabolic contribution of specific metabolic 
processes to overall blood glucose variations in a longitudinal and continuous manner. Such findings highlight 
the importance of specific metabolites in amino acid, ketone body, glycolysis, and fatty acid metabolism, in 
describing the variations of blood glucose throughout childhood.

We performed two sets of analyses. First, with all 96 time-varying predictors included, then, removing the 
last 4 metabolites that were the most strongly collinear. Some degree of multicollinearity was still present in the 
second set of 92 predictors (Supplementary Fig. S.13). Our proposed shrinkage prior based approach is robust 
to the presence of multicollinearity and the results obtained in the two cases were very similar. A competitor 
method, described later in this section and referred to as the ‘lme’ method, can not handle multicollinearity well. 
The results produced by this method were generally unstable, significantly more so in the first scenario. For space 
constraints, we summarize here only the results of the second set of analyses which were more favorable to the 
lme method.

Figure 4 illustrates the excellent performance of our model in capturing widely varying individual and average 
trajectories of the time-varying covariates. In Fig. 4 and similar others, the ages 5, 6, ..., 16 are represented by the 
time points 1, 2, ..., 12. Additional figures presented in the Supplementary Information (boxplots of observed 
and fitted values of the time-varying predictors across different time points in Fig. S.9 and plots of empirical 
correlations between time-varying predictors and the corresponding model estimates in Fig. S.13) show the 
effectiveness of our latent factors based approach in capturing the widely different and time-varying variance-
covariance structures of the high dimensional time-varying predictors.

Figure 5 illustrates the results of the regression model, relating fasting glucose concentrations to age, 4 baseline 
anthropometric variables, 10 time-varying clinical variables and 78 time-varying metabolites. The average fasting 
glucose concentration levels vary nonlinearly with age (Fig. 5a and b). Among the key contributors or influencers 
of glucose trajectories, we observed several positive contributors to glucose variations, including glucose derived 
variables (HOMA-B, HOMA-IR), BMI z scores, 1H-NMR derived quantitative signals from glucose, lactate, 
and alanine (time-varying predictors 3, 4, 10, 27, 28, 66, 76 and 80 in Fig. 5c). In addition, we identified some 

Figure 4.  Results for the EarlyBird study: Observed (solid lines) and fitted (dotted lines) trajectories for the 
first 2 time-varying predictors for 5 randomly selected subjects super-imposed over time-specific sample 
means across all subjects (solid black line) and the corresponding fitted values (dotted black line). The bullets 
represent the mean imputed missing values, assumed to be equal to the unknown true values for plotting 
purposes.
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other metabolites characterized with a negative contribution to glucose variation, including 1H-NMR derived 
quantitative signals from citrate, ketone body 3-D-hydroxybutyrate, leucine, asparagine, and lipoprotein bound 
fatty acyl groups (time-varying predictors 11, 16, 23, 46, 49, 56, 64 and 77 in Fig. 5c). These results confirm the 
expected behavior between glucose, insulin resistance (HOMA-IR), and beta cell function (HOMA-B), as well 
as cross-platform measurement relationships (serum glucose by enzymatic assay and 1H-NMR spectroscopy).

The model thus allowed us to link childhood blood glucose variations with very different circulating levels 
of metabolites in the blood that correspond to the different central energy metabolic cascades. This is also 
reflected by the increasing contribution of lactate and alanine (time-varying predictors 27 and 28 in Fig. 5c) 
which corresponds to a higher contribution of the Cori and Cahyll cycles for glucose production, respectively. 
It is worth noticing how these molecular variations occur in a period of high metabolic flexibility during which 
the body of children switches from a high fat-protein basal metabolism towards a more carbohydrate dependent 
metabolic state. For instance, the model strongly highlights how decreasing circulating levels of the ketone body 
3-D-hydroxybutyrate and citrate (a key intermediate in Krebs cycle) (time-varying predictors 23, 46, 49 and 
77 in Fig. 5c) decrease concomitantly to the decrease in the circulation of some fatty acids over time. This 
corresponds to a trend towards lower fluxes of fatty acids to the liver for energy production. The amino acid 
asparagine production is highly connected to another Krebs cycle intermediate, oxaloacetate, and therefore the 
model may be describing these additional biological relationships.

In our discussion of the results so far, we have considered covariates with coefficients having marginal 
posterior credible intervals not including zero to be potentially important predictors of glucose concentrations. 
Taking a liberal approach, we also considered the covariates associated with highly variable coefficients, taking 
non-negligible values at least in some MCMC iterations, to also be potentially important. Conservative post-
processing variable selection guidelines, described in Section S.2.4, lead to a model with 12 variables instead 
(Fig. 6). One such model with predictors chosen to correspond to coefficients with the largest absolute posterior 
means include (normalized versions of) [1, t, t2, t5] and the clinical variables metabolites HOMA-B, HOMA-IR, 
BMI, decrease concomitantly to the decrease in the circulation of some fatty acids, lipids (mainly HDL, fatty acid 
CH3 moieties), an unknown metabolite (U.2.21), citrate, asparagine and 1H-NMR derived quantitative signals 
from glucose (time-varying predictors 3, 4, 10, 11, 44, 49, 56 and 66).

We also fitted a simpler sub-model for the covariates, referred to as the BSP-Diag model henceforth, 
xit = µx,t + bx,i + uit, bx,i ∼ MVNp(0, ∆x,b), uit ∼ MVNp(0, ∆u,t), excluding latent factors and 
assuming diagonal covariance matrices Σx,t = ∆u,t for all t and hence independence of the covariate 
components.

Table 2 reports the estimated deviance information criterion (DIC)72 and log pseudo marginal likelihood 
(LPML)73 for the two Bayesian methods - the proposed latent factor based method and the diagonal covariance 

Figure 5.  Results for the EarlyBird study: (a) Estimated posterior means of components of α and their 
90% credible intervals. (b) Observed (solid lines) and fitted (dotted lines) trajectories of y for 5 randomly 
selected subjects super-imposed over time-specific sample means across all subjects (solid black line) and the 
corresponding fitted values (dotted black line). The bullets represent mean imputed missing values, assumed to 
equal the unknown true values for plotting purposes. (c) Estimated posterior means of components of β and 
their 90% credible intervals. The first 4 components correspond to anthropometric baseline predictors. The 
remaining 88 components correspond to the time-varying predictors, comprising 10 clinical variables and 78 
metabolites.
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model described above. Compared to its diagonal covariance matrix restriction, the proposed latent factor based 
method clearly provides a much better fit to the EarlyBird data set.

We also implemented a standard lme approach, where we first imputed the missing values using cross means, 
implemented using the longitudinalData package in R, and then fitted a linear mixed model to the complete 
dataset, implemented using the lme4 package in R. To adhere to space constraints, we curtail the results produced 
by the BSP-Diag method and discuss here only the results produced by the lme method in greater detail.

The results for the lme method are summarized in Fig. 7. Most regression coefficients had high estimated 
variance (Fig. 7, note the much larger y-axis scales compared to Fig. 5). The covariates important according to 
the lme method (coefficients with confidence intervals not including zero) were anthropometric variables sex 
and weight (baseline predictors 1, 2) and clinical variables and metabolites BMI SD, insulin derived measures, 
HOMA-B, HOMA-IR, physical activity, skin thickness, waist circumference, isoleucine, N-acetylcysteine, 
glutamate, polyunsaturated fatty acids and phenylalanines (time varying predictors 1, 2, 3, 4, 5, 6, 8, 10, 17, 38, 
47, 50, 61). However, the lme method did not perform well in realistic simulation settings (Section S.3, Figs. S.2, 
S.3, S.7, and S.8 in the Supplementary Information), thus undermining the reliability of these results.

Discussion
In this article, we considered the problem of estimating the longitudinal evolution of an outcome of interest in the 
presence of high-dimensional predictors comprising baseline covariates as well as longitudinally evolving ones 
when both the response and the time-varying covariates included missing values. We developed flexible statistical 
frameworks for inference in such problems when the missingness is ignorable in nature. Nonparametric mean 
processes captured widely varying covariate trajectories. Flexible, yet parsimonious, latent factor formulations 
of high-dimensional time-varying covariance matrices helped meet daunting dimensionality challenges, while 
also greatly simplifying the imputation tasks. Different classes of shrinkage priors automated the selection of 
latent factors and significantly important predictors, effectively guarding against model overfitting. An efficient 
Markov chain Monte Carlo algorithm accounted for uncertainty in various aspects of the analysis, including the 
imputation tasks.

Our assumption of ignorable missingness could be justified by the design of the EarlyBird study but may not 
be realistic in other scenarios, including studies involving mass-spectrometry-based metabolic data. Ongoing 
directions of research include extension of the proposed methodology to accommodate time-varying covariate 
effects, more flexible covariance patterns, more general mixed effects regression models, unequally spaced time 
points, non-ignorable missing values, nonlinear regression relationships etc.

Some of the metabolites and clinical variables identified as the best time-varying predictors of fasting 
glucose were known and expected, such as glucose-derived variables (bmi, HOMA-IR and HOMA-B) or 
glucose-metabolite byproduct (lactate). Additionally, metabolites like citrate, known for their impact on energy 
metabolism, and leucine, influencing insulin secretion, were also among the identified predictors. However, 
others, such as asparagine, may have indirect effects and could be context-dependent, worth exploring in more 
detail.

The sparsity-inducing priors in our work, originally designed for high-dimensional n ≪ p settings, are 
scalable to hundreds of predictors. We thus anticipate our method to also perform well under more extreme 
values of n and p. However, prior studies have not examined these methods in complex, longitudinal settings 
with missing data, as we do here. Testing their limits would thus require large-scale simulations with extreme 

Selection criteria

Method

BSP-LF BSP-Diag

DIC 142,823.1 286,136.1

LPML -59.3189 -96.1627

Table 2.  Deviance information criterion (DIC) and log pseudo marginal likelihood (LPML) estimates for the 
proposed Bayesian semiparametric latent factor based model (BSP-LF), and a related sub-model with diagonal 
covariance matrices for the covariates (BSP-Diag).

 

Figure 6.  Post-processing variable selection results for the EarlyBird study: Model size vs the corresponding 
excess error ψλ. See Section S.2.4 in the Supplementary Information for additional details.
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n and p values, which, lacking a real-world problem at this scale, lies beyond the current scope but could be 
pursued in future work.

Additional information
Supplementary Information accompanying this paper presents a more generic modeling framework for 
longitudinal data with ignorable missingness, which simplifies the imputation tasks for both missing response 
and covariate values, details of the MCMC algorithm used to sample from the posterior, post-processing model 
selection and variable selection procedures, a simulation study evaluating the proposed method in synthetic 
settings, and a few additional figures summarizing the results of the EarlyBird application and the simulation 
studies.

Data Availability
Data may be available upon request to F.P.M. and J.P., subject, in particular, to ethical and privacy considerations. 
We have included a synthetic data set, Simulated_Data.RData, which was simulated by closely mimicking 
the EarlyBird data set analyzed in the paper. Code is also shared.
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