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Soil salinization is the most prevalent form of land degradation in arid, semi-arid, and coastal regions 
of China, posing significant challenges to local crop yield, economic development, and environmental 
sustainability. However, limited research exists on estimating soil salinity at different depths under 
vegetation cover. This study employed field-controlled soil experiments to collect multi-source remote 
sensing data on soil salt content (SSC) at varying depths beneath barley growth. Three types of feature 
variables were derived from the images and filtered using the boosting decision tree (BDT) method. 
In addition, four machine learning algorithms coupled with seven variable combination groups were 
applied to establish comprehensively soil salinity estimation models. The performances of estimation 
model for different crop coverage ratios and soil depth were then evaluated. The results showed that 
the gaussian process regression (GPR) model, based on the whole variable group for depths of 0 ~ 10 cm 
and 30 ~ 40 cm, outperformed other models, achieving validation R2 values of 0.774 and 0.705, with 
RMSE values are 0.185% and 0.31%, respectively. For depths of 10 ~ 20 cm and 20 ~ 30 cm, the random 
forest (RF) models, incorporating spectral index and texture data, demonstrated superior accuracy 
with R2 values of 0.666 and 0.714. The study confirms that SSC can be quantitatively estimated at 
various depths using the machine learning model based on multi-source remote sensing, providing a 
valuable approach for monitoring soil salinization.
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In China, soil salinization area extends 9.21 million hectares, accounting for 6.62% of the total cultivated land. The 
formation of saline soil is intricate, posing significant challenges for effective detection and dynamic monitoring. 
Conventionally, soil salinization was assessed through field sampling and chemical analysis, methods that are 
both time-consuming, and labor-intensive1. In contrast, remote sensing technology offers a rapid and broad-
scale approach to gathering data on ground objects across varying temporal and spatial scales, making it an ideal 
tool for monitoring soil salinity2. The spectral response of soils varies with salt content, with high-salinity soils 
exhibiting stronger responses in the visible and near-infrared bands compared to lower-salinity soil3. Leveraging 
remote sensing for the dynamic monitoring of soil salinization is crucial for the efficient management of soil and 
water resources, providing essential insights into the timing, patterns, and locations of potential changes in soil 
salinity, thereby facilitating improved resource management and planning4.

In recent years, Unmanned Aerial Vehicle (UAV) and other aerial remote sensing platforms have advanced 
rapidly, increasingly finding applications in civilian sectors and gaining prominence in agricultural research. 
UAVs offer advantages such as portability, high flexibility, and customizable flight durations. Zhao et al.5 used 
multispectral remote sensing data from three research locations to establish soil salinity inversion models based 
on support vector machines (SVM), random forest (RF), backpropagation neural network (BPNN), and extreme 
learning machine (ELM). The results showed that all four spectral index-based models achieved high inversion 
accuracy. Similarly, Wei et al.6 used a UAV equipped with Micro-MCA (Multiple Camera Array) multispectral 
sensors to capture images for evaluating soil salinity in a small region of the Hetao Irrigation District. Chen et 
al.7 developed soil salt content (SSC) estimation models for sunflower fields at different soil depths during the 
budding and blooming stages using UAV multispectral data. IVUSHKIN et al.8 found that UAVs equipped with 
multiple sensors of hyperspectral, multispectral, thermal infrared, and LiDAR cameras, hold great potential 
for monitoring soil salinization. Feature indices, such as the soil salinity index and vegetation index derived 
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from spectral band reflectance transformations, serve as important variables for estimating SSC9. Qi et al.10 
collected spectrum reflectance and spectral indices via a UAV-ground cooperative system and applied machine 
learning (ML) algorithms, such as BPNN, to construct a salinity inversion model. The findings indicated that the 
developed model effectively captured the salinization level in the study area.

The relationship between soil salinity and remote sensing feature variables was frequently nonlinear due 
to the interplay of complex factors, including soil, vegetation, and atmospheric signatures11. Commonly, soil 
salinity was estimated using statistical models, particularly linear regression model such as partial least squares 
regression (PLSR)12,13. However, the natural relationship between spectral covariates and soil properties was 
rarely linear14. Machine learning algorithms, known for their capability to handle nonlinear relationships and 
high dimensional data, often outperform statistical regression models in soil salinity prediction. Algorithms 
such as RF, SVM and BPNN could capture these intricate nonlinear patterns, making them particularly effective 
for soil salinity estimation15. For instance, Hu16 compared PLSR and RF methods using hyperspectral first-
order differentiation, broadband and narrowband spectral indices as independent variables, finding that the 
RF model achieved higher predictive accuracy, especially in bare soil area. Utilizing Landsat image data and 
measured SSC data, Zhang et al17. developed—a SSC inversion model in the Yellow River Delta using three 
machine learning methods of BPNN, RF, and SVM. Wei et al.6 tested various ML models to identify the most 
accurate salt estimation model. However, the prediction accuracy of individual ML algorithm could vary under 
different conditions. Therefore, evaluating the performance of multiple ML regression algorithms is essential for 
developing reliable soil salinity prediction models adaptable to diverse environmental factors.

There is a strong correlation between vegetation growth and soil salinity, as evidenced spectrally in two 
primary ways: differences in leaf spectral reflectance and significant variations in the texture features of 
spectral images influenced by soil salinity or leaf characteristics18,19 Studies have shown that texture features are 
extensively used to reveal variations in vegetation characteristics, and integrating these with spectral information 
can effectively improve the accuracy of predictive models20–24. Huang et al.25 used Sentinel-2 imagery combined 
with texture features to significantly improve the classification accuracy of moderate saline soil in the Yellow 
River Delta region. Nevertheless, while remote sensing was commonly employed for soil salinity detection, the 
focus has primarily relied on spectral indices6, with limited studies investigating the role of texture features in 
soil salinity estimation. For bare soil, the spectrum could directly determine the salt content of the soil surface. 
Conversely, under vegetation coverage, soil salinity can be indirectly assessed through the spectral signatures of 
the vegetation canopy26.

In recent years, limited studies have focused on estimating soil salinity under vegetation cover. This study 
aims to develop models for estimating soil salinity at various depths beneath barley growth. In this study, an 
experiment was carried out for barley growth under soil salt stress conditions, collecting both remote sensing 
data and soil salinity data at varying soil depths. Three types of remote sensing feature variables were extracted 
and filtered. Moreover, different combinations of these optimal feature variables were coupled with four machine 
learning algorithms to develop the most accurate models for soil salinity estimation. The main objectives of 
this study were to: (1) optimize the feature variables of spectral band, spectral index and texture data based on 
the BDT method; (2) evaluate the potential and feasibility of different ML algorithms with seven data groups 
for SSC estimation; (3) validate the accuracy of the soil salt estimation models for different vegetation coverage 
conditions. This study presented a novel method for dynamically monitoring of soil salinity in agricultural 
systems, contributing precise irrigation and fertilization practices.

Materials and methods
Study area and experimental design
The study area is located at the ecological experimental station of Yangzhou University, situated in the Jianghuai 
Plain of Jiangsu Province in eastern China (119°24′E, 32°21′N), at an elevation of 5  m (Fig.  1). This region 
experiences a subtropical monsoon climate, which is marked by a lengthy frost-free averaging 223  days per 
year. The average annual precipitation, evaporation, and air temperature are recorded at 937 mm, 1063 mm, 
and 14.8 °C, respectively. Soil samples for the experiment were collected from the Tiaozini reclamation area in 
Dongtai City, Jiangsu Province. This area has been affected by marine intrusion and groundwater topdressing, 
resulting in high salinity levels in the soil tillage layer.

The crop studied was barley (Hordeum vulgare L.). Four different soil salinity treatments were established: 
control (no salt), low salinity (3‰), medium salinity (5‰), and high salinity (10‰). The salinity experiment 
was conducted using a box planting setup with dimensions of 100 cm in length, 40 cm in width, and 40 cm 
in height, each containing 120 kg of base soil. Each treatment was replicated thrice, resulting in a total of 12 
experimental units. Cultivation followed local management practices, encompassing weeding, pest, and disease 
prevention. Barley was planted in early November, with each box accommodating two rows, and harvested in 
late May of the following year. To maintain the soil salinity levels of each treatment, the experimental boxes were 
designed as sealed containers to prevent salt leaching due to precipitation and irrigation.

Data collection and acquisition
Soil salt measurement
During the barley growth stages of reviving-jointing, jointing-filling, and grain-filling maturity, soil apparent 
electrical conductivity (EC) data were measured every 7 to10 days, in conjunction with the acquisition of 
multispectral imagery. A total of 84 datasets were collected throughout the barley growth period. Soil electrical 
conductivity was measured using the EC450 conductivity meter (Spectrum Technologies Co., Ltd., Chicago, 
IL, USA). The electrode was first calibrated using a calibration solution (conductivity: 1413 μS/cm). Then, the 
electrode was inserted into the soil profile to measure conductivity at depths of 0 ~ 10 cm, 10 ~ 20 cm, 20 ~ 30 cm, 
and 30 ~ 40 cm. The soil conductivity values were directly recorded by the handheld reader. During the early, 

Scientific Reports |         (2025) 15:2713 2| https://doi.org/10.1038/s41598-024-82868-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


middle, and late stages of crop planting, the soil samples from different soil layers were collected simultaneously 
with the measurement of apparent soil electrical conductivity values for measuring actual soil water-soluble 
salts content. The collected soil samples were naturally air-dried and ground. Then the soil sample powder was 
screened through a 2 mm sieve and mixed evenly. After preparing a 1:5 soil-to-water ratio extraction solution, 
the mixture was shaken and filtered. Finally, the clear filtrate was taken and placed in a glass evaporation dish into 
an oven at 105 °C until a constant weight was achieved27. Subsequently, the SSC was derived using the empirical 
relationship between SSC and electrical conductivity established in this study (SSC = 0.0013EC + 0.0008, 
R2 = 0.92).

Multispectral data acquisition and processing
This study leveraged remote sensing data from multiple UAV-based sensors to enhance soil property monitoring 
through data fusion. The DJI Inspire 2 UAV platform (DJI Inc., Shenzhen, China) was employed, equipped with 
an Altum multi-spectral and infrared camera (MicaSense, Inc., Seattle, WA, USA). This camera captured images 
across six spectral bands (blue, green, red, red edge, near-infrared, and thermal infrared) simultaneously. The 
UAV flight operations were conducted under optimal conditions of clear skies and calm winds, between 11 
a.m. and 2 p.m. local time. To ensure high-quality data, the sensor was pre-warmed for 5 min, and a reference 
plate was used for radiometric calibration before each flight. The flight altitude and cross-track overlap were 
maintained at 25 m and 75%, respectively, and the camera was oriented vertically downward to achieve a ground 
resolution of 1.1 cm per pixel. After preprocessing the collected multispectral images by radiation correction, 
geometric correction, and image mosaicking, reflectance data for each pixel were generated during the crop 
growth period. A region of interest (ROI) was preset near the center of each plot to extract canopy reflectance.

Vegetation coverage calculation
After collecting multispectral imagery, the canopy light interception of barley was measured using the AccuPAR 
LP-80 ceptometer (Decagon Devices Inc., Pullman, WA, USA). The LP-80 is equipped with 80 independent 
sensors, each spaced uniformly at 1 cm intervals and measures solar radiation within the 400–700 nm band 
in different modes. During the measurement, the sensor was positioned centrally in the plot and aligned with 
the row direction. Using the photosynthetically active radiation values measured at the top and bottom of the 
canopy, the instrument automatically calculated the crop’s Leaf Area Index (LAI) using a built-in algorithm 

Fig. 1.  The geographical map of the study area.
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that incorporates other variables. Based on previous studies and a classification method considering similar 
geographical features and vegetation types28, vegetation cover ratios were divided into low (0 ~ 0.45), medium 
(0.46 ~ 0.75) and high (0.76 ~ 1) coverage, corresponding to LAI values ranging from 0 ~ 1, 1.1 ~ 2.5, and > 2.5 
respectively.

Construction of feature variables
Spectral indices are classical variables that integrate the spectral characteristics of each band of ground objects 
and enhanced specific information through mathematical transformations and combinations of reflectance 
values from different bands. Salinity indices, commonly used for the rapid assessment of soil salinization, 
exhibit a strong correlation with bare soil salinity29. Similarly, vegetation indices are frequently used for the 
quantitative assessment of vegetation growth30. In this study, a selection of widely recognized spectral indicators 
were employed to monitoring soil salinization, including 15 salinity indices and 15 vegetation indices.

The selected salinity indices include the following: Normalized Difference Salinity Index (NDSI), R-edge 
Normalized Difference Salinity Index (NDSI-reg), Brightness Index (BI), Salinity Index 1 (SI1), R-edge Salinity 
Index 1 (SI1-reg), Salinity Index 2 (SI2), R-edge Salinity Index 2 (SI2-reg), Salinity Index 3 (SI3), R-edge 
Salinity Index 3 (SI3-reg), Salinity Index (SI-T), Salinity Index S1, Salinity Index S2, Salinity Index S3, Salinity 
Index S5, Salinity Index SI; The selected vegetation indices include: Normalized Difference Vegetation Index 
(NDVI), R-edge Normalized Difference Vegetation Index (NDVI-reg), Difference Vegetation Index (DVI), 
R-edge Difference Vegetation Index (DVI-reg), Enhanced Vegetation Index (EVI), R-edge Difference Vegetation 
Index (EVI-reg), Triangular Vegetation Index (TVI), Normalized Greenness Index (NDGI), Simple Ratio 
Index (SR), Modified Soil Adjusted Vegetation Index (MSAVI), Optimized Soil Adjusted Vegetation Index 
(OSAVI), Soil Adjusted Vegetation Index (SAVI), Visible Light Band Difference Vegetation Index (VDVI), 
Visible Atmospherically Resistant Index (VARI), Green Normalized Difference Vegetation Index (GNDVI), and 
a normalized relative canopy temperature (NRCT). The calculation formulas for these indices were shown in 
Table 1.

The texture of the image indicated variations in the color and gray levels of the soil surface, closely related to 
the soil salt and water content. In this study, the statistical Gray Level Co-occurrence Matrix (GLCM) method 
was used to extract the textural features of the images. GLCM is a prevalent method widely used for image 
feature extraction, texture analysis, and quality evaluation, describing the correlation between pixel gray levels 
within images46. Eight characteristic variables including mean (MEA), variance (VAR), uniformity (HOM), 
contrast (CON), difference (DIS), entropy (ENT), second-order moment (SEC) and correlation (COR) were 
calculated for each band of UAV multispectral images using the second-order statistical filtering tool. In total, 
this study incorporated 5 band reflectance values, canopy temperature, 31 spectral indices, and 40 texture feature 
data, amounting to 77 feature variables as independent variables.

Feature variable selection and set construction
Optimization of characteristic variables
To optimize the complexity of the model’s input variables, this study employed the BDT method to refine the 
selection of 77 characteristic variables. BDT is an embedded method that can predictor importance for the tree 
by summing the changes in mean squared error (MSE) due to splits on each predictor and dividing the sum by 
the number of branch nodes47. The steps involved in this optimization process included: (1) dividing the feature 
variables into twenty groups; (2) calculating the importance scores of feature variables in each dataset based 
on BDT; (3) normalizing the importance scores across various data categories; and (4) performing statistical 
analysis and sorting on the normalized data from the 20 groups. Therefore, the obtained datasets were randomly 
divided, with 70% allocated to the training subset and the remaining 30% reserved for the test subset. This 
process was repeated 20 times. The results from each iteration were normalized across different groups (spectral 
band reflectance group, spectral index group, and texture data group). Based on the contribution degree of 
characteristic variables within each group, a threshold of 0.1 was established to select the pivotal variables for 
model training and development.

Construction of model training
The construction of a predictive model necessitates the careful extraction of input features and the judicious 
selection of appropriate ML algorithms. To investigate the impact of various features on model performance, 
feature combinations were categorized as follows:

Single Variable Groups: (1) Band Reflectance (Plan 1): This group comprise the original reflectance values of 
each spectral band. These values directly represent the physical and chemical properties of the soil, serving as 
the primary features for predicting the SSC. (2) Spectral Index (Plan 2): This group includes of various spectral 
indices, calculated from different spectral bands reflectance. These indices are designed to enhance specific soil 
or vegetation characteristics. (3) Texture Feature (Plan 3): This group is derived from spectral data, such as the 
gray level co-occurrence matrix, can capture subtle changes and the spatial structure of the soil surface.

Pairwise Variable Groups: (1) Spectral Band Reflectance and Indices Combination (Plan 4): This combination 
retains the original spectral information while incorporating enhanced data, potentially providing a more 
comprehensive understanding of soil salinity changes. (2) Spectral Band Reflectance and Texture Feature 
Combination (Plan 5): By integrating the complementary advantages of both data types, this combination 
reveals spectral characteristics and captures the spatial heterogeneity of the soil surface. (3) Spectral Indices 
and Texture Feature Combination (Plan 6): This combination enriches the enhanced information with spatial 
structure data, potentially improving the model’s generalization capability.
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Full Variable Group (Plan 7): This group contained all types of data related to spectral band reflectance, 
spectral indices, and texture features. The comprehensive inclusion of all potentially relevant information aimed 
to enhance the model’s generalization capabilities and predictive performance.

Machine learning models
Based on the measured SSC and the selected feature variables, four machine learning methods of RF, SVM, GPR, 
and BPNN methods was used to construct soil salinity estimation models.

RF is an ensemble learning method used to develop predictive models for classification and regression tasks 
by employing a collection of randomly generated decision trees48. In recent years, RF has gained popularity 
for estimating vegetation growth parameters as well as soil physical and chemical characteristics. For instance, 
Huang et al.49 established several models for estimating soil salinity based on Landsat-8 OLI images in their 
study of oasis soil salinity in arid regions, they found that the RF model achieved higher estimation accuracy 
compared to traditional statistical models. Similarly, Sui et al.50 developed a soil salinity estimation model that 
integrated original observations and satellite data, incorporated hydrological connectivity measurements along 
with the RF algorithm.

SVM is a method that implemented structural risk minimization, effectively addressing challenges associated 
with small sample sizes, nonlinearity, and high-dimensional data. SVM demonstrates strong expressive capability, 

Feature variable Formulation Reference

NDSI NDSI = R−NIR
R+NIR

31

NDSI-reg NDSI-reg = RedEdge−NIR
RedEdge+NIR

32

BI BI = 
√

R2 + NIR2 33

SI1 SI1 = 
√

G × R 30,34

SI1-reg SI1-reg = 
√

G × RedEdge 32

SI2 SI2 = 
√

G2 + R2 + NIR2 30,34

SI2-reg SI2-reg = 
√

G2 + RedEdge2 + NIR2
32

SI3 SI3 = 
√

G2 + R2 30,34

SI3-reg SI3-reg = 
√

G2 + RedEdge2
32

SI-T SI-T = 100 × R/NIR 35

S1 S1 = B/R 36

S2 S2 = B−R
B+R

36

S3 S3 = G × R/B 36

S5 S5 = B × R/G 36

SI SI = 
√

B × R 37

NDVI NDVI = NIR−R
NIR+R

38

NDVI-reg NDVI-reg = NIR−RedEdge
NIR+RedEdge

32

DVI DVI = NIR − R 30

DVI-reg DVI-reg = NIR − RedEdge 32

EVI EVI = 2.5 × NIR−R
NIR+6R−7.5B+1

39

EVI-reg EVI-reg = 2.5 × NIR−RedEdge
NIR+6RedEdge−7.5B+1

32

TVI TVI = 0.5 × 120×(NIR−G)
200×(R−G)

10

NDGI NDGI = G−R
G+R

40

SR SR = NIR/R 41

MSAVI MSAVI = (2NIR−1)−
√

(2NIR+1)2−8(NIR−R)
2 32

OSAVI OSAVI = 1.16 × NIR−R
NIR+R+0.16

32

SAVI SAVI = 1.5 × NIR−R
NIR+R+0.5

42

VDVI VDVI = 2G−(R+B)
2G+(R+B)

43

VARI VARI =  G−R
G+R+B

44

GNDVI GNDVI = NIR−G
NIR+G

10

NRCT NRCT =  T i−T min
T max−T min

45

Table 1.  Spectral index and calculation formula. B, R, G, NIR, and Red-edge represent the reflectance of blue, 
red, green, near-infrared, and red edge bands, respectively.
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generalization ability, and learning efficiency. It seamlessly integrates with multi-source information, resulting 
in enhanced estimation accuracy51. For example, Cai et al. (2010) combined multispectral and texture features, 
utilizing the SVM classifier to identify saline-affected soil. The study confirmed that the SVM classifier effectively 
extracted information on soil salinization distribution in the Yinchuan Plain. Similarly, Guan et al.52 introduced 
SVM theory into the dynamic prediction of soil electrical conductivity values, constructing a dynamic model for 
soil salinity prediction aimed at optimizing irrigation water in salinized areas.

GPR is a nonparametric Bayesian regression method that predicts outcomes by assuming the data follow a 
multivariate Gaussian distribution, thereby providing an estimate of prediction uncertainty. It was flexible and 
efficient for small datasets but can be computationally expensive and challenging to scale for larger datasets. 
Furthermore, selecting and tuning the appropriate kernel function necessitates substantial expertise and 
experimentation.

BPNN is a feedforward network composed of multiple neurons that can learn and identify nonlinear 
relationships in complex systems. It demonstrates a strong self-learning ability, adaptability, and resistance to 
interference, making it highly promising for estimating of soil physical and chemical parameters. For instance, 
Wang et al.53 successfully established a prediction model for soil moisture and salinity using BPNN in conjunction 
with Landsat-8 satellite data.

In the realm of machine learning models, parameter determination is crucial for model performance. 
For instance, the hyperparameters such as minimum leaf sizes and maximal number of branch nodes in RF 
model, the kernel parameters of function, scale, epsilon in SVM model, as well as parameters of explicit basis, 
covariance function in GPR model and activation function, layer sizes, and regularization in BPNN model can 
significantly influence training outcomes and simulation accuracy. In addition, some less important parameters, 
such as learning rate and standardization, indirectly affect the model training efficiency. In this study, the 
Bayesian optimization algorithm, integrated into the machine learning toolkit was used. This algorithm fine-
tunes parameters to minimize cross-validation loss and ultimately identify the optimal parameters set, enabling 
the model to achieve optimal performance.

Technical workflow
This study aims to identify the most effective set of variables for accurately predicting SSC, thereby enhancing 
the overall performance and applicability of the model across various soil depths. SSC was designated as the 
dependent variable, while different groups of variables served as the independent variables. The sample data were 
randomly divided into two groups, with 70% allocated for model training and 30% for validation. Four distinct 
machine learning methods (RF, SVM, GPR, and BPNN) were employed to estimate SSC, with each method 
constructing corresponding prediction models and optimizing performance through model hyperparameters 
tuning. To further improve model accuracy, tenfold cross-validation was used to construct and train the SSC 
estimation models (Fig. 2).

Results
Statistical of soil salinity distribution
The salt content at various sampling points and soil depths was categorized as follows: non-saline soil (< 0.2% 
salt content), mild salinization (0.2 ~ 0.5%), severe salinization (0.5 ~ 1.0%), and saline soil (> 1.0%). The non-
saline treatment exhibited an average salt content of 0.214%, while the low-salt treatment averaged 0.257%. The 
medium-salt treatment recorded an average salt content of 0.418%, and the high-salt treatment had an average 
value of 1.353%. Statistical analysis of the obtained salt content data revealed that at a soil depth of 0 to 10 cm, 
the measured SSC were generally lower than at deeper depths, varying from 0.031% to 1.04%, with an average 
of 0.428%. At a depth of 10 to 20 cm, the SSC ranged from 0.087% to 1.406%, with an average of 0.561%. The 
highest SSC was observed at the depth of 20 to 30 cm, with an average SSC of 0.633%, varying between 0.055 
to 1.806%. The SSC distribution at 30 to 40 cm was similar to that in the 10 to 20 cm layer, with an average of 
0.619%. Based on these criteria, the measured salt grade distribution in the study area was shown in Fig. 3.

Contribution and selection of feature variables
Feature selection is a fundamental component of machine learning and data analysis, aimed at identifying 
the most relevant and representative features from the original dataset to enhances both model performance 
and computational efficiency. In this study, the importance of 77 feature variables from three types of data for 
different soil depths was calculated (Fig. 4). After normalizing the feature variables and setting a threshold of 0.1, 
the relevant features were screened. Common variables across different depths were then selected for training 
the ML model, Finally, the selected variables for the different groups were as follows: Band reflectance: B, R-edge, 
and NIR; Spectral Index: SI2, SI2-reg, BI, SI-T, DVI, EVI, SAVI, OSAVI, DVI-reg, EVI-reg, and MSAVI; Texture 
feature: B-MEA, B-VAR, B-CON, B-ENT, B-SEC, G-VAR, RE-MEA, NIR-MEA, NIR-HOM, NIR-ENT, and 
NIR-SEC. In total, 25 feature variables were filtered for modeling.

Comparison of model performance for various ML methods and data groups
The optimal variables from the three data types of band reflectance, spectral index, and texture data along with 
their combinations, were used as independent variables, with SSC served as the target variable in the machine 
learning (RF, SVM, GPR, and BPNN) model to develop a soil salinity prediction model. The prediction accuracies 
of these models, based on various combinations of variables, were shown in Figs. 5 and 6.

Figures  5 and 6 demonstrate that, for each algorithm, the band reflectance and spectral index variables 
performed effectively in estimating SSC at a depth of 0 to 10 cm within the single-variable groups. Among these, 
the BPNN model, based on the spectral index, demonstrated the best performance, achieving an R2 of 0.74 and 
RMSE of 0.26%. In the multivariate combination group, the GPR model, utilizing the entire variable set, proved 
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most effective, exhibiting a stable R2 of approximately 0.77 and an RMSE of 0.24%, along with excellent overall 
stability. The RF model identified band reflectance as the most significant single variable for SSC at a depth of 
10 to 20 cm, whereas the SVM model produced the worst estimation. Across the four approaches tested, texture 
feature alone yielded suboptimal results, with an average RMSE exceeding 0.34%. However, the RF model that 
incorporated both texture and spectral index data, outperformed the others in the multivariate combination, 
achieving a mean RMSE of 0.31% and an R2 of approximately 0.61, making it as the most effective model overall. 
Additionally, the GPR model consistently outperformed other approaches, while the SVM and BPNN models 
delivered less accurate predictions across all groups.

At a depth of 20 to 30 cm, the RF model constructed using band reflectance and spectral index, demonstrated 
superior performance, achieving average R2 values of 0.62 and 0.67, along with mean RMSE of 0.31% and 0.29%, 

Fig. 3.  Statistics of soil salinity in different soil depths (a) experimental treatments (b).

 

Fig. 2.  Workflow for soil salinity estimation model under vegetation cover based on multi-source remote 
sensing.
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Fig. 4.  Contributions of feature variables of three data types for SSC variations under different depths.
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respectively. This model outperformed those developed with the other three algorithms. Among the multivariate 
combinations, the integration of spectral index and texture feature yielded the best results within the RF model, 
with an R2 of 0.67 and an RMSE of 0.29%. Similarly, the GPR algorithm, when applied specifically to texture 
feature, exhibited higher accuracy than the other three algorithms. The SVM model achieved its highest accuracy 
when all variables were combined. In contrast, the models based on band reflectance and spectral index data in 
the GPR and BPNN algorithms showed slightly higher accuracy than other combinations, with R2 values of 0.64 
and 0.58, and RMSE values of 0.30% and 0.35%, respectively.

The RF model using textural feature as a single variable exhibited the lowest accuracy at a depth of 30 to 
40 cm, with an average RMSE of 0.39% and R2 of 0.37. In contrast, the RF model constructed using the spectral 
index demonstrated higher accuracy than the other three models. Within the multi-variable combination group, 
the SVM model maintained consistent accuracy, with an R2 of approximately 0.55. The GPR model, when applied 
to the complete variable set, showed superior accuracy compared to other combinations. Notably, the BPNN 
model exhibited better accuracy when based on band reflectance and spectral index data than the other models.

In conclusion, soil salinity estimation at various depths was enhanced through the application of diverse 
machine learning techniques, with the effectiveness of these methods differing across different modeling groups. 
The most effective approach for estimating soil salinity was the GPR model using the entire variable group, 
particularly for surface (0 ~ 10  cm) and deep (30 ~ 40  cm) measurements. However, for middle-depth soils 
(10 ~ 20 cm and 20 ~ 30 cm), the RF model using spectral index and texture feature, yielded the best results. 
The RF model effectively reduced the variance of individual trees by integrating multiple decision trees, thereby 
enhancing the model’s stability and estimation accuracy. Although the SVM and BPNN models performed 
slightly worse overall than GPR and RF models, they still demonstrated reasonable predictive capabilities within 
specific categories.

Fig. 5.  Performance (R2) of different ML methods and data groups for SSC estimation.
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Outer-sample validation and analysis
The performance of optimal estimation models has been evaluated 20 times using outer-samples (non-training) 
data (Fig. 7). At a soil depth of 0 to10 cm, the R2 values of the validation set fluctuated between 0.6 and 0.9, with 
an average R2 of 0.77 and the RMSE values typically ranged from 0.1% to 0.3%, with an average RMSE of 0.185%. 

Fig. 7.  Accuracy of optimal SSC estimation model for different soil layers.

 

Fig. 6.  Performance (RMSE) of different ML methods and data groups for SSC estimation.
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These results indicated that the GPR model demonstrated high prediction accuracy and stability for predicting 
shallow soil salinity. For the 10 to 20 cm depth, the RF model showed favorable performance, with an average 
R2 and RMSE of 0.67 and 0.325%, respectively. At the 20 to 30 cm depth, the RF model achieved a maximum R2 
of 0.87 and a minimum RMSE of 0.212%. In the deepest soil layer, the model’s R2 ranged from a minimum of 
0.52 to a maximum of 0.92, indicating high overall accuracy and stability, with RMSE values fluctuated between 
0.169% and 0.485%.

The modeling and validation accuracies of four soil salinity estimation models at various depths were 
compared, with specific models were selected for each depth to optimize estimation results in both modeling 
and validation sets. The average R2 values across depth in the modeling set exceeded 0.6, while the average RMSE 
values were below 0.4%, indicating that the models achieved high accuracy and good stability. Finally, based on 
the optimal SSC estimation model of each soil layer, the salinity profiles of different soil layers in the coastal sliver 
mud reclamation area were inversion (Fig. 8). This farm has experienced prolonged lateral ocean infiltration, 
leading to consistently high salinity levels in the cultivated soil layer. Except for the lower terrain in the central 
region, the soil salinity in other surrounding areas remained below 0.5%. While, as the of soil depth increases, 
the salinity levels rise, reaching up to 1.5 ~ 2.0%.

Performance of salinity estimations under different vegetation coverage
In this study, the LAI was used as a proxy for vegetation cover, categorized into three distinct levels: low, medium 
and high. Soil salinity data were stratified based on these vegetation cover classes. The results of SSC estimation 
under various vegetation covers were presented in Fig. 9.

As shown in Fig. 9, all models achieved R2 values greater than 0.4, with the highest value reaching 0.83, 
indicating that the model accuracy was greatest for soil surface with intermediate vegetation coverage. The 
models demonstrated good accuracy for soil depths of 0 to 10 cm across all vegetation coverage level, with R2 
values exceeding 0.7 and low RMSE values. At a depth of 10 to 20 cm, model accuracy was highest under low 
vegetation coverage, while it was lowest under medium vegetation coverage. However, at a depth of 20 to 30 cm, 
maximum validation accuracy was achieved with medium coverage, with R2 values exceeding 0.7 across all three 
coverage levels. With substantial vegetation coverage, the highest accuracy at 30 to 40 cm was attained, with an 
RMSE of 0.241% and an R2 of 0.78. Overall, when using the data selected under each vegetation coverage level as 
the validation set, the preferred models at different depths exhibited robust estimation performance.

Discussion
Soil salinity estimation using UAV remote sensing data plays a positive role in salinity monitoring and 
management. In this study, we employed spectral data and salinity measurements collected during the vegetation 
cover period to develop and validate a soil salinity estimation model across various depths. Furthermore, 
we assessed the model’s performance under different vegetation cover ratios and investigated the impact of 
vegetation cover on salt estimation in different soil layers.

Feature selection is a crucial step in developing an accurate soil salinity estimation model. Using the BDT 
method, 25 key features were identified, including band reflectance (e.g., blue, red-edge, and near-infrared), 
spectral indices (e.g., SI2-reg, EVI, and DVI), and texture data (e.g., mean, variance, and second-order moments 
of GLCM features). These features effectively captured the spectral properties and the spatial structural 
information, providing the model with adequate input variables. Studies have shown that the red-edge band was 
particularly sensitive to soil salinity, with strong correlations to the spectral properties of the vegetation canopy, 
thereby enhancing the accuracy of soil salinity estimation32,54. Sidike et al.55 employed the PLSR approach 
to identify soil salinity sensitive bands, highlighting the significant role of near-infrared band in soil salinity 
assessment. Besides, Fan et al.56 demonstrated that soil salinity correlates with NIR and SWIR bands, which 
exhibited larger negative correlation coefficients. In this study, the red-edge and near-infrared proved highly 
significant with SSC at various depths, as they sensitively indicated changes in soil moisture and salt content. 
This finding aligned with the results reported by Taghadosi et al.57.

Spectral indices such as EVI, EVI-reg, and BI indirectly indicated the salinity status of the soil by enhancing 
vegetation characteristics. Lobell et al.58 found that EVI outperformed NDVI in salinity monitoring. Spectral 

Fig. 8.  Spatial distribution of salt content in different soil layers of coastal saline soil. Soil depth: (a) 0 ~ 10 cm, 
(b) 10–20 cm, (c) 20 ~ 30 cm, (d) 30 ~ 40 cm.
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index groups, including SI2-reg, EVI-reg, and DVI-reg, which involved calculations with the red-edge band, 
further emphasizing its importance in soil salinity monitoring, consistent with the findings of Ma et al.59. 
Additionally, textural features, such as mean, variance, and contrast in the GLCM, were instrumental for 
capturing subtle changes in soil surface and spatial structure information. Tai60 showed that incorporating 
texture features could significantly enhance the accuracy of soil salinity estimation models, especially under 
vegetative cover conditions.

Different modeling data groups also influenced the performance of estimation models. In the single-variable 
data group, spectral indices significantly contributed to soil salinity estimation, with the RF model demonstrating 
high accuracy across all four depths (Figs. 5 and 6). Bian et al.61 reported a notable correlation between spectral 
indices and soil salinity, supporting the effectiveness of these indices in estimation models. Although the model 
accuracy based on band reflectance was slightly lower than that of the spectral indices, the overall difference was 
not statistically significant. This finding was consistent with Wang et al.62, who evaluated the prediction accuracy 
of various variable groups for soil salinity in oasis environments.

In contrast, texture feature alone performed poorly as the single-variables. However, when combined with 
other variables, the texture information derived from multispectral images could improve the accuracy of soil 
salinity estimation at different depths beneath vegetation cover. Zheng et al.19 demonstrated that the integrating 
texture data with spectral information significantly enhanced the accuracy of rice biomass estimation. The texture 
features from UAV multispectral images provided rich information63, making them applicable for estimating soil 
salinity at different depths. This study also demonstrated that using sensitive bands and spectral indices as input 
variables lead to better modeling and validation outcomes in soil salinity estimation. Nevertheless, in multi-
variate groups, variables may interact and constrain one another, and combining highly important variables 

Fig. 9.  Evaluation of the SSC estimation under different vegetation cover ratio.
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does not always achieve optimal results. For instance, the accuracy of all data groups in the BPNN model was 
suboptimal compared to other models. Introducing excessive number of independent variables could lead to 
information redundancy, overfitting, and a decrease in model accuracy64.

Previous studies have highlighted the superiority of machine learning methods for estimating SSC due to 
the complexity and indirect relationships among variables65. In this study, RF, SVM, GPR and BPNN were 
employed to model soil salinity at various depths and to identify the most effective model. The evaluation criteria 
revealed that RF and GPR offered distinct advantages in estimating soil salinity. Although SVM has strong 
generalization capabilities for addressing nonlinear problems, it remains sensitive to noisy data66. The models 
exhibited different levels of accuracy in estimating soil salinity across depths. The GPR model showed superior 
prediction accuracy compared to other methods for both surface and deep soils, while the RF model performed 
well in intermediate soil layers.

Given the complexity of the soil salinization mechanism and the intricate nonlinear relationships between soil 
spectral characteristics and soil salinity, machine learning methods are particularly well-suited for elucidating 
these connections. Their robust nonlinear fitting and generalization capabilities make them ideal for simulating 
the complex interactions among variables. Ma et al.59 found that the RF model produced better estimation 
results when predicting the soil salinity in the Ebinur Lake wetland using multispectral and Digital Elevation 
Model (DEM) data. Wei et al.6 developed SSC estimation models using RF, SVM, and BPNN algorithms, with 
the RF model achieving the highest prediction accuracy (R2 = 0.84). Additionally, Zhu et al.67 and Yu et al.68 
concluded that the RF-based SSC estimation model achieves high accuracy.

Estimating soil salinity during the vegetation cover period primarily involves indirectly obtaining information 
on soil salinity through the spectral response of crops to it. The vegetation cover ratio of a given crop during this 
period can correlate with soil salinity levels. The optimal estimation model for various soil depths varies with 
vegetation cover conditions. Specifically, for soil depths of 0 to 10 cm, the optimal model applied under low and 
medium vegetation cover conditions, while for high vegetation cover, the model was best suited for depths of 
20 to 30 cm. During the vegetation cover period, crops primarily absorb soil water through their lateral roots, 
making the salinity of the soil layer where these lateral roots are located critical for crop water uptake leading 
to growth stress69. Higher soil salinity levels in this layer increase stress on crop growth, leading to diminished 
growth, which is indirectly expressed in the vegetation canopy.

Although current studies on soil salinity monitoring have evolved from relying on single data source to the 
fusion of multi-source data, and from soil surface salt identification to depth layer salt content estimation, soil 
salinity distribution exhibits complex variability due to multiple factors such as soil salinization types, soil water 
content, vegetation cover, and climatic conditions. Consequently, the estimation models often lack robustness 
when applied across temporal and spatial scales. Future studies may not only focus on multi-scale coordinated 
monitoring of soil salinization and harness the potential of satellite, aerial, and ground-based sensing data but 
expand interdisciplinary approaches, such as assimilating remote sensing data with soil water and salt transport 
models to enable dynamic simulation of soil profile water-salt processes.

Conclusion
This study estimated and analyzed soil salinity content at various depths using UAV multi-spectral data. The 
analysis involved seven features variable groups derived from band reflectance, spectral indices, and texture 
features. Additionally, feature variable selection based on the BDT method and four machine learning algorithms 
(RF, SVM, GPR and BPNN) were incorporated into the estimation model establishment. Key findings are as 
follows: (1) The estimation accuracy of the RF and GPR models surpassed that of the SVM and BPNN models 
across all four soil depths. (2) The GPR model, using the full variable set, provided the highest accuracy for 
estimating SSC at 0 to 10 cm and 30 to 40 cm depths, achieving R2 values of 0.77 and 0.62, with RMSE values 
of 0.185% and 0.31%, respectively. The RF model, based on the spectral index and texture dataset, was the most 
accurate for depths of 10 to 20 cm and 20 to 30 cm. (3) Validation using soil salt data under varying vegetation 
covers showed that the highest accuracy was achieved with medium vegetation coverage at 0 to 10 cm and 20 to 
30 cm depths, as well as high vegetation coverage at 10 to 20 cm and 30 to 40 cm depths.

Nonetheless, several limitations still existed in this study. The experiment was conducted under controlled 
box planting conditions, which may not fully represent the soil salinity in actual field conditions. Additionally, 
the study did not account for crop type and soil water content, which could influence model accuracy in practical 
applications. Future study should consider a broader range of influencing factors to further refine the model and 
enhance the accuracy and stability of soil salinity predictions.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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