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The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled 
by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot 
electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, 
inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal 
equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale. 
This article presents a unified theoretical description that effectively integrates both processes. 
Our method is adaptable for use in both ab-initio simulations and extensive molecular dynamics 
simulations, extending the conventional two-temperature model to incorporate molecular dynamics 
equations of motion. To demonstrate the efficacy of our approach, we apply it to the laser excitation of 
silicon thin films. Our simulations closely match experimental observations, accurately reproducing the 
temporal evolution of the Bragg peaks.

Keywords  Silicon, Femtosecond laser excitation, Nonthermal effects, Molecular Dynamics

When subjected to an intense femtosecond (fs) laser pulse, a material experiences a dynamic interplay of 
competing ultrafast processes. Owing to the pronounced interaction of the laser field with electrons and its 
comparatively minimal interaction with ions, it is generally acknowledged that a transient non-equilibrium state 
arises following the laser pulse after the thermalization of electrons through electron-electron collisions. This 
state consists of hot electrons in the conduction band, hot holes in the valence band, and comparatively cold 
ions1,2. The presence of these hot electrons and holes significantly alters the interatomic bonding, resulting in 
ionic motion that lacks thermal character. This transient state dissipates through incoherent electron-phonon 
collisions, facilitating energy transfer from electrons to ions, thereby achieving equilibrium between the electronic 
temperature Te and ionic temperature Ti within a picosecond timescale τep. The thermal influence of electron-
phonon coupling (EPC) on laser-induced structural dynamics has been investigated using the two-temperature-
model molecular-dynamics (TTM-MD) simulation approach3,4, which utilizes empirical interatomic potentials 
V (r1, . . .) dependent solely on the ionic coordinates r1, . . .5,6. The corresponding equations of motion for both 
electronic temperature and the ions are formulated as follows:

	
Ce(Te)dTe

dt
= − Gep(Te) (Te − Ti) + dELabs

dt
, � (1)

	
Mk

d2rk

dt2 = − ∇rk V (r1, . . .) + ξ Mk vk, � (2)

where Ce(Te) denotes the electronic heat capacity and Gep(Te) represents the electron-phonon coupling 
coefficient. We want to note that Ce and Gep may also depend on the ionic temperature for strongly coupled 
electrons and ions7,8. The term dELabs/dt quantifies the rate of energy absorption from the laser, while 
−∇rk V (r1, . . .) represents the conservative force exerted on atom k, characterized by mass Mk , position rk, 
and velocity vk . The stokes term ξ Mk vk  mathematically describes the amplification or damping of the ion 
velocities due to the electron-phonon coupling, where ξ is given by4

	
ξ = Gep(Te − Ti)

2 Ekin
.� (3)
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Ekin denotes the kinetic energy of the ions. If the electrons are hotter than the ions, the ions absorb energy 
from the electrons and become accelerated. If the electrons are colder than the ions, the ions loose energy to the 
electrons and decelerate. For the sake of simplicity, Eq. (1) and (2) assume homogeneous spatial temperature 
profiles. It is important to note that the current TTM-MD methodology overlooks a crucial aspect: the impact 
of hot electrons on interatomic bonding. The generation of hot electrons and holes by the femtosecond laser 
pulse involves a rearrangement of the occupations of the electronic energy levels. For example, electrons 
initially in bonding states can be excited into anti-bonding states, altering the bond character. Addressing such 
rearrangements necessitates a quantum statistical description, which is the foundation for ab-initio molecular 
dynamics (MD) simulations. In these simulations, a constant volume Ω simulation cell contains a constant 
number Ne of electrons at the temperature Te, resulting from electron-electron thermalization processes 
upon laser excitation. For laser excitations producing structural changes, Te is in the order of 103-104 K. The 
appropriate thermodynamic potential for this situation is the Helmholtz free energy of the electrons, given by

	 Fe(Te, Ω, Ne) = Ue(Se, Ω, Ne) − Te Se,� (4)

where Ue(Se, Ω, Ne) is the internal energy, and Se is the entropy of the electrons. Both Ue and Se depend on 
the electronic occupations and the ionic coordinates r1, . . .. The ab-initio MD simulations describe the motions 
of the ions classically by

	
Mk

d2rk

dt2 = −∇rk Φ(Te, r1, . . .)� (5)

using an effective interatomic potential or potential energy surface (PES) Φ(Te, r1, . . .) determined by the 
electrons, which are treated quantum mechanically. For this, a generalized Born-Oppenheimer approximation 
is used9, which yields

	 Φ(Te, r1, . . .) = Ue(Te, r1, . . .) − Te Se(Te, r1, . . .).� (6)

This means that the PES determining the motion of the ions when the electrons are at temperature Te is given 
by the Helmholz free energy of the electrons. Eq. (6) corresponds to the Mermin free energy [see Eq. (1) in 
Ref.10) used for electronic-temperature dependent density functional theory (DFT)11,12. More specifically, the 
Helmholtz free energy reads in DFT13

	
Φ(Te, r1, . . .) =

∑
m

n(εm, Te) εm + EXC
(
ρ(r)

)
−

∫
dr VXC(r) ρ(r) − 1

2

∫
dr dr′ ρ(r) ρ(r′)

|r − r′| − VII(r1, . . .) − Te Se,� (7)

where n(εm, Te) are the electronic occupations of the Kohn-Sham energy levels εm. These occupations are 
given by a Fermi distribution at Te. ρ(r) denotes the electronic charge density

	
ρ(r) =

∑
m

n(εm, Te) φ∗
m(r) φm(r),� (8)

where φm(r) are the Kohn-Sham orbitals. EXC represents the exchange and correlation energy, and VXC 
denotes the exchange and correlation potential. VII describes the ion-ion repulsion, and the electronic entropy 
is derived from

	
Se = −kB

∑
m

(
n(εm, Te) log

(
n(εm, Te)

)
+

(
1 − n(εm, Te)

)
log

(
1 − n(εm, Te)

))
� (9)

with kB being the Boltzmann constant. The entropy term is crucial here in the canoncial ensemble of the 
electrons, since otherwise the electronic system is not in thermodynamic equilibrium. Furthermore, it has been 
shown that the DFT implementation breaks down if the entropy term is ignored14,15. Numerous ab-initio MD 
simulations16 have demonstrated that laser excitation significantly alters the PES, resulting in initial non-thermal 
ionic motion. Such ultrafast nonthermal dynamics facilitate structural transformations that are unattainable in 
thermodynamic equilibrium, including ultrafast phase transitions17–20, thermal phonon squeezing21,22, and the 
generation of coherent phonons23–25. Ultrafast x-ray diffraction experiments provide experimental insights into 
the nonthermal motions26–29.

Note, if the electrons are at the ground state (Te = 0), the PES Φ(Te = 0, r1, . . .) only depends on the 
ionic coordinates and can eventually be modelled by an analytical interatomic potential V (r1, . . .). In fact, 
Φ(Te = 0, r1, . . .) is equivalent to V (r1, . . .) used in Eq. (2). This indicates a contradiction in the TTM-MD 
model (1) and (2), since on the one hand it is assumed that the electrons have a finite temperature Te but, on the 
other hand, the forces on the ions related to interatomic bonding do not depend on the electronic temperature. 
It is important to point out that methods based on the DFT description of the PES are limited to small molecular 
dynamics cell with almost 1000 atoms and short simulation times not exceeding 10 picoseconds. Moreover, the 
EPC cannot be included in a clear unified way in DFT.

As one can infer from the previous description (1) - (9), there are two completely different methods for 
describing the short-time non-thermal dynamics of the ions due to laser-induced bond changes described by 
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the PES and the later structural response initiated by the electron-phonon coupling EPC followed by relaxation 
of structural stress at times of the order of nanoseconds. The processes dictated by EPC and by the alterations 
of the PES induced by the laser are in competition (refer to Fig. 1), and thus, they necessitate simultaneous 
consideration at the same microscopic theoretical level. Furthermore, recent experimental work30 emphasizes 
the importance of integrating both effects to comprehensively understand the mechanism behind laser-induced 
ultrafast lattice disordering. Despite some endeavors to incorporate both factors31–33, a unified first-principles 
theory has still to be developed. In this paper, we introduce a first-principles derivation of the equations of 
motion for ions that incorporates the competing influences of EPC and laser-excited PES. We generalize the 
TTM-MD4 approach, enabling it to accommodate the dynamics associated with the excited PES, and adapt the 
methodology of ab-initio simulations predicated on Te-dependent PES11,12,34, to also consider the impact of 
EPC. The unified theory developed in this article can considerably improve the atomistic description of laser-
processing of materials, covering the whole timescale from the excitation to the final morphology.

Results
In order to define a proper energy conservation and quantify the energy exchange between electrons and ions, 
when the effects of the excited PES and the EPC are both present, it is unavoidable to consider ions and electrons 
as a closed system. In absence of EPC, the ions are already considered as a closed system subject to a PES. 
However, electrons at a particular temperature Te are described in the canonical ensemble, i.e., as an open 
system in contact with a heat bath. This means that in presence of energy exchange between electrons and ions 
the electronic system must be formally decoupled from the heat bath and, therefore, be transformed to the 
microcanonical ensemble. Such a transformation is by no means trivial and is derived in the next subsection.

Transformation of the electronic system from the canonical to the microcanonical ensemble
We analyze a solid composed of Nat identical atoms each with mass M, excited by a femtosecond laser pulse, 
resulting in the electrons attaining a uniform temperature Te. The coordinates ri of all atoms are collectively 
represented by the vector R⃗ ∈ R3Nat , and their velocities vi by the vector V⃗ ∈ R3Nat . The PES of the ions, with 
the electronic system at temperature Te, is denoted as Φ(Te, R⃗). Therefore, the force experienced by atom i due 
to the PES is expressed as −∇ri Φ. The vector −∇R⃗Φ ∈ R3Nat  encapsulates the forces acting on all atoms. The 
electronic entropy Se and heat capacity Ce are derived directly from Φ by

	
Se = − ∂Φ

∂Te
, � (10)

	
Ce = − Te

∂2Φ
∂T 2

e
. � (11)

The ions do not exhibit a well defined temperature immediately after laser exictation. Nevertheless, using the 
kinetic energy Ekin of the ions and the equipartition theorem, one can assign an average “ionic temperature” Ti 
to the ions:

	
Ti = 2 Ekin

3 Nat kB
.� (12)

Fig. 1.  Scheme of the interplay between electron-phonon-coupling (EPC) and laser-induced potential energy 
surface (PES) changes: Electronic bonds are visualized as springs between the ions that are drawn as grey 
balls. In addition, the electrons move through the crystal and collide with the ions. These moving electrons 
are drawn as small balls with black arrows indicating the actual velocity. (A) Before the fs-laser excitation the 
electronic temperature is at 300 K, so that the electrons have a low velocity resulting in infrequent collisions 
with ions, which vibrate around their equilibrium positions. (B) After the femtosecond laser excitation the 
electrons exhibit a high temperature leading to significant changes of interatomic bonding (red springs) and 
strong forces acting on the ions. This represents the change of the PES. In addition, the now very fast moving 
electrons perform strong collisions with the ions (strong EPC).
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Ti converges to the actual ionic temperature at longer times. Now we consider the total energy E of the whole 
system as a function of time. If the EPC is not active in the canonical ensemble description, Te remains constant 
and there is no energy exchange between electrons and ions. Then, it holds that

	 E
∣∣
Te

= Ekin + Φ
∣∣
Te

= const.,� (13)

since the ions form a closed system. Now, if the EPC is active and energy is transferred between electrons and 
ions, we must transform the electronic system to the microcanonical ensemble in order to be able to treat the 
whole system of electrons and ions as closed. Based on Eq. (13), we define the term

	
Ẽ := Ekin + Φ (6)= M

2

Nat∑
j=1

vj · vj + Ue − Te Se.� (14)

We now perform a derivative with respect to the time t:

	

dẼ

dt
=M

Nat∑
j=1

vj · dvj

dt
+

Nat∑
j=1

(
∇rj Ue

)
· drj

dt
+ ∂Ue

∂Te

dTe

dt
− Te

Nat∑
j=1

(
∇rj Se

)
· drj

dt
− Te

∂Se

dTe

dTe

dt
− Se

dTe

dt
. � (15)

From this we obtain for the infinitesimal change dẼ for an infinitesimal time change dt

	
dẼ =M

Nat∑
j=1

vj · dvj

dt
dt +

Nat∑
j=1

(
∇rj Φ

)
· drj

dt
dt + ∂Ue

∂Te

dTe

dt
dt −

(
Te

∂Se

∂Te
+ Se

)
dTe

dt
dt. � (16)

The last two terms transform dynamically the electrons from the microcanonical to the canonical ensemble, so 
that we have to remove these terms in order to get the infinitesimal energy change dE:

	
dE = dẼ +

(
Te

∂Se

∂Te
+ Se

)
dTe

dt
dt.� (17)

For obtaining the energy E(t1) at time t1, we integrate the above expression starting from a reference time t0:

	

E(t1) = Ẽ(t1) − Ẽ(t0) +

t1∫

t0

dt
(

Te
∂Se

∂Te
+ Se

)
dTe

dt
.� (18)

The energy is only defined up to a constant, so that we can set Ẽ(t0) = 0. If we insert Eq. (10) for Se and Eq. 
(14) for Ẽ(t1), we obtain finally

	

E(t1) = Ekin(t1) + Φ(t1) −

t1∫

t0

dt

(
Te

∂2Φ
∂T 2

e
+ ∂Φ

∂Te

)
dTe

dt
. � (19)

Equation (19) represents the central equation of this article, enabling the simultaneous consideration of laser-
induced modifications to the PES and the EPC within the same ab initio theoretical framework. Notice, that 
only using Eq.  (19) one can ensure the energy conservation in the whole system consisting of electrons and 
ions. Previous formulation32 used E = Ekin + Ue for the total energy. However, this has been shown to lead 
to inconsistencies and to wrong expression for interatomic forces14,15. Now we are able to formulate the energy 
conservation for moving ions and changing Te. Now we are positioned to articulate the energy conservation for 
moving ions and the varying temperature Te. Given that the entire system operates within the microcanonical 
ensemble, we are able to account for the effect of the total energy absorbed from the laser up until time t1, 
denoted as ELabs(t1), as:

	 E(t1) = ELabs(t1) + const.� (20)

To derive the equations of motion, we compute the time derivative of the energy E as presented in Eq. (19).

	

dE

dt
=M

Nat∑
j=1

vj · dvj

dt
+

Nat∑
j=1

vj · ∇rj Φ − Te
∂2Φ
∂T 2

e

dTe

dt

(11)= M V⃗ · dV⃗

dt
+ V⃗ · ∇R⃗Φ + Ce

dTe

dt
.

� (21)

The third term corresponds to the time derivative of the internal energy of the electrons
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dEe

dt
= Ce

dTe

dt
.� (22)

Given that we omit local electronic heat flow by utilizing a global Ti and Te, we consider only two processes that 
affect the internal energy Ee of the electrons: The energy exchange between electrons and ions facilitated by 
EPC. We denote the cumulative energy exchanged between the electrons and ions up to time t1 as Eep(t1). The 
coupling Gep is, in general, a function of Te, Ti and the ionic coordinates r1, . . . and indicates the magnitude of 
the energy flow from the phonons to the electrons depending on the temperature difference Te − Ti and is an 
external parameter for us. Additionally, the electrons have the capability to absorb energy directly from a laser 
f﻿ield. Consequently, the time derivative of the internal energy Ee of the electrons can be expressed as follows:

	

Ce
dTe

dt︸ ︷︷ ︸
(22)
= dEe

dt

= −Gep (Te − Ti) + dELabs

dt
.
� (23)

This differential equation governs the time variation of the electronic temperature Te, which is similarly employed 
in the two-temperature model (TTM)35 and TTM-MD approaches4, under the assumption of uniform global 
ionic and electronic temperatures. The equations of motion for the ions are derived from the time derivative of 
the energy conservation expressed in Eq. (20):

	
dE

dt
= dELabs

dt
.� (24)

Inserting Eq. (21) and using Eq. (23) for Ce
dTe
dt  we find

	

M V⃗ · dV⃗

dt
+ V⃗ · ∇R⃗Φ − M V⃗ · V⃗

2 Ekin︸ ︷︷ ︸
=1

Gep (Te − Ti) =0,

⇔ V⃗ ·
(

M
dV⃗

dt
+ ∇R⃗Φ − Gep (Te − Ti)

2 Ekin
M V⃗

)
=0.

The above equation must be valid for arbitrary velocities V⃗ . Therefore, it must hold that

	
M

dV⃗

dt
= −∇R⃗Φ + Gep (Te − Ti)

2 Ekin
M V⃗ .� (25)

The first term on the right-hand side represents the force derived from the PES at temperature Te, and the 
second term corresponds to the force attributable to EPC. The collective set of equations, labeled (19), (23), and 
(25), encapsulates the unified theoretical framework developed in this article. We now proceed to analyze two 
significant limiting cases: 

	(1)	� When Te remains constant, Eq. (19) simplifies to E(t1) = Ekin(t1) + Φ(t1), as the integral term becomes 
zero due to the condition dTe/dt = 0. Therefore, under the conditions of constant Te and no additional en-
ergy absorption from the laser, such that ELabs ≡ 0, Eq.(20) transitions to Eq. (13). This form is frequently 
employed in Te-dependent DFT MD simulations that are conducted at a constant Te

12,22,34.
	(2)	� If the changes of the PES due to the laser excitation are ignored, i.e., the electrons are considered to be in 

their ground state, it holds that Φ ≡ Φ(Te = 0) and dΦ/dTe = 0. Since Φ(Te = 0, r1, . . .) = Ue(r1), Eqs. 
(23) and (25) turn into the commonly used TTM-MD Eqs. (1), (2), if Ce is used as an external parameter 
instead of being directly calculated from Φ via Eq. (11). This implies that conventional TTM-MD approach-
es, which rely on empirical interatomic potentials solely based on atomic coordinates, implicitly assume 
that the electrons are perpetually in their ground state.Both limits show the power of the developed theory, 
which, on the one side, generalizes the TTM-MD equations including PES effects and, on the other side, 
contains both the usual TTM-MD model and the ab-initio approaches considering only the PES changes as 
limiting cases.

Simulations and comparison with experiments
In order to confirm the validity our method, we performed MD simulations applying the theory derived in 
this paper and using the Te-dependent interatomic potential Φ(Si)(Te) for Si derived in36 from DFT in the 
LDA approximation and compared directly with experimental results by Harb et al.28,29 on free-standing thin Si 
films. We used the POLYPOT1_MD_MPI 2.0 code37. We used for the electron-phonon coupling the constant 
Gep = 1.8 × 1017 W

K m3  for Si derived from ab initio in38. We used for Si, although it is a semiconductor, a 
common chemical potential for electrons and holes. This is possible, since silicon (Si) becomes metallic after the 
laser excitation due to the atomic disorder39. To determine the performance of the theory developed here with 
previous approaches, we performed MD simulations in three different scenarios: 
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	(1)	� We performed the MD simulations by integrating the Eqs. (23) and (25) and using the expression (19) for 
the total energy. In this way, we consider the effects of the excited PES and the EPC on the same theory level 
as mentioned through the paper.

	(2)	� We only consider the effect of the excited PES. This is achieved by setting Gep = 0 in Eqs. (23) and (25). In 
this way, we mimic the ab-initio simulations based on Te-dependent DFT.

	(3)	� We only consider the effect of the electron-phonon coupling (EPC). In this scenario, within Eqs. (23) and 
(25), we use for Φ the expression Φ(Si)(Te = 0) + Ee(Te). This indicates that the PES is consistently eval-
uated at Te = 0, signifying that the bonding is described by electrons in their ground state. The addi-
tional term, Ee(Te), represents the electronic energy as a function of Te, as derived from DFT for the 
ideal crystal structure (refer to methods). This inclusion ensures the accurate calculation of the electronic 
heat capacity Ce(Te) from Eq. (11). In this way, we reproduce the pure TTM-MD method based on in-
teratomic potentials only depending on the atomic coordinates.In an initial experiment, Harb et al. uti-
lized a fs laser to excite a Si film with a thickness of dfilm = 50 nm at a fluence of ILtot = 5.6 mJ/cm2, 
which remains below the threshold for damage28. This fluence equates to an absorbed energy per atom of 
ELabs/Nat = 0.1 eV/atom, calculated using Eq. (59) (refer to Methods). Harb et al. employed ultrafast 
electron diffraction to observe the time-dependent intensities of various Bragg peaks. To conduct a direct 
comparison with this experiment, we configured a simulation cell encompassing 11 × 11 × 93 conven-
tional cells, which incorporated a Si film 50 nm in thickness, containing a total of Nat = 90024 atoms. 
In Figure 2, we juxtapose the experimentally measured relative intensities with those generated from our 
simulations for the six Bragg peaks analyzed by Harb et al. The details the calcuation of the Bragg peaks 
from the MD simulations are given in Methods. The relative Bragg peak intensities obtained from the MD 
simulations considering both effects – excited PES & EPC – yields good agreement with the experiments. 
Notice, however, that simulations using the constraint (3), i.e., considering only the EPC effect are almost 
identical with the full calculation. From this fact we conclude that in those experiments at low fluences the 
ionic motions are clearly dominated by the EPC. Simulations using the constraint (2), i.e., considering only 
the effect of the excited PES, yield a featureless behaviour of the Bragg peak intensities as function of time. 
In addition to analyzing the Bragg peaks, Harb et al. also calculated the time-dependent ionic temperature 
Ti of the Si film. This was achieved by interpreting the temporal changes in Bragg peak intensities through 
the application of Debye-Waller theory. We calculated the ionic temperature directly from the simulations 
using Eq. (12). Our results reproduce the measured Ti, as one can observe in Fig. 3. As expected from the 
previous Fig. 2, the full simulation and the simulation with constraint (3) yield almost the same curve for 
the ionic temperature. Interestingly, simulations using the constraint (2) yields a constant ionic temperature 
and completely disagree with the experiments.

In a subsequent experiment, Harb et al. applied a fs laser pulse to excite a Si film with a thickness of dfilm = 30 nm. 
The laser fluence used, ILabs = 65 mJ/cm2, was above the damage threshold for the material, as documented 
in their study29. This fluence corresponds to ELabs/Nat = 1.2 eV/atom using Eq. (59). For the simulations 
corresponding to the setup by Harb et al., a simulation cell was configured consisting of 11 × 11 × 56 
conventional cells. This assembly contains a Si film with a thickness of 30 nm and is composed of Nat = 54208 
atoms. In Figure 4, we present the relative intensity of the (220) Bragg peak. This figure includes both the results 
obtained from our computational simulations and those from the experiment, facilitating a direct comparison.

In this case, we also applied the three types of MD simulations described above. It is important to note that 
when MD simulations account only for the effect of the excited PES, as is common in standard DFT approaches, 
or solely the effect of EPC, as typical in traditional TTM-MD simulations using empirical potentials, there is 
a significant deviation from the experimental results. Specifically, when only the effects of the excited PES are 
considered, the simulations display oscillations in the Bragg peak intensity and exhibit a much slower decay than 

Fig. 2.  Relative intensities of various Bragg peaks of a 50-nm thick Si film after laser-excitation with a fluence 
below the damage threshold are shown as a function of time. The data points in the graph correspond to 
experimental results, while the lines depict values calculated from our MD simulations. Solid lines represent 
calculations that take into account both the excited PES and EPC, whereas dashed lines pertain to simulations 
considering only the EPC. The experimental values are extracted from Fig. 4 of Reference28.
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what is observed experimentally. This discrepancy highlights the necessity of incorporating both PES and EPC 
effects to accurately model the dynamics observed in experimental conditions. The oscillations have their origin 
in the laser-induced movement of the crystal planes against each other. Such an oscillation of the Bragg peak 
intensity is not observed in the experiment. When only the effects of EPC are considered, the immediate melting 
of the crystal planes is observed, and no oscillations are evident in the simulation results. Additionally, the decay 
of Bragg peak intensities in this scenario is both quantitatively and qualitatively different from experimental 
observations, presenting an even slower decline than when only the influence of the excited PES is considered. 
In contrast, simulations that incorporate both the excited PES and EPC, as dictated by the comprehensive theory 
presented in this paper, achieve remarkable agreement with the experimental results. Importantly, these results 
are obtained without the use of adjusting parameters, underscoring the robustness of the theoretical approach. 
As demonstrated in Figure 4, at high fluences, it is crucial to account for both competing contributions-the 
modifications in the PES and the effects of EPC. This comprehensive modeling approach is essential for accurately 
replicating the experimental outcomes observed under such conditions. Our findings of the dominance of EPC 
at low fluences and the increasing importance of nonthermal effects at high fluences for Si agree also with the 
results of40,41.

Discussion
While the theory outlined in this article successfully integrates thermal (incoherent electron-phonon heating) 
and non-thermal (bond changes) effects in solids following laser excitation, there are opportunities for further 
refinements, particularly through the incorporation of electron dynamics during laser excitation and the 
subsequent electron thermalization. To date, such an extensive theoretical framework has not been established.

Fig. 4.  Relative intensity of the (220) Bragg peak of the 30-nm thick Si film after laser-excitation with a fluence 
above the damage threshold is shown as a function of time. Points refer to the experiment and lines correspond 
to our calculations. The solid line represents the full calculation including the influence of the excited PES & 
EPC. Notice the excellent agreement with experiment. The dotted line refers to the calculated values using 
the constrained simulations only including excited PES. The dashed line corresponds to the calculated values 
considering only the effect of the EPC. The experimental values are taken from Fig. 3 (c) of Ref.29.

 

Fig. 3.  Ionic temperature Ti of the 50-nm thick Si film after laser-excitation with a fluence below the damage 
threshold is shown as a function of time. The points with error bars correspond to the experiment and were 
determined using the Debye Waller theory. Lines refer to our calculated values. The experimental values are 
taken from Fig. 5 of Ref.28.
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Time-Dependent Density Functional Theory (TDDFT), as referenced by Runge and Gross42 and further 
explored in the works of Wijewardane and Ullrich43, and Krishna et al.44, is proficient in accurately simulating 
the interaction between the laser pulse and electrons. However, TDDFT encounters significant challenges in 
describing dephasing effects and the process of electron thermalization. This limitation confines its applicability 
primarily to the time frame while the laser pulse is active. Recently, a modified real time TDDFT was developed 
to include, in some way, dephasing and a detailed balance on the electronic occupations45. However, such 
calculations are restricted to a very small number of atoms. In contrast, methods grounded in Boltzmann 
collision integrals46,47 successfully model electron thermalization but operate normally with fixed ionic positions 
and were recently extended to moving ions48. The accuracy of the method detailed in this article is expected to 
become highly reliable once the electronic temperature, Te, stabilizes. This stabilization typically occurs within 
a timeframe ranging from 50 to 100 femtoseconds.

In summary, this article presents a unified theory that effectively describes the structural changes induced by 
laser excitation in solids, integrating both bond modifications and electron-phonon coupling at a microscopic 
level. Our approach encompasses and extends the traditional frameworks of TTM-MD and ab-initio DFT 
simulations, treating them as special cases. When applied to Si, our methodology demonstrated remarkable 
concordance with experimental findings, validating its accuracy in capturing the complex dynamics associated 
with laser-induced structural transformations. This success underscores the potential of our unified approach 
to provide a comprehensive and accurate tool for studying and predicting laser-induced phenomena in various 
materials.

Methods
Now we explain in detail, how we performed our MD simulations. At first, we show the generalized formulation 
of our theory for separate phonon temperatures, which we did not present in the main text for the sake of 
simplicity. The algorithm for the integration of the equations of motion are implemented considering this 
generalized formulation.

Generalization of the atomic equations of motion considering separate phonon 
temperatures
Indeed, it is feasible to assign specific ionic temperatures to distinct sets of phonon modes, as outlined by 
Waldecker et al.49. The process begins with the diagonalization of the dynamical matrix, from which one can 
derive the polarization vectors e⃗ (1), . . . , e⃗ (3 Nat) for all phonon modes. These vectors are orthonormal and 
together form a complete basis set of the vector space R3 Nat . The phonon modes are then categorized into NM  
separate subsets, denoted as Mk . The number of phonon modes within each subset Mk  is represented by |Mk|. 
For each subset Mk , one can define the corresponding projection operator PMk  which is expressed as a matrix 
in R3 Nat×3 Nat . The projection operator is constructed as follows:

	
PMk

=
∑

j∈Mk

e⃗ (j) ·
(
e⃗ (j)) .� (26)

This operator projects the atomic velocities V⃗  onto the directions of the phonon modes of set Mk , obeys 
Pt

Mk
= PMk

= P2
Mk

, and is used to define an individual ionic temperature for a given set Mk  of phonon 
modes:

	
TiMk

=
2 EkinMk

|Mk| kB
=

M V⃗ · PMk
· V⃗

|Mk| kB
.� (27)

Here kB denotes the Boltzmann constant and EkinMk
 the kinetic energy of the phonon modes of set Mk . Now, 

the time derivative of the internal energy of the electrons is given by

	

Ce
dTe

dt︸ ︷︷ ︸
(22)
= dEe

dt

= −
NM∑
k=1

|Mk| GepMk

(
Te − TiMk

)
+ dELabs

dt
.
� (28)

The equations of motions for the ions is calculated from the time derivative of Eq. (20):

	
dE

dt
= dELabs

dt
.� (29)

Inserting Eq. (21) and using Eq. (23) for Ce
dTe
dt  we find

	

M V⃗ · dV⃗

dt
+ V⃗ · ∇R⃗Φ −

NM∑
k=1

M V⃗ · PMk
· V⃗

2 EkinMk︸ ︷︷ ︸
=1

|Mk| GepMk

(
Te − TiMk

)
= 0,

The above equation must be valid for arbitrary velocities V⃗ . Therefore, it must hold that
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M

dV⃗

dt
= −∇R⃗Φ +

NM∑
k=1

|Mk| GepMk

(
Te − TiMk

)
2 EkinMk

M PMk
· V⃗ .� (30)

The first term on the right-hand side represents the force arising from the PES at the electronic temperature Te, 
while the second term corresponds to the force resulting from EPC.

Implementation in the velocity verlet algorithm
We denote by F⃗  the vector containing all interatomic forces related to the potential energy surface

	 F⃗ = − ∇R⃗ Φ � (31)

and by F⃗tot the vector containing the total interatomic forces

	
F⃗tot =F⃗ +

NM∑
k=1

ξMk
M PMk

· V⃗ , � (32)

	
ξMk

=
|Mk| GepMk

(
Te − TiMk

)
2 EkinMk

. � (33)

In any MD simulation, the process begins by establishing the initial conditions, which include the electronic 
temperature at the initial time Te(t0), the initial positions of the atoms R⃗(t0), and their initial velocities V⃗ (t0). 
A positive time increment ∆t is chosen, and the simulation evaluates the system at discrete times tℓ = t0 + ℓ∆t
, where ℓ belongs to the set of natural numbers N. At these times, the simulation aims to calculate the electronic 
temperature Te(tℓ), the positions R⃗(tℓ), and the velocities V⃗ (tℓ) of the atoms. To achieve these calculations, it is 
necessary to numerically integrate the coupled differential equations governing the motions of the ions

	
M

dV⃗

dt
= F⃗tot

and the differential equation for Te

	
Ce

dTe

dt
= dEe

dt
.

The Velocity Verlet Algorithm50 is a popular choice for integrating the equations of motion in molecular 
dynamics simulations due to its simplicity and numerical stability. The algorithm updates positions, velocities, 
and forces of the atoms at each timestep based on their values from the previous timestep. The process involves 
the following steps:

	
R⃗(tℓ+1) =R⃗(tℓ) + ∆t V⃗ (tℓ) + ∆t2

2 M
F⃗tot(tℓ), � (34)

	
V⃗ (tℓ+1) =V⃗ (tℓ) + ∆t

2 M

(
F⃗tot(tℓ) + F⃗tot(tℓ+1)

)
. � (35)

Utilizing the initial position vector R⃗(t0), we are equipped to compute F⃗ (t0), Φ(t0), Se(t0), and Ce(t0)
. Furthermore, the phonon mode projection operators PMk , which are presumed to be time-invariant, are 
acknowledged. These projection operators PMk , in conjunction with V⃗ (t0), facilitate the calculation of kinetic 
energies EkinMk

(t0), temperatures TiMk
(t0), and the parameters ξMk

(t0) for various phonon mode groups 
Mk . As a result, the total force vector F⃗tot(t0) at the initial time t0 can be immediately derived from the initial 
conditions, as formulated in Eq. (32). From the variables R⃗(t0), V⃗ (t0), and F⃗tot(t0), we proceed to compute the 
position vector R⃗(t1) using Eq.(34).

Nevertheless, direct computation of V⃗ (t1) from Eq. (35) is not possible, since it requires F⃗tot(t1), which in turn 
can only be determined from V⃗ (t1) via Eq. (32). In scenarios where electron-phonon coupling is disregarded, 
F⃗tot(t1) can be directly computed from R⃗(t1) utilizing Φ, given that F⃗tot(t1) simplifies to F⃗ (t1). Subsequently, 
V⃗ (t1) can be calculated straightforwardly using Eq. (35).

In scenarios where electron-phonon coupling must be accounted for, we must adjust the computational 
procedure as follows: We start from a time step tℓ ≥ t0 where all known quantities are established and aim to 
compute all relevant quantities at the subsequent time step tℓ+1. Initially, R⃗(tℓ+1) is determined using Eq. (34). 
To accurately calculate Te(tℓ+1), additional definitions and steps are required. We define
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∆ELabs(tℓ) =

tℓ+1∫

tℓ

dt
dELabs(t)

dt
= ELabs(tℓ+1) − ELabs(tℓ)� (36)

which represents the energy absorbed by electrons from the laser during the time step tℓ. Additionally, ∆Eep(tℓ) 
is defined as the total energy transferred to the electrons from the ions as a result of electron-phonon coupling 
at the same time step tℓ. The numerical computation of ∆Eep(tℓ) is conducted by

	
∆Eep(tℓ) = −

NM∑
k=1

|Mk| GepMk
(tℓ)

(
Te(tℓ) − TiMk

(tℓ)
)

∆t.� (37)

From the total change of the electronic energy at time step tℓ

	 ∆Ee(tℓ) = ∆Eep(tℓ) + ∆ELabs(tℓ),� (38)

we can calculate numerically the related change of Te for Ce(tℓ) > 0 by

	
∆Te(tℓ) = ∆Ee(tℓ)

Ce(tℓ)
(38)= ∆Eep(tℓ) + ∆ELabs(tℓ)

Ce(tℓ) .� (39)

From ∆Te(tℓ), we obtain Te(tℓ+1) just by

	 Te(tℓ+1) = Te(tℓ) + ∆Te(tℓ).� (40)

In cases where Ce(tℓ) = 0, we formally consider the ions to be stationary and attribute any change in internal 
energy, provoked by variations in the electron temperature Te, exclusively to the electron subsystem. This 
assumption simplifies the energy transfer dynamics by isolating the electron behavior from the ionic lattice

	

∆Ee(tℓ) =∆E(tℓ)

=Φ
(
Te(tℓ+1), R⃗(tℓ)

)
− Te(tℓ+1)

dΦ
(
Te(tℓ+1), R⃗(tℓ)

)
dTe

− Φ
(

Te(tℓ), R⃗(tℓ)
)

+ Te(tℓ)
dΦ

(
Te(tℓ), R⃗(tℓ)

)

dTe
.

� (41)

To proceed with the determination of Te(tℓ+1), we numerically solve the previously outlined equations relating 
to energy absorption and transfer. With the computed temperature Te(tℓ+1) and the updated position vector 
R⃗(tℓ+1), it is then possible to ascertain various other critical parameters such as F⃗ (tℓ+1), Se(tℓ+1), and 
Ce(tℓ+1). Additionally, it is beneficial to compute GepMk

(tℓ+1) at this stage:

	 GepMk
(tℓ+1) ≡ GepMk

(
Te(tℓ+1), R⃗(tℓ+1), V⃗ (tℓ+1)

)
.

Given that GepMk
 is intricately dependent on the velocity vector V⃗ (tℓ+1), which remains undetermined at 

this stage, we adopt the velocity vector from the previous time step, V⃗ (tℓ), as a practical approximation for 
computing GepMk

(tℓ+1):

	 GepMk
(tℓ+1) ≈ GepMk

(
Te(tℓ+1), R⃗(tℓ+1), V⃗ (tℓ)

)
.� (42)

Furthermore, we get for V⃗ (tℓ+1) by inserting Eq. (32) for F⃗tot(tℓ+1):

	

V⃗ (tℓ+1) (35)= V⃗ (tℓ) + ∆t

2 m

(
F⃗tot(tℓ) + F⃗tot(tℓ+1)

)

(32)= V⃗ (tℓ) + ∆t

2 m

(
F⃗tot(tℓ) + F⃗ (tℓ+1)

)
+ ∆t

2

NM∑
k=1

ξMk
(tℓ+1) PMk

· V⃗ (tℓ+1).

With the definition of

	
W⃗ (tℓ+1) := V⃗ (tℓ) + ∆t

2 m

(
F⃗tot(tℓ) + F⃗ (tℓ+1)

)
,� (43)

we are able to compute this quantity due to our ability to specify F⃗ (tℓ+1). This force vector is computed from 
the known position vector R⃗(tℓ+1) and electron temperature Te(tℓ+1) by using the potential function Φ. The 
vector W⃗ (tℓ+1) effectively represents the hypothetical velocity vector at time tℓ+1, assuming electron-phonon 
coupling is disregarded at this step. Using the properties of the phonon mode projection operators we obtain
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V⃗ (tℓ+1) = W⃗ (tℓ+1) + ∆t

2

NM∑
k=1

ξMk
(tℓ+1) PMk

· V⃗ (tℓ+1),

⇔
NM∑
k=1

PMk

︸ ︷︷ ︸
=1

·V⃗ (tℓ+1) =
NM∑
k=1

PMk

︸ ︷︷ ︸
=1

·W⃗ (tℓ+1) + ∆t

2

NM∑
k=1

ξMk
(tℓ+1) PMk

· V⃗ (tℓ+1).

When the matrix PMi  multiplies from the left, where i represents an arbitrary index from the set {1, . . . , NM}
, it results in

	

PMi · V⃗ (tℓ+1) = PMi · W⃗ (tℓ+1) + ∆t

2 ξMi (tℓ+1) PMi · V⃗ (tℓ+1),

⇔PMi · W⃗ (tℓ+1) =
(

1 − ∆t

2 ξMi (tℓ+1)
)

PMi · V⃗ (tℓ+1).

Given that the index i was selected arbitrarily, the aforementioned equation holds for every i ∈ {1, . . . , NM}. 
To maintain consistency in notation, we revert i to k, concluding that for all k ∈ {1, . . . , NM}:

	
PMk

· V⃗ (tℓ+1) = 1
1 − ∆t

2 ξMk
(tℓ+1)

PMk
· W⃗ (tℓ+1).� (44)

The matrix product PMk
· V⃗ (tℓ+1) can be computed if the parameter ξMk

(tℓ+1) is known, given that W⃗ (tℓ+1) 
has already been ascertained. To determine ξMk

(tℓ+1), we examine the kinetic energy EkinMk
(tℓ+1) associated 

with the phonon mode set Mk :

	

EkinMk
(tℓ+1)=M

2
(
PMk

· V⃗ (tℓ+1)
)

· PMk
· V⃗ (tℓ+1)

(44)= 1(
1 − ∆t

2 ξMℓ
(tℓ+1)

)2
M

2
(
PMk

· W⃗ (tℓ+1)
)

· PMk
· W⃗ (tℓ+1).

We define

	
HMk

(tℓ+1) := M

2
(
PMk

· W⃗ (tℓ+1)
)

· PMk
· W⃗ (tℓ+1),� (45)

which is computable directly from the determined W⃗ (tℓ+1). The term HMk
(tℓ+1) denotes the kinetic energy of 

the phonon mode set Mk  at the time step tℓ+1, provided the impact of electron-phonon coupling is disregarded 
at this specific time step. Subsequently, we obtain:

	
EkinMk

(tℓ+1) =
HMk

(tℓ+1)
1 − ∆t ξMℓ

(tℓ+1) + ∆t2
4 ξMℓ

(tℓ+1)2 � (46)

and obtain for the parameter ξMk  at time step tℓ+1:

	

ξMk
(tℓ+1) (33)=

|Mk| GepMk
(tℓ+1)

(
Te(tℓ+1) − TiMk

(tℓ+1)
)

2 EkinMk
(tℓ+1)

=
|Mk| GepMk

(tℓ+1)
(

Te(tℓ+1) −
2 EkinMk

(tℓ+1)

|Mk| kB

)

2 EkinMk
(tℓ+1)

=
|Mk| GepMk

(tℓ+1) Te(tℓ+1)
2 EkinMk

(tℓ+1) −
GepMk

(tℓ+1)
kB

(46)=
|Mk| GepMk

(tℓ+1) Te(tℓ+1)
2 HMk

(tℓ+1)

(
1 − ∆t ξMℓ

(tℓ+1) + ∆t2

4 ξMℓ
(tℓ+1)2

)

−
GepMk

(tℓ+1)
kB

.

� (47)

Since all variables are evaluated at the time step tℓ+1, we will omit the time argument (tℓ+1) in subsequent 
expressions for conciseness. We now proceed to solve this quadratic equation for ξMk :
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0 =
|Mk| GepMk

Te ∆t2

8 HMk

ξ2
Mk

−
(

1 +
|Mk| GepMk

Te ∆t

2 HMk

)
ξMk

+
|Mk| GepMk

Te

2 HMk

−
GepMk

kB
,

⇔0 = ξ2
Mk

−
(

8 HMk

|Mk| GepMk
Te ∆t2 + 4

∆t

)
ξMk

+ 4
∆t2

− 8 HMk

kB |Mk| GepMk
Te ∆t2 ,

⇒ξMk
=

4 HMk

|Mk| GepMk
Te ∆t2 + 2

∆t

−

√(
4 HMk

|Mk| GepMk
Te ∆t2 + 2

∆t

)2

+
8 HMk

kB |Mk| GepMk
Te ∆t2 − 4

∆t2 .

� (48)

ξMk  either increases or decreases the velocity of ions in alignment with the velocities of the phonon modes 
from the set Mk . Given that the velocities contribute quadratically to the kinetic energy, the direction of 
velocity (sign) does not impact energy conservation. Consequently, there are two mathematical possibilities for 
ξMk . The first solution involves a minor adjustment in velocity, corresponding to a small value of ξMk . This 
represents the solution found in Eq. (48). Alternatively, the second solution either reverses the velocity or alters 
the direction of movement, correlating to a significant absolute value of ξMk . This outcome, deemed physically 
impractical, aligns with the “+” option of the quadratic equation. To confirm that the “+” solution yields a larger 
magnitude, consider a as the sum of the first two terms and b as the root part in Eq. (48), thus ξMk

(48)= a ± b. 
Here, a is non-negative by definition, and b is non-negative if the root generates a tangible solution. Applying 
the triangle inequality brings us to: |a − b| ≤ |a| + |b| = a + b = |a + b|, indicating the larger magnitude of 
the “+” solution, solidifying its consideration as the unphysical option.

Eq. (48) becomes inapplicable when GepMk
= 0. Under this condition, ξMk  is determined to be zero, following 

directly from its defining equation, Eq. (33). This occurs because, in the absence of electron-phonon coupling 
(GepMk

= 0), there is no modification induced on the ion velocities by the phonon modes from set Mk , leading 
to ξMk

= 0. Eq. (48) is also not valid for Te = 0. Here, we get ξMk
= −

GepMk
kB

 from Eq. (47).
To calculate E(tℓ+1), we define

	

I(tℓ) :=

tℓ∫

t0

dt (Se + Ce) dTe

dt
.� (49)

Consequently, we derive that I(t0) = 0, and U(tℓ+1) = Φ(tℓ+1) + I(tℓ+1). For the numerical computation of 
I(tℓ+1), we begin with the value I(tℓ) and approximate the remaining integral from tℓ to tℓ+1 in Eq. (49) by 
employing the trapezoidal rule:

	
I(tℓ+1) = I(tℓ) + 1

2

((
Se(tℓ) + Ce(tℓ)

)
∆Te(tℓ) +

(
Se(tℓ+1) + Ce(tℓ+1)

)
∆Te(tℓ+1)

)
. � (50)

Now we have calculated all quantities at time step tℓ+1 and summarize the calculation procedure:
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R⃗(tℓ+1) (34)= R⃗(tℓ) + ∆t V⃗ (tℓ) + ∆t2

2 m
F⃗tot(tℓ),

∆ELabs(tℓ) (36)= ELabs(tℓ+1) − ELabs(tℓ),

∆Eep(tℓ) (37)= −
NM∑
k=1

|Mk| GepMk
(tℓ)

(
Te(tℓ) − TiMk

(tℓ)
)

∆t,

∆Te(tℓ) (39)= ∆Eep(tℓ) + ∆ELabs(tℓ)
Ce(tℓ) ,

Te(tℓ+1) (40)= Te(tℓ) + ∆Te(tℓ),

Se(tℓ+1)= −
∂Φ

(
Te(tℓ+1), R⃗(tℓ+1)

)

∂Te
,

Ce(tℓ+1)= − Te(tℓ+1)
∂2Φ

(
Te(tℓ+1), R⃗(tℓ+1)

)

∂T 2
e

,

F⃗ (tℓ+1) (31)=




−∇r1 Φ
(

Te(tℓ+1), R⃗(tℓ+1)
)

...
−∇rNat

Φ
(

Te(tℓ+1), R⃗(tℓ+1)
)


 ,

GepMk
(tℓ+1) (42)= GepMk

(
Te(tℓ+1), R⃗(tℓ+1), V⃗ (tℓ)

)
,

W⃗ (tℓ+1) (43)= V⃗ (tℓ) + ∆t

2 M

(
F⃗tot(tℓ) + F⃗ (tℓ+1)

)
,

HMk
(tℓ+1) (45)= M

2
(
PMk

· W⃗ (tℓ+1)
)

· PMk
· W⃗ (tℓ+1),

ξMk
(tℓ+1) (48)=

4 HMk
(tℓ+1)

|Mk| GepMk
(tℓ+1) Te(tℓ+1) ∆t2 + 2

∆t
−

√√√√√√√√√

(
4 HMk

(tℓ+1)
|Mk| GepMk

(tℓ+1) Te(tℓ+1) ∆t2 + 2
∆t

)2

+
8 HMk

(tℓ+1)
kB |Mk| GepMk

Te(tℓ+1) ∆t2 − 4
∆t2

,

V⃗ (tℓ+1) (44)=
NM∑
k=1

1
1 − ∆t

2 ξMk
(tℓ+1)

PMk
· W⃗ (tℓ+1).

F⃗tot(tℓ+1) (32)= F⃗ (tℓ+1) +
NM∑
k=1

ξMk
(tℓ+1) M PMk

· V⃗ (tℓ+1),

EkinMk
(tℓ+1) (32)= M

2 V⃗ (tℓ+1) · PMk
· V⃗ (tℓ+1),

TiMk
(tℓ+1)=

2 EkinMk
(tℓ+1)

|Mk| kB
,

∆ELabs(tℓ+1) (36)= ELabs(tℓ+2) − ELabs(tℓ+1),

∆Eep(tℓ+1) (37)= −
NM∑
k=1

|Mk| GepMk
(tℓ+1)

(
Te(tℓ+1) − TiMk

(tℓ+1)
)

∆t,

∆Te(tℓ+1) (39)= ∆Eep(tℓ+1) + ∆ELabs(tℓ+1)
Ce(tℓ+1) ,

I(tℓ+1) (50)= I(tℓ) + 1
2

((
Se(tℓ) + Ce(tℓ)

)
∆Te(tℓ) +

(
Se(tℓ+1) + Ce(tℓ+1)

)
∆Te(tℓ+1)

)
,

E(tℓ+1)=Φ
(

Te(tℓ+1), R⃗(tℓ+1)
)

+ I(t + ∆t).

If this algorithm is put into practice, it becomes necessary to only retain the values of each variable at the current 
time step tℓ+1 and the preceding time step tℓ. This optimizes memory usage by eliminating the need to store data 
from earlier time steps beyond the most recent one, which can significantly streamline computations, especially 
in simulations or processes where a large number of time steps are involved.

Remarks

•	 As previously indicated, the model for electron-phonon coupling that we have developed can be incorporated 
within Te-dependent DFT. Consequently, in this framework, Φ is equivalent to the Helmholtz free energy F 
associated with the electrons.
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•	 This model predicts exact conservation of energy. Therefore, the described numerical implementation us-
ing the Velocity Verlet algorithm should exhibit no drift or fluctuation in the total energy expression 
E + Ekin − ELabs  as the time increment ∆t approaches zero. This characteristic provides a means to verify 
the accuracy of the algorithm’s numerical implementation within the software.

•	 If a set of phonon modes, denoted as Mk , includes only a limited number of modes, the associated ionic 
temperature TiMk

 will exhibit considerable temporal fluctuations. Specifically, if the set comprises only a 
single phonon mode, the corresponding ionic temperature may become ill-defined due to these fluctuations. 
Therefore, it is imperative that each phonon mode set Mk  encompasses a sufficient number of modes to en-
sure stability and accuracy in measurements.

•	 When the lattice structure melts due to laser excitation, the symmetry of the structure is disrupted. Conse-
quently, in such circumstances, applying different electron-phonon coupling constants GepMk

 for distinct 
phonon mode sets Mk  may be considered non-physical. Therefore, a single coupling constant should be 
utilized instead to accurately reflect the altered physical conditions.

•	 Laser pulses with a Gaussian-shaped time profile are frequently employed in experimental settings. These 
pulses are characterized by their full width at half maximum (FWHM) time width, denoted as τ . If ELtot  
represents the total laser-absorbed energy of the pulse, then the rate of total laser-absorbed energy at a given 
time tℓ can be expressed as follows: 

	

dELabs(tℓ)
dt

= ELtot

τ

√
log(16)

π
exp

(
− (tℓ − 2 τ)2

τ2 log(16)
)

.� (51)

 In our molecular dynamics (MD) simulation, the initial time is set at t0 = 0, and the peak energy absorption 
rate occurs at t = 2τ . Additionally, 99.99975% of the total energy absorbed by the laser, ELtot , is absorbed 
between the times t = 0 and t = 4τ . Employing the Gauss error function 

	

erf(x) = 2√
π

x∫

0

dt e−t2
,� (52)

 the total laser-absorbed energy up to time tℓ can be analytically calculated by: 

	

ELabs(tℓ) =

tℓ∫

0

dt
dELabs(t)

dt

=ELtot

2

(
erf

(√
log(65536)

)
+ erf

(
tℓ − 2 τ

τ

√
log(16)

))
.

� (53)

 Analogously, the total laser-absorbed energy at time step tℓ is calculated by 

	

∆ELabs(tℓ) =

tℓ+1∫

tℓ

dt
dELabs(t)

dt

=ELtot

2

(
−erf

(
tℓ − 2 τ

τ

√
log(16)

)

+ erf
(

tℓ+1 − 2 τ

τ

√
log(16)

))
.

� (54)

•	 In the context of a molecular dynamics simulation utilizing a Te-dependent interatomic potential Φ, it is cru-
cial that Φ demonstrates a physically specific electronic heat capacity, which is mathematically expressed as: 

	
Ce = −Te

∂2Φ
∂T 2

e
.

 For the simulation to yield physically meaningful results, a fundamental requirement is that the electronic 
specific heat Ce must be non-negative, i.e., Ce ≥ 0. This condition ensures that the simulated system adheres to 
the laws of thermodynamics.

•	 When employing a Te-dependent interatomic potential Φ in MD simulations, the force exerted on any atom i, 
expressed as −∇ri Φ, can be calculated solely based on the positions of neighboring atoms j within a defined 
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cutoff radius r(c) of Φ. This spatial locality is advantageous for parallelizing MD simulations by subdividing 
the simulation cell into smaller subcells. These subcells can largely operate independently, requiring only 
minimal information exchange with adjacent cells. Such a parallelization strategy enables the simulation of 
systems comprising hundreds of millions of atoms within a reasonable timeframe. However, the feasibility of 
this parallelization approach may be compromised if the electron-phonon coupling is characterized by pro-
jecting onto phonon mode sets Mk . In scenarios where electron-phonon coupling involves collective motion 
across all atoms of a structure in any phonon mode, the independence of subcells is undermined, as the be-
havior of each atom potentially influences and is influenced by distant atoms beyond its immediate neighbors 
in the simulation. This interdependence across the entire structure poses significant challenges to the parallel 
processing typically used in MD simulations. To compute any component of the total force 

	
F⃗tot = F⃗ +

NM∑
k=1

ξMk
m PMk

· V⃗ ,

 it is essential to have access to the velocities of all atoms. This requirement arises because the projection 
component, PMk

· V⃗ , necessitates knowledge of the velocities across the entire atomic ensemble to accurately 
calculate the total force on any given atom i. However, this global dependence poses a significant limitation on 
the scalability and parallelizability of the simulation. A potential strategy to mitigate this issue involves redefining 
the projection operators PMk  on a more localized basis. By constraining PMk  to only consider the movements 
of atoms in the immediate neighborhood, it becomes feasible to maintain the characteristic parallel processing 
approach, which is crucial for accelerating large-scale molecular dynamics simulations. This local definition 
not only aligns with the computational framework commonly used in MD simulations but also reduces the 
computational overhead associated with handling global atomic interactions.

Electronic energy and specific heat of Si
To exclusively simulate the EPC, we incorporated key thermodynamic functions, specifically the electronic 
specific heat Ce(Te) and the electronic internal energy Ee(Te), both expressed as functions of the electronic 
temperature Te. Our focus was on a pristine diamond-like Si structure characterized by an optimal lattice 
parameter of a = 0.539872 nm. Using Te-dependent DFT computations facilitated by the CHIVES 4.0051,52 
code, we computed the Helmholtz free energy F (Te) across a range of Te values. Further analysis involved 
fitting F (Te) to an 11th-degree polynomial in Te. From this polynomial representation, the electronic specific 
heat was derived employing the thermodynamic relationship Ce(Te) = −Te

∂2F (Te)
∂T 2

e
. This approach allowed us 

to calculate Ce(Te) systematically and accurately, ensuring a well-defined basis for simulating EPC effects in the 
context of thermal and electronic responses in Si.

	
Ce(Te) = Nat

10∑
k=1

a
(k)
Ce

(
Te

31577 K

)k

.� (55)

The coefficients a(k)
Ce

 are tabulated in TABLE 1. As we are employing a global electronic temperature Te in our 
simulations, the total electronic internal energy, Ee(Te), can be obtained simply by

	

Ee(Te) =

Te∫

0

dT ′
e Ce

(
T ′

e
)
. � (56)

Determination of absorbed energy for the femtosecond-laser excitation below the damage 
threshold
In our study, we established a simulation cell configured as 11 × 11 × 93 conventional cells, incorporating a 
total of Nat = 90024 Si atoms. Periodic boundary conditions were implemented along the x- and y-axes, while 
open boundary conditions were applied along the z-axis to simulate a Si film with a thickness of 50 nm. To set 

k a
(k)
Ce k a

(k)
Ce k a

(k)
Ce

1 9.990955456836453E-6 2 -6.188280768791413E-4 3 0.040068462158504514

4 -0.26312331638621433 5 0.8576043019886007 6 -1.679202915977002

7 2.069435128552068 8 -1.5768394499029128 9 0.6799728970274491

10 -0.12703240946979374

Table 1.  Parametrization of the electronic specific heat Ce(Te) using Eq. (55). The unit of a(k)
Ce

 is eV
K atom .
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the initial atomic coordinates and velocities, we employed the Andersen thermostat53, initializing the system at 
a temperature of Ti = 300 K.

Subsequent to setting up the simulation environment, MD simulations were conducted to emulate 
femtosecond-laser excitation across three distinct scenarios: excited PES and EPC, solely excited PES, and solely 
EPC. A temporal resolution of ∆t = 1 fs was utilized, simulating a Gaussian-shaped laser pulse with a full 
width at half maximum (FWHM) temporal width of τ = 150 fs, consistent with experimental configurations. 
To accurately determine the total energy ELtot  absorbed by the Si film from the experimentally measured 
fluence ILtot , the optical properties of Si require careful consideration. In the literature, Harb et al. utilized a 
femtosecond laser with a central wavelength of λ = 387 nm to excite the Si film. This wavelength corresponds 
to a photon energy of

	
Ephot = 2π ℏ c

λ
= 3.2 eV,� (57)

Where ℏ refers to the reduced Planck’s constant and c to the speed of light in vacuum. At this specific photon 
energy, the index of refraction of Si was identified in the literature as n = 6.062 + 0.630i54. Utilizing this 
complex index of refraction, we calculated the absorption coefficient of Si

	
αabs = 4π

λ
Im(n) = 0.0204569 1

nm
,� (58)

where Im(n) is the imaginary part of the index of refraction n. In our study, we employed the ab-initio determined 
equilibrium atomic density, ρat = 50.8414 atoms/nm3, along with the experimentally measured total laser 
fluence, ILtot = 5.6 mJ/cm2 or equivalently 349.525 eV/nm2, at the film’s surface. Using these parameters, we 
calculated the total energy absorbed by the laser, ELtot , within the 50 nm thick film.

	
ELtot

Nat
=

(
1 − e−αabs dfilm

) ILtot

dfilm ρat
≈ 0.1 eV

atom
,� (59)

which we utilized in our MD simulations. We want to note that here we only take linear photon absorption into 
account. For higher fluences one may also include multiphoton absorption processes.

Calculation of the Bragg peaks below damage threshold
From the atomic coordinates, we derived the time-dependent intensities of the experimental studied Bragg 
peaks. To facilitate direct comparison with experimental results, we considered that Harb et al., did not measure 
the intensity of individual Bragg peaks due to their use of a polycrystalline Si film. This setup generated rings, 
rather than spots, on the diffraction pattern, typical of monocrystalline films. Consequently, they calculated 
the average intensities within these rings at a specific radius and assigned this average intensity to what they 
designated as a Bragg peak. The assigned Bragg peak corresponds to the diffraction peak located inside the 
ring. To accurately derive the intensity of a measured Bragg peak (hkl), it was necessary to average the intensity 
across all Bragg peaks with scattering vector q that meet the criterion |q| ∈

[
|Ghkl| − ∆q, |Ghkl| + ∆q

]
. We 

selected a broadening factor ∆q = 0.37 nm−1 to ensure the best possible correlation between the calculated 
and the experimental Bragg peak intensities. An example showing the effect of the broadening ∆q on the 
relative intensity of the (620) Bragg peak is presented in Fig.  5, alongside corresponding experimental data 
points. Several Bragg peaks possess the same absolute value |q| of the scattering vector. The oscillations in 
film thickness induced by laser excitation cause shifts in |q| for some Bragg peaks. Consequently, the |q| of 

Fig. 5.  The time-dependent relative intensity of the (620) Bragg peak for various broadening parameters, ∆q, 
is displayed. The data points shown correspond to the measured intensities of the (620) Bragg peak as reported 
in Fig. 4 of Ref.28.
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some peaks may shift outside of the intended interval [ |Ghkl| − ∆q, |Ghkl| + ∆q ], significantly affecting the 
recorded intensities. This phenomenon is further illustrated through the (620) Bragg peak in Fig. 6, where we 
plot the relative intensity as a function of |q| at selected times post-laser excitation. We also highlight the interval 
[ |G620| − ∆q, |G620| + ∆q ] using a gray area.

In Fig. 7, we present the temporal evolution of electronic (Te) and ionic (Ti) temperatures derived from 
our three distinct MD simulation scenarios. Initially, the electronic temperature Te increases as a result of laser 
excitation. Subsequently, Te decreases while Ti rises due to EPC, continuing until both temperatures equilibrate 
at the same value.

Simulations for femtosecond-laser excitation above the damage threshold
We constructed a simulation cell comprising 11 × 11 × 56 conventional units, containing a total of 
Nat = 54208 Si atoms to simulate a 30 nm thick Si film. The periodic boundary conditions were imposed in 
the x- and y-directions, while open boundary conditions were applied in the z-direction (the [111] direction 
of the crystal lattice). To establish initial atomic coordinates and velocities corresponding to a temperature of 
Ti = 300 K, we utilized the Andersen thermostat53. The MD simulations of the femtosecond-laser excitation 
were subsequently carried out under three different scenarios: excited PES and EPC, excited PES alone, and EPC 
alone. The simulations were performed with a time step of ∆t = 1 fs. We modeled the laser excitation using a 
Gaussian-shaped pulse with a FWHM temporal width of τ = 150 fs, mirroring the experimental conditions. 
The total energy, ELtot , absorbed by the 30 nm thick film from the laser was also specified in accordance with 
experimental values:

	
ELtot

Nat
=

(
1 − e−αabs dfilm

) ILtot

dfilm ρat
≈ 1.2 eV

atom
.� (60)

The total energy absorbed by the 30 nm thick Si film from the laser, ELtot , was calculated using the absorption 
coefficient αabs = 0.0204569 nm−1 at a wavelength of 387 nm as used in the experiment29. This value was 
combined with the ab-initio obtained equilibrium atomic density ρat = 50.8414 atoms/nm3, and the 

Fig. 7.  Electronic and ionic temperatures are shown as a function of time obtained from our calculations.

 

Fig. 6.  The relative scattering intensity is depicted as a function of the absolute value |q| of the scattering 
vector, focusing on values proximate to |G620| = 73.76 nm−1. The gray area on the graph represents the 
interval 

[
|G620| − ∆q, |G620| + ∆q

]
. This interval was chosen to facilitate a direct comparison with 

experimental data.
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experimental absorbed laser fluence ILtot = 65 mJ/cm2 equivalent to 4056.98 eV/nm2 at the surface. This 
combination of parameters enabled an accurate estimation of the energy absorption dynamics in the simulated 
Si film.

Calculation of the Bragg peak above the damage threshold
The time-dependent intensity of the (220) Bragg peak was inferred from the atomic coordinates by considering 
all Bragg peaks within the interval 

[
|G220| − ∆q, |G220| + ∆q

]
. This approach was adopted to align with the 

methodology used by Harb et al., who averaged intensities within a ring on the measured diffraction image to 
determine the (220) Bragg peak intensities. In Fig. 8, we display the calculated time-dependent intensities for 
different values of ∆q from the MD simulations that integrated both the excited PES and EPC, alongside the 
results published by Harb. The choice of ∆q predominantly influences the residual intensity observed after the 
decay of the initial Bragg peak. An increase in ∆q corresponds to a higher measured background intensity, due 
to the inclusion of more diffuse scattering within the evaluated range. A value of ∆q = 0.6 nm−1 was selected 
as it best replicated the residual intensity observed in the experimental data according to our calculations.

The simulations vividly demonstrate that when EPC is incorporated, there is a noticeable elevation in the final 
ionic temperature. This increase becomes even more pronounced when the excited PES is included alongside 
EPC. The presence of an excited PES typically results in the weakening of atomic bonds, which, in turn, allows 
for more significant energy transfer from electrons to ions, thereby elevating Ti. This outcome highlights the 
critical that both electron-phonon interactions and the state of the potential energy surface play in determining 
the thermal response of materials subjected to intense laser excitation.

Analyse of the numerical energy drift during the MD simulations
In order to analyze the stability of our implementation of the Velocity Verlet algorithm, we considered the 
numerical energy drift of our MD simulations:

Fig. 9.  The electronic and ionic temperatures of the 30 nm Si film, as a function of time, are depicted based on 
our computational findings.

 

Fig. 8.  The time-dependent relative intensity of the (220) Bragg peak is depicted for several values of the 
broadening parameter, ∆q. The data points corresponding to the measured intensities of the (220) Bragg peak 
are extracted from Fig. 3(c) of Ref.29.
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	 Edrift(t) = E(t) − ELabs(t) − E(t = 0),� (61)

where E(t) denotes the energy expression Eq. (12) in the main manuscript and ELabs(t) (see Eq. (53)) the total 
energy absorbed from the laser field at time t. In Fig. 10 we present the numerical energy drift as a function of 
time for the three MD simulations, which we present here in order to compare with the experimental measured 
Bragg peaks. We used a time step of 1 fs and a time step of 0.5 fs. During the action of the laser pulse, there 
is a small negative drift of the energy, whereas after the laser pulse there is almost no drift. The reduction of 
the time step decreases significantly the energy drift, especially at higher laser fluences, which shows that our 
implementation is correct. In addtion, the resulting Bragg peak decay is identical for both time steps.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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