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Unified description of thermal and
nonthermal laser-induced ultrafast
structural changes in materials

Bernd Bauerhenne™ & Martin E. Garcia

The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled
by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot
electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics,
inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal
equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.
This article presents a unified theoretical description that effectively integrates both processes.

Our method is adaptable for use in both ab-initio simulations and extensive molecular dynamics
simulations, extending the conventional two-temperature model to incorporate molecular dynamics
equations of motion. To demonstrate the efficacy of our approach, we apply it to the laser excitation of
silicon thin films. Our simulations closely match experimental observations, accurately reproducing the
temporal evolution of the Bragg peaks.
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When subjected to an intense femtosecond (fs) laser pulse, a material experiences a dynamic interplay of
competing ultrafast processes. Owing to the pronounced interaction of the laser field with electrons and its
comparatively minimal interaction with ions, it is generally acknowledged that a transient non-equilibrium state
arises following the laser pulse after the thermalization of electrons through electron-electron collisions. This
state consists of hot electrons in the conduction band, hot holes in the valence band, and comparatively cold
ions!2. The presence of these hot electrons and holes significantly alters the interatomic bonding, resulting in
ionic motion that lacks thermal character. This transient state dissipates through incoherent electron-phonon
collisions, facilitating energy transfer from electrons to ions, thereby achieving equilibrium between the electronic
temperature 7. and ionic temperature 7; within a picosecond timescale 7ep. The thermal influence of electron-
phonon coupling (EPC) on laser-induced structural dynamics has been investigated using the two-temperature-
model molecular-dynamics (TTM-MD) simulation approach®*, which utilizes empirical interatomic potentials
V(r1,...) dependent solely on the ionic coordinates r1, . . .>S. The corresponding equations of motion for both
electronic temperature and the ions are formulated as follows:
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where Ce(T.) denotes the electronic heat capacity and Gep(Te) represents the electron-phonon coupling
coefficient. We want to note that C'e and Gp may also depend on the ionic temperature for strongly coupled
electrons and ions”®. The term dEy,,_/dt quantifies the rate of energy absorption from the laser, while
—V:, V(r1,...) represents the conservative force exerted on atom k, characterized by mass M}, position 1,
and velocity vi. The stokes term & M}, v mathematically describes the amplification or damping of the ion
velocities due to the electron-phonon coupling, where £ is given by*
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Eiin denotes the kinetic energy of the ions. If the electrons are hotter than the ions, the ions absorb energy
from the electrons and become accelerated. If the electrons are colder than the ions, the ions loose energy to the
electrons and decelerate. For the sake of simplicity, Eq. (1) and (2) assume homogeneous spatial temperature
profiles. It is important to note that the current TTM-MD methodology overlooks a crucial aspect: the impact
of hot electrons on interatomic bonding. The generation of hot electrons and holes by the femtosecond laser
pulse involves a rearrangement of the occupations of the electronic energy levels. For example, electrons
initially in bonding states can be excited into anti-bonding states, altering the bond character. Addressing such
rearrangements necessitates a quantum statistical description, which is the foundation for ab-initio molecular
dynamics (MD) simulations. In these simulations, a constant volume 2 simulation cell contains a constant
number N, of electrons at the temperature 7%, resulting from electron-electron thermalization processes
upon laser excitation. For laser excitations producing structural changes, T is in the order of 10°-10* K. The
appropriate thermodynamic potential for this situation is the Helmholtz free energy of the electrons, given by

Fo(Te, 2, Ne) = Ue(Se, 2, Ne) — Tt S, (4)

where U (Se, 2, N.) is the internal energy, and S. is the entropy of the electrons. Both U, and S. depend on
the electronic occupations and the ionic coordinates ry, . . .. The ab-initio MD simulations describe the motions
of the ions classically by

d2rk
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using an effective interatomic potential or potential energy surface (PES) ®(7e,r1,...) determined by the
electrons, which are treated quantum mechanically. For this, a generalized Born-Oppenheimer approximation
is used®, which yields

<I>(Te,r1, .o ) = Ue(Te,rl, .o ) — Te Se(Te,m7 .. ) (6)

This means that the PES determining the motion of the ions when the electrons are at temperature T is given
by the Helmholz free energy of the electrons. Eq. (6) corresponds to the Mermin free energy [see Eq. (1) in
Ref.!%) used for electronic-temperature dependent density functional theory (DFT)''2. More specifically, the
Helmholtz free energy reads in DFT*?

v —r'|
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where n(em,Te) are the electronic occupations of the Kohn-Sham energy levels &,,. These occupations are
given by a Fermi distribution at T¢. p(r) denotes the electronic charge density

pl) = nlem, To) @hn(r) om (o), (®)
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where ., (r) are the Kohn-Sham orbitals. Fxc represents the exchange and correlation energy, and Vxc
denotes the exchange and correlation potential. V11 describes the ion-ion repulsion, and the electronic entropy
is derived from

Se = —kp Z(n(em,Te) log(n(sm,Te)) + (1 - n(em,Te)) log(l - n(sm,Te))) 9)

m

with kg being the Boltzmann constant. The entropy term is crucial here in the canoncial ensemble of the
electrons, since otherwise the electronic system is not in thermodynamic equilibrium. Furthermore, it has been
shown that the DFT implementation breaks down if the entropy term is ignored'*'>. Numerous ab-initio MD
simulations'® have demonstrated that laser excitation significantly alters the PES, resulting in initial non-thermal
ionic motion. Such ultrafast nonthermal dynamics facilitate structural transformations that are unattainable in
thermodynamic equilibrium, including ultrafast phase transitions!’-2°, thermal phonon squeezing®!*?, and the
generation of coherent phonons?*-%°. Ultrafast x-ray diffraction experiments provide experimental insights into
the nonthermal motions?-%.

Note, if the electrons are at the ground state (T, = 0), the PES ®(7. = 0,r1,...) only depends on the
ionic coordinates and can eventually be modelled by an analytical interatomic potential V' (r1,...). In fact,
®(T. = 0,r11,...) is equivalent to V (r1,...) used in Eq. (2). This indicates a contradiction in the TTM-MD
model (1) and (2), since on the one hand it is assumed that the electrons have a finite temperature 7% but, on the
other hand, the forces on the ions related to interatomic bonding do not depend on the electronic temperature.
It is important to point out that methods based on the DFT description of the PES are limited to small molecular
dynamics cell with almost 1000 atoms and short simulation times not exceeding 10 picoseconds. Moreover, the
EPC cannot be included in a clear unified way in DFT.

As one can infer from the previous description (1) - (9), there are two completely different methods for
describing the short-time non-thermal dynamics of the ions due to laser-induced bond changes described by
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the PES and the later structural response initiated by the electron-phonon coupling EPC followed by relaxation
of structural stress at times of the order of nanoseconds. The processes dictated by EPC and by the alterations
of the PES induced by the laser are in competition (refer to Fig. 1), and thus, they necessitate simultaneous
consideration at the same microscopic theoretical level. Furthermore, recent experimental work*® emphasizes
the importance of integrating both effects to comprehensively understand the mechanism behind laser-induced
ultrafast lattice disordering. Despite some endeavors to incorporate both factors®'~3, a unified first-principles
theory has still to be developed. In this paper, we introduce a first-principles derivation of the equations of
motion for ions that incorporates the competing influences of EPC and laser-excited PES. We generalize the
TTM-MD* approach, enabling it to accommodate the dynamics associated with the excited PES, and adapt the
methodology of ab-initio simulations predicated on T,-dependent PES!"!234 to also consider the impact of
EPC. The unified theory developed in this article can considerably improve the atomistic description of laser-
processing of materials, covering the whole timescale from the excitation to the final morphology.

Results

In order to define a proper energy conservation and quantify the energy exchange between electrons and ions,
when the effects of the excited PES and the EPC are both present, it is unavoidable to consider ions and electrons
as a closed system. In absence of EPC, the ions are already considered as a closed system subject to a PES.
However, electrons at a particular temperature T, are described in the canonical ensemble, i.e., as an open
system in contact with a heat bath. This means that in presence of energy exchange between electrons and ions
the electronic system must be formally decoupled from the heat bath and, therefore, be transformed to the
microcanonical ensemble. Such a transformation is by no means trivial and is derived in the next subsection.

Transformation of the electronic system from the canonical to the microcanonical ensemble
We analyze a solid composed of N, identical atoms each with mass M, excited by a femtosecond laser pulse,
resulting in the electrons attaining a uniform temperature Te. The coordi_pates r; of all atoms are collectively
represented by the vector R € R3Vat and their velocities v; bX the vector V € R3*Mat_The PES of the ions, with
the electronic system at temperature T, is denoted as ® (7, R). Therefore, the force experienced by atom i due
to the PES is expressed as — V., ®. The vector —V 5® € R*"=* encapsulates the forces acting on all atoms. The
electronic entropy Se and heat capacity C. are derived directly from ® by

0P
Se = — B (10)
2*d
Ce = - Te W (11)

The ions do not exhibit a well defined temperature immediately after laser exictation. Nevertheless, using the
kinetic energy Eiin of the ions and the equipartition theorem, one can assign an average “ionic temperature” T}
to the ions:

2 Exin

T, = . 12
3 Nat kB (12)
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Fig. 1. Scheme of the interplay between electron-phonon-coupling (EPC) and laser-induced potential energy
surface (PES) changes: Electronic bonds are visualized as springs between the ions that are drawn as grey
balls. In addition, the electrons move through the crystal and collide with the ions. These moving electrons
are drawn as small balls with black arrows indicating the actual velocity. (A) Before the fs-laser excitation the
electronic temperature is at 300 K, so that the electrons have a low velocity resulting in infrequent collisions
with ions, which vibrate around their equilibrium positions. (B) After the femtosecond laser excitation the
electrons exhibit a high temperature leading to significant changes of interatomic bonding (red springs) and
strong forces acting on the ions. This represents the change of the PES. In addition, the now very fast moving
electrons perform strong collisions with the ions (strong EPC).
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T; converges to the actual ionic temperature at longer times. Now we consider the total energy E of the whole
system as a function of time. If the EPC is not active in the canonical ensemble description, 7. remains constant
and there is no energy exchange between electrons and ions. Then, it holds that

FE = Fiin + (I)’Te = const., (13)
since the ions form a closed system. Now, if the EPC is active and energy is transferred between electrons and

ions, we must transform the electronic system to the microcanonical ensemble in order to be able to treat the
whole system of electrons and ions as closed. Based on Eq. (13), we define the term

M
E=Emt+to2 2 ZV7 Vi + Us — To Se. (14)

Jj=1

We now perform a derivative with respect to the time t:

Nat Nat
B dv] dr;  OU. dT. dr; 8S. dT. dT.

@ MZV] T (VU)o Z ViSe) g ~Tean S (19

Jj= j=1

From this we obtain for the infinitesimal change dE for an infinitesimal time change dt

Nat Nat

dv; oU. dT. 05, dT,
dE MZV]' dt+z oT. dt ( ° oT. +Se> a (16)

The last two terms transform dynamically the electrons from the microcanonical to the canonical ensemble, so
that we have to remove these terms in order to get the infinitesimal energy change dE:

0Se ) dTe
0T, dt

dE:dE+( ) (17)

For obtaining the energy E(t1) at time ¢1, we integrate the above expression starting from a reference time ¢o:

t1
E(t1) = E(t1) — E(to) +/dt ( gi ) d;;e. (18)

The energy is only defined up to a constant, so that we can set E(to) = 0. If we insert Eq. (10) for Se and Eq.
(14) for E(t1), we obtain finally

ty
9%® 9%\ dT.
E(t1) = Exin(t1) + ®(t1) — /dt (Te 72 + an) q (19)
to

Equation (19) represents the central equation of this article, enabling the simultaneous consideration of laser-
induced modifications to the PES and the EPC within the same ab initio theoretical framework. Notice, that
only using Eq. (19) one can ensure the energy conservation in the whole system consisting of electrons and
ions. Previous formulation32 used E = Ey;n + U. for the total energy. However, this has been shown to lead
to inconsistencies and to wrong expression for interatomic forces'*!>. Now we are able to formulate the energy
conservation for moving ions and changing 7%.. Now we are positioned to articulate the energy conservation for
moving ions and the varying temperature T.. Given that the entire system operates within the microcanonical
ensemble, we are able to account for the effect of the total energy absorbed from the laser up until time ¢,
denoted as Ex,,, (t1), as:

E(t1) = Ev_,_(t1) + const. (20)

To derive the equations of motion, we compute the time derivative of the energy E as presented in Eq. (19).

Nat Nat

dv] 9?® dT.
_MZ +Zv3 Ve, @ =T g
Jj=1 (21)
Wy ‘Z—V+v V50 + C d

The third term corresponds to the time derivative of the internal energy of the electrons
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dE. ., dT.
dat % dt

(22)

Given that we omit local electronic heat flow by utilizing a global T} and T, we consider only two processes that
affect the internal energy E. of the electrons: The energy exchange between electrons and ions facilitated by
EPC. We denote the cumulative energy exchanged between the electrons and ions up to time ¢1 as Eep(t1). The
coupling Gy, is, in general, a function of T, T} and the ionic coordinates r1, . . . and indicates the magnitude of
the energy flow from the phonons to the electrons depending on the temperature difference 7. — 7; and is an
external parameter for us. Additionally, the electrons have the capability to absorb energy directly from a laser
field. Consequently, the time derivative of the internal energy F. of the electrons can be expressed as follows:

A E
d;; _ _Gep (Te _ 711) + %

Ce dt

(23)

(22) 4B,
= "a@

This differential equation governs the time variation of the electronic temperature 7e, which is similarly employed
in the two-temperature model (TTM)* and TTM-MD approaches®, under the assumption of uniform global
ionic and electronic temperatures. The equations of motion for the ions are derived from the time derivative of
the energy conservation expressed in Eq. (20):

dE _ dEv,,, (24)
dt dt
Inserting Eq. (21) and using Eq. (23) for Ce d;;C we find
I AT MV-V
MVE—'_VVR(I)_m Gep(Te—T‘i) —0,
=1
. dv Gep (Te —T) ., =
A MEL L - Zee e T T ) g,
< v ( ar Vi 2 Exin V) 0

The above equation must be valid for arbitrary velocities V. Therefore, it must hold that

av
b V)
7 Vi® +

Gep (Te = Th)
MV. 25
B % (25)

The first term on the right-hand side represents the force derived from the PES at temperature Te, and the
second term corresponds to the force attributable to EPC. The collective set of equations, labeled (19), (23), and
(25), encapsulates the unified theoretical framework developed in this article. We now proceed to analyze two
significant limiting cases:

(1) When T remains constant, Eq. (19) simplifies to E(t1) = Fxin(t1) + ® (1), as the integral term becomes
zero due to the condition dT¢ /dt = 0. Therefore, under the conditions of constant 7% and no additional en-
ergy absorption from the laser, such that Er,_, . = 0, Eq.(20) transitions to Eq. (13). This form is frequently
employed in T..-dependent DFT MD simulations that are conducted at a constant 7,223,

(2) If the changes of the PES due to the laser excitation are ignored, i.e., the electrons are considered to be in
their ground state, it holds that ® = ® (7. = 0) and d®/dT. = 0.Since (T = 0,11, ...) = Ue(r1), Egs.
(23) and (25) turn into the commonly used TTM-MD Egs. (1), (2), if C. is used as an external parameter
instead of being directly calculated from ® via Eq. (11). This implies that conventional TTM-MD approach-
es, which rely on empirical interatomic potentials solely based on atomic coordinates, implicitly assume
that the electrons are perpetually in their ground state.Both limits show the power of the developed theory,
which, on the one side, generalizes the TTM-MD equations including PES effects and, on the other side,
contains both the usual TTM-MD model and the ab-initio approaches considering only the PES changes as
limiting cases.

Simulations and comparison with experiments

In order to confirm the validity our method, we performed MD simulations applying the theory derived in
this paper and using the T.-dependent interatomic potential ®V(T.) for Si derived in* from DFT in the
LDA approximation and compared directly with experimental results by Harb et al.*®?° on free-standing thin Si
films. We used the POLYPOT1_MD_MPI 2.0 code®. We used for the electron-phonon coupling the constant
Gep = 1.8 % 10'7 KV¥n3 for Si derived from ab initio in®. We used for Si, although it is a semiconductor, a
common chemical potential for electrons and holes. This is possible, since silicon (Si) becomes metallic after the
laser excitation due to the atomic disorder®. To determine the performance of the theory developed here with
previous approaches, we performed MD simulations in three different scenarios:
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(1) We performed the MD simulations by integrating the Eqgs. (23) and (25) and using the expression (19) for
the total energy. In this way, we consider the effects of the excited PES and the EPC on the same theory level
as mentioned through the paper.

(2) We only consider the effect of the excited PES. This is achieved by setting Gep = 0 in Egs. (23) and (25). In
this way, we mimic the ab-initio simulations based on T¢-dependent DFT.

(3) We only consider the effect of the electron-phonon coupling (EPC). In this scenario, within Egs. (23) and
(25), we use for @ the expression IS (Te = 0) + Ec(T¢). This indicates that the PES is consistently eval-
uated at T. = 0, signifying that the bonding is described by electrons in their ground state. The addi-
tional term, F.(Tc), represents the electronic energy as a function of T, as derived from DFT for the
ideal crystal structure (refer to methods). This inclusion ensures the accurate calculation of the electronic
heat capacity Ce(Te) from Eq. (11). In this way, we reproduce the pure TTM-MD method based on in-
teratomic potentials only depending on the atomic coordinates.In an initial experiment, Harb et al. uti-
lized a fs laser to excite a Si film with a thickness of dgim = 50 nm at a fluence of I1,,,, = 5.6 rJaJ/cnt127
which remains below the threshold for damage?®. This fluence equates to an absorbed energy per atom of
Er,,./Nat = 0.1eV/atom, calculated using Eq. (59) (refer to Methods). Harb ef al. employed ultrafast
electron diffraction to observe the time-dependent intensities of various Bragg peaks. To conduct a direct
comparison with this experiment, we configured a simulation cell encompassing 11 x 11 x 93 conven-
tional cells, which incorporated a Si film 50 nm in thickness, containing a total of Naz = 90024 atoms.
In Figure 2, we juxtapose the experimentally measured relative intensities with those generated from our
simulations for the six Bragg peaks analyzed by Harb et al. The details the calcuation of the Bragg peaks
from the MD simulations are given in Methods. The relative Bragg peak intensities obtained from the MD
simulations considering both effects - excited PES & EPC - yields good agreement with the experiments.
Notice, however, that simulations using the constraint (3), i.e., considering only the EPC effect are almost
identical with the full calculation. From this fact we conclude that in those experiments at low fluences the
ionic motions are clearly dominated by the EPC. Simulations using the constraint (2), i.e., considering only
the effect of the excited PES, yield a featureless behaviour of the Bragg peak intensities as function of time.
In addition to analyzing the Bragg peaks, Harb et al. also calculated the time-dependent ionic temperature
T; of the Si film. This was achieved by interpreting the temporal changes in Bragg peak intensities through
the application of Debye-Waller theory. We calculated the ionic temperature directly from the simulations
using Eq. (12). Our results reproduce the measured 7}, as one can observe in Fig. 3. As expected from the
previous Fig. 2, the full simulation and the simulation with constraint (3) yield almost the same curve for
the ionic temperature. Interestingly, simulations using the constraint (2) yields a constant ionic temperature
and completely disagree with the experiments.

In a subsequent experiment, Harb et al. applied a fs laser pulse to excite a Si film with a thickness of dgim = 30 nm.
The laser fluence used, I1,,,, = 65mJ/ cm?, was above the damage threshold for the material, as documented
in their study®. This fluence corresponds to Er,,_/Nas = 1.2 €V /atom using Eq. (59). For the simulations
corresponding to the setup by Harb et al, a simulation cell was configured consisting of 11 x 11 x 56
conventional cells. This assembly contains a Si film with a thickness of 30 nm and is composed of Na¢ = 54208
atoms. In Figure 4, we present the relative intensity of the (220) Bragg peak. This figure includes both the results
obtained from our computational simulations and those from the experiment, facilitating a direct comparison.
In this case, we also applied the three types of MD simulations described above. It is important to note that
when MD simulations account only for the effect of the excited PES, as is common in standard DFT approaches,
or solely the effect of EPC, as typical in traditional TTM-MD simulations using empirical potentials, there is
a significant deviation from the experimental results. Specifically, when only the effects of the excited PES are
considered, the simulations display oscillations in the Bragg peak intensity and exhibit a much slower decay than
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Fig. 2. Relative intensities of various Bragg peaks of a 50-nm thick Si film after laser-excitation with a fluence
below the damage threshold are shown as a function of time. The data points in the graph correspond to
experimental results, while the lines depict values calculated from our MD simulations. Solid lines represent
calculations that take into account both the excited PES and EPC, whereas dashed lines pertain to simulations

considering only the EPC. The experimental values are extracted from Fig. 4 of Reference?.
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Fig. 3. Ionic temperature 7} of the 50-nm thick Si film after laser-excitation with a fluence below the damage
threshold is shown as a function of time. The points with error bars correspond to the experiment and were
determined using the Debye Waller theory. Lines refer to our calculated values. The experimental values are
taken from Fig. 5 of Ref.2.
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Fig. 4. Relative intensity of the (220) Bragg peak of the 30-nm thick Si film after laser-excitation with a fluence
above the damage threshold is shown as a function of time. Points refer to the experiment and lines correspond
to our calculations. The solid line represents the full calculation including the influence of the excited PES &
EPC. Notice the excellent agreement with experiment. The dotted line refers to the calculated values using

the constrained simulations only including excited PES. The dashed line corresponds to the calculated values
considering only the effect of the EPC. The experimental values are taken from Fig. 3 (c) of Ref.?.

what is observed experimentally. This discrepancy highlights the necessity of incorporating both PES and EPC
effects to accurately model the dynamics observed in experimental conditions. The oscillations have their origin
in the laser-induced movement of the crystal planes against each other. Such an oscillation of the Bragg peak
intensity is not observed in the experiment. When only the effects of EPC are considered, the immediate melting
of the crystal planes is observed, and no oscillations are evident in the simulation results. Additionally, the decay
of Bragg peak intensities in this scenario is both quantitatively and qualitatively different from experimental
observations, presenting an even slower decline than when only the influence of the excited PES is considered.
In contrast, simulations that incorporate both the excited PES and EPC, as dictated by the comprehensive theory
presented in this paper, achieve remarkable agreement with the experimental results. Importantly, these results
are obtained without the use of adjusting parameters, underscoring the robustness of the theoretical approach.
As demonstrated in Figure 4, at high fluences, it is crucial to account for both competing contributions-the
modifications in the PES and the effects of EPC. This comprehensive modeling approach is essential for accurately
replicating the experimental outcomes observed under such conditions. Our findings of the dominance of EPC
at low fluences and the increasing importance of nonthermal effects at high fluences for Si agree also with the
results of*041,

Discussion

While the theory outlined in this article successfully integrates thermal (incoherent electron-phonon heating)
and non-thermal (bond changes) effects in solids following laser excitation, there are opportunities for further
refinements, particularly through the incorporation of electron dynamics during laser excitation and the
subsequent electron thermalization. To date, such an extensive theoretical framework has not been established.
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Time-Dependent Density Functional Theory (TDDFT), as referenced by Runge and Gross*? and further
explored in the works of Wijewardane and Ullrich®, and Krishna et al.*4, is proficient in accurately simulating
the interaction between the laser pulse and electrons. However, TDDFT encounters significant challenges in
describing dephasing effects and the process of electron thermalization. This limitation confines its applicability
primarily to the time frame while the laser pulse is active. Recently, a modified real time TDDFT was developed
to include, in some way, dephasing and a detailed balance on the electronic occupations®. However, such
calculations are restricted to a very small number of atoms. In contrast, methods grounded in Boltzmann
collision integrals*®*” successfully model electron thermalization but operate normally with fixed ionic positions
and were recently extended to moving ions*. The accuracy of the method detailed in this article is expected to
become highly reliable once the electronic temperature, 7%, stabilizes. This stabilization typically occurs within
a timeframe ranging from 50 to 100 femtoseconds.

In summary, this article presents a unified theory that effectively describes the structural changes induced by
laser excitation in solids, integrating both bond modifications and electron-phonon coupling at a microscopic
level. Our approach encompasses and extends the traditional frameworks of TTM-MD and ab-initio DFT
simulations, treating them as special cases. When applied to Si, our methodology demonstrated remarkable
concordance with experimental findings, validating its accuracy in capturing the complex dynamics associated
with laser-induced structural transformations. This success underscores the potential of our unified approach
to provide a comprehensive and accurate tool for studying and predicting laser-induced phenomena in various
materials.

Methods

Now we explain in detail, how we performed our MD simulations. At first, we show the generalized formulation
of our theory for separate phonon temperatures, which we did not present in the main text for the sake of
simplicity. The algorithm for the integration of the equations of motion are implemented considering this
generalized formulation.

Generalization of the atomic equations of motion considering separate phonon
temperatures

Indeed, it is feasible to assign specific ionic temperatures to distinct sets of phonon modes, as outlined by
Waldecker et al.*. The process be, 1ns with the diagonalization of the dynamical matrix, from which one can
derive the polarization vectors € .,&BNat) for all phonon modes. These vectors are orthonormal and
together form a complete basis set of the vector space R? V=t The phonon modes are then categorized into N_
separate subsets, denoted as .#},. |
For each subset .#};, one can define the corresponding projection operator P_y, wh1ch is expressed as a matrlx
in R3 NatX3 Nat_The projection operator is constructed as follows:

P, = Z é*(j) . (é'(j)). (26)

jey,

This operator pro;ects the atomic velocities V onto the directions of the phonon modes of set .#4, obeys
P! i, =P, = P? “u,,» and is used to define an individual ionic temperature for a given set .#} of phonon
modes:

2Ekin/{k _MV'Pﬂk:'V

noo- _ (27)
e | M) ke | 2| ks

Here kp denotes the Boltzmann constant and Fyi, ,, the kinetic energy of the phonon modes of set .#%. Now,
the time derivative of the internal energy of the electrons is given by

« dEL
abs
S G, (11, o
k=1
(22) aBe
dt
The equations of motions for the ions is calculated from the time derivative of Eq. (20):
@ _ dEBv,, (29)
dt —  dt

Inserting Eq. (21) and using Eq. (23) for Ce dde we find

MV dv +V V0 - ZMV Dot \///k\G (T.—T:,, ) =0,

CP .,

The above equation must be valid for arbitrary velocities V. Therefore, it must hold that
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L | M| G, (T =T

2 Ejkin/ﬂ]C

v

i
M= =_V:
o = Vit

“”k)MP,/,kV. (30)
k=1

The first term on the right-hand side represents the force arising from the PES at the electronic temperature T,
while the second term corresponds to the force resulting from EPC.

Implementation in the velocity verlet algorithm
We denote by F' the vector containing all interatomic forces related to the potential energy surface

F=—-V;® €2)

and by Fiot the vector containing the total interatomic forces

Nou
Fiot =F+ Y €, MPa, -V, (32)
k=1
. |%k| Gep&ﬂk (Te - ﬂﬂk)

(33)

M
2 Ekin_ﬂk

In any MD simulation, the process begins by establishing the initial conditions, which include the electronic
temperature at the initial time 7% (o), the initial positions of the atoms R(to), and their initial velocities V (¢o).
A positive time increment At is chosen, and the simulation evaluates the system at discrete times t, = to + ¢At
, where £ belongs to the set of natugal numbers N. At these times, the simulation aims to calculate the electronic
temperature Te (t¢), the positions R(¢¢), and the velocities V (t¢) of the atoms. To achieve these calculations, it is
necessary to numerically integrate the coupled differential equations governing the motions of the ions

av =
M — = Fi,
P tot
and the differential equation for 7%
dT. dFE.
Ce dt — dt’

The Velocity Verlet Algorithm® is a popular choice for integrating the equations of motion in molecular
dynamics simulations due to its simplicity and numerical stability. The algorithm updates positions, velocities,
and forces of the atoms at each timestep based on their values from the previous timestep. The process involves
the following steps:

L _ _ At? -

R(ter1) =R(te) + At V(to) + 37 Fiot(te), (39)
. . At [ = .
Vlters) =V(te) + 5 (F (te) + Fmt(tm)). (35)

Utilizing the initial position vector R(t), we are equipped to compute F(to), ®(to), Se(to), and Ce(to)
. Furthermore, the phonon mode projection operators P4, , which are presumed to be time-invariant, are
acknowledged. These projection operators Pz, , in conjunction with V' (o), facilitate the calculation of kinetic
energies Fiin ,, (to), temperatures T; ,, (to), and the parameters .4, (to) for various phonon mode groups
M. As a result, the total force vector Fiot(to) at the initigl time to can be irllmediately derived from the initial
conditions, as formulated in Eq. (32). From the variables R(t0), V (t0), and Fiot (to), we proceed to compute the
position vector R(¢1) using Eq.(34).

Nevertheless, direct computation of V(tl) from Eq. (35) is not possible, since it requires Fiot (t1), which in turn
can only be determined from V' (¢1) via Eq. (32). In scenarios where electron-phonon coupling is disregarded,
Fiot(t1) can be directly computed from R(%1) utilizing ®, given that Fiot (t1) simplifies to F'(¢1). Subsequently,
V (t1) can be calculated straightforwardly using Eq. (35).

In scenarios where electron-phonon coupling must be accounted for, we must adjust the computational
procedure as follows: We start from a time step t¢ > to where all known quantities are established and aim to
compute all relevant quantities at the subsequent time step ¢y 1. Initially, R(¢,11) is determined using Eq. (34).
To accurately calculate Tt (t¢+1), additional definitions and steps are required. We define
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tot1
d
aby )= [ e b ) - B, 0 o
ty

which represents the energy absorbed by electrons from the laser during the time step ¢,. Additionally, A Ee;, ()
is defined as the total energy transferred to the electrons from the ions as a result of electron-phonon coupling
at the same time step t¢. The numerical computation of A E.(t¢) is conducted by

AEep(te) Z | M| Gep , (t0) (Te(te) — T, (t0)) At. (37)
k=1
From the total change of the electronic energy at time step ¢,

AFe(te) = AEep(te) + AEL,,, (te), (38)

we can calculate numerically the related change of Tt for Ce(t¢) > 0 by
AFEc(te) 38) AEep(te) + AP, (te)

ATe(te) = = 39
() = tee) Ce(te) 9
From ATc(t¢), we obtain Te(t¢11) just by

Te (tZJrl) = Te(té) + AT‘e (ti) (40)

In cases where C(t¢) = 0, we formally consider the ions to be stationary and attribute any change in internal
energy, provoked by variations in the electron temperature 7¢, exclusively to the electron subsystem. This
assumption simplifies the energy transfer dynamics by isolating the electron behavior from the ionic lattice

AFE(te) =AE(te)
dd (TC (tes1), ﬁb(té))
dT. (41)
4 (Te(te), ﬁ(tz))
dT, '

=® (To(tern), Blte)) — Te(tera)

- @(Te(tz),ﬁ(tz)> +Tu(te)

To proceed with the determination of Te (t¢+1), we numerically solve the previously outlined equations relating
to energy absorption and transfer. With the computed temperature T (t¢+1) and the updated position vector
R(tet1), it is then possible to ascertain various other critical parameters such as F'(t¢+1), Se(te+1), and
Ce(te+1). Additionally, it is beneficial to compute Gep A (te4+1) at this stage:

Gepﬂk (ti+1) = Gepﬂ,C (Te(tl+1)7 é(t€+1)7 v(téJrl)) .

Given that Gep o, is intricately dependent on the velocity vector V(te“) which remains undetermined at
this stage, we adopt the velocity vector from the previous time step, V (t¢), as a practical approximation for
computing Gep_,, (te41):

Gep g, (tes1) = Gep . (Teltesn), R(tes1), V(te)) - (42)

Furthermore, we get for V(t4+1) by inserting Eq. (32) for F}ot(tul):

- - At
V(te...l) 3: V(tz) + m (Ftot(tl) + Ftot(t£+1)>
At At X
(32) =~ — - —
BV () + - (me) + F(tul)) + 5 Z Ear(ter1) Py -V (tesn).
=1
With the definition of

.

W(ters) = V(te) + g 2 (Bunlte) + Fter), (43)

we are able to compute this quantity due to our ability to specify F(tg41). This force vector is computed from
the known position vector R(t¢+1) and electron temperature Te(t¢+1) by using the potential function ®. The
vector W (te41) effectively represents the hypothetical velocity vector at time t¢1, assuming electron-phonon
coupling is disregarded at this step. Using the properties of the phonon mode projection operators we obtain
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N

V(tes1) = W(tes) + Z W (ter1) Pugy - V(tesr),
k=1

<:>ZP./flk (te+1) ZP/ﬂk (tet1) + — Z €, (tes1) Pty - V(tega).

k=1
Af—/ Hf—/
=1 =1
When the matrix P_4, multiplies from the left, where i represents an arbitrary index from the set {1,..., N_4}

, it results in
. . At .
Poai - Vters) = Pugy - Wtera) + - Eai (b)) Pugy - V(tes),

- At .
P W) = (1 -5 b (te+1)> Poa; - V(tegr).

Given that the index i was selected arbitrarily, the aforementioned equation holds for every i € {1,..., N4 }.
To maintain consistency in notation, we revert i to k, concluding that forall k € {1,..., N 4 }:

1

——— P« -Wte . 44
1= B, () (tet1) (44)

P.a, - V(thLl) =

The matrix product P, - V(t4+1) can be computed if the parameter £ 4, (t¢+1) is known, given that W(ti+1)
has already been ascertained. To determine _,, (t¢+1), we examine the kinetic energy Ein ,, (¢+1) associated
with the phonon mode set .#;:
M . .
Ekin‘/ﬂk (te+1)=7 (P/ﬂk . V(t1€+1)) ‘P - V(tesr)
(44) 1

(1 — &L Eu, (tey ))2 % (PJ”’f 'W(t“l)) Py W(tesn).
2 ¢ 1

We define
M - o
Hop, (tey1) == -5 (P, - W(tesr)) - Poay, - W(tesn), (45)

which is computable directly from the determined W(tg+1). The term H_z, (t¢41) denotes the kinetic energy of
the phonon mode set .#, at the time step ¢ 1, provided the impact of electron-phonon coupling is disregarded
at this specific time step. Subsequently, we obtain:

H.g (tes1)
FExin , (te41) = k 46
“ 1= ALEay(ter) + 22 € g (ter1)? (46
and obtain for the parameter §_y, at time step t¢41:
€0 (tonr) D | M| Gep g, (te1) (Te(tesn) = Ty, (te41))
oy, (te =
R 2 Fxin ,, (tes1)
2 Bxin , (teq1)
| M| Gep_y, (te41) <Te(t2+1) - ,Z:’“k]g>
- 2 Exin 4, (te41)
. |///k| Gep_ﬂk (téJrl) T. (tl+1) Gep./{k (t€+1) (47)
2 Exin 4, (te41) kg
(16) |- 7| Gep 4, (teg1) Te(tesr) At? 2
= 1— At t —_— t
2 H.a (o) Sy (ter1) + 1 Eaty(Lesr)
 Gep g (te41)
ks '

Since all variables are evaluated at the time step ¢¢+1, we will omit the time argument (¢¢41) in subsequent
expressions for conciseness. We now proceed to solve this quadratic equation for £ g, :
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SH.u, e 2H. 4,
|/[k| Gep_/ﬂk Te Gep.ﬂk

2H. 4, ks

8 H 4
©0=¢%, — ( A

4
e Gen, ToAE T At) Sa R
8H 4,

ke [ M| Gep, Te A
4H 4, 2

] Gop, T AP A

| M| Gep o, T AE ( | M| Gep yy, T At)
= "

eP.,

(48)

=€ u, =

B 4H 4, +i 2+ 8H x4, _i
|| GePﬂk Te A2 At kg || Gep%k T.At2 A2’

& u, either increases or decreases the velocity of ions in alignment with the velocities of the phonon modes
from the set .#. Given that the velocities contribute quadratically to the kinetic energy, the direction of
velocity (sign) does not impact energy conservation. Consequently, there are two mathematical possibilities for
& u,, - The first solution involves a minor adjustment in velocity, corresponding to a small value of £_y, . This
represents the solution found in Eq. (48). Alternatively, the second solution either reverses the velocity or alters
the direction of movement, correlating to a significant absolute value of {_, . This outcome, deemed physically
impractical, aligns with the “+” option of the quadratic equation. To confirm that the “+” solution yields a larger

magnitude, consider a as the sum of the first two terms and b as the root part in Eq. (48), thus {_», (g) a=+b.

Here, a is non-negative by definition, and b is non-negative if the root generates a tangible solution. Applying
the triangle inequality brings us to: |a — b| < |a| 4 |b| = a + b = |a + b|, indicating the larger magnitude of

« | »

the “+” solution, solidifying its consideration as the unphysical option.

Eq. (48) becomes inapplicable when G, , = 0. Under this condition, £, is determined to be zero, following
directly from its defining equation, Eq. (33). This occurs because, in the absence of electron-phonon coupling
(Gep. a“w = 0), there is no modification induced on the ion velocities by the Gphonon modes from set .#, leading

P from Eq. (47).

to &_#, = 0.Eq. (48) is also not valid for T. = 0. Here, we get {_z,, = —

kB
To calculate E(t¢+1), we define
ty
dT,
I(te) == /dt (Se + Ce) o (49)
to

Consequently, we derive that I(to) = 0,and U (t¢41) = ®(te+1) + I(te+1). For the numerical computation of
I(te4+1), we begin with the value I(t;) and approximate the remaining integral from t; to t¢41 in Eq. (49) by
employing the trapezoidal rule:

I(tenn) = 1(t0) + 5 ((Se(ta) + Celte)) ATu(te) + (Seltesn) + Coltesn)) ATeltern)). (50)

Now we have calculated all quantities at time step ¢¢+1 and summarize the calculation procedure:
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—

34) = o At? o
Bltesr) ©R(te) + At V(te) + 5 Fioute),

36)
ABry, (te) D B, (ten) = Bry,, (1),

N g
(37)
AEep(te) ‘= = | tly| Gep 4, () (Telte) = T, (1)) At
k=1
(39) AFBep(te) + AEL,,, (to)

Ajﬂe (tf) Ce(t[) s

Totesr) DTa(te) + AT (k)
o® <Tc(tg+1), R‘(tm))
oT. ’

82‘I’<Tc(t/3+1)» é(t/z“))

oT? ’
—V., @(Tc(t[ﬂ), ﬁ(tm))
Flte) & : 7
~Vir, <I>(T0(t,g+1)7 ﬁ(tm))

Se(terr)=—

Ce(tZJrl): - Te(t4+1)

(42) - _,
Gep 4, (ter1) = Gep yp (Te(tenn), B(tesr), V(t0)) ,

. . At [ = .
Wtes1) BV (1) + M (Ftot(te) + F(t£+1))7
45) M - -
H_z,, (tet1) (:)7 (Poay, - W(tesr)) - Poay - Wtera),

( 4H 4, (tes1) 2

+ E—
(48) 4 Hoa),(tes1) 2 || Gep g, (besr) Teltesn) ALz AL

¢ = 2 _
bt lfer) | #e| Gep 4, (ter1) Te(ters) At2 N

+ 8 H.z,, (te+1) 4
kg || Gep_/”k Te(tes1) At? At?

N g
— (44) 1 -
V(tey1) = ————P.u, - W(tenr).
; 1= S e (terr)
N
. 32) = -
Feot (te+1) (:)F(tul) + Z Sy (ber1) MP gy - V(teya),
k=1
B32)M - —

Eyin 4, (teg1) = -5 V(tes1) - Poay, - V(tes1),

2 Exin_,, (tes1)
ka (t£+1)=W,

36
ABv,, (ter1) D By, (tess) — Bra, (ter),
N g
)
=Y | Gepy, (tes1) (Te(tesr) = Ty, (bes1)) At
k=1
(39) ABep (teg1) + AL, (1)
Ce (té+1) ’

I(tesr) D 1(t) + % ((Se(tg) + Celte)) ATe(te) + (Se(tesn) + Celtesn)) ATe(tHl)>,

37

ABep(tesr) ¢

AT, (te+1)

Etes,)=® (Te(tm), é(ml)) FI(t+ A,

If this algorithm is put into practice, it becomes necessary to only retain the values of each variable at the current
time step t¢+1 and the preceding time step ¢,. This optimizes memory usage by eliminating the need to store data
from earlier time steps beyond the most recent one, which can significantly streamline computations, especially

in simulations or processes where a large number of time steps are involved.

Remarks

« As previously indicated, the model for electron-phonon coupling that we have developed can be incorporated
within Te-dependent DFT. Consequently, in this framework, ® is equivalent to the Helmholtz free energy F

associated with the electrons.

;

Scientific Reports|  (2024) 14:32168 | https://doi.org/10.1038/s41598-024-83416-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

« This model predicts exact conservation of energy. Therefore, the described numerical implementation us-
ing the Velocity Verlet algorithm should exhibit no drift or fluctuation in the total energy expression
E + Eyxin — EL,,_ as the time increment At approaches zero. This characteristic provides a means to verify
the accuracy of the algorithm’s numerical implementation within the software.

o If a set of phonon modes, denoted as .#}, includes only a limited number of modes, the associated ionic
temperature 7; ,  will exhibit considerable temporal fluctuations. Specifically, if the set comprises only a
single phonon mode, the corresponding ionic temperature may become ill-defined due to these fluctuations.
Therefore, it is imperative that each phonon mode set .#}, encompasses a sufficient number of modes to en-
sure stability and accuracy in measurements.

o When the lattice structure melts due to laser excitation, the symmetry of the structure is disrupted. Conse-
quently, in such circumstances, applying different electron-phonon coupling constants Gep, , for distinct
phonon mode sets .#} may be considered non-physical. Therefore, a single coupling constant should be
utilized instead to accurately reflect the altered physical conditions.

« Laser pulses with a Gaussian-shaped time profile are frequently employed in experimental settings. These
pulses are characterized by their full width at half maximum (FWHM) time width, denoted as 7. If EL,,
represents the total laser-absorbed energy of the pulse, then the rate of total laser-absorbed energy at a given
time ¢, can be expressed as follows:

dt o7 72

B,y (te) _ Prio log7(r16) exp <_(tg —271)° 10g(16)> | -

In our molecular dynamics (MD) simulation, the initial time is set at £, = 0, and the peak energy absorption
rate occurs at t = 27. Additionally, 99.99975% of the total energy absorbed by the laser, Ey,,,, is absorbed
between the times ¢ = 0 and ¢ = 47. Employing the Gauss error function

erf(x f / dte (52)

the total laser-absorbed energy up to time ¢, can be analytically calculated by:

te

Bt = [ ar B0
0 (53)

:% <erf( log(65536)) + erf (M 10g(16))> .
T

Analogously, the total laser-absorbed energy at time step ¢, is calculated by

tey1
E
ABu () = [ el

ty

_Ere [ (tg —27 ) (54)
=" ( erf - log(16)
+ erf (Ll — 27 10g(16))> .
T

« In the context of a molecular dynamics simulation utilizing a T, -dependent interatomic potential &, it is cru-
cial that @ demonstrates a physically specific electronic heat capacity, which is mathematically expressed as:

B 9*®

Ce = —le 871_782

For the simulation to yield physically meaningful results, a fundamental requirement is that the electronic

specific heat C. must be non-negative, i.e., C. > 0. This condition ensures that the simulated system adheres to
the laws of thermodynamics.

o When employing a T.-dependent interatomic potential ® in MD simulations, the force exerted on any atom 7,
expressed as — V., @, can be calculated solely based on the positions of neighboring atoms j within a defined
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cutoff radius 7() of ®. This spatial locality is advantageous for parallelizing MD simulations by subdividing
the simulation cell into smaller subcells. These subcells can largely operate independently, requiring only
minimal information exchange with adjacent cells. Such a parallelization strategy enables the simulation of
systems comprising hundreds of millions of atoms within a reasonable timeframe. However, the feasibility of
this parallelization approach may be compromised if the electron-phonon coupling is characterized by pro-
jecting onto phonon mode sets .#}. In scenarios where electron-phonon coupling involves collective motion
across all atoms of a structure in any phonon mode, the independence of subcells is undermined, as the be-
havior of each atom potentially influences and is influenced by distant atoms beyond its immediate neighbors
in the simulation. This interdependence across the entire structure poses significant challenges to the parallel
processing typically used in MD simulations. To compute any component of the total force

N.u
Fiot = F + Z Ew, mP g4, - v,
k=1

it is essential to have access to the velocities of all atoms. This requirement arises because the projection
component, P_y, - V, necessitates knowledge of the velocities across the entire atomic ensemble to accurately
calculate the total force on any given atom i. However, this global dependence poses a significant limitation on
the scalability and parallelizability of the simulation. A potential strategy to mitigate this issue involves redefining
the projection operators P_s, ona more localized basis. By constraining P_#, to only consider the movements
of atoms in the immediate neighborhood, it becomes feasible to maintain the characteristic parallel processing
approach, which is crucial for accelerating large-scale molecular dynamics simulations. This local definition
not only aligns with the computational framework commonly used in MD simulations but also reduces the
computational overhead associated with handling global atomic interactions.

Electronic energy and specific heat of Si
To exclusively simulate the EPC, we incorporated key thermodynamic functions, specifically the electronic
specific heat C¢(7T.) and the electronic internal energy E.(7%), both expressed as functions of the electronic
temperature Tc. Our focus was on a pristine diamond-like Si structure characterized by an optimal lattice
parameter of @ = 0.539872 nm. Using T¢-dependent DFT computations facilitated by the CHIVES 4.00°!2
code, we computed the Helmholtz free energy F'(T¢) across a range of T, values. Further analysis involved
fitting F'(Te) to an 11th-degree polynomial in Te. From this polynomial representation, the electronic specific
9?2 F (T,
G
to calculate Co (T¢) systematically and accurately, ensuring a well-defined basis for simulating EPC effects in the
context of thermal and electronic responses in Si.

heat was derived employing the thermodynamic relationship Ce(Te) = —T¢

. This approach allowed us

T. \F
Cult) = Now 3~ ol (g757c) G

The coefficients a(ckc) are tabulated in TABLE 1. As we are employing a global electronic temperature 7% in our

simulations, the total electronic internal energy, E. (7% ), can be obtained simply by

Te

Ee(Te) = /dT,e Ce (Tcl) (56)

0

Determination of absorbed energy for the femtosecond-laser excitation below the damage
threshold

In our study, we established a simulation cell configured as 11 x 11 x 93 conventional cells, incorporating a
total of Vot = 90024 Si atoms. Periodic boundary conditions were implemented along the x- and y-axes, while
open boundary conditions were applied along the z-axis to simulate a Si film with a thickness of 50 nm. To set

e ]2 o
1 | 9.990955456836453E-6 | 2 | -6.188280768791413E-4 | 3 | 0.040068462158504514

4 |-0.26312331638621433 | 5 | 0.8576043019886007 | 6 | -1.679202915977002

7 | 2.069435128552068 | 8 | -1.5768394499029128 | 9 | 0.6799728970274491

10 | -0.12703240946979374
Table 1. Parametrization of the electronic specific heat C.(T¢) using Eq. (55). The unit of agfe) is & z\tlom.
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the initial atomic coordinates and velocities, we employed the Andersen thermostat®?, initializing the system at
a temperature of 7; = 300 K.

Subsequent to setting up the simulation environment, MD simulations were conducted to emulate
femtosecond-laser excitation across three distinct scenarios: excited PES and EPC, solely excited PES, and solely
EPC. A temporal resolution of At = 1 fs was utilized, simulating a Gaussian-shaped laser pulse with a full
width at half maximum (FWHM) temporal width of 7 = 150 fs, consistent with experimental configurations.
To accurately determine the total energy Et,., absorbed by the Si film from the experimentally measured
fluence I, the optical properties of Si require careful consideration. In the literature, Harb et al. utilized a
femtosecond laser with a central wavelength of A = 387 nm to excite the Si film. This wavelength corresponds
to a photon energy of

2w he
A

=3.2eV, (57)

Ephot =

Where £ refers to the reduced Planck’s constant and ¢ to the speed of light in vacuum. At this specific photon
energy, the index of refraction of Si was identified in the literature as n = 6.062 + 0.630¢°%. Utilizing this
complex index of refraction, we calculated the absorption coefficient of Si

4 1
Otabs = — Im(n) = 0.0204569 —, (58)
A nm

where Im(n) is the imaginary part of the index of refraction n. In our study, we employed the ab-initio determined
equilibrium atomic density, pas = 50.8414 atoms/nm?, along with the experimentally measured total laser
fluence, Ir,,, = 5.6 mJ/ cm? or equivalently 349.525 eV / nm?, at the film’s surface. Using these parameters, we
calculated the total energy absorbed by the laser, Evr,,, within the 50 nm thick film.

EJLt t _ d IL eV
ot — (1 — Qabs Afilm tot ~0.1
Nat ( € ) dﬁhn Pat atom ’ (59)

which we utilized in our MD simulations. We want to note that here we only take linear photon absorption into
account. For higher fluences one may also include multiphoton absorption processes.

Calculation of the Bragg peaks below damage threshold

From the atomic coordinates, we derived the time-dependent intensities of the experimental studied Bragg
peaks. To facilitate direct comparison with experimental results, we considered that Harb et al., did not measure
the intensity of individual Bragg peaks due to their use of a polycrystalline Si film. This setup generated rings,
rather than spots, on the diffraction pattern, typical of monocrystalline films. Consequently, they calculated
the average intensities within these rings at a specific radius and assigned this average intensity to what they
designated as a Bragg peak. The assigned Bragg peak corresponds to the diffraction peak located inside the
ring. To accurately derive the intensity of a measured Bragg peak (hkl), it was necessary to average the intensity
across all Bragg peaks with scattering vector q that meet the criterion |q| € [ |Grrt| — Aq, |Grit| + Aq] . We

selected a broadening factor Ag = 0.37 nm ™" to ensure the best possible correlation between the calculated
and the experimental Bragg peak intensities. An example showing the effect of the broadening Ag on the
relative intensity of the (620) Bragg peak is presented in Fig. 5, alongside corresponding experimental data
points. Several Bragg peaks possess the same absolute value |q| of the scattering vector. The oscillations in
film thickness induced by laser excitation cause shifts in |q| for some Bragg peaks. Consequently, the |q| of

Ag = 1.00 1/hrm — §

Ag = 0.60 1/nm

Ag = 0.40 1/nm — |]

Ag =0.37 1/nrm ——

Ag = 0.30 1/nm

Ag = 0.20 1/nm
Experiment -

Intensity (arb. unit)

Time t (ps)

Fig. 5. The time-dependent relative intensity of the (620) Bragg peak for various broadening parameters, Ag,
is displayed. The data points shown correspond to the measured intensities of the (620) Bragg peak as reported
in Fig. 4 of Ref.8,
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Fig. 6. The relative scattering intensity is depicted as a function of the absolute value |q| of the scattering
vector, focusing on values proximate to |Ge20| = 73.76 nm ™. The gray area on the graph represents the
interval [ |Ges20| — Aq, |Ge20| + Aq] . This interval was chosen to facilitate a direct comparison with

experimental data.
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Fig. 7. Electronic and ionic temperatures are shown as a function of time obtained from our calculations.

some peaks may shift outside of the intended interval [ |Grri| — Ag, |Grii| + Ag], significantly affecting the
recorded intensities. This phenomenon is further illustrated through the (620) Bragg peak in Fig. 6, where we
plot the relative intensity as a function of |q| at selected times post-laser excitation. We also highlight the interval
[|Ge20| — Ag, |Ges20| + Aq] using a gray area.

In Fig. 7, we present the temporal evolution of electronic (7¢) and ionic (7}) temperatures derived from
our three distinct MD simulation scenarios. Initially, the electronic temperature Tt increases as a result of laser
excitation. Subsequently, T, decreases while Tj rises due to EPC, continuing until both temperatures equilibrate
at the same value.

Simulations for femtosecond-laser excitation above the damage threshold

We constructed a simulation cell comprising 11 x 11 x 56 conventional units, containing a total of
Nat = 54208 Si atoms to simulate a 30 nm thick Si film. The periodic boundary conditions were imposed in
the x- and y-directions, while open boundary conditions were applied in the z-direction (the [111] direction
of the crystal lattice). To establish initial atomic coordinates and velocities corresponding to a temperature of
Ti = 300 K, we utilized the Andersen thermostat®. The MD simulations of the femtosecond-laser excitation
were subsequently carried out under three different scenarios: excited PES and EPC, excited PES alone, and EPC
alone. The simulations were performed with a time step of At = 1 fs. We modeled the laser excitation using a
Gaussian-shaped pulse with a FWHM temporal width of 7 = 150 fs, mirroring the experimental conditions.
The total energy, L., absorbed by the 30 nm thick film from the laser was also specified in accordance with
experimental values:

I
Liot  pq9 2V (60)

— € .
dfiim pat atom

ELtot _ —abs dfilm

= (1 bs Al )
The total energy absorbed by the 30 nm thick Si film from the laser, Er,,,, was calculated using the absorption
coefficient cvaps = 0.0204569 nm ! at a wavelength of 387 nm as used in the experimentzg. This value was
combined with the ab-initio obtained equilibrium atomic density pa.; = 50.8414 atoms/ nm®, and the
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Fig. 8. The time-dependent relative intensity of the (220) Bragg peak is depicted for several values of the
broadening parameter, Agq. The data points corresponding to the measured intensities of the (220) Bragg peak
are extracted from Fig. 3(c) of Ref.?’.
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Fig. 9. The electronic and ionic temperatures of the 30 nm Si film, as a function of time, are depicted based on
our computational findings.

experimental absorbed laser fluence Ir,,, = 65 mJ/cm” equivalent to 4056.98 €V /nm? at the surface. This
combination of parameters enabled an accurate estimation of the energy absorption dynamics in the simulated
Si film.

Calculation of the Bragg peak above the damage threshold
The time-dependent intensity of the (220) Bragg peak was inferred from the atomic coordinates by considering
all Bragg peaks within the interval [ |Ga20| — Aq, |Gazo| + Aq} . This approach was adopted to align with the

methodology used by Harb et al., who averaged intensities within a ring on the measured diffraction image to
determine the (220) Bragg peak intensities. In Fig. 8, we display the calculated time-dependent intensities for
different values of Ag from the MD simulations that integrated both the excited PES and EPC, alongside the
results published by Harb. The choice of Ag predominantly influences the residual intensity observed after the
decay of the initial Bragg peak. An increase in Ag corresponds to a higher measured background intensity, due
to the inclusion of more diffuse scattering within the evaluated range. A value of Ag = 0.6 nm ™" was selected
as it best replicated the residual intensity observed in the experimental data according to our calculations.

The simulations vividly demonstrate that when EPC is incorporated, there is a noticeable elevation in the final
ionic temperature. This increase becomes even more pronounced when the excited PES is included alongside
EPC. The presence of an excited PES typically results in the weakening of atomic bonds, which, in turn, allows
for more significant energy transfer from electrons to ions, thereby elevating 7i. This outcome highlights the
critical that both electron-phonon interactions and the state of the potential energy surface play in determining
the thermal response of materials subjected to intense laser excitation.

Analyse of the numerical energy drift during the MD simulations
In order to analyze the stability of our implementation of the Velocity Verlet algorithm, we considered the
numerical energy drift of our MD simulations:
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Fig. 10. Numerical energy drift of our MD simulations for the three presented calculations to compare with
the Bragg peaks with a timestep of 1 fs (solid lines) and 0.5 fs (dashed lines).

Eaniet(t) = E(t) — Fv,, (t) — E(t = 0), (61)

abs

where E(t) denotes the energy expression Eq. (12) in the main manuscript and Er,,_ (t) (see Eq. (53)) the total
energy absorbed from the laser field at time ¢. In Fig. 10 we present the numerical energy drift as a function of
time for the three MD simulations, which we present here in order to compare with the experimental measured
Bragg peaks. We used a time step of 1 fs and a time step of 0.5 fs. During the action of the laser pulse, there
is a small negative drift of the energy, whereas after the laser pulse there is almost no drift. The reduction of
the time step decreases significantly the energy drift, especially at higher laser fluences, which shows that our
implementation is correct. In addtion, the resulting Bragg peak decay is identical for both time steps.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable
request.
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