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Symmetry breaking organizes the
brain’s resting state manifold

Jan Fousek%2", Giovanni Rabuffo', Kashyap Gudibanda?, Hiba Sheheitli**, Spase Petkoski:®
& Viktor Jirsals5™

Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain’s
health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our
understanding of their generative mechanism is still incomplete. Using a combination of computational
modeling and dynamical systems analysis we provide a mechanistic description of the formation of a
resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by
the connectivity creates a characteristic flow on the manifold, which produces the major data features
across scales and imaging modalities. These include spontaneous high-amplitude co-activations,
neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity
dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data.
The understanding of the brain’s resting state manifold is fundamental for the construction of task-
specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the
single recordings towards the brain’s capacity to generate certain dynamics characteristic of health and
pathology.

The human brain at rest exhibits a remarkable richness of neural activity structured both in time and space.
Early computational modeling studies explored how these spontaneous fluctuations are constrained and how
their organization is shaped by the anatomic connectivity!~ enabling to start disentangling the mechanisms of
the resting state dynamics in silico. A substantial body of work has related the emergent activity patterns at rest
to the brain functional networks involved in task conditions>®, and shown that the spatiotemporal variability
of resting-state activity possesses functional significance’™, relevance to cognitive task performance'?,
consciousness levels!!, changes during aging'>!®, mental disorders'?, and neurodegenerative diseases (e.g.
Alzheimer’s dementia;'®). The structure of the resting state dynamics changes over time'® and is characterized by
a range of properties such as metastability'”'%, event-like coactivations'®~*! and traveling waves*2. However, our
understanding of the mechanisms underlying these spatiotemporal patterns of the brain activity at rest is still
incomplete?® and whole brain network models have a crucial role to play on that front?*.

There is general agreement that the resting brain operates near criticality®. This is supported by a large range
of analyses performed on simulated and empirical data using network-based measures (functional connectivity,
functional connectivity dynamics), information theoretical measures (entropy, ignition), and descriptions
of spatiotemporal dynamics (avalanches, cascades). Modeling efforts provide further evidence for the close
relationship between the empirical data features and the properties of the structural network, local dynamics,
coupling strength, neural gain®1326-31, The resting state dynamics can then be understood as noise-driven
fluctuations of brain activity, operating near criticality and constrained by the brain connectivity>*2. However,
the models above leave a gap in the description of a mechanism, as the relations between the causal properties of
the model and the dynamical signatures are left implicit. The mechanistic description in terms of the generative
system can be thus further improved by showing how the properties and components of the model give rise to
the features of the generated activity. It requires formulation in terms of causal activities of their constituent
entities and renders the end stage, in our context the resting state dynamics, intelligible by showing how it is
produced?®. To explain is thus not merely to redescribe one regularity (e.g. functional connectivity dynamics, or
maximization of entropy) as a series of several (such as near-criticality, cascades, ignition). Rather, explanation
involves revealing the productive relation between causal activities linked to their constituent entities.

In this paper we aim to remedy this situation and provide this explanation using Structured Flows on
Manifolds (SFMs)**~%8. SFMs is a mathematical framework explaining how low dimensional dynamics,
reflecting generative sets of rules underlying behavior, emerges in high-dimensional nonlinear systems,
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specifically dynamical systems on networks modeling macroscale brain dynamics. The structural connectivity
plays an important role here by providing symmetry constraints to the range of viable solutions of the system’s
equations, which in turn collectively define the dynamic repertoire of the system®. When properly linked to
the network’s constituent entities (functional nodes and connectivity), we will demonstrate how their causal
activities lead to the formation of the brain’s resting SEM, comprising all its dynamic signatures (see Fig. 1),
thus closing the gap between the mechanisms of the generative model and the observed functional features. If
we distill the previous reports of brain resting state data analysis from the dynamical systems point of view, we
arrive at the following main empirical signatures that should be part of the end stage of a successful mechanistic
description: bistability of single region activation®-*!, low-dimensionality of the global system dynamics in state
space”1243, cascade propagation??, multistability of recurrent coactivation spatial patterns'®*> and their non-
trivial temporal dynamics or intermittency®*>#. These signatures will constitute the key features of what we
will describe as structured flows on the low-dimensional resting state manifold. We assess the manifold and the
associated flow using local and global unfolding using principal component analysis (PCA), thus side-stepping
the need for a closed-form solution. Such a solution would be not only difficult to derive, but also limited in
terms of generalization to other models and application to empirical data.

Results

In what follows we employ whole-brain modeling to study the low dimensional manifold and the associated
structured flows of the spontaneous resting state dynamics, and how these relate to the structural connectome.
We constructed a brain network model (BNM) in The Virtual Brain?’ using the two-dimensional mean-field
model of an ensemble of quadratic integrate-and-fire neurons (*3; MPR) to govern the regional dynamics
coupled with a connectome derived from a subject from the Human Connectome Project!’. We applied the
Balloon-Windkessel model™ to the simulated neuronal mass activity to generate realistic BOLD signals. From
these, we calculated the dynamic Functional Connectivity (dFC), which captures the time-dependent variations
of the Functional Connectivity (FC), and is computed either as correlation between FCs extracted in a sliding
window (windowed dF'C.,), or as the correlation between the time-points of the edge time series (edge dF'C).
We evaluate the dFC in terms of fluidity of the system’s dynamics—that is the propensity to dwell in specific brain
states (defined by the FC) and shift and return between several such states (see Section "Functional connectivity
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Fig. 1. Structured flows on manifolds as the focus of resting state characterization. For the structure of the
connectivity of the dynamical system, we consider the spectrum defined by the two symmetrical limit cases:

a fully disconnected network, and a network where the external input dominates the activity at each node.
Driven by noise, the disconnected system exhibits fully statistical, high-dimensional dynamics - it explores the
whole state space in an equidirectional manner. On the other hand, the dynamics of the strongly connected
system are equally high-dimensional as the system is constrained by the high external input to a subspace
which it explores again equidirectionally driven by the sum of the noisy network inputs. The dynamics of

the sparsely connected system lead to an object in between—a low-dimensional attractive manifold with an
associated flow (SFM). It is this object we wish to put in the center of interest and characterize. While the SFM
object remains the same, connections are made to data of various modalities with the help of suitable data
features.
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dynamics" for more details). The fast neuronal activity is decomposed in a 2N-dimensional state space using
Principal Component Analysis (PCA) to unveil the low-dimensional manifold on which the system evolves.

When driven by noise, the network of the bistable MPR nodes has the capacity to exhibit realistic dFC
supported by neuronal cascades when the network input is scaled appropriately** — we refer to this regime as the
working point. The noise together with the network input drives the switching between the up- and down-state
of the individual nodes, while the network mediates the coordination reflected in the functional connectivity.
In the following sections, we explore how the manifold of the resting state activity arises from the networked
interactions, how it shapes the multistability of the functional connectivity in the simulated BOLD, and how it
relates to empirical observations.

Symmetry breaking: working point for dFC

Symmetry breaking by the network connectivity may give rise to the low-dimensional behavior of an otherwise
high-dimensional nonlinear system®®. We start the analysis here by verifying this assumption, and evaluate
whether this low-dimensional regime also coincides with increased fluidity of the spontaneous dynamics.

In particular, we investigate the behavior of the system between two symmetrical limit cases in terms of the
amount of afferent node coupling input: starting from the uncoupled system (invariant under node labeling),
across the regime with broken symmetry (heterogeneous distribution of coupling input due to the asymmetrical
connectome), up to a symmetrical saturated regime (high values of afferent input overriding local node dynamics,
invariant under node labeling). To assess the impact of the symmetry breaking by the connectome, we simulated
10 minutes of spontaneous activity for a range of values of the coupling scaling parameter G and noise variance o
. The scaling parameter G multiplies in the networked model the afferent coupling at each of the nodes, while o is
the variance of the driving noise at each of the nodes (see Section "Brain network model" for precise definitions).
We then applied PCA to the source signal ¥(¢) and dFC to the BOLD time series (Fig. 2), where the source
signal W is the state vector of the system (see Section "Brain network model"). We used the variance accounted
for (VAF) of the first two PCA components as an estimate for the dimensionality of the system’s dynamics in the
state-space (Fig. 2D), and the switching index defined as the variance of the upper triangle of the dFC matrix as
a measure of the fluidity of the system’s dynamics (Fig. 2A).

For low values of G, the system dynamics lacks recurrence (Fig. 2B,C), as shown by the low oft-diagonal
values of the dFC matrix, which captures the similarity of the FCs between distant time-points. Simultaneously,
the dimensionality of the dynamics is high as reflected in the low variance explained by the first two PCA
components (Fig. 2D). Note, that the explained variance for each of the two PCA components is equal to 1/N (in
this case IV = 84 nodes of the network), and the projection in panel D reflects the independent rare switching of
two nodes, each captured by one PCA component (see Fig. S4 for spatial maps of the PCA components).

Around the value of G = G, = 0.540 and o, = 0.030 (working point) there is an increase of the dFC
fluidity, as quantified by the switching index. In this regime, the system exhibits coordinated cascades of up- and
down-state transitions. On the dFC matrix (Fig. 2B,C), the fluid regime is characterized by the on-diagonal
nonzero blocks reflecting the time intervals of invariance of the FC, together with similarity across time (high
off-diagonal nonzero blocks). At the same time, the variance explained by the first two components of the PCA
increases substantially pointing to the decrease in dimensionality of the system dynamics (Fig. 2D).

Past the working point (G > 0.6) the oft-diagonal dFC correlation drops following the decline of the
similarity of FC across time. This is accompanied by the decrease of the explained variance in PCA signifying an
increase in the dimensionality of the spontaneous dynamics. No such decrease in dimensionality and increase
in the fluidity of the dynamics is observed when the connectome is replaced by an all-to-all network (Fig. S1).

In addition, using Kolmogorov-Smirnov (KS) distance between the centered distributions of the values of
the upper triangle of the dF'C, in the empirical and simulated data, we have verified that the region of the
parameter space where dFC is most similar to the one derived from empirical data overlaps with the region
with the highest fluidity, (Fig. 2E). The centering was performed to mitigate the biases of the KS distance arising
from differences in the mean dF'C., values. Such difference can have many sources unrelated to our focus, such
as fluctuations in the empirical data across sessions, preprocessing choices’!, and the difference in the mean
dFC\y between empirical and simulated data due to the lack of e.g. physiological noise in the simulations.
See Fig. S5 for the comparison of centered and non-centered cumulative distribution functions of dF'C..
Furthermore, this similarity is preserved across subjects, which we verified by comparing the maximum of the
fluidity (G|max(fluidity)) and the minimum of the KS distance (G|min(ks)) in 100 connectomes of 100 subjects
from the HCP dataset (Pearson r = 0.95, p < 10~ °, Fig. 2F). See Fig. S2 for the fluidity results for the full range
of values of G for all subjects.

Network dynamics

Before we delve into the characterization of the low-dimensional manifold, let us first describe the network
dynamics in more detail. In particular, here we are looking for the mechanistic properties of the network neural
mass model which gives rise to the observed fluid dynamics in the working point identified in the previous
section.

For the MPR model, the dynamical profile of an isolated node in the bistable parametrization consists of
an unstable fixed point (saddle-node) and two stable fixed points: down-state stable node and up-state focus
(Fig. 3A). For an isolated node, varying the external input I; changes the size of the basins of attraction of the
stable fixed points. This modulates the probability of switching between the two states when driven by noise as
captured by the mean escape times (Fig. 3A, see Methods for more detail). For a connected node, the external
input I. depends on the state of the neighboring nodes (see Equation 4), fluctuating as they transition between
the up- and down-state. On the network level, given the right scaling of the network connections—the working
point, this enables the sequences of up- and down-state switching at the fast timescale, and the co-fluctuation
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Fig. 2. Brain network model and symmetry breaking. The brain network model is simulated for varying levels
of global coupling parameter G and noise variance o to produce both time series of the state space variables
r(t), V(t), and the BOLD signal. For each combination of G and o we compute the sliding window dF'C,,
matrix from the simulated BOLD signal and quantify the “switching index” of the dFC as the variance of the
upper triangle (A). For selected values of (G, o) we show the sliding window dF'C',, (B), edge-based dF'C.
(C), and the projection of r(t) time series in the first two PCA components (D) annotated with corresponding
fractional variance accounted for (VAF). In the working point around G = 0.54 and intermediate values of

o the system exhibits recurrence in the large-scale dynamics as captured by non-zero switching index, and
reduction of dimensionality as captured in the increase in explained variance by the first PCA components

and the asymmetry in the respective projection. For values of G below or above the working point, the system
loses the fluidity property as reflected in the absence of the off-diagonal blocks on the dFC, and exhibits high-
dimensional dynamics. Kolmogorov-Smirnov distance of the centered (mean-subtracted) distributions of the
values of the upper triangle of the dFC computed from empirical and simulated resting state BOLD time series.
The region of parameter space where the distributions are the closest overlaps with the region with high fluidity
of dFC (E). The coincidence of the high fluidity of dFC and the similarity to empirical data is preserved across
100 subjects from the Human Connectome Project dataset (F).

Scientific Reports |

(2024) 14:31970

| https://doi.org/10.1038/s41598-024-83542-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A

s )

-
1=0.0 1=0.75 I=1.5 P
& — 102 ©
1 - =
1 v 10! =
0 E ®

- "é 10°

-1 ) &

N y ‘ 3 107!
) ' s e |l | o o
0 b & 20 1 20 1 2 8

r r r
—_r=0 S
0 10 20 30 40 50
Time (s)
C G=0 G=0.54 G=1.0 empirical
- BOLD Co-activations —— BOLD Co-activations —— BOLD Co-activations  Neuronal Cascades

— Neuronal Cascades _ = Neuronal Cascades _ ™ Neuronal Cascades —— BOLD Co-activations

460 476 492 508 524 540 556 572 588 460 476 492 508 524 540 556 572 588 460 476 492 508 524 540 556 572 588 5 ® & & & o
3
L

s g
Time (s) Time (s) Time (s)
Time (s)
04

§ “J § o5 ] § 0s
502 g %02 £ ]
[ 3 ] é 3 £ 00 =
8 00 -4- - - 8 00 % %l 8 00 &= &= &= 8 %

—_— e —— —_— —_—

cAicA NCAINCA CAINCA CACA NCAINCA CAInCA caicA NCA/nCA CAINCA CAICA nCAINCA CAINCA

Fig. 3. Network dynamics. (A) The network input I modulates the probability of a noise-driven transition
between the down- and up-state by increasing the basin on the attraction of the up-state (blue area) in the
phase-plane of firing rate r and membrane potential v with nullclines 7 = 0 and ¥ = 0 shown in red and green
respectively. (B) Example of a cascade—coordinated increase in activity translating to a delayed correlated
peak in the BOLD signal. Below we compare the network dynamics in and outside the working point, and the
empirical data. In both empirical data and the working point (G = 0.54), the BOLD co-activations follow the
neuronal cascades of firing rate r (simulated) and EEG (empirical) (C), and show distinct spatial profiles which
are recurrent in time (D): edge time series on the (top panel) captures the spatial profiles of the co-activations,
the similarity across time is captured by the dF'C'c matrix (middle panel), and the distributions of correlation
between co-activation events (CA) and non-events (nCA) is compared (bottom panel).

of the BOLD signal (Fig. 3B). When the coupling is too weak, the external input of all nodes is too weak to
modulate the escape times enough to support the cascading effects, leaving the nodes effectively symmetric.
Similarly, after the working point, the network input renders the basin of attraction of the downstate too small
and the characteristic escape time too short to support the successive transitions to the down-state and the whole
network becomes symmetric again, effectively locked in the up-state. The properties of the networked system are
treated in detail in Section "Fixed point skeleton and structured flow".

To understand better the dynamical underpinning of the increase of fluidity of the dFC we assess the
characteristics of the co-fluctuations of the BOLD signal and the cascades in the source signal. For the co-
activations, we start from the edge time series which is defined as the pairwise dot product of z-scored BOLD
signal (an average over the edge time series would correspond to the Pearson correlation). The correlation across
time points yields the dF'C'. matrix capturing the recurrence of the edge configurations, and the root sum
squared (RSS) over the edges at each time point captures the contribution of that particular time point to the
overall functional connectivity (see Methods for more details). The time points crossing the 95th percentile
threshold of the RSS are considered as strong co-activation events. The neuronal cascades! are a measure
of global level of deviation of the activity from the baseline, and are computed as a sum over regions of the
binarized firing rate activity (at the threshold of 3 standard deviations). We compared these measures between
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the working point G, the disconnected system G = 0, the strong network coupling regime G' >> G, and
the empirical data (Fig. 3C,D).

In the working point G, the co-activations include a large number of edges (Fig. 3D) and the RSS follows
the number of cascades up to a short delay corresponding to the delay of the BOLD signal. Moreover, some of
the strong co-activations re-occur partially in time as reflected in the non-zero elements of the dF'C. matrix.
The same profiles can be observed in the empirical data (Fig. 3C,D, right column), namely in the simultaneous
EEG and fMRI recordings®. Additionally, the frequency of the co-activation events matches the empirical data
in the working point G, but is significantly higher elsewhere (Supplementary Fig. S7). On the other hand,
the characteristic spatial and temporal structure is lost outside the working point, that is either for the weakly
coupled system (G' << G,), or for too strong coupling (G >> G).

To quantify how the co-activation events contribute to the characteristic similarity across time, we compare
the correlation of the edge vectors during the events, during the non-events, and between events and non-events
(Fig. 3D, bottom row). As a result, we observe an increased similarity of the edge vectors during the events both
in the empirical data and in the simulations in the working point G, as compared to the similarity of the edge
vectors between events and non-events (t-test p = 0.01 for simulated and p < 0.0001 for empirical) or during
non-events (t-test p = 0.01 for simulated and p < 0.00001 for empirical). Again, this property is lost for too
weak (G << G) or for too strong coupling (G >> G,). Together, these results show, that the system has a
similar dynamical profile in the working point G, as observed in the empirical data for the network-carried
fluctuations on both the fast and slow timescales (as captured by dFC and cascades respectively).

Manifold of the resting state and characteristic subspaces

Having characterized the dynamics of the system in the working point in terms of the cascades and co-
fluctuations, we proceed with the description of the manifold on which this activity evolves. In particular, we
aim here to identify the subspaces of the system state-space where the co-fluctuations occur, and then unfold the
trajectories of the co-fluctuations in these subspaces.

To relate cascades and co-activations to the trajectories of the system in the 2N-dimensional state space,
we first select time intervals with similar functional connectivity. Starting from the edge time series for the
magnitude of co-fluctuations, we clustered the time points using k-means (k=>5). This separated the high-activity
intervals (majority of the nodes in the up-state), low-activity intervals (majority of the nodes in the down-state),
and the co-fluctuation events (Fig. 4A).

Next, we identified the trajectories of the system underlying each cluster in the low-dimensional projection of
state space. For each cluster, we have selected the corresponding time points in the state space of the system and
projected them into the first two principal components of the PCA computed on the complete time series. We have
observed that while the corresponding subspaces overlap partially in the projection (Fig. 4B, colors correspond
to the clusters, all time points are aggregated to density plots), the activity within the clusters concentrates on
different subspaces. This concentration in different subspaces is reflected in the distance between the centroids of
the cluster time points in the PCA projection. We note that the PCA is here not used to define the manifold, but
rather to provide a suitable space to analyze its properties. Similar results can be obtained with other embedding
techniques such as the Isomap (*3, see Fig. S6).

While the cluster activity overlaps in the projection in the components of the PCA computed from the whole
time series, the co-activation trajectories become clearer by choosing different basis to span the low-dimensional
space, that is, to compute the PCA from the time points corresponding to the individual co-activation events. To
project the trajectories of the events observed at the slow timescale of the BOLD on the manifold, we have shifted
the BOLD signal by the characteristic lag, and for each BOLD time point belonging to the cluster we selected the
corresponding time points in r(¢), and convolved the resulting data with a Gaussian kernel to smoothen out the
noisy fluctuations (see Methods for details). We then spanned the subspace corresponding to the first two PCA
components of the co-fluctuation trajectory and overlaid the smoothed trajectory over the density plot of the full
r(t) time series. The density plots (shades of red, Fig. 4C) of the example events show a separation of the event
subspace marked by the peak in the RSS (shown in yellow in Fig. 4C) on the smoothened trajectory from the rest
of the manifold. The concentration of the dwell time away from the regions of the state space occupied before
and after the event together with the rapid transitions in and out of the event suggest that the event subspace is
relatively stable and that the intermediate states are less stable than the event subspace or the rest of the manifold
and are visited only transiently. This stability also allows the system to dwell in event subspace long enough to
cause significant peaks in the slow BOLD signal.

Although the linear embedding of the whole time series does not separate the event trajectories well when
applied to the r(t) time series, the event trajectories concentrate in the high-activity subspace spanned by the
first two PCA components of the BOLD signal (Fig. 4D).

Together, these results chart the low-dimensional manifold of the system in the working point regime,
associating the subspaces with specific flows. The fluid dynamics as characterized in the previous section then
arise from the slow transitions between the low- and high-activity subspaces, where the latter supports the
strong co-activation events which are reflected in the dFC.

Fixed point skeleton and structured flow
To understand how the resting state manifold arises, we now go back to the equations defining the networked
system to extract additional information besides what we have learned from analyzing individual realizations
(trajectories) of the spontaneous activity in the previous sections.

We start by considering the uncoupled system, that is, the joint dynamics of the N populations (nodes) in
the absence of any inter-population synaptic coupling. This uncoupled system’s phase flow is represented by
2™ stable fixed points that contain all possible combinations of the populations firing at either their low or
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Fig. 4. Manifold subspaces and characteristic dynamics. (A) The edge-based dynamic functional connectivity
dF C. of a simulation of the model in the working point (top) shows the off-diagonal structure of similarity
of the system’s activity across time. The edge time series (middle) shows the time evolution of the functional
connectivity of the simulated BOLD signal between each of the node pairs and exhibits the characteristic
co-activation events defined as time points with the root sum squared (RSS, bottom) crossing the threshold of
95th percentile. Dividing the edge-time series into 5 clusters (k-means, shown in the color bar under the dFC)
has separated the event and non-event time points, and also differentiated the events based on their respective
similarity. (B) The time intervals in r(¢) corresponding to the 5 clusters were selected; in the first panel, the
centroids of the time points of the individual clusters are marked with a cross in the projection to the first two
principal components of the whole time series, following panels show the projection of the r(¢) intervals of
particular clusters. All time points are shown in aggregation as density plots. Cluster #2 captures the high-
activity subspace, cluster #4 corresponds to the low-activity state, and the clusters #1, #3, and #5 capture the
co-activation events. (C) Local trajectories in the manifold subspaces: the time series of the three example
events (a, b, ¢, marked in panel A bottom) was projected to the first two components of PCA applied to each
time segment individually. The red gradient denotes the dwell time of the system in the projected plane and
shows a clear separation of the event subspace together with the rapid in- and out-transition. The smoothened
trajectory marks the advance of the system through the event and out of it and is colored by the value of RSS
(yellow at the peak of the event and blue at the beginning and the end). (D) The event trajectories on the
manifold. The trajectory of the simulated BOLD signal is projected in the space defined by the first three PCA
components with the events colored by the RSS value (yellow at the peak of the event).

high mean firing rates (down or up state, respectively). Starting from an initial condition (and in the absence
of noise), the system will settle into the nearest accessible fixed point, a stable network state composed of a
corresponding combination of regions in their up or down state. Thus, the dynamics of the uncoupled system in
phase space can be thought of as being driven by a potential energy landscape with multiple stable local minima
representing the stable attractor states of the network.

The dynamical effects of the symmetry breaking in the BNM are delineated by the topology of the connectome.
The heterogeneity of the in-degree (total connectivity) of individual nodes of the network drives a variation in
the relative positioning of the separatrices between the basins of attraction of the equilibrium points, mirrored in
the variation of the corresponding projections onto the 2D phase planes of corresponding nodes (see Fig. 3A). In
conjunction, connectivity strength and topology give rise to gradients in the relative attractiveness of the system’s
equilibrium states. This attractiveness (or stability) can be quantified by the largest negative real eigenvalues
obtained from the linearization of the system about the respective equilibrium state (linear stability analysis).

To map the complete manifold outside the simulated trajectories we sampled the stable fixed points for
varying coupling scaling parameter G from the 2%V combinations of up- and down-states, and evaluated their
stability (see Methods for more details). We found that the number of stable fixed points in the sample decreases
with increasing G. This decrease is due to the loss of states with mixed composition of up- and down-state
due to the bifurcation of the down state in nodes with high input (Fig. 5A). To map out the fixed points in a
space defined by the properties of the structural connectivity (SC), we have employed the space spanned by the
eigenvectors of the graph Laplacian which represent the structural connectome harmonics. In particular, the
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Fig. 5. Mechanistic structure of the manifold and empirical observations. Panels ABC detail the fixed-point
skeleton of the model, and panels DEF relate to the empirical observations. (A) Composition of the sampled
stable fixed points in terms of a number of nodes in the up-state as a function of G, normalized to G = 0. (B)
Projection of the stable fixed points into the first two leading eigenmodes of the network Laplacian E1, E»

, color-coded with the value of the largest eigenvalue in the linear stability analysis. (C) Fixed points (colored)
derived by noise-free integration to equilibrium from the trace of a simulation (black) in the working point
Gw, color-coded by the value of the largest eigenvalue A1. (D) Frequency peak in the simulated source activity
of each region plotted against the node structural connectivity in-strength. (E) Empirical BOLD time series
projected into the first two PCA components with the events colored by the RSS value (yellow in the peak).
(F) Across the cortical hierarchy, the time spent in avalanches of the r(t) time-series (top) decreases, as does
the cumulative z-scored simulated BOLD from the event time-segments (middle). The spatial distribution of
the principal functional gradient extracted from empirical fMRI is also aligned along the cortical hierarchy
(bottom).

first eigenvector captures the shared (global) activity, whereas the second differentiates left-right asymmetry
(Fig. $3). By projecting the r component of the fixed points in the first two eigenvectors, we have confirmed that
the thinning of the intermediate compositions is biased towards those with a higher number of nodes in the
up-state (corresponds to the first Laplacian eigenvector A1). Additionally, the stability of the fixed points was
inversely proportional to the number of nodes in the up-state, that is in the direction of F the first eigenvector
of the Laplacian (Fig. 5B).

To put this into the context of the simulated trajectories, we have next identified the fixed points around
which the simulated trajectory evolved by taking initial conditions from the simulated trajectory and integrating
the system without noise to the equilibrium. We have confirmed that in all instances the system reached a stable
fixed point composed of a combination of up- and down-states and that the stability of these fixed points follows
the same gradient in terms of the composition (Fig. 5C). We have also verified that the principal components
of the simulated time series (PC Asir) are indeed reflecting the switching between fixed points by applying
the PCA to the sequence of the fixed points (PCAy,) sampled from the simulated trajectory. Indeed, the
correlation between the first two components of PC Asim and PC Ay, was 0.97 and 0.95 for the first and
second components respectively, and the variance accounted for of the PC' Ay, was only slightly higher at
VAFf, = 0.453 (V AFs;m = 0.411, see Fig. 2D).

The simulated trajectory didn’t explore the manifold completely, the number of visited stable fixed points
(16,209), was about half of the 32,857 stable fixed points identified in the 50,000 randomly sampled initial
conditions (Fig. 5A). So while the number of attractors is reduced compared to the disconnected G=0 case
(48,160 fixed points from the 50,000 samples), the recurrent dynamics in the working point cannot be explained
by the reduction of the number of attractors alone.

Furthermore, the nodes of the network exhibit a frequency gradient of the oscillations in the up-state
(Fig. 5D). This gradient reflects the variability of the characteristic frequency in the up-state across nodes in the

Scientific Reports |

(2024) 14:31970

| https://doi.org/10.1038/s41598-024-83542-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

network. In the fixed-point state, if the nodes are treated as isolated systems with an input current term based
on the existing network state, then

*

ri =r"+68;

v = v+ 6

(1)

where (7%, v") are the symmetric fixed points of the network and (97 , 87 ) are the excursions from the symmetric
fixed-point and change according to the existing network state. These excursions depend directly on the in-
strength of the ith node and the local states of its first neighbors.

Following linear stability analysis of the ith system around the fixed point (see Methods), the eigenvalues of the
Jacobian matrix are given by

A2 = 20F + 1/ 2JrF — dn2rr®
e o @)

= 2u] + \/2Jr* — Ax2r? — 267 (Ax2r + 27267 — J)

From the above equation, we see that the frequency of oscillations in the up-state of the ith node increases
proportional to 87 given that all the involved terms under the square root are positive and that J < 27%r* as
already without the external input the up-state of the isolated nodes is a stable spiral with complex eigenvalues of
the Jacobian. Therefore, the frequency of the up-state oscillations is proportional to the in-strength of the node,
which we also observe in the simulation (Fig. 5D).

Furthermore, applying the PCA projection on the empirical BOLD time-series (Fig. 5E), we have identified a
similar separation of the event trajectories in the global embedding as observed in the simulations (Fig. 4D).
However, in the case of the empirical data the system exhibits both co-activations and co-deactivations as seen
in the separation through the first PCA component. This discrepancy is one of the limitations of the model
resulting from a lack of homeostatic or neuromodulatory mechanisms, as we discuss in more detail in the next
section.

Lastly, symmetry breaking by the connectivity alone results in a spatial organization of the above-described
flow which is aligned with empirically observed trends (Fig. 5F). For the spatial organization, we compare the
features of interest against the cortical hierarchy®, which spans from unimodal (sensory, motor) to transmodal
(higher-order) regions. This hierarchy is not only anchored in the anatomy and structural connectivity of
the cortex but is also reflected in changes in the structure-function relationship®. In particular, the principal
functional gradient, which is derived from the empirical fMRI functional connectivity matrices with the help of
diffusion embedding, is also aligned along this axis. For the main dynamical features of our system, per region,
the time spent in avalanches (avalanche is a sustained deviation of the network activity from baseline level®’,
here defined as a set of nodes crossing a threshold of the z-scored r(t)) and the cumulative z-scored BOLD signal
within events both decrease across the cortical hierarchy from the primary to paralimbic regions.

Discussion

Using a combination of computational modeling and dynamical systems analysis we have provided a complete
mechanistic description in terms of constituent entities and their causal activities leading to spontaneous co-
activations and neuronal cascades in the brain’s resting state’’. We showed how the breaking of the symmetry
of the BNM’s connectivity in the interaction with the local node dynamics gives rise to the structured low-
dimensional dynamics in the phase space and recurrent fluctuations of the functional connectivity (Fig. 2).
These fluctuations arise from network-mediated cascades of up- and down-state switching and capture well the
empirically found relationship between the strong co-activation events and the recurrence structure reflected by
the functional connectivity dynamics (Fig. 3). The subspace accessible to the brain in this regime was charted
and partitioned according to the characteristic flow associated with each partition (Fig. 4). Finally, this subspace
and its associated flows arise from the rich fixed point structure of the system, and the differential stability of
the nodes in these fixed points is not only reflected in the propensity to state switching that reflects the cortical
hierarchy but also influences the dominant oscillation frequency (Fig. 5). In summary, these results support our
hypothesis that the recurrent functional connectivity states of the resting state correspond to distinct subspaces
on a low-dimensional manifold associated with distinct structured flows.

The central result of our work is that the symmetry breaking via the structural connectivity carves out
an attractive subspace of all the possible states of the brain and that the flow on this manifold governs the
characteristic dynamics of the brain (that is discarding the transient towards the manifold from arbitrary initial
conditions). In this regime, the model captures the multistability and noise-driven exploration of the dynamic
repertoire explored previously in computational studies>*!>5%>%, The data features extracted from the time
series provide a link between the empirical data and the model. Here, the functional structure in the brain is
carried by the rare high amplitude co-fluctuation events as it was previously demonstrated in empirical fMRI
data!®2?1%0, and in simultaneous EEG and fMRI measurements*!. Similarly, a recent modeling study has shown
the role of structural modules of the network in shaping the co-fluctuation events®!, which is aligned with the
brain network as the symmetry breaking gives rise to the low-dimensional dynamics.
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The slow timescale fluctuations of the dynamic functional connectivity reflect the movement of the brain
activity between the low- and high-activity subspaces of the manifold. The flow in the high-activity subspace
supports the cascades, which in turn are reflected in the high-activity coactivations. This movement points to the
multistable rather than metastable interpretation of the resting state dynamics. Namely, the metastable system
is defined as free from attractors and stable fixed points®?, and the emergent dynamics arise from transient visits
of neighborhoods of unstable fixed points. As such, it does not support power-law fluctuations in the form of
avalanches which are together with neuronal cascades core characteristics of the presented model*.

The movement between the low- and high-activity subspaces is also compatible with the observation
of switching between low-amplitude incoherent and high-amplitude coherent states in empirical data®.
Furthermore, the slow transitions between the high- and low-activity subspaces are compatible with the reports
on the spontaneous infra-slow brain activity®#> and the detailed reports on its spatiotemporal structure. For
example, the slow traveling waves®? propagating along the principal gradient of cortical organization®*¢® would
provide a refined description of the trajectory through the manifold subspaces.

The attractive subspace of the low-dimensional manifold and the associated structured flow arise in the
presented system from the changes in the fixed-point structure due to the irregular connectivity. In particular,
the network input mediates the modulation of the escape times of the noise-induced transitions. These chain
into domino-like sequences®”®8, constituting the neuronal cascades. On a network level, our results elaborate the
previous analytical results of increased entropy of the attractors in an Ising-spin network model for intermediate
values of coupling strength®. The relationship to the dimensionality of the exhibited dynamics is such that
for the low values of coupling strength G, where the Ising model is in the trivial state with all spins equal to
0, the model presented here is also driven by noise to the all-down state due to the significantly larger basin
of attraction of the down-state, and the nodes make uncoordinated noise-driven excursions to the up-state
reflected in the high-dimensionality of the dynamics. For high values of G the situation is the opposite, and for
intermediate values of G the Ising model exhibits high entropy of attractors, which is in our case reflected in the
available states organized in the low-dimensional manifold with the structured flow governed by the stability of
these states.

Overall, the movement of the system through the subspaces of a low-dimensional manifold is in accordance
with empirical and modeling results on recurrence and state clustering of resting-state fMRI BOLD recordings.
Using clustering algorithms to partition the BOLD time series yields statistically similar and temporally
recurrent whole-brain spatial coactivation patterns'®*° associated with specific dwell times and transition
probabilities. However, compared to the clustering approaches applied to the BOLD time series, the SFMs allow
us to refine the partitioning of the state-space in two aspects: we unfold the subspaces based on the similarity of
the coactivations on the level of the BOLD signal, and we provide a detailed description of the flow of the system
in these subspaces e.g. in terms of the cascades. The former is in line with the recent advances regarding the
low-dimensional representation of meso-"""! and macroscopic’>”® brain dynamics, but the latter describes the
origin of those subspaces as constrained by the connectome. Interestingly, the clustering of phase-locking BOLD
states*? leads to a very similar low-dimensional representation of the resting state dynamics to our approach,
with a single dominant global phase-locked state and several transient partially phase-locked states related to
functional networks. Similarly, by embedding the resting state data onto the task manifold extracted with the
help of diffusion maps,” found that resting-state time points concentrate in the task-fixation and transition
subspaces, and only a minority of time points reach the cognitive subspaces of the task manifold. Here, we
have not focused on the detailed analysis of the subspace transition probabilities and their correspondence to
the empirical data, mainly because of the lack of other than noise-driven perturbations in the model, however,
this remains a very intriguing point for future work, as the subspace transitions and their probabilities can be
naturally expressed as a flow on the manifold.

The description of the structured flow addresses also the fast timescale by including the cascades, which
we previously showed to relate to the co-activations observed in the BOLD signal*. In EEG literature, the
spatiotemporal structure of the resting state dynamics is characterized with the help of microstates—sensor-
level transient patterns lasting on average for 60-150 ms”°. Attempts have been made to relate the microstates to
BOLD activation clusters’®””, but identifying the sources generating the microstates with clustering or regression
analysis has been challenging so far due to the unclear relationship between the broadband EEG activity and the
BOLD signal fluctuations’®. To advance we propose to reframe the question as a search for a shared manifold of
the neuronal activity with specific slow and fast timescale characteristics which in turn are reflected in the EEG
and the BOLD observables.

The manifold we describe is conceptually reminiscent of energy landscapes described in previous works
However, previous energy landscape models, such as in*!, implicitly assume energy minimization and thus,
by construction, encode the hypothesis that the activation of two brain regions that are connected via a direct
structural connection is more energetically favorable than that of two regions that are not directly connected.
We make no such assumption here and, instead, the effective energy landscape emerges, in the form of a
low dimensional manifold, out of the interplay of the non-linearity in the local neural mass model and the
connectome, thus fully embracing the network impact, beyond the pair-wise interactions. In addition, previous
energy landscape analysis*’ assumed that the network changes only gradually by flipping one region at a time,
and did not account for transitions in which several regions flip simultaneously. Treating the brain as a whole,
the BNM that we presented here instead allows for such latter transitions of the system in state space, which may
very well be due to strongly connected regions that can simultaneously influence their nearest neighbors during
coactivation events.

It is worth pointing out that our framework covers only one part of the mechanisms that shape the brain’s
manifold and the flow on it: the connectome. We have assumed identical parameters for each region, ignorin
the known structural hierarchies”®, which have been shown to improve the predictive value of the BNMs®>80:81,
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While we observed differential functional properties of the nodes across the cortical hierarchy®*, we did not
recover the exact spatial correspondence to the established functional gradients®. Neuromodulation and the
subcortical drives®? are another missing aspect that similarly improves the performance of BNMs®3, in this model
for example by potentially extending the local dynamical repertoire with sustained both positive and negative
activity fluctuations. However, both of these elements are not yet established in the framework of BNMs, as is
the impact of the connectome??. Thus, our goal here is not to generate in silico observables that are as close as
possible to the empirical one, which nevertheless differ a lot depending on the preprocessing, e.g. see®, but to
focus on the generative mechanisms for the key data features across time-scales and neuroimaging modalities
that render functional activity identifiable across subjects!213:8,

Another major simplification in our model is related to the choice of the neuronal mass model. While the
MPR model offers a direct link to spiking neurons and also can be tuned to give realistic gamma oscillations
during high-firing activity, as we have done here, we operate the model in the bistable regime between high
and low-firing rates. Even though such transitions can be observed during the awake state with the high-firing
rate activity generally being accompanied by shorter periods of low firing rate (e.g.3¢), these dynamics are
generally observed during different sleep stages®’. Here the bistability is a necessary mechanism in the current
configuration for observing the non-stationary dynamics as observed by dFC324488,

A natural next step will be to extend the analysis to include the impact of the data-informed regional
variance® which is now reachable by TVB through EBRAINS®. Similarly intriguing direction for the extension
of the framework presented here is in more refined inclusion of the subcortical structures, especially their impact
through the neuromodulation. Notably, recent works®>*12 exploring the role of the thalamus, locus coeruleus,
and basal nucleus of Meynert in shaping the dynamical landscape of the cortical activity are already formulated
in the dynamical systems’ language while incorporating carefully the detailed anatomical and cytoarchitectural
knowledge. Integrating these advances in the SFM framework is a natural next step towards the original
motivation of SFM, which is to link the mesoscopic neuronal activity to the behavior, as the intricate interactions
between the cortex and the subcortical areas are one of the organizing principles of the underlying the biological
mechanisms supporting behavior®.

Parcellation-induced variation of empirical and simulated brain connectomes at the group and subject levels
is another issue that needs to be considered®®. Nevertheless, we focus on general mechanisms without going on
regional-level specificities, so the choice of parcellation should not play such a role.

And lastly, while we here describe the manifold and the associated flow in detail, we did not provide its
compact formulation. The work presented here is the first necessary step towards obtaining such an object,
which will lend itself not only to predictive validation with respect to the empirical data (across modalities and
dynamical features), but can also serve as a basis for effective parametrization of inference models sidestepping
many of the drawbacks of using the brain network models directly®.

In conclusion, our results show how low-dimensional dynamics arise from breaking the symmetry in the
brain on the level of the connectome. Describing these dynamics as structured flows on manifolds allows us to
bridge the gap between the observational measures and the state-space trajectories of the system. As such, this
object is well suited for comparison across different models, scales, and neuroimaging modalities, and provides
a means for integration of the diverse descriptions of the resting state dynamics. Moreover, we hypothesize
that these are fundamental for the construction of task-specific flows and manifolds used in theories of brain
function, such as predictive coding.

Materials and methods

Brain network model

Computational brain network model® is used to simulate resting state activity under varying values of network
coupling scaling parameter G. The dynamics of each of the network nodes were governed by the neural mass
model (NMM) derived analytically as the limit of infinitely all-to-all coupled -neurons*®, namely for i-th node
for the firing rate r; and membrane potential v; as:

. A
Tl = + 271,04,
TTe 3)

et = v + 0 — (remri)? + Jrers + I,

where I; is the input current, 7 is the average neuronal excitability, J is the synaptic weight, A is the spread of
heterogeneous noise distribution, and 7. is the characteristic time.

The N nodes are then coupled with a connectome derived from empirical data as

L) = GZ Wi (t — Dij), (4)
J

where G is the network scaling parameter, W is the connection weight, D;; = L;; /S is the delay caused by the
propagation of the signal on a tract of length L;; with finite speed S. We picked the speed S = 2m/s from the
biologically plausible range®’, and a connectivity matrix of a subject from the Human Connectome Project® in
the Desikan-Killiany parcellation®® with 84 regions including subcortical structures.
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The equations 3 and 4 comprise the drift a(¥, ¢) in the stochastic delay differential equation formulation with
linear additive noise reading:

d¥(t) = a(¥(t))dt + b(¥(t))dW (), (5)

where U is the state vector [t1,...¢0n] With ¥y, = [rn, V3], dW(t) is a differential of a Wiener process with
Gaussian increment with variance o, and b(W, ¢) = 1 is the diffusion coefficient—here constant yielding the
noise term additive.

The model was implemented in The Virtual Brain?” and equipped with BOLD forward solution comprising the
Balloon-Windkessel model applied to the firing rate r(¢)>°.

The model parameters n = —5.0, J = 15.0, 7. = 1.0, and A = 1.0 were selected to set the nodes in the
bi-stable regime in the absence of coupling*®. We then varied the global coupling parameter G and the noise
variance o, and simulated 10 minutes of resting state BOLD activity with TR = 720ms after discarding 10
seconds of the initial transient from random initial conditions.

Functional connectivity dynamics

To track the time-dependent changes in the functional connectivity, we compute the windowed dynamic
functional connectivity dF'C,,*** and edge dynamic functional connectivity dF'C.*. Starting from the
regional BOLD time-series B, (t) for each node n, we compute functional connectivity matrices FC(w) for
each time window w = 1...W defined as Bn(t)|§:;’+7 with window length 7 = 60s and window step size
t(w+1) — tw = 28. Next we compute the dF'C’, matrix of order W as

dFCy (i, §) = corr(FC(w;)>, FC(w;)%), (6)

where F'C'(w)* is the vectorized upper part of the FC matrix.

For the window-less dFC.* we start from the edge time-series’’ defined as Epnm(t) = zn(t)2m(t) for
n,m=1...N where z,(t) = B"U;n"" is the z-scored BOLD time-series of a node n. The edge dynamic

functional connectivity is then computed as a correlation between the edge vectors at each pair of time points
t1, to:

dFCe (t17 t2) - COTT(E'rmL (t1)7 En'm (t2)) (7)

The co-fluctuation events (CF) are defined as time points in the edge time-series Fnn, (¢) during which the root
sum squared RSS = /> EZ.(t) crosses a given threshold, here chosen as 95th percentile. Time points

where RSS is below the threshold are then labeled as non-events (nCF).

The avalanches were computed on the binary mask a(¢) on the r(¢) such that a;(t) =1 <= z(ri(t)) > 3
where z(r;(¢) is the z-score of firing rate r of a node i. Neuronal cascades were computed as the sum of the binary
mask a(t) over nodes, convolved with Gaussian kernel of the width of 1 BOLD TR, and downsampled to obtain
the same resolution as the BOLD signal**.

The fluidity of the dynamic functional connectivity dF'C',, was evaluated with the switching index, defined
as the variance of the values in the upper triangle of the dF'C',, matrix with the diagonal offset by the window
size W.

s=Var({dFCw(%,j)i <j—W}) ®)

Manifold subspaces

As a first step in the analysis of the local dynamics specific to a particular attractive subspace, we have extracted
the time points belonging to these subspaces with k-means clustering applied to the edge time series Eypm (t)
. We varied the number of clusters k and selected & = 5 at which the co-fluctuation events were separated into
distinct clusters.

To extract the segments of r(¢) corresponding to the Ey,, (£) time points we first estimated the BOLD signal
lag | = 2500 ms as optimal peak-to-peak alignment with r(¢) smoothened by a Gaussian filter with same
effective width (¢ = 700). Then for all BOLD time points in a given cluster ¢ we selected the 2000 corresponding
time points in r(¢) and concatenate these to get the fast timescale activity r(¢) in the subspace corresponding to
cluster c. Each of the r.(¢) was then projected to space spanned by the first two PCA components of the whole
r(t) time-series to evaluate how much of the overall state-space is covered by individual clusters.

The local trajectory for a given event e was computed by selecting interval r(¢) corresponding to BOLD
time points above the RSS threshold and three time points before and after the event. Local PC' A of was then
computed from r.(¢), and the smoothened trajectory was computed by convolving r.(¢) with a Gaussian filter
(o = 100).
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Manifold sampling
To identify the fixed point scaffold of the manifold as traced by the trajectory resulting from integrating the
Equation 5, we sample the segments from the simulated trajectory (r;(t),v:(t)) |t5+7m‘“C and use them as
initial conditions for integration of the deterministic interpretation of Equation 5, i.e. d\Il( ) = a(¥(t))dt. From
each such initial condition, we integrated the system to steady state equilibrium corresponding to a fixed point
(r*,v").

The number of stable fixed points (r*, v*) of the system with G = 0 is 2" reflecting all the combinations
of up- and down-states of the N nodes. To sample the stable fixed points of the system with G > 0 we solve
repeatedly the system of equations:

A * *
+2r;vg,
TTe 9)

0= 4n— (renr])? + Jrerf + I

0=

using Newton-Raphson method with the 1n1t1a1 conditions chosen randomly as a vector of up- and down-state
fixed points of the isolated nodes, i.e. (r;%,v;%) € {(r,v}), (r},v])}, Vi where (r}, B) and (r],v]) are the
up- and down-state fixed points for the isolated node. For each initial condition (r*°, v*") we then check if the
corresponding solution of Equation 9 is equivalent up to the composition in terms of up- and down-states. If
not, it is discarded, otherwise, we evaluate the stability of the found fixed point using linear stability analysis.

As a low-dimensional projection of the sampled manifold, we have used the two slowest eigenmodes of the
structural connectivity. These are computed as eigendecomposition of the graph Laplacian L = W — I, that
is LU = UA, where eigenvalues Ar can be interpreted as structural frequencies and the eigenmodes uy as
structural connectome harmonics!'®.

Linear stability analysis

We perform a linear stability analysis to identify the fixed points obtained from the NR method. If each fixed-
point (r*,v") is perturbed by (€', €") , then the evolution of the perturbations depend on the Jacobian matrix
(J) and are given by:

rel [ 2 0o .. 0 27 0 ... 07 rd

éb 0 205 . 0 0 2r; 0 €h

al | o 0 U 0 0 ... 20%| |e

élf —|J =27 w12 .. WIN QUT 0 0 €1 (10)
€5 wWa1 J—2mry . WaN 0 2vy ... 0 €5
LN L wn WN2 oo J=21%% 0 0 ... 2vnd Len ]

The stability of a fixed point depends on the eigenvalues of the Jacobian evaluated at the fixed point. The fixed
point is stable if all the eigenvalues of ] are negative. Therefore, we numerically evaluate the largest eigenvalue of
Jacobian for each fixed point and label the point as stable if its real part is negative.

Fixed point sampling from simulated trajectory
From a given trajectory of the system given as 10 minutes of 1)(t) we have selected a restart pomt t' each 50 ms
(12000 starting points altogether). For each of the restart point ¢’ we extracted the segment W (¢)|,~ ™™= where

Tmaz 18 the length of the longest delay, and used as initial condition to an equivalent system to Equation 5 with
b=0:

dU(t) = a(V(t))dt. (11)

Integrating this system to equilibrium yielded then for each restart point ¢, a fixed point ¥* = (r*,v*). The
stability of each of the fixed points ¥* was then evaluated using the linear stability analysis as the largest
eigenvalue of the respective Jacobian matrix.

Escape time analysis

The switching behavior of a single node is driven by the stability of the up- and down-state fixed points in
the presence of noise. We employed escape time analysis'?! to measure the stability of these fixed points for a
range of values of external input I. In detail, for a single node of the system given by Equation 3 we found the
up- and down-state stable fixed points (r*,v*)" and (r*,v*)*, and the unstable saddle-node (r*,v*)*. Next,
we computed the separatrix between the two basins of attraction by integration of the model backward in time
resulting in a closed curve w. To find the characteristic escape time for a fixed point (r*, v™) we have integrated
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the system from the initial condition (ro, vo) = (r*, v™) for a given value of I 100 times, measuring the time ¢
at which the trajectory crosses w for the first time. The values of I were drawn from the range given by [0, Imax]
where Imax = max{l;(t),Vi} is the largest value of I; encountered in the integration of the full system in the
working point.

Empirical data and spatial analysis

The principal functional gradient of the empirical fMRI data used in Section "Fixed point skeleton and structured
flow" was computed from the group connectivity matrix of the Human Connectome Project dataset using the
BrainSpace toolbox'*2. For a simulated resting state session with G, the time in the avalanche was computed
for each node as the total time for which the r;(¢) was above the threshold of 3 standard deviations, and the
event z-score as a sum of z-scored BOLD signal in time points marked as events. The nodes were then grouped
according to the cortical hierarchy™ projected to the Desikan-Killiany parcellation.

The previously published dataset of preprocessed simultaneous EEG and fMRI recordings of 15 subjects
was used>2. In summary, for 15 subjects (18-31 years) the following data used here were acquired: T1-weighted
MRI and simultaneous EEG/fMRI resting state. The T1 image was used to parcellate the cortical gray matter
according to the Desikan-Killiany atlas®®, yielding 68 regions. This parcellation was then used to average the
fMRI signals for each region and in subsequent EEG source reconstruction. The EEG data was first high-pass
filtered at 1Hz, followed by MR imaging acquisition artifact correction using Analyser 2.0 (v2.0.2.5859, Brain
Products, Gilching, Germany). The artifact-corrected data was then down-sampled to 200 Hz and low-pass
filtered at 60Hz before correcting for physiological artifacts (ballistocardiogram, muscle activity). EEG source
imaging was applied to the resulting cleaned sensor-level time series in order to estimate the activity on the
cortical surface, which was then averaged according to the Desikan-Killiany atlas, resulting in 68 region-wise
source time series. Details of the EEG and MRI processing steps are described in*2. Additional quality control to
reject residual movement artifacts was applied** resulting in 30 artifact-free segments of EEG/fMRI time series
(minimum duration 2 min) across the cohort.

A parcellation-based BOLD signals of a resting-state session from a subject from the Human Connectome
Project'® were used to validate the separation of the events in the low-dimensional embedding. The data
consisted of 1200 time points sampled at 720 ms in the Desikan-Killiany parcellation®® with 70 cortical regions.

Data availibility

The simulated data generated during the current study are available from the corresponding author on reason-
able request. The empirical dataset analyzed during the current study is available in the EBRAINS repository,
https://doi.org/10.25493/FODP-WCQ.
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