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Control charts are commonly used for process monitoring under the assumption that the variable of 
interest follows a normal distribution. However, this assumption is frequently violated in real-world 
applications. In this study, we develop an adaptive control chart based on the exponentially weighted 
moving average (EWMA) statistic to monitor irregular variations in the mean of the Truncated 
Transmuted Burr-II (TTB-II) distribution, employing Hastings approximation for normalization. We 
propose a continuous function for the adaptation of the smoothing constant. The performance of the 
proposed TTB-II distribution is compared with multiple existing distributions, including TB-II, TB-III, TB-
XII, B-II, B-III, and B-XII, to demonstrate its competitive advantages. The run-length profiles, including 
the average run-length (ARL) and the standard deviation of run-length (SDRL), are computed under 
various parameter settings. The effectiveness of the proposed chart is evaluated using Monte Carlo 
(MC) simulations in terms of run-length profiles. The practical implementation of the proposed chart is 
demonstrated with a real dataset, illustrating the design and application procedures.
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A	� Anderson darling
MLE	� Maximum likelihood estimation

Statistical process control (SPC) is a process enhancement method broadly utilized by recent industrial and 
service organizations. This methodology is founded on the utilization of control charts and quality characteristics 
data. Communal and well-established control charts include the Shewhart control chart that was proposed by 
W. A. Shewhart1. Control charting is an important tool to observe the quality of a process. The utilization of a 
control chart is to control continuous process by recognizing and remedying issues as they happen, foreseeing 
the regular scope of results produced by the process, determining if a process is steady, investigating patterns of 
process discrepancy from common causes, non-routine events, or special causes, incorporated into the process. 
The control charts recognize the perfect opportunity for activity when the process has a deviation. Subsequently, 
a control chart identifies the ideal restorative move time.  Roberts2 proposed EWMA chart to monitor mean 
which was distributed as normal. The EWMA statistic-based control charts perform considerably better as 
compared to the Shewhart control chart in recognizing a small to moderate magnitude of the shift in a process. 
In SPC literature, the competence of EWMA statistic-based control charts, in recognizing the small to moderate 
magnitude of shifts in process and expecting the process level at the accompanying time frame, attracts various 
scholars and professionals. Added details can be seen in Lucas & Saccucci3, Lowry et al.4, and Zhao et al.5. Some 
new amendments in the EWMA chart with quantified shifts are considered by Riaz et al.6.

Although the eminence of these control charts, they are viable when the quality analyst is concerned with 
planning a control chart for a particular shift. Nonetheless, the situation is extremely phenomenal; the magnitude 
of shift is known in advance. So, lately, analysts have begun zeroing in on the design of adaptive control charts 
which provide more developed affirmation against various magnitudes of shift sizes in the process. In an adaptive 
EWMA (AEWMA) control charting scheme we generally adapt any of the parameter of control charts based on 
sample information. The basic idea is to work on error size, yt − xt−1, to recognize, in a further cleared path, 
different shift sizes while diminishing the inertia issue. Capizzi & Masarotto7 designed an AEWMA chart for 
mean. The AEWMA chart was intended to consolidate the provision of EWMA chart by utilizing the Huber 
score function. Zhao et al.5, utilize the adaptable computation, to analyze the dynamic noticing arrangement of 
the voltage departure provisions or difference shortcomings in energy putting away systems on specific grounds. 
Sarwar, M.A. & Noor-ul-Amin8 proposed AEWMA chart constructed on a continuous function.

Shafqat et al.9 presented an attribute chart based on the Burr X by incorporating a Moving Average (MA) 
scheme. They calculated ARLs considering varying sample sizes, MA statistics, and parameter values. Results 
show that the new MA control chart is better than existing chart. Similarly, Tan & Liu10 introduced an EWMA 
control chart based on the Truncated Normal distribution to monitor process mean in the presence of outliers. 
Their results indicate that this chart remains robust with standard normally distributed data, and the control 
limits are unaffected by both the quantity and magnitude of outliers. Under the normality assumption, a control 
chart might mislead manufacturing engineers to notice a process shift. For studying system failure data, Burr11 
proposed a family of distributions that contain twelve different forms of Cumulative Distribution Function 
(CDF). The corresponding distribution functions have a variety of shapes that help this system the use in 
extensive areas of application. Type I contains the uniform distribution, and types II, III, X, and XII have a 
variety of shapes that enable this system to approximate histograms of various kinds of data. Although some 
properties of Burr type II distribution have been examined Tadlkamalla12 and Ragab, A13. but some dimensions 
still need consideration. So, we consider this type of Burr family in the present manuscript.

Let X follows the Burr type II distribution with cdf given as

	 G (x; k) =
(
e−x + 1

)−k
, � (1)

with respective probability density function (pdf) given as,

	 g (x; k) = k
(
e−x + 1

)−k−1
e−x, ∀ x ∈ (−∞ , +∞ ) ∧ k > 0� (2)

where shape parameter k defines different shapes of the model. Various fields of science used the Burr type II 
distribution. In reliability engineering, the truncated transmuted Burr-II distribution can be effectively applied 
to model the lifespan of mechanical or electronic components. Often, these components exhibit lifetimes 
that are right-skewed, with most failing within a predictable period but a few lasting exceptionally longer. 
However, lifetimes are naturally bounded by physical constraints or practical limits, such as warranty periods or 
operational caps. By using this distribution, engineers can accurately model both the common failure times and 
rare, extended lifespans within a defined range, helping to optimize maintenance schedules and anticipate long-
term performance. Some other real-life data sets exhibited by the Burr type II distribution are actuarial, finance, 
environment, survival analysis, failure data, metrology, flood levels, and risk insurance. The transformation or 
addition of parameter(s) to well-known distributions are commonly used methods in literature to obtain newly 
modified, extended, and generalized distributions. These recently evolved models give a superior fit to the data 
over the sub and contending models.

Several distributions can be utilized to observe the production process, and in this manuscript, the control 
chart has been derived using the proposed left Truncated Transmuted Burr type II (TTB-II) distribution to 
monitor process. The outline of the remaining manuscript is coordinated as follows: Sect. 2 provides an intensive 
portrayal of TTB-II distribution, in Sect.  3, a detailed design of the proposed chart for TTB-II distribution 
is given. Section  4 provides the performance of the proposed AEWMA chart. For illustration purposes, the 
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working of the proposed AEWMA control chart using a real-life data set example is presented in Sect. 5. At last, 
Sect. 6 précises the key disclosures and closes the manuscript.

Description of TTB-II distribution
In distribution theory, the distribution having heavy-tailed and can be significantly skewed are quite good to 
explain many real-life situations. The transmutation map method is viewed as a helpful approach to developing 
new distributions. Shaw & Buckley14 proposed quadratic rank transmutation map method (QRTMM) through 
which we can get a new extended model that would be added flexible by introducing a transmuted parameter to 
an existing distribution. Added details about the QRTMM can be seen in Shaw & Buckley14, . The new extended 
model describes better properties of the tail and also improves the goodness of fit statistics. For modeling the 
life testing problems, here we generalize the Burr type II distribution using the QRTMM. In literature many 
distributions based on the QRTMM are available for modeling lifetime data; for illustration, Nofal et al.15, Khan 
et al.16, and Afify et al.17.

Definition 1  Let the continuous random variable Y of the base distribution have cdf G(y). Now, the QRTM distri-
bution of Y is given as

	 F (y) = − λ G2 (y) + λ G (y) + G (y) , ∀ λ ∈ [−1, +1] ,� (3)

also, the respective pdf is

	 f (y) = g (y) [−2 λ G (y) + λ + 1] , ∀ λ ∈ [−1, +1] ,� (4)

where f(y) is the pdf QRTM distribution and g(y) is the pdf of the base distribution. For λ  = 0, the QRTM 
distribution of Y reduces to the base distribution of Y.

Definition 2  Let denote a left truncated random variable with a threshold is defined as Its cdf is as follows

	
Fl (y) = F (y) − F (l)

1 − F (l) ,� (5)

where F(y) is the cdf of the base distribution.

Proposition 1  Let be the vector of parameters of a continuous random variable Z which follows the transmuted 
Burr type II (TB-II) distribution, also the cdf of Z is given as

	
F (z; ω ) =

(
1 + e−z

)−k
[
λ − λ

(
e−z + 1

)−k + 1
]

,� (6)

where λ  and k are the transmuted and shape parameters of the TB-II distribution correspondingly.

Proof  Consider the pdf and cdf introduced in Eqs. (1) and (2) which relate, correspondingly, to g(x) and G(x) in 
Eqs. (4) and (3) of Definition 1. Now we can easily affirm this by applying Definition 1 to the considered pdf and 
cdf. Then, at that point, in like manner, the respective pdf of the TB-II distribution is as under

	
f (z; ω ) = k

(
e−z + 1

)−k−1
e−z

[
λ − 2 λ

(
e−z + 1

)−k + 1
]

,� (7)

The idea of a truncated distribution plays a substantial role in analyzing process optimization, quality 
improvement, and in many production processes. To truncate a distribution is to limit its values to some defined 
interval and then normalize this density so that the integral over that interval is one. Truncated distributions 
emerge in situations where the occurrence of the event is restricted to values that lie above or under a given 
threshold or inside a predetermined range.

Proposition 2  Let Y be a random variable and be the vector of parameters. If Y follows the TTB-II distribution, 
then the cdf of Y is as follows

	
F (y; ω ) =

[{(
e−y + 1

)−k − 2−k
}

λ −
{(

e−y + 1
)−2k − 2−2k

}
λ + 1

]

4−k (2k − 1) (2k − λ ) , ∀ y ∈ (0, ∞ ) ,� (8)

or

	 F (y; ω ) =
(1 + λ )

{∑ ∞
i=0

(
i+k

i

)
e−yi(−1)i − 2−k

}
− λ

{∑ ∞
i=0

( 2k+i
i

)
(−1)ie−yi − 4−k

}
A

, y ∈ (0, ∞ ) ,� (9)

where A = 4−k
(
2k − 1

) (
2k − λ

)
. Also λ , and k are transmuted and shape parameters of the TTB-II 

distribution correspondingly.
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Proof  Consider the cdf introduced in Eq. (6) which relates, correspondingly, to F(x) in Eq. (5) of Definition 2. 
Now we can easily affirm this by applying Definition 2 to the considered cdf. Then, at that point, in like manner, 
the respective pdf of the TB-II distribution is as under

	
f (y; ω ) = A−1ke−y

(
e−y + 1

)−k−1
[
− 2λ

(
e−y + 1

)−k + λ + 1
]

, ∀ y ∈ (0, ∞ ) ,� (10)

or

	 f (y; ω ) =
(1 + λ ) k

∑ ∞
m=0

(
k+m

m

)
(−1)me−y(m+1) − 2kλ

∑ ∞
m=0

( 2k+m
m

)
(−1)me−y(m+1)

A
, ∀ y ∈ (0, ∞ )� (11)

where A = 4−k
(
2k − 1

) (
2k − λ

)
. Also λ , and k are transmuted and shape parameters of the TTB-II 

distribution correspondingly. The fact that approaches various distributions makes the proposed TTB-II model 
a truly adaptable model. The different properties of TTB-II are discussed in supplementary Appendix A and 
some important graphs can be visualized in supplementary Appendix B.

Figure 1(a), (b) present the pdf plots of TTB-II distribution at different parametric settings.

Design of the proposed AEWMA chart
In this section, we explain the design of the proposed AEWMA chart to monitor the process which follows the 
proposed TTB-II (a positively skewed) distribution. Let {Ut} be an identically independent sequence of two-
parameter TTB-II distributed random variables with shape and transmute parameters k, λ respectively i.e., U ∼
TTB-II (k, λ). The respective cdf of U is as under

	
H (u) =

[
λ

{(
e−u + 1

)−k − 2−k
}

− λ
{(

e−u + 1
)−2k − 2−2k

}
+ 1

]

4−k (2k − 1) (2k − λ ) u ∈ (0, ∞ ) , k ∈ (0, ∞ ) ∧ λ ∈ [−1, +1] , � (12)

To normalize the Ut, we used the algebraic approximation proposed by Hastings18.

	
Z = −

(
x − c0 + c1x + c2x2

d0 + d1x + d2x2 + d3x3

)
∀ H (u) ∈ (0, 0.5]� (13)

	
Z = +

(
x − c0 + c1x + c2x2

d0 + d1x + d2x2 + d3x3

)
∀ H (u) ∈ (0.5, 1.0)� (14)

where:

Fig. 1.  (a) pdf plots for selected values of λ of TTB-II distribution. (b) pdf plots for selected parameter values 
of TTB-II distribution
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x =





√
ln

(
1

(H(u))2

)
∀ H (u) ∈ (0, 0.5]

√
ln

(
1

(1−H(u))2

)
∀ H (u) ∈ (0.5, 1.0)

� (15)

	 c0 = 2.515517 c1 = 0.802853 c2 = 0.010328

	 d0 = 1.000000 d1 = 1.432788 d2 = 0.189269 d3 = 0.001308

Now,
For the in-control process, Zt is standard normal variable, i.e., Zt ∼ N (0,1).
The literature has recommended that the shift magnitude of the process δ t, which cannot be known in 

advance practically, can be estimated using some estimator. Here we estimate δ t using the estimator proposed 
by Haq et al.19 given as

	
δ̂

∗
t = δ̂

∗
t−1 + φ

(
Zt − δ̂

∗
t−1

)
� (16)

	
δ̂

∗∗
t = δ̂

∗
t

1 − (1 − φ )t
� (17)

where φ ∈ (0,1], δ̂
∗
0 = 0. Taking absolute value of δ̂

∗∗
t  as δ̂ t (estimate for δ t). Now the plotting statistic of 

the proposed chart by using the sequence {Zt} is given as

	
Ft = g

(
δ̂ t

)
Zt +

(
1 − g

(
δ̂ t

))
Ft−1� (18)

where F0 = 0 and g
(

δ̂ t

)
∈ (0,1] such that

	

g
(

δ̂ t

)
=





1

24
[

1+
(

δ̂ t

)−2
] ∀ δ̂ t ∈ (0.0,1.0]

1

19
[

1+
(

δ̂ t

)−1
] ∀ δ̂ t ∈ (1.0,2.7]

1 ∀ δ̂ t ∈ (2.7, ∞ )

� (19)

These values of constants are suggested for which the given continuous function is overall better as far as run-

length profiles. The Ft is obtained by using g
(

δ̂ t

)
 in such a way that the chart becomes optimal in the early 

recognition of shifts in the process mean. The working of the proposed chart is similar to the control chart 
suggested by Sarwar, M.A. & Noor-ul-Amin8.

Decision rule. The proposed statistic |Ft| gives an out-of-control warning whenever it is more than the 
threshold L (always supposed to be positive) if a one-sided AEWMA control chart. Likewise, the proposed 
statistic |Ft| produces an out-of-control signal whenever Ft > L or Ft < -L if two-sided chart is taken.

When ψ  and n are given, the value of L (L > 0) is a threshold. The threshold is chosen so that |Ft| is ensured 
at some chosen fixed level (say ARL0). For specific values of n and ψ , the value of L is determined independently. 
The L value is utilized to compute the ARL0 (fixed in-control ARL); threshold by selecting the recommended 
adaptive functional methodology.

Performance assessment
Run-length profiles such as the mean, and the standard deviation of run-lengths are good measures to evaluate 
the efficiency of a control chart. The Markov chain method, the probability method, the MC simulations 
method, and the method of Integral equations are well-known available methods in SPC literature. Here we 
leaned toward the MC simulation method. The run-length profiles are computed using 100,000 iterations with 
ARL0 = 370, and ψ = 0.15, 0.20.

Algorithm  For the data distributed as TTB-II distribution the run length matrices are quantified in the follow-
ing steps:

Step 1 Specify the parameters of TTB-II distribution and fix the smoothing constant .
Step 2 Randomly generate sample value at time t and compute value by using Eq. (12).
Step 3 Normalize the TTB-II data using Eqs. (13), (14).
Step 4 Estimate shift estimator (say) by using and according to this estimated, the function will determine 
(smoothing constant) and then the plotting statistic is computed using (Sect.  3 contains the detail of the 
design).
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Determine the ARL₀
Decide on the desired ARL₀ value (e.g., 370) to ensure the process behaves as expected when in control.

	i.	� Choose the control limit value, L, such that ARL₀ converges to the desired value (e.g., 370). This is achieved 
by performing simulations with 100,000 replicates under the in-control state.

	ii.	� Before using the chart to detect out-of-control state at a specified shift level δ, perform similar simulations 
to identify appropriate combinations of parameters (e.g., smoothing constants, sample sizes) that work effec-
tively for the shifted process.

For out-of-control situation

	 i.	� If |Ft| > L, called out-of-control, becomes run-length, save iteration number as run-length. Else, repeat 
steps 2–4.

	ii.	� Continue selection of sampling units from to complete hundred thousand replications.
	iii.	� The run-length profiles at different specified δ  are assessed through respective simulations.

From the analysis of Tables 1 and 2, the general lead of the results of a short conversation is given by.

λ

Shape parameter (k)

0.25 0.50 1.00 1.50 2.00

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00 369.54 344.23 370.20 345.77 369.29 346.11 370.28 344.02 370.84 345.71

0.98 173.40 149.81 246.29 222.78 298.47 275.81 313.22 290.68 325.44 301.56

0.95 81.77 63.99 134.18 112.14 197.69 174.33 229.23 204.33 245.60 221.59

0.90 45.88 33.97 73.42 56.83 114.12 93.42 139.41 117.12 156.28 133.27

0.80 27.86 20.13 39.98 29.38 58.76 44.51 72.20 55.77 81.33 63.44

0.70 22.14 15.80 28.98 20.98 39.76 29.33 47.49 35.18 53.15 39.75

0.60 19.34 13.76 23.56 16.90 30.38 22.05 35.30 25.64 38.74 28.43

0.50 17.71 12.46 20.49 14.51 24.87 17.90 28.15 20.27 30.48 22.17

0.40 16.62 11.73 18.39 13.00 21.42 15.36 23.42 16.78 24.98 17.88

0.30 15.75 11.06 17.00 11.96 18.85 13.39 20.12 14.29 21.07 15.03

0.20 15.26 10.63 15.96 11.16 17.05 11.98 17.74 12.49 18.30 12.96

0.10 14.86 10.39 15.07 10.52 15.51 10.86 15.91 11.15 16.15 11.35

0.05 14.62 10.20 14.74 10.27 15.02 10.47 15.15 10.59 15.23 10.66

0.02 14.51 10.12 14.63 10.14 14.63 10.16 14.75 10.25 14.78 10.26

0.01 14.51 10.10 14.52 10.08 14.59 10.11 14.66 10.22 14.69 10.22

Table 2.  Results of the AEWMA chart for ARL0 = 370, ψ  = 0.20, and L = 0.2039.

 

λ

Shape parameter (k)

0.25 0.50 1.00 1.50 2.00

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

1.00 370.61 357.13 370.31 357.64 369.59 354.82 369.59 354.82 370.34 357.20

0.98 174.16 155.85 247.73 231.49 320.35 307.51 320.35 307.51 324.67 310.67

0.95 80.72 66.79 134.83 117.87 229.71 214.41 229.71 214.41 247.87 231.68

0.90 44.32 35.41 72.83 59.54 139.74 121.81 139.74 121.81 156.51 138.42

0.80 26.48 20.94 38.45 30.66 71.59 58.57 71.59 58.57 80.35 66.37

0.70 20.75 16.39 27.49 21.85 46.35 37.09 46.35 37.09 51.98 41.74

0.60 17.92 14.06 22.10 17.52 33.82 26.80 33.82 26.80 37.35 29.64

0.50 16.25 12.77 19.06 15.06 26.76 21.37 26.76 21.37 28.95 23.01

0.40 15.21 11.82 17.01 13.31 22.00 17.36 22.00 17.36 23.37 18.46

0.30 14.52 11.23 15.68 12.18 18.77 14.78 18.77 14.78 19.73 15.49

0.20 13.93 10.77 14.57 11.37 16.39 12.81 16.39 12.81 16.84 13.25

0.10 13.54 10.41 13.80 10.70 14.61 11.31 14.61 11.31 14.80 11.56

0.05 13.31 10.28 13.44 10.34 13.64 10.56 13.79 10.65 13.93 10.76

0.02 13.28 10.27 13.33 10.24 13.35 10.29 13.36 10.31 13.52 10.43

0.01 13.26 10.25 13.19 10.12 13.30 10.24 13.25 10.22 13.34 10.31

Table 1.  Results of the AEWMA chart for ARL0 = 370, ψ  = 0.15, and L = 0.1689.
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•	 At fixed ψ  and k, both the ARL and SDRL increases, as the transmuted parameter λ increases and vice versa. 
From Table 1 with λ = 0.90, 0.95 at ψ = 0.15 with k = 0.25 the respective ARL = 44.32, 80.72, and SDRL = 
35.41, 66.79. A similar result can be seen in Table 2.

•	 At fixed ψ  and λ, both the ARL and SDRL increases, as the shape parameter k increases and vice versa. For 
illustration, from Table 1 with k = 0.25, 1.50 at ψ = 0.15 with λ = 0.80 the respective ARL = 26.48, 71.59, and 
SDRL = 20.94, 58.57. A similar result can be seen in Table 2.

•	 At fixed k and λ, both the ARL and SDRL incline to increase, as the smoothing constant ψ  decreases and vice 
versa. For illustration, from Tables 1 and 2 with k = 0.25 at ψ = 0.15, 0.20 with λ = 0.95 the corresponding 
ARL = 174.16, 173.40, and SDRL = 155.85, 149.81.

•	 For a monitoring system where the understudy variable is sensitive, the small value of ψ  can increase the 
responsiveness of the proposed AEWMA chart.

Illustrative example
Using simulated data and real data sets the proposed control charts has been trailed by many researchers in 
SPC literature. Here, we study a real-life data to present the application and working of the suggested AEWMA 
control chart. For this purpose, the real data set prior utilized by Abdul-Moniem20 is considered. The data set 
is regarding the life of fatigue fracture of Kelvar 373/epoxy. Constant pressure at the 90% stress level is applied 
till all had failed on this data so there is no censoring and we have a complete data set. The data is listed as: 
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 
1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 
1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 
2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 
4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960. The summary statistics are presented in Table 3. We compare the 
TTB-II distribution with those of its competitive distributions, namely: the Transmuted Burr II (TB-II) (New), 
Transmuted Burr III (TB-III) Abdul-Moniem20, Transmuted Burr XII (TB-XII) Afify et al.17, Burr II (B-II), 
Burr III (B-III) and Burr XII (B-XII) Burr11, distributions with densities given in supplementary Appendix A. 
-2log likelihood (-2 l̂), AIC, CAIC, and BIC are the four different statistics of fit as the selection criterion for the 
optimal model. Further, four different renowned goodness of fits (GOF) statistics named Cramer-von Mises (C), 
Kolmogorov-Smirnov (K), Anderson Darling (A), and Chi-square ( χ 2) statistics along with their p-values are 
calculated for the TTB-II, TB-II, TB-III, TB-XII, B-II, B-III, and B-XII models. To assess how closely the cdf of a 
given distribution fits the empirical distribution for the given data set, these statistics and criteria are extensively 
used in literature. The parameters of all distributions are estimated through the maximum likelihood estimation 
(MLE) method.

From Tables 4 and 5, since the proposed model has the smallest GOF and maximum p-value so it can be 
considered the best-fitted model. The closeness of the proposed model fit can also be seen in Figs. 2 and 3 for 
the life of fatigue fracture data. We assume that the data set follows the TTB-II distribution with transmuted 
parameter (λ = 0.2056) and shape parameter (k = 4.0431). The first 30 samples are taken as Phase 1 and the 
remaining 36 samples as the Phase II data set. The parametric choice for the proposed chart is ( ψ  = 0.15, 
L = 0.2239). Figure 4 demonstrates the proposed chart following the design given in Sect. 3.

Model m̂ k̂ λ̂ A C K χ 2

TTB-II - 4.04 0.205 0.535
(0.710)

0.054
(0.848)

0.074
(0.771)

10.842
(0.456)

TB-II - 5.49 0.439 0.738
(0.527)

0.081
(0.683)

0.078
(0.711)

13.368
(0.269)

TB-III 1.8566 0.98 -0.718 1.116
(0.300)

0.194
(0.279)

0.121
(0.193)

15.578
(0.157)

TB-XII 2.2307 0.33 1.000 2.094
(0.081)

0.396
(0.074)

0.147
(0.065)

20.315
(0.041)

B-II - 4.53 - 1.255
(0.246)

0.219
(0.232)

0.127
(0.154)

11.1579
(0.4301)

B-III 1.4590 1.69 - 1.874
(0.108)

0.340
(0.104)

0.136
(0.106)

14.947
(0.184)

B-XII 0.6655 2.23 - 2.094
(0.081)

0.396
(0.074)

0.147
(0.065)

20.315
(0.041)

Table 4.  MLEs, and a, C, K, χ 2 with (p-values) for the life of fatigue fracture data.

 

n Min Max Mean Median Mode Variance Coeff. of Skewness
Coeff. of
Kurtosis

76 0.025 9.096 1.959 1.736 1.289 2.477 1.979 8.160

Table 3.  The descriptive summary of the life of fatigue fracture data.
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Conclusion
The generalization of standard distributions gives more flexible distributions for the analysis of real-life data’s 
legitimate concept of generalization. Because of the wide use of the Burr family in real-life data analysis, the 
generalization of Burr type II distribution becomes the motivation for the truncated transmuted Burr type II 
(TTB-II) distribution. Different properties of TTB-II distribution are analyzed. Three applications delineate 
that the new proposed model gives a steadily good fit. The pdf shapes and hazard function plots of the TTB-II 
model establish that TTB-II is more flexible and accommodates several shapes for the hazard function. Further, 
utilizing the AEWMA chart to screen the TTB-II distributed data is examined.  At that point, the AEWMA 
chart can be set up as per our strategies. The ARL computation are done via simulations. A real-life data-based 
numerical example is used to illustrate the application of the AEWMA chart.

Fig. 3.   (a) pdf (b) Boxplot for the TTB-II distribution for the fatigue fracture.

 

Fig. 2.  Fitted (a) pdf (b) PP plot for the TTB-II distribution for the fatigue fracture data.

 

Model -2 l̂ AIC BIC CAIC

TTB-II 243.984 247.984 252.645 248.148

TB-II 250.800 254.800 259.461 254.964

TB-III 250.089 256.089 263.081 256.422

TB-XII 257.107 263.107 270.099 263.440

B-II 253.530 255.530 257.860 255.584

B-III 256.830 260.830 265.491 260.994

B-XII 257.107 261.107 265.768 261.271

Table 5.  −2 l̂, AIC, BIC, and CAIC for the life of fatigue fracture data.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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