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Currently applicable models for predicting live birth outcomes in patients who received assisted 
reproductive technology (ART) have methodological or study design limitations that greatly obstruct 
their dissemination and application. Models suitable for Chinese couples have not yet been identified. 
We conducted a retrospective study by using a database includes a total of 11,938 couples who 
underwent in vitro fertilization (IVF) treatment between January 2015 and December 2022 in a medical 
institution of southwest China Yunnan province. Multiple candidate predictors were screened out 
by using the importance scores. Four machine learning (ML) algorithms including random forest, 
extreme gradient boosting, light gradient boosting machine and binary logistic regression were used 
to construct prediction models. An initial assessment of the predictive performance was conducted and 
validated by using cross-validation and bootstrap methods. A total of seven predictors were identified, 
namely maternal age, duration of infertility, basal follicle-stimulating hormone (FSH), progressive 
sperm motility, progesterone (P) on HCG day, estradiol (E2) on HCG day, and luteinizing hormone 
(LH) on HCG day. Of the four predictive models, the random forest model and the logistic regression 
model were considered to have the optimal performance, with the areas under the receiver operating 
characteristic curve (AUROC) curves of 0.671 (95% CI 0.630–0.713) and 0.674 (95% CI 0.627–0.720). The 
Brier scores were 0.183 (95% CI 0.170–0.196) and 0.183 (95% CI 0.170–0.196), respectively. Considering 
the simplicity of model fitting, we recommend the logistic regression model as the best predictive 
model for live birth. Furthermore, maternal age, P on HCG day and E2 on HCG day were deemed to 
have the highest contribution to model prediction.
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Infertility, defined as the inability to conceive after at least 12 months of regular unprotected sex, has been a 
global health problem for a long time1. It is estimated that one in six people of reproductive age worldwide will 
experience infertility in their lifetime1. In China, there has been a marked increase in infertility over the past two 
decades2, and currently the infertile population is approximately to one quarter3. Available evidence suggests 
that infertility significantly impairs quality of life and weakens partnerships when compared to couples without 
infertility distress4–6. Simultaneously, infertility problems can also affect female mental health with worse levels 
of depression and anxiety7,8.

Assisted reproductive technology (ART) has been rapidly evolving since its emergence in 1978, and its use to 
help infertile couples achieve pregnancy has led to the birth of more than 8 million newborns worldwide9. ART 
mainly consists of in vitro fertilization (IVF) with or without intracytoplasmic sperm injection (ICSI), embryo 
transfer, and frozen embryo transfer, of which IVF and/or ICSI are the recommended treatment options for 
couples with long-term unresolved fertility problems10. However, close to half of couples treated with IVF failed 
to get pregnant, even after multiple treatment cycles11. Therefore, live birth is the most important outcome of 
ART treatment. Clinical prediction models on live birth outcome of ART treatment that incorporate multiple 
patient characteristics are able to help couples establish reasonable psychological expectations and costs, and 
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support consultation between physicians and couples regarding treatment decisions12. Currently, common 
predictors of live birth outcomes in patients treated by ART included demographic characteristics (maternal age, 
body mass index, ethnicity, etc.), clinically factors (cause of infertility, duration of infertility, type of infertility, 
etc.) and laboratory parameters (serum sex hormones, ovarian reserve, number of oocytes collected, sperm 
motility and morphology, etc.)13,14.

A review of prediction models on live birth outcomes of ART showed that currently available models generally 
suffer from methodological or study design limitations, such as the use of inefficiently randomized split data 
for validation, unclear reporting of missing values, only reporting on the discrimination, and the inclusion of 
pregnant women treated with IVF only15–18. Although the prediction model developed by Dhillon et al. had the 
high quality of reporting, it was derived from the UK population, the applicability to other populations remains 
unclear15,19. Another review noted that only one prognostic prediction study for live births was at low risk of 
bias, but it only included couples treated with ICSI20,21.

Under such circumstances, we aim to develop and internally validate a prognostic prediction model for live 
birth by using easily obtainable demographic characteristics and clinical features at the beginning of IVF within 
a representative, large sample of Chinese patients. Recently, several machine learning (ML) algorithms suitable 
for classification outcomes such as random forest, extreme gradient boosting, and light gradient boosting have 
been extensively used for construction of clinical prediction models22–24. Thus, we developed models using both 
traditional regression and these ML algorithms in order to choose the optimal one.

Materials and methods
Data source and study sample
Participants were recruited between January 2015 and December 2022 from couples who accepted ART treatment 
at the Second Affiliated Hospital of Kunming Medical University in southwest China Yunnan Province. Our 
database contains data on all treatment cycles for 13,620 patients who initiated the first and subsequent IVF with 
ICSI treatment. Patients were further excluded if: (1) ART initiation before the study period, or; (2) restarted 
ART after a live birth, or; (3) missing vital information, or; (4) lost to follow-up for at least one year. Finally, 
11,486 couples were included in the analysis. Detailed process for selection of patients is illustrated in Fig. 1.

The study was approved by the ethics committee of the Second Affiliated Hospital of Kunming Medical 
University. Due to its retrospective nature, informed consent was allowed to be waived by the committee. 
We confirmed that all methods were carried out following relevant guidelines and regulations. The study 
was reported consistent with the extension and update guideline of the original TRIPOD-2015 (transparent 
reporting of a multivariable prediction model for individual prognosis or diagnosis), known as TRIPOD + AI25.

Definitions of outcome and candidate predictors
The primary outcome of interest in this study was whether a live birth occurred during a single ART cycle. 
Various variables of the patients were extracted as candidate predictors based on previous studies and clinical 
practice considerations, such as demographic characteristics (couple’s age, ethnicity, maternal body mass index), 
treatment-related information (duration of infertility, type of infertility, cause of infertility, previous ART cycles, 
insemination method, starting dosage of gonadotropins (Gn), duration of Gn, and total dosage of Gn), and 
laboratory test results (basal follicle-stimulating hormone (FSH), estradiol (E2), and luteinizing hormone (LH), 
progressive sperm, non-progressive sperm motility, and E2, LH and progesterone (P) on HCG day). Candidate 
predictors were measured at the time of receiving ART treatment.

Statistical analysis
Firstly, we performed descriptive analyses of the study subjects, and continuous variables were described 
separately according to the type of distribution, e.g., mean with standard deviation (SD) for a normal distribution 
and median with inter-quartiles range (IQR) for a non-normal distribution. Differences between groups for 
continuous variables were tested by t-test or rank-sum test. For categorical variables, frequency (proportion) was 
used to describe them, and differences between or among groups were compared using the Chi-squared test. In 
consistent with previous ART studies, we used the same age-stratification criteria (≤ 35 years, 35–39 years, and 
≥ 40 years)26,27. We classified the remaining unspecified continuous variables into categorical variables based 
on quartiles. Univariate and multivariate logistic regressions (LR) were fitted to measure the crude and adjusted 
associations between the candidate predictors and the live birth outcome.

Three machine learning algorithms (random forest, RF; extreme gradient boosting, XGBoost; light gradient 
boosting machine, LightGBM) were used to further confirm the most important predictors for live birth outcome 
from candidate predictors screened out by multivariate LR: variables that ranked among the top 6 in at least 2 
of the 3 used algorithms were chosen. For the chosen important predictors, the receiver operating characteristic 
(ROC) curves were applied to ascertain their optimal cut-off values with regard to the live birth outcome.

We used the optimal cut-offs to dichotomize all chosen important predictors, then included them into the 
prediction model by using the four different algorithms (LR, RF, XGBoost, LightGBM). Randomly split sample 
is considered to be the simplest internal validation approach, but it is sub-optimal because it loses sample 
information and decreases statistical power28. For this reason, we used two other internal validation approaches 
(tenfold cross-validation, 500 times bootstrap), which were also recommended by the TRIPOD guideline25. Area 
under the receiver operating characteristic (AUROC) curve was used to assess discrimination, with the value 
closer to 1 indicating the greater the ability in discriminating live birth outcomes29. The Brier score was used to 
estimate the calibration, with the value closer to 0 indicating that the predicted probability of the outcome by the 
model coincides with the actual probability30.

The statistical significance was set as a two-tailed p < 0.05, except for p < 0.10 for univariate logistic regressions 
in searching for all possible covariates. All data analysis was done in R software (Version: 4.4.0, Vienna, Austria).
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Results
General characteristics of study subjects
As shown in Fig. 1, between 2015 and 2022, there were a total of 13,620 couples included. After data sorting, we 
excluded participants who reported incomplete data (1682/13,620) or lost to follow-up (452/11,938). The final 
analysis was based on a total of 11,486 couples with complete information. Altogether 3097 couples successfully 
reached the live birth outcome, with the live birth rate of 26.96% (95% CI 26.15%-27.79%).

Among all study subjects, husbands were 34.61 ± 5.85  years old, wives were 33.18 ± 5.20  years old, and 
more than half of the individuals were Han ethnicity (74.04% of husbands and 70.08% of wives), the average 
duration of infertility was 4.32 ± 3.39 years. The differences between couples with or without live births were 
statistically significant for age of husband and wife, maternal BMI, duration of infertility, and previous ART 
cycles. In ovulation induction therapy and laboratory indicators, there were statistically significant differences in 
all features except for total dosage of Gn, basal E2, and non-progressive sperm motility (Table 1).

Association between factors and live birth
To initially explore the impact of quantitative variables on live births, we classified age as a categorical variable 
according to the recommended thresholds, whereas the other quantitative variables were classified into 
categorical variables with four levels based on their quartiles: very low level (< P25), low level (P25–P50), moderate 
level (P50–P75), and high level (> P75). After fitting univariate binary logistic regression, we included statistically 
significant variables (p < 0.01) into further multivariate analyses, and the results showed: maternal age and BMI, 
duration of infertility, previous ART cycles, progressive sperm motility, duration of Gn, total dosage of Gn, basal 
FSH, E2 on HCG day, and LH on HCG day were significantly associated with live birth (Table 2).

Fig. 1.  Analysis workflow.
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Machine learning results
We incorporate the screened out variables into the multivariate analysis by using three different machine 
learning algorithms (RF, XGBoost and LightGBM). Seven indicators were identified as the most important in 
all three algorithms: maternal age, duration of infertility, basal FSH, progressive sperm motility, and E2, LH and 
P on HCG day (Fig. 2). With the exception of duration of infertility, we identified the optimal cut-off values 
in predicting the live birth outcomes by using the ROC curves for the rest 6 quantitative variables, and the 
ascertained cut-offs were: The optimal cut-off values for maternal age, basal FSH, progressive sperm motility, 
and E2, LH and P on HCG day were 36.97 years for maternal age, 5.57 mIU/mL for basal FSH, 33.52% for 
progressive sperm motility, 7227.50 pg/mL for E2, 3.04 mIU/mL for LH on HCG day, and 1.33 ng/mL for P on 
HCG day (Fig. 3).

Finally, we built predictive models using only the seven variables mentioned above with logistic regression 
and three different machine learning algorithms (RF, XGBoost, LightGBM). Both cross-validation and bootstrap 
methods indicated that LR and RF had the optimal model performance. Specifically, LR yielded an AUROC of 
0.671 (95% CI 0.630–0.713) and Brier score of 0.183 (95% CI 0.170–0.196) for cross-validation, and an AUROC 
of 0.671 (95% CI 0.662–0.683) and Brier score of 0.183 (95% CI 0.179–0.187) for bootstrap. RF had similar 
discrimination and calibration performance, followed by XGBoost and LightGBM (Table 3). Standardized 
regression coefficients suggest that among the 7 included indicators, maternal age showed the strongest 
association with live birth outcome, followed by P on HCG day, E2 on HCG day, whereas basal FSH presented 
as the weakest predictor (see in Supplementary material, Table S1).

Variables Total (N = 11,486)

Live birth

p valueYes (N = 3097) No (N = 8389)

Age of husband, years† 34.61 ± 5.85 33.56 ± 5.29 35.00 ± 6.00 < 0.01

Ethnicity of husband§ 0.06

 Han majority 8504 (74.04) 2254 (26.51) 6250 (73.49)

 Minority 2982 (25.96) 843 (28.27) 2139 (71.73)

Maternal age, years† 33.18 ± 5.20 31.77 ± 4.22 33.71 ± 5.43 < 0.01

Maternal ethnicity§ 0.14

 Han majority 8049 (70.08) 2138 (26.56) 5911 (73.44)

 Minority 3437 (29.92) 959 (27.90) 2478 (72.10)

Maternal BMI, kg/m2† 22.68 ± 3.27 22.57 ± 3.27 22.73 ± 3.27 < 0.01

Duration of infertility, 
years† 4.32 ± 3.39 3.91 ± 2.85 4.47 ± 3.56 < 0.01

Type of infertility§ 0.22

 Primary 4692 (40.85) 1294 (27.58) 3398 (72.42)

 Secondary 6794 (59.15) 1803 (26.54) 4991 (73.46)

Cause of infertility§ 0.06

 Female factor 6571 (57.21) 1723 (26.22) 4848 (73.78)

 Male factor 1165 (10.14) 347 (29.79) 818 (70.21)

 Mixed factor 2766 (24.08) 748 (27.04) 2018 (72.96)

 Unexplained 984 (8.57) 279 (28.35) 705 (71.65)

Previous ART cycles† 0.37 ± 0.85 0.20 ± 0.52 0.43 ± 0.94 < 0.01

Insemination method§ 0.29

 IVF 9566 (83.28) 2598 (27.06) 6968 (72.84)

 ICSI 1920 (16.72) 499 (25.99) 1421 (74.01)

Starting dosage of Gn, IU¶ 187.50 (150.00–225.00) 150.00 (150.00–225.00) 187.50 (150.00–250.00) < 0.01

Duration of Gn, days¶ 10.00 (11.00–13.00) 11.00 (10.00–13.00) 11.00 (10.00–12.00) < 0.01

Total dosage of Gn, IU¶ 2250.00 (1650.00–2925.00) 2200 (1650.00–2887.50) 2250 (1612.50–2925.00) 0.44

Basal FSH, mIU/mL¶ 5.88 (4.41–7.35) 6.00 (4.52–7.44) 5.83 (4.37–7.32) < 0.01

Basal E2, pg/mL¶ 66.00 (38.46–133.48) 65.33 (38.17–131.6) 66.18 (38.64–134.20) 0.53

Basal LH, mIU/mL¶ 5.91 (3.94–9.25) 6.15 (4.09–9.52) 5.83 (3.89–9.15) < 0.01

Progressive sperm motility¶ 39.18 (24.13–53.23) 38.05 (22.73–52.62) 39.50 (24.53–53.49) < 0.01

Non-progressive sperm 
motility¶ 5.08 (0.87–8.20) 5.17 (1.13–8.27) 5.06 (0.81–8.19) 0.20

E2 on HCG day, pg/mL¶ 2837.00 (1629.00–6000.00) 2726.00 (1801.00–5376.00) 2890.00 (1546.00–6265.00) < 0.01

LH on HCG day, mIU/mL¶ 1.37 (0.74–2.45) 1.31 (0.72–2.12) 1.39 (0.74–2.61) < 0.01

P on HCG day, ng/mL¶ 0.89 (0.57–1.29) 0.81 (0.54–1.12) 0.92 (0.59–1.37) < 0.01

Table 1.  General characteristics of study subjects. †Mean ± SD, §N (%), ¶Median (IQR).
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Variables

Live birth (Yes)

Univariate model OR (90% CI) p value Multivariate model OR (95% CI) p value

Age of husband (Ref: < = 35 years old)

 36–39 years old 0.78 (0.71–0.85) < 0.01 1.03 (0.91–1.17) 0.62

 > = 40 years old 0.49 (0.44–0.54) < 0.01 0.95 (0.82–1.10) 0.46

Ethnicity of husband (Ref: Han majority)

 Minority 1.09 (1.01–1.18) < 0.10 1.04 (0.95–1.15) 0.39

Maternal age (Ref: < = 35 years old)

 36–39 years old 0.64 (0.59–0.70) < 0.01 0.68 (0.60–0.77) < 0.01

 > = 40 years old 0.16 (0.13–0.19) < 0.01 0.20 (0.15–0.25) < 0.01

Maternal ethnicity (Ref: Han majority)

 Minority 1.07 (0.99–1.15) 0.14

Maternal BMI (Ref: Normal)

 Underweight 1.02 (0.89–1.16) 0.84 0.96 (0.81–1.13) 0.60

 Overweight and obesity 0.91 (0.84–0.98) < 0.05 0.89 (0.80–0.98) < 0.05

Duration of infertility (+ 1 year) 0.95 (0.94–0.96) < 0.01 0.96 (0.95–0.98) < 0.01

Type of infertility (Ref: Primary)

 Secondary 0.95 (0.88–1.02) 0.22

Cause of infertility (Ref: Female factor)

 Male factor 1.19 (1.06–1.34) < 0.05 0.99 (0.83–1.17) 0.87

 Mixed factor 1.04 (0.96–1.13) 0.41 0.96 (0.84–1.09) 0.53

 Unexplained 1.11 (0.98–1.26) 0.16 1.06 (0.90–1.23) 0.50

Previous ART Cycles (+ 1) 0.62 (0.58–0.65) < 0.01 0.70 (0.65–0.76) < 0.01

Insemination method (Ref: IVF)

 ICSI 0.94 (0.86–1.03) 0.29

Starting dosage of Gn (Ref: Very low level)

 Low level 0.85 (0.77–0.94) < 0.01 0.95 (0.83–1.09) 0.44

 Moderate level 0.84 (0.71–0.98) < 0.10 0.91 (0.72–1.15) 0.44

 High level 0.68 (0.62–0.75) < 0.01 0.93 (0.76–1.15) 0.51

Duration of Gn (Ref: Very low level)

 Low level 1.57 (1.39–1.77) < 0.01 1.26 (1.08–1.48) < 0.01

 Moderate level 1.74 (1.58–1.93) < 0.01 1.21 (1.04–1.42) < 0.05

 High level 1.94 (1.74–2.16) < 0.01 1.22 (1.00–1.50) 0.06

Total dosage of Gn (Ref: Very low level)

 Low level 1.36 (1.23–1.50) < 0.01 1.27 (1.09–1.47) < 0.01

 Moderate level 1.17 (1.06–1.30) < 0.01 1.30 (1.07–1.56) < 0.01

 High level 1.09 (0.99–1.21) 0.14 1.21 (0.96–1.53) 0.11

Basal FSH (Ref: Very low level)

 Low level 1.01 (0.92–1.12) 0.82 0.98 (0.87–1.12) 0.81

 Moderate level 1.17 (1.06–1.29) < 0.01 1.12 (0.99–1.27) 0.08

 High level 1.16 (1.05–1.28) < 0.05 1.16 (1.02–1.33) < 0.05

Basal E2 (Ref: Very low level)

 Low level 0.96 (0.87–1.06) 0.52

 Moderate level 0.97 (0.88–1.07) 0.66

 High level 0.95 (0.86–1.05) 0.37

Basal LH (Ref: Very low level)

 Low level 1.08 (0.98–1.19) 0.21 1.00 (0.88–1.14) 0.95

 Moderate level 1.21 (1.09–1.33) < 0.01 1.09 (0.96–1.24) 0.18

 High level 1.19 (1.08–1.32) < 0.01 1.00 (0.87–1.14) 0.96

Progressive sperm motility (Ref: Very low level)

 Low level 0.91 (0.82–1.00) < 0.01 0.88 (0.77–1.01) 0.07

 Moderate level 0.87 (0.79–0.96) < 0.05 0.80 (0.69–0.94) < 0.01

 High level 0.86 (0.78–0.94) < 0.01 0.77 (0.65–0.90) < 0.01

Non-progressive sperm motility (Ref: Very low level)

 Low level 1.16 (1.05–1.28) < 0.05 1.02 (0.90–1.15) 0.81

 Moderate level 1.09 (0.99–1.21) 0.14 0.97 (0.86–1.11) 0.69

Continued
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Discussion
In this study, we screened for potential predictors among easily obtained demographic and clinical indicators 
for live birth in a large sample of Chinese patients who received ART treatment. Based on statistical models 
and multiple machine learning algorithms, we have identified 7 promising indicators in predicting live birth 
outcome among ART patients: maternal age, duration of infertility, basal FSH, progressive sperm motility, and 
E2, LH and P on HCG day. The predictive models based on the 7 identified indicators provided fair and robust 
prediction accuracy, irrespective of different algorithms. The major findings of our study are expected to provide 
useful information in helping clinicians better triage patients at the baseline for upcoming ART treatments.

Among the 7 indicators that we screened out, maternal age had the strongest association with live birth 
outcomes, followed by P on HCG day, E2 on HCG day, LH on HCG day, years of infertility and progressive 
sperm motility, with the basal FSH showed the weakest influence. It is not surprising to find that maternal age 
is the strongest predictor of live birth, considering the fact that along with the aging process, especially after the 
age of 37 years, female fertility will decline rapidly31. This is attributed to the decline in the number of oocytes in 
women and age-related poor quality of embryos31.

A higher level of P or E2 on HCG day also significantly related to lower probability of live birth. It is 
hypothesized that elevated follicular-phase P concentration produced by ovarian stimulation-induced multiple 
follicle growth may contribute to changes in the endometrium, leading to embryo-endometrial asynchrony, 
which may adversely affect implantation, leading to reduced live birth chances32. However, the role of estradiol 
levels during HCG days on pregnancy probability is still controversial. A meta-analysis indicated that there 
was insufficient evidence of an association between high E2 levels and pregnancy probability33. The previous 
studies have found that high E2 levels on HCG day were significantly predictive of lower live birth rates for 
couples undergoing frozen embryo transfer34,35. In recent years, basal FSH has been recognized as a predictor of 
live birth outcome after IVF treatment13. A higher level of basal FSH has also been connected to poor ovarian 
response36. However, although in this study we have included basal FSH into the final prediction model, as it 
significantly improved prediction accuracy, unlike maternal age, P and E2 on HCG day, its association with live 
birth outcome is generally weak. All the above inconsistencies between our study and currently available sparse 
evidence warrant further investigation.

During development of the prediction model, we initially included previous IVF history in the attempt to 
adjust for its influence on live birth outcomes. However, previous IVF history presented only negligible influence 
on live birth and was subsequently eliminated. The general predictive performance of our models, as measured 
by AUROC, was similar to their comparable models16–18. Among all the prediction models that we fitted by 
using the ML algorithms, the RF model outperformed the others. However, its performance was similar to the 
LR model in both discrimination and calibration parameters. As the LR model is a widely used generalized linear 
model that much more easily to be fitted, it should be preferred when comparing with complicated ML models.

Our study results are based on a sufficiently large sample of IVF patients to develop predictive models on 
live birth outcomes, a large group of easily obtained baseline predictors were screened for. The similar predictive 
accuracy between the models fitted by different algorithms partly supports the robustness of prediction accuracy 
for identified factors. Nevertheless, the present study still has some limitations that should be noticed. Firstly, 
the overall discrimination for the predictive models was not high, only around 67%, which suggests that there 
are other important predictors that to be found. For instance, serum anti-müllerian hormone (AHM), which 
reflects ovarian reserve, has been identified as the most important predictor for live birth-related outcomes 
of ART treatment in existing prediction models37. Also, embryo quality was considered to be a valuable 
predictor14. However, due to the unavailability of data, we cannot include these important variables into our 
current prediction models. Secondly, we only screened for baseline indicators that are predictive of live birth 
outcomes for IVF patients, since the period from treatment inception to live birth is long, it would be interesting 
to investigate the role of time-varying factors on the IVF outcomes by using dynamic prediction models. Finally, 

Variables

Live birth (Yes)

Univariate model OR (90% CI) p value Multivariate model OR (95% CI) p value

 High level 1.12 (1.01–1.23) < 0.01 1.05 (0.92–1.19) 0.49

E2 on HCG day (Ref: Very low level)

 Low level 1.88 (1.70–2.07) < 0.01 1.47 (1.29–1.67) < 0.01

 Moderate level 1.65 (1.50–1.82) < 0.01 1.20 (1.04–1.37) < 0.05

 High level 0.90 (0.81–1.00) < 0.10 0.66 (0.57–0.77) < 0.01

LH on HCG day (Ref: Very low level)

 Low level 1.05 (0.95–1.16) 0.41 1.10 (0.98–1.25) 0.12

 Moderate level 1.13 (1.03–1.25) < 0.05 1.29 (1.14–1.47) < 0.01

 High level 0.68 (0.62–0.76) < 0.01 1.07 (0.93–1.24) 0.34

P on HCG day (Ref: Very low level)

 Low level 1.09 (0.99–1.20) 0.14 0.96 (0.85–1.08) 0.49

 Moderate level 0.98 (0.89–1.08) 0.78 0.89 (0.78–1.01) 0.07

 High level 0.46 (0.41–0.51) < 0.01 0.46 (0.40–0.54) < 0.01

Table 2.  Univariate and multivariate logistic regression fitting results on associated factors of live birth.
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the study sample was derived from a single medical institution by using retrospective study design, therefore 
information bias and selection bias could not be avoided. Multicenter, prospective studies should be done in the 
future to externally validate our major findings.

In summary, we constructed prognostic prediction models for the live birth outcome in couples undergoing 
IVF, with or without ICSI treatment, by using logistic regression and machine learning algorithms. The models 
resulting from different approaches yielded similar predictive performance, and the logistic regression model 
was considered to have the best performance and was recommended for further validation. Future studies of 

Fig. 2.  Importance of screened variables in different algorithms.
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longitudinal design and incorporate more meaningful indicators are warranted to validate and improve the 
prediction accuracy of current models.

Data availability
The datasets analyzed during the current study are not publicly available due to ethical reason but are available 
from the corresponding authors under the reasonable request.
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